Construction of amphiphilic networks in blend membranes for CO2 separation

Blend membranes have attracted great attention because they can combine the advantages of different polymers. To investigate the effect of amphiphilic polymer on the separation performance of blend membranes, a series of blend membranes were designed and fabricated by blending an amphiphilic polymer...

Full description

Saved in:
Bibliographic Details
Published inThe Korean journal of chemical engineering Vol. 40; no. 1; pp. 175 - 184
Main Authors Wang, Jiangnan, Lv, Xia, Huang, Lu, Li, Long, Li, Xueqin, Zhang, Jinli
Format Journal Article
LanguageEnglish
Published New York Springer US 01.01.2023
Springer Nature B.V
한국화학공학회
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Blend membranes have attracted great attention because they can combine the advantages of different polymers. To investigate the effect of amphiphilic polymer on the separation performance of blend membranes, a series of blend membranes were designed and fabricated by blending an amphiphilic polymer of poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) into poly(ether-block-amide) (Pebax) polymer for CO 2 separation. For the as-prepared Pebax/PEDOT:PSS blend membranes, the interconnected CO 2 -philic networks were constructed by hydrophilic anionic chains of PSS − for accelerating CO 2 transport. Meanwhile, non-CO 2 -philic networks were constructed by the hydrophobic cationic chains of PEDOT + , which distributed around the PSS − chains to provide low friction diffusion for CO 2 . Therefore, the amphiphilic polymer of PEDOT:PSS was an excellent material for improving CO 2 separation performance of blend membranes. The results showed that the Pebax/PEDOT:PSS blend membranes were endowed with excellent CO 2 separation performance. Pebax/PEDOT:PSS blend membrane demonstrated the optimal separation performance with a CO 2 permeability of 440.2±3.3 Barrer and a CO 2 /CH 4 separation factor of 28±0.6. This study indicates that introducing the amphiphilic polymer into the blend membranes is an efficient strategy for gas separation.
AbstractList Blend membranes have attracted great attention because they can combine the advantages of different polymers. To investigate the effect of amphiphilic polymer on the separation performance of blend membranes, a series of blend membranes were designed and fabricated by blending an amphiphilic polymer of poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) into poly(ether-block-amide) (Pebax) polymer for CO 2 separation. For the as-prepared Pebax/PEDOT:PSS blend membranes, the interconnected CO 2 -philic networks were constructed by hydrophilic anionic chains of PSS − for accelerating CO 2 transport. Meanwhile, non-CO 2 -philic networks were constructed by the hydrophobic cationic chains of PEDOT + , which distributed around the PSS − chains to provide low friction diffusion for CO 2 . Therefore, the amphiphilic polymer of PEDOT:PSS was an excellent material for improving CO 2 separation performance of blend membranes. The results showed that the Pebax/PEDOT:PSS blend membranes were endowed with excellent CO 2 separation performance. Pebax/PEDOT:PSS blend membrane demonstrated the optimal separation performance with a CO 2 permeability of 440.2±3.3 Barrer and a CO 2 /CH 4 separation factor of 28±0.6. This study indicates that introducing the amphiphilic polymer into the blend membranes is an efficient strategy for gas separation.
Blend membranes have attracted great attention because they can combine the advantages of different polymers. To investigate the effect of amphiphilic polymer on the separation performance of blend membranes, a series of blend membranes were designed and fabricated by blending an amphiphilic polymer of poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) into poly(ether-block-amide) (Pebax) polymer for CO2 separation. For the as-prepared Pebax/PEDOT:PSS blend membranes, the interconnected CO2-philic networks were constructed by hydrophilic anionic chains of PSS− for accelerating CO2 transport. Meanwhile, non-CO2-philic networks were constructed by the hydrophobic cationic chains of PEDOT+, which distributed around the PSS− chains to provide low friction diffusion for CO2. Therefore, the amphiphilic polymer of PEDOT:PSS was an excellent material for improving CO2 separation performance of blend membranes. The results showed that the Pebax/PEDOT:PSS blend membranes were endowed with excellent CO2 separation performance. Pebax/PEDOT:PSS blend membrane demonstrated the optimal separation performance with a CO2 permeability of 440.2±3.3 Barrer and a CO2/CH4 separation factor of 28±0.6. This study indicates that introducing the amphiphilic polymer into the blend membranes is an efficient strategy for gas separation.
Blend membranes have attracted great attention because they can combine the advantages of different polymers. To investigate the effect of amphiphilic polymer on the separation performance of blend membranes, a series of blend membranes were designed and fabricated by blending an amphiphilic polymer of poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) into poly(ether-block-amide) (Pebax) polymer for CO2 separation. For the as-prepared Pebax/PEDOT:PSS blend membranes, the interconnected CO2-philic networks were constructed by hydrophilic anionic chains of PSS− for accelerating CO2 transport. Meanwhile, non-CO2-philic networks were constructed by the hydrophobic cationic chains of PEDOT+, which distributed around the PSS− chains to provide low friction diffusion for CO2. Therefore, the amphiphilic polymer of PEDOT:PSS was an excellent material for improving CO2 separation performance of blend membranes. The results showed that the Pebax/PEDOT:PSS blend membranes were endowed with excellent CO2 separation performance. Pebax/PEDOT:PSS blend membrane demonstrated the optimal separation performance with a CO2 permeability of 440.2±3.3 Barrer and a CO2/CH4 separation factor of 28±0.6. This study indicates that introducing the amphiphilic polymer into the blend membranes is an efficient strategy for gas separation. KCI Citation Count: 0
Author Huang, Lu
Li, Long
Wang, Jiangnan
Li, Xueqin
Lv, Xia
Zhang, Jinli
Author_xml – sequence: 1
  givenname: Jiangnan
  surname: Wang
  fullname: Wang, Jiangnan
  organization: School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University
– sequence: 2
  givenname: Xia
  surname: Lv
  fullname: Lv, Xia
  organization: School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University
– sequence: 3
  givenname: Lu
  surname: Huang
  fullname: Huang, Lu
  organization: School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University
– sequence: 4
  givenname: Long
  surname: Li
  fullname: Li, Long
  organization: School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University
– sequence: 5
  givenname: Xueqin
  surname: Li
  fullname: Li, Xueqin
  email: lixueqin861003@163.com
  organization: School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University
– sequence: 6
  givenname: Jinli
  surname: Zhang
  fullname: Zhang, Jinli
  email: zhangjinli@tju.edu.cn
  organization: School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002910661$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kF1LwzAUhoNMcFN_gHcB74RqkjZJezmGH5PBQOZ1SLPTma1NZtIh_nvbVRAEhQPn5nleznknaOS8A4SuKLmlhMi7SGlOs4QwllCWikSeoDEtJE8kY2SExoRxkVBK-RmaxLglhHPByBg9z7yLbTiY1nqHfYV1s3-z3dTWYAfthw-7iK3DZQ1ujRtoyqAdRFz5gGdLhiPsddC9fYFOK11HuPze5-j14X41e0oWy8f5bLpIDMtpmwhiDAeaS5bxEtYpz7jgmnHQIod1keVA05KSXKeQpbrUmcwrbkBIStKqYCw9RzdDrguV2hmrvLbHvfFqF9T0ZTVXXSeFyArRwdcDvA_-_QCxVVt_CK67TzEpSC6yVPSUHCgTfIwBKmVse3yqDdrWXVyfKNXQsupaVn3LSnYm_WXug210-PzXYYMTO9ZtIPzc9Lf0BVbTjzQ
CitedBy_id crossref_primary_10_1016_j_polymertesting_2023_108225
crossref_primary_10_1016_j_memsci_2024_123307
Cites_doi 10.1016/j.memsci.2021.119440
10.1039/C1EE02668B
10.1016/j.memsci.2017.10.054
10.1002/smll.202201732
10.1016/j.joule.2020.07.005
10.1016/S0376-7388(01)00444-6
10.1021/acsami.6b09786
10.1007/s11814-019-0402-z
10.1016/j.polymer.2022.124533
10.1016/j.memsci.2021.119541
10.1039/C4RA14168G
10.1016/j.memsci.2016.06.025
10.3390/en14216883
10.1007/s11356-021-13447-y
10.1016/j.memsci.2018.09.066
10.1021/acsami.1c00879
10.1002/anie.201811638
10.1016/j.seppur.2020.116539
10.1021/acs.chemrev.0c00762
10.1039/C6EE00811A
10.1016/j.memsci.2021.119244
10.1002/adma.201805813
10.1021/ja993617t
10.1007/s10965-019-1978-z
10.1016/j.memsci.2010.02.008
10.1016/j.ijggc.2012.10.009
10.1016/j.polymer.2021.124323
10.1016/j.memsci.2021.119081
10.1021/ja2087773
10.1016/j.memsci.2019.117644
10.1039/C9EE01384A
10.1021/acsami.5b04492
10.1016/j.memsci.2021.119353
10.1016/j.seppur.2021.119347
10.1016/j.cej.2014.05.122
10.1021/acs.chemrev.0c00119
10.1002/adfm.201700329
10.1016/j.cjche.2019.01.027
10.1016/j.memsci.2021.119612
10.1016/j.apsusc.2017.03.084
10.1016/j.memsci.2020.118691
10.1016/j.seppur.2019.05.060
10.1016/j.seppur.2022.121024
10.1016/j.jtice.2016.04.033
10.1039/D0RE00410C
10.1002/aelm.201700490
10.1007/s11426-016-5574-3
10.1016/j.jtice.2009.05.004
10.1063/1.3276105
10.1002/app.46433
10.1007/s10311-020-01036-3
10.1021/ct9005085
10.1016/j.progpolymsci.2014.01.003
10.1016/j.memsci.2021.119124
10.1021/acsami.8b15269
10.1016/j.pmatsci.2020.100713
10.1002/anie.201708048
10.1039/C8CC03656J
10.1021/acsami.9b07815
10.1016/j.jiec.2017.02.017
10.1021/acs.chemrev.8b00091
10.1039/D0TA08806D
10.1039/C8TC02598C
10.1016/j.polymer.2017.06.033
10.1002/cssc.201600354
10.1039/D0CS01347A
10.1039/B817050A
10.1134/S0965544110040043
10.1016/j.memsci.2012.03.038
10.1021/acs.macromol.0c00877
10.1002/smtd.201900749
10.1016/j.memsci.2019.05.041
10.1016/j.jcou.2020.101296
ContentType Journal Article
Copyright Korean Institute of Chemical Engineering (KIChE) 2023
Korean Institute of Chemical Engineering (KIChE) 2023.
Copyright_xml – notice: Korean Institute of Chemical Engineering (KIChE) 2023
– notice: Korean Institute of Chemical Engineering (KIChE) 2023.
DBID AAYXX
CITATION
ACYCR
DOI 10.1007/s11814-022-1236-7
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1975-7220
EndPage 184
ExternalDocumentID oai_kci_go_kr_ARTI_10096496
10_1007_s11814_022_1236_7
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
9ZL
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZB
HZ~
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
MZR
N2Q
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9N
PF0
PT4
PT5
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
W4F
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z8N
Z8Q
Z8Z
Z92
ZMTXR
ZZE
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
ABRTQ
85H
AABYN
AAEOY
AAFGU
AAGCJ
AAUCO
AAYFA
ABFGW
ABKAS
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ACYCR
ADMDM
ADOXG
AEEQQ
AEFTE
AESTI
AEVTX
AFNRJ
AGGBP
AIMYW
AJDOV
AJGSW
AKQUC
SQXTU
UNUBA
ID FETCH-LOGICAL-c281t-60cc5e187245bed354565a25ea68ed948e13b108a3e43aba478f5ce67103f9223
IEDL.DBID U2A
ISSN 0256-1115
IngestDate Wed Feb 28 03:40:36 EST 2024
Fri Jul 25 11:06:30 EDT 2025
Tue Jul 01 03:29:44 EDT 2025
Thu Apr 24 22:56:14 EDT 2025
Fri Feb 21 02:46:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Pebax
Blend Membrane
Separation
CO
Amphiphilic Polymer
PEDOT:PSS
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c281t-60cc5e187245bed354565a25ea68ed948e13b108a3e43aba478f5ce67103f9223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2760864366
PQPubID 2044390
PageCount 10
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10096496
proquest_journals_2760864366
crossref_citationtrail_10_1007_s11814_022_1236_7
crossref_primary_10_1007_s11814_022_1236_7
springer_journals_10_1007_s11814_022_1236_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230100
2023-01-00
20230101
2023-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 1
  year: 2023
  text: 20230100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle The Korean journal of chemical engineering
PublicationTitleAbbrev Korean J. Chem. Eng
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
한국화학공학회
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: 한국화학공학회
References HonmaYItohKMasunagaHFujiwaraANishizakiTIguchiSSasakiTAdv. Electron. Mater.20184170049010.1002/aelm.201700490
IoannidiAVrouliasDKallitsisJIoannidesTDeimedeVJ. Membr. Sci.202163211935310.1016/j.memsci.2021.119353
Comesaña-GándaraBChenJBezzuC GCartaMRoseIFerrariM-CEspositoEFuocoAJansenJ CMcKeownN BEnergy Environ. Sci.201912273310.1039/C9EE01384A
LiuYWangZShiMLiNZhaoSWangJChem. Commun.201854723910.1039/C8CC03656J
FaverJMerzK MJ. Chem. Theory Comput.2010654810.1021/ct9005085
ChuahC YGohKYangYGongHLiWKarahanH EGuiverM DWangRBaeT HChem. Rev.2018118865510.1021/acs.chemrev.8b00091
ZhangHGuoRZhangJLiXACS Appl. Mater. Interfaces2018104303110.1021/acsami.8b15269
KhosraviTOmidkhahMRSC Adv.201551284910.1039/C4RA14168G
AbdollahiMKhoshbinMBiazarHKhanbabaeiGPolymer201712127410.1016/j.polymer.2017.06.033
HeRCongSXuSHanSGuoHLiangZWangJZhangYJ. Membr. Sci.202162411908110.1016/j.memsci.2021.119081
KimJ HHaS YLeeY MJ. Membr. Sci.200119017910.1016/S0376-7388(01)00444-6
ChengJHuLLiYLiuJZhouJCenKAppl. Surf. Sci.201741020610.1016/j.apsusc.2017.03.084
ZhangNPengDWuHRenYYangLWuXWuYQuZJiangZCaoXJ. Membr. Sci.201854967010.1016/j.memsci.2017.10.054
PalSChandrakumarK R SJ. Am. Chem. Soc.2000122414510.1021/ja993617t
MaCWangMWangZGaoMWangJJ. CO2 Util.20204210129610.1016/j.jcou.2020.101296
DaiZBaiLHvalK NZhangXZhangSDengLSci. China. Chem.20165953810.1007/s11426-016-5574-3
LiXHouJGuoRWangZZhangJACS Appl. Mater. Interfaces2019112461810.1021/acsami.9b07815
WangLYangCZhaoBWuXYuZZhaoLZhangHLiNJ. Membr. Sci.201956915710.1016/j.memsci.2019.05.041
HouQWuYZhouSWeiYCaroJWangHAngew. Chem. Int. Ed.20195832710.1002/anie.201811638
Baena-MorenoF Mle SachéEPastor-PérezLReinaT REnviron. Chem. Lett.202018164910.1007/s10311-020-01036-3
LeeJ HJungJ PJangELeeK BHwangY JMinB KKimJ HJ. Membr. Sci.20165182110.1016/j.memsci.2016.06.025
RehmanR USongQPengLChenYGuXChin. J. Chem. Eng.201927239710.1016/j.cjche.2019.01.027
ChengJWangYHuLLiuNXuJZhouJJ. Membr. Sci.202059711764410.1016/j.memsci.2019.117644
XinYWangKZhangYZengFHeXTakyiS ATontiwachwuthikulPEnergies202114688310.3390/en14216883
BernardoPDrioliEPet. Chem.20105027110.1134/S0965544110040043
BasuSKhanA LCano-OdenaALiuCVankelecomI FChem. Soc. Rev.20103975010.1039/B817050A
ReijerkerkS RKnoefM HNijmeijerKWesslingMJ. Membr. Sci.201035212610.1016/j.memsci.2010.02.008
PatelRKimS JRohD KKimJ HChem. Eng. J.20142544610.1016/j.cej.2014.05.122
L. Li, L. Huang, X. Lv, J. Wang, X. Li and Z. Wei, Sep. Purif. Technol., 292 (2022).
BerggrenMCrispinXFabianoSJonssonM PSimonD TStavrinidouETybrandtKZozoulenkoIAdv. Mater.201931180581310.1002/adma.201805813
ModarresiMMehandzhiyskiAFahlmanMTybrandtKZozoulenkoIMacromolecules202053626710.1021/acs.macromol.0c00877
ZhangYSunarsoJLiuSWangRInt. J. Greenhouse Gas Control2013128410.1016/j.ijggc.2012.10.009
ZhangQZhouMLiuXZhangBJ. Membr. Sci.202163611961210.1016/j.memsci.2021.119612
ShiXXiaoHKanamoriKYonezuALacknerK SChenXJoule20204182310.1016/j.joule.2020.07.005
XingRHoW S WJ. Taiwan Inst. Chem. Eng.20094065410.1016/j.jtice.2009.05.004
TachibanaSHashimotoKMizunoHUenoKWatanabeMPolymer202224112453310.1016/j.polymer.2022.124533
WangSLiXWuHTianZXinQHeGPengDChenSYinYJiangZGuiverM DEnergy Environ. Sci.20169186310.1039/C6EE00811A
HanYHoW S WJ. Membr. Sci.202162811924410.1016/j.memsci.2021.119244
QianQAsingerP ALeeM JHanGMizrahi RodriguezKLinSBenedettiF MWuA XChiW SSmithZ PChem. Rev.2020120816110.1021/acs.chemrev.0c00119
LuWYuanDSculleyJZhaoDKrishnaRZhouH CJ. Am. Chem. Soc.20111331812610.1021/ja2087773
TaheriPRaisiAMalehM SEnviron. Sci. Pollut. Res.2021283827410.1007/s11356-021-13447-y
Cotlame-SalinasV d CLópez-OlveraAIslas-JácomeAGonzález-ZamoraEIbarraI AReact. Chem. Eng.2021644110.1039/D0RE00410C
DuNParkH BDal-CinM MGuiverM DEnergy Environ. Sci.20125730610.1039/C1EE02668B
DingSLiXDingSZhangWGuoRZhangJSep. Purif. Technol.202023911653910.1016/j.seppur.2020.116539
YongW FLiF YXiaoY CLiPPramodaK PTongY WChungT SJ. Membr. Sci.2012407–4084710.1016/j.memsci.2012.03.038
GouQLuoHZhengYZhangQLiCWangJOdunmbakuOZhengJXueJSunKLiMSmall202218e220173210.1002/smll.202201732
ShahrezaeiKAbediniRLashkarbolookiMRahimpourAKorean J. Chem. Eng.201936208510.1007/s11814-019-0402-z
LiSMcGinnessHWangTGuoRPolymer202123712432310.1016/j.polymer.2021.124323
RazaAAskariMLiangCZPengNFarrukhSHussainAChungT-SJ. Membr. Sci.202162511912410.1016/j.memsci.2021.119124
RezakazemiMEbadi AmooghinAMontazer-RahmatiM MIsmailA FMatsuuraTProg. Polym. Sci.20143981710.1016/j.progpolymsci.2014.01.003
WangHWangMLiangXYuanJYangHWangSRenYWuHPanFJiangZChem. Soc. Rev.202150546810.1039/D0CS01347A
TahirZAslamMGilaniM ABiladM RAnjumM WZhuL-PKhanA LSep. Purif. Technol.201922452410.1016/j.seppur.2019.05.060
ZhuBJiangXHeSYangXLongJZhangYShaoLJ. Mater. Chem. A202082423310.1039/D0TA08806D
HouMQiWLiLXuRXueJZhangYSongCWangTJ. Membr. Sci.202163511954110.1016/j.memsci.2021.119541
WangYZhangNWuHRenYYangLWangXWuYLiuYZhaoRJiangZJ. Membr. Sci.202161811869110.1016/j.memsci.2020.118691
KolleJ MFayazMSayariAChem. Rev.2021121728010.1021/acs.chemrev.0c00762
WangBShengMXuJZhaoSWangJWangZSmall Methods20204190074910.1002/smtd.201900749
YongWFLeeZKChungTSWeberMStaudtCMaletzkoCChemSusChem20169195310.1002/cssc.201600354
VolkovA VWijeratneKMitrakaEAilUZhaoDTybrandtKAndreasenJWBerggrenMCrispinXZozoulenkoIVAdv. Funct. Mater.201727170032910.1002/adfm.201700329
YongW FZhangHProg. Mater. Sci.202111610071310.1016/j.pmatsci.2020.100713
Ghasemi EstahbanatiEOmidkhahMEbadi AmooghinAJ. Ind. Eng. Chem.2017517710.1016/j.jiec.2017.02.017
ZhangHGuoRHouJWeiZLiXACS Appl. Mater. Interfaces201682904410.1021/acsami.6b09786
LvXHuangLDingSWangJLiLLiangCLiXSep. Purif. Technol.202127611934710.1016/j.seppur.2021.119347
YangYZhaoGChengXDengHFuQACS Appl. Mater. Interfaces2021131459910.1021/acsami.1c00879
KimYChoWKimYChoHKimJ HJ. Mater. Chem. C20186890610.1039/C8TC02598C
WangSXieYHeGXinQZhangJYangLLiYWuHZhangYGuiverM DJiangZAngew. Chem. Int. Ed.2017561424610.1002/anie.201708048
DongHZhuZLiKLiQJiWHeBLiJMaXJ. Membr. Sci.202163511944010.1016/j.memsci.2021.119440
SarfrazMBa-ShammakhMJ. Taiwan Inst. Chem. Eng.20166542710.1016/j.jtice.2016.04.033
TorrisiAMellot-DraznieksCBellR GJ. Chem. Phys.201013204470510.1063/1.3276105
LiPSunKOuyangJACS Appl. Mater. Interfaces201571841510.1021/acsami.5b04492
DiddenJThürRVolodinAVankelecomI F JJ. Appl. Polym. Sci.20181354643310.1002/app.46433
WongK KJawadZ AJ. Polym. Res.20192628910.1007/s10965-019-1978-z
LiangWChenyangYBinZXiaonaWZijunYLixiangZHongweiZNanwenLJ. Membr. Sci.201956915710.1016/j.memsci.2018.09.066
W F Yong (1236_CR26) 2021; 116
M Rezakazemi (1236_CR12) 2014; 39
Q Gou (1236_CR29) 2022; 18
B Zhu (1236_CR46) 2020; 8
N Du (1236_CR20) 2012; 5
P Taheri (1236_CR22) 2021; 28
A V Volkov (1236_CR36) 2017; 27
A Torrisi (1236_CR38) 2010; 132
J Cheng (1236_CR44) 2020; 597
S Ding (1236_CR52) 2020; 239
S Tachibana (1236_CR61) 2022; 241
R Xing (1236_CR24) 2009; 40
Y Honma (1236_CR34) 2018; 4
A Ioannidi (1236_CR45) 2021; 632
Q Zhang (1236_CR51) 2021; 636
Y Yang (1236_CR37) 2021; 13
V d C Cotlame-Salinas (1236_CR64) 2021; 6
Z Dai (1236_CR69) 2016; 59
J M Kolle (1236_CR65) 2021; 121
J H Lee (1236_CR43) 2016; 518
Q Qian (1236_CR7) 2020; 120
J Didden (1236_CR47) 2018; 135
Y Kim (1236_CR57) 2018; 6
WF Yong (1236_CR28) 2016; 9
X Lv (1236_CR8) 2021; 276
W F Yong (1236_CR25) 2012; 407–408
Z Tahir (1236_CR58) 2019; 224
H Wang (1236_CR13) 2021; 50
Y Wang (1236_CR53) 2021; 618
Y Xin (1236_CR5) 2021; 14
R Patel (1236_CR59) 2014; 254
S Wang (1236_CR62) 2017; 56
C Ma (1236_CR15) 2020; 42
W Liang (1236_CR40) 2019; 569
M Sarfraz (1236_CR19) 2016; 65
J Faver (1236_CR67) 2010; 6
S Basu (1236_CR10) 2010; 39
J H Kim (1236_CR49) 2001; 190
Y Zhang (1236_CR18) 2013; 12
K K Wong (1236_CR23) 2019; 26
R U Rehman (1236_CR41) 2019; 27
X Li (1236_CR2) 2019; 11
W Lu (1236_CR27) 2011; 133
Q Hou (1236_CR1) 2019; 58
B Wang (1236_CR3) 2020; 4
S Li (1236_CR60) 2021; 237
P Bernardo (1236_CR11) 2010; 50
M Hou (1236_CR56) 2021; 635
R He (1236_CR50) 2021; 624
J Cheng (1236_CR71) 2017; 410
1236_CR70
S Wang (1236_CR32) 2017; 56
H Zhang (1236_CR55) 2016; 8
A Raza (1236_CR6) 2021; 625
P Li (1236_CR42) 2015; 7
H Dong (1236_CR63) 2021; 635
T Khosravi (1236_CR73) 2015; 5
M Abdollahi (1236_CR75) 2017; 121
M Modarresi (1236_CR35) 2020; 53
F M Baena-Moreno (1236_CR9) 2020; 18
E Ghasemi Estahbanati (1236_CR72) 2017; 51
N Zhang (1236_CR39) 2018; 549
B Comesaña-Gándara (1236_CR21) 2019; 12
X Shi (1236_CR66) 2020; 4
Y Han (1236_CR17) 2021; 628
S Pal (1236_CR68) 2000; 122
M Berggren (1236_CR33) 2019; 31
S Wang (1236_CR14) 2016; 9
Y Liu (1236_CR30) 2018; 54
S R Reijerkerk (1236_CR48) 2010; 352
L Wang (1236_CR31) 2019; 569
S Wang (1236_CR4) 2016; 9
H Zhang (1236_CR54) 2018; 10
C Y Chuah (1236_CR16) 2018; 118
K Shahrezaei (1236_CR74) 2019; 36
References_xml – reference: DaiZBaiLHvalK NZhangXZhangSDengLSci. China. Chem.20165953810.1007/s11426-016-5574-3
– reference: BasuSKhanA LCano-OdenaALiuCVankelecomI FChem. Soc. Rev.20103975010.1039/B817050A
– reference: BerggrenMCrispinXFabianoSJonssonM PSimonD TStavrinidouETybrandtKZozoulenkoIAdv. Mater.201931180581310.1002/adma.201805813
– reference: KimJ HHaS YLeeY MJ. Membr. Sci.200119017910.1016/S0376-7388(01)00444-6
– reference: ZhangHGuoRZhangJLiXACS Appl. Mater. Interfaces2018104303110.1021/acsami.8b15269
– reference: KhosraviTOmidkhahMRSC Adv.201551284910.1039/C4RA14168G
– reference: YongWFLeeZKChungTSWeberMStaudtCMaletzkoCChemSusChem20169195310.1002/cssc.201600354
– reference: WangBShengMXuJZhaoSWangJWangZSmall Methods20204190074910.1002/smtd.201900749
– reference: HanYHoW S WJ. Membr. Sci.202162811924410.1016/j.memsci.2021.119244
– reference: ZhuBJiangXHeSYangXLongJZhangYShaoLJ. Mater. Chem. A202082423310.1039/D0TA08806D
– reference: PatelRKimS JRohD KKimJ HChem. Eng. J.20142544610.1016/j.cej.2014.05.122
– reference: FaverJMerzK MJ. Chem. Theory Comput.2010654810.1021/ct9005085
– reference: LiXHouJGuoRWangZZhangJACS Appl. Mater. Interfaces2019112461810.1021/acsami.9b07815
– reference: ReijerkerkS RKnoefM HNijmeijerKWesslingMJ. Membr. Sci.201035212610.1016/j.memsci.2010.02.008
– reference: RazaAAskariMLiangCZPengNFarrukhSHussainAChungT-SJ. Membr. Sci.202162511912410.1016/j.memsci.2021.119124
– reference: VolkovA VWijeratneKMitrakaEAilUZhaoDTybrandtKAndreasenJWBerggrenMCrispinXZozoulenkoIVAdv. Funct. Mater.201727170032910.1002/adfm.201700329
– reference: TahirZAslamMGilaniM ABiladM RAnjumM WZhuL-PKhanA LSep. Purif. Technol.201922452410.1016/j.seppur.2019.05.060
– reference: ChuahC YGohKYangYGongHLiWKarahanH EGuiverM DWangRBaeT HChem. Rev.2018118865510.1021/acs.chemrev.8b00091
– reference: ShiXXiaoHKanamoriKYonezuALacknerK SChenXJoule20204182310.1016/j.joule.2020.07.005
– reference: TorrisiAMellot-DraznieksCBellR GJ. Chem. Phys.201013204470510.1063/1.3276105
– reference: WangSLiXWuHTianZXinQHeGPengDChenSYinYJiangZGuiverM DEnergy Environ. Sci.20169186310.1039/C6EE00811A
– reference: XingRHoW S WJ. Taiwan Inst. Chem. Eng.20094065410.1016/j.jtice.2009.05.004
– reference: DuNParkH BDal-CinM MGuiverM DEnergy Environ. Sci.20125730610.1039/C1EE02668B
– reference: L. Li, L. Huang, X. Lv, J. Wang, X. Li and Z. Wei, Sep. Purif. Technol., 292 (2022).
– reference: LiangWChenyangYBinZXiaonaWZijunYLixiangZHongweiZNanwenLJ. Membr. Sci.201956915710.1016/j.memsci.2018.09.066
– reference: LiPSunKOuyangJACS Appl. Mater. Interfaces201571841510.1021/acsami.5b04492
– reference: Comesaña-GándaraBChenJBezzuC GCartaMRoseIFerrariM-CEspositoEFuocoAJansenJ CMcKeownN BEnergy Environ. Sci.201912273310.1039/C9EE01384A
– reference: ZhangYSunarsoJLiuSWangRInt. J. Greenhouse Gas Control2013128410.1016/j.ijggc.2012.10.009
– reference: RezakazemiMEbadi AmooghinAMontazer-RahmatiM MIsmailA FMatsuuraTProg. Polym. Sci.20143981710.1016/j.progpolymsci.2014.01.003
– reference: WangYZhangNWuHRenYYangLWangXWuYLiuYZhaoRJiangZJ. Membr. Sci.202161811869110.1016/j.memsci.2020.118691
– reference: HouQWuYZhouSWeiYCaroJWangHAngew. Chem. Int. Ed.20195832710.1002/anie.201811638
– reference: LvXHuangLDingSWangJLiLLiangCLiXSep. Purif. Technol.202127611934710.1016/j.seppur.2021.119347
– reference: LiSMcGinnessHWangTGuoRPolymer202123712432310.1016/j.polymer.2021.124323
– reference: Baena-MorenoF Mle SachéEPastor-PérezLReinaT REnviron. Chem. Lett.202018164910.1007/s10311-020-01036-3
– reference: ChengJWangYHuLLiuNXuJZhouJJ. Membr. Sci.202059711764410.1016/j.memsci.2019.117644
– reference: ChengJHuLLiYLiuJZhouJCenKAppl. Surf. Sci.201741020610.1016/j.apsusc.2017.03.084
– reference: WangSXieYHeGXinQZhangJYangLLiYWuHZhangYGuiverM DJiangZAngew. Chem. Int. Ed.2017561424610.1002/anie.201708048
– reference: HouMQiWLiLXuRXueJZhangYSongCWangTJ. Membr. Sci.202163511954110.1016/j.memsci.2021.119541
– reference: AbdollahiMKhoshbinMBiazarHKhanbabaeiGPolymer201712127410.1016/j.polymer.2017.06.033
– reference: ModarresiMMehandzhiyskiAFahlmanMTybrandtKZozoulenkoIMacromolecules202053626710.1021/acs.macromol.0c00877
– reference: MaCWangMWangZGaoMWangJJ. CO2 Util.20204210129610.1016/j.jcou.2020.101296
– reference: WangLYangCZhaoBWuXYuZZhaoLZhangHLiNJ. Membr. Sci.201956915710.1016/j.memsci.2019.05.041
– reference: HeRCongSXuSHanSGuoHLiangZWangJZhangYJ. Membr. Sci.202162411908110.1016/j.memsci.2021.119081
– reference: RehmanR USongQPengLChenYGuXChin. J. Chem. Eng.201927239710.1016/j.cjche.2019.01.027
– reference: PalSChandrakumarK R SJ. Am. Chem. Soc.2000122414510.1021/ja993617t
– reference: BernardoPDrioliEPet. Chem.20105027110.1134/S0965544110040043
– reference: SarfrazMBa-ShammakhMJ. Taiwan Inst. Chem. Eng.20166542710.1016/j.jtice.2016.04.033
– reference: LiuYWangZShiMLiNZhaoSWangJChem. Commun.201854723910.1039/C8CC03656J
– reference: ZhangHGuoRHouJWeiZLiXACS Appl. Mater. Interfaces201682904410.1021/acsami.6b09786
– reference: Cotlame-SalinasV d CLópez-OlveraAIslas-JácomeAGonzález-ZamoraEIbarraI AReact. Chem. Eng.2021644110.1039/D0RE00410C
– reference: GouQLuoHZhengYZhangQLiCWangJOdunmbakuOZhengJXueJSunKLiMSmall202218e220173210.1002/smll.202201732
– reference: IoannidiAVrouliasDKallitsisJIoannidesTDeimedeVJ. Membr. Sci.202163211935310.1016/j.memsci.2021.119353
– reference: ZhangNPengDWuHRenYYangLWuXWuYQuZJiangZCaoXJ. Membr. Sci.201854967010.1016/j.memsci.2017.10.054
– reference: WangHWangMLiangXYuanJYangHWangSRenYWuHPanFJiangZChem. Soc. Rev.202150546810.1039/D0CS01347A
– reference: TaheriPRaisiAMalehM SEnviron. Sci. Pollut. Res.2021283827410.1007/s11356-021-13447-y
– reference: TachibanaSHashimotoKMizunoHUenoKWatanabeMPolymer202224112453310.1016/j.polymer.2022.124533
– reference: QianQAsingerP ALeeM JHanGMizrahi RodriguezKLinSBenedettiF MWuA XChiW SSmithZ PChem. Rev.2020120816110.1021/acs.chemrev.0c00119
– reference: ShahrezaeiKAbediniRLashkarbolookiMRahimpourAKorean J. Chem. Eng.201936208510.1007/s11814-019-0402-z
– reference: YangYZhaoGChengXDengHFuQACS Appl. Mater. Interfaces2021131459910.1021/acsami.1c00879
– reference: YongW FLiF YXiaoY CLiPPramodaK PTongY WChungT SJ. Membr. Sci.2012407–4084710.1016/j.memsci.2012.03.038
– reference: DingSLiXDingSZhangWGuoRZhangJSep. Purif. Technol.202023911653910.1016/j.seppur.2020.116539
– reference: Ghasemi EstahbanatiEOmidkhahMEbadi AmooghinAJ. Ind. Eng. Chem.2017517710.1016/j.jiec.2017.02.017
– reference: WongK KJawadZ AJ. Polym. Res.20192628910.1007/s10965-019-1978-z
– reference: YongW FZhangHProg. Mater. Sci.202111610071310.1016/j.pmatsci.2020.100713
– reference: LuWYuanDSculleyJZhaoDKrishnaRZhouH CJ. Am. Chem. Soc.20111331812610.1021/ja2087773
– reference: HonmaYItohKMasunagaHFujiwaraANishizakiTIguchiSSasakiTAdv. Electron. Mater.20184170049010.1002/aelm.201700490
– reference: KolleJ MFayazMSayariAChem. Rev.2021121728010.1021/acs.chemrev.0c00762
– reference: LeeJ HJungJ PJangELeeK BHwangY JMinB KKimJ HJ. Membr. Sci.20165182110.1016/j.memsci.2016.06.025
– reference: DongHZhuZLiKLiQJiWHeBLiJMaXJ. Membr. Sci.202163511944010.1016/j.memsci.2021.119440
– reference: ZhangQZhouMLiuXZhangBJ. Membr. Sci.202163611961210.1016/j.memsci.2021.119612
– reference: XinYWangKZhangYZengFHeXTakyiS ATontiwachwuthikulPEnergies202114688310.3390/en14216883
– reference: KimYChoWKimYChoHKimJ HJ. Mater. Chem. C20186890610.1039/C8TC02598C
– reference: DiddenJThürRVolodinAVankelecomI F JJ. Appl. Polym. Sci.20181354643310.1002/app.46433
– volume: 635
  start-page: 119440
  year: 2021
  ident: 1236_CR63
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2021.119440
– volume: 5
  start-page: 7306
  year: 2012
  ident: 1236_CR20
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C1EE02668B
– volume: 549
  start-page: 670
  year: 2018
  ident: 1236_CR39
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2017.10.054
– volume: 18
  start-page: e2201732
  year: 2022
  ident: 1236_CR29
  publication-title: Small
  doi: 10.1002/smll.202201732
– volume: 4
  start-page: 1823
  year: 2020
  ident: 1236_CR66
  publication-title: Joule
  doi: 10.1016/j.joule.2020.07.005
– volume: 190
  start-page: 179
  year: 2001
  ident: 1236_CR49
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(01)00444-6
– volume: 8
  start-page: 29044
  year: 2016
  ident: 1236_CR55
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b09786
– volume: 36
  start-page: 2085
  year: 2019
  ident: 1236_CR74
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-019-0402-z
– volume: 241
  start-page: 124533
  year: 2022
  ident: 1236_CR61
  publication-title: Polymer
  doi: 10.1016/j.polymer.2022.124533
– volume: 635
  start-page: 119541
  year: 2021
  ident: 1236_CR56
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2021.119541
– volume: 5
  start-page: 12849
  year: 2015
  ident: 1236_CR73
  publication-title: RSC Adv.
  doi: 10.1039/C4RA14168G
– volume: 518
  start-page: 21
  year: 2016
  ident: 1236_CR43
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2016.06.025
– volume: 14
  start-page: 6883
  year: 2021
  ident: 1236_CR5
  publication-title: Energies
  doi: 10.3390/en14216883
– volume: 28
  start-page: 38274
  year: 2021
  ident: 1236_CR22
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-021-13447-y
– volume: 569
  start-page: 157
  year: 2019
  ident: 1236_CR40
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2018.09.066
– volume: 13
  start-page: 14599
  year: 2021
  ident: 1236_CR37
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c00879
– volume: 58
  start-page: 327
  year: 2019
  ident: 1236_CR1
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201811638
– volume: 239
  start-page: 116539
  year: 2020
  ident: 1236_CR52
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2020.116539
– volume: 121
  start-page: 7280
  year: 2021
  ident: 1236_CR65
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00762
– volume: 9
  start-page: 1863
  year: 2016
  ident: 1236_CR4
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE00811A
– volume: 628
  start-page: 119244
  year: 2021
  ident: 1236_CR17
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2021.119244
– volume: 31
  start-page: 1805813
  year: 2019
  ident: 1236_CR33
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201805813
– volume: 122
  start-page: 4145
  year: 2000
  ident: 1236_CR68
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja993617t
– volume: 26
  start-page: 289
  year: 2019
  ident: 1236_CR23
  publication-title: J. Polym. Res.
  doi: 10.1007/s10965-019-1978-z
– volume: 352
  start-page: 126
  year: 2010
  ident: 1236_CR48
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2010.02.008
– volume: 12
  start-page: 84
  year: 2013
  ident: 1236_CR18
  publication-title: Int. J. Greenhouse Gas Control
  doi: 10.1016/j.ijggc.2012.10.009
– volume: 237
  start-page: 124323
  year: 2021
  ident: 1236_CR60
  publication-title: Polymer
  doi: 10.1016/j.polymer.2021.124323
– volume: 624
  start-page: 119081
  year: 2021
  ident: 1236_CR50
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2021.119081
– volume: 133
  start-page: 18126
  year: 2011
  ident: 1236_CR27
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2087773
– volume: 597
  start-page: 117644
  year: 2020
  ident: 1236_CR44
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2019.117644
– volume: 12
  start-page: 2733
  year: 2019
  ident: 1236_CR21
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE01384A
– volume: 7
  start-page: 18415
  year: 2015
  ident: 1236_CR42
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b04492
– volume: 632
  start-page: 119353
  year: 2021
  ident: 1236_CR45
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2021.119353
– volume: 276
  start-page: 119347
  year: 2021
  ident: 1236_CR8
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2021.119347
– volume: 254
  start-page: 46
  year: 2014
  ident: 1236_CR59
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.05.122
– volume: 120
  start-page: 8161
  year: 2020
  ident: 1236_CR7
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00119
– volume: 27
  start-page: 1700329
  year: 2017
  ident: 1236_CR36
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201700329
– volume: 27
  start-page: 2397
  year: 2019
  ident: 1236_CR41
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/j.cjche.2019.01.027
– volume: 636
  start-page: 119612
  year: 2021
  ident: 1236_CR51
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2021.119612
– volume: 410
  start-page: 206
  year: 2017
  ident: 1236_CR71
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.03.084
– volume: 618
  start-page: 118691
  year: 2021
  ident: 1236_CR53
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2020.118691
– volume: 224
  start-page: 524
  year: 2019
  ident: 1236_CR58
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2019.05.060
– ident: 1236_CR70
  doi: 10.1016/j.seppur.2022.121024
– volume: 65
  start-page: 427
  year: 2016
  ident: 1236_CR19
  publication-title: J. Taiwan Inst. Chem. Eng.
  doi: 10.1016/j.jtice.2016.04.033
– volume: 6
  start-page: 441
  year: 2021
  ident: 1236_CR64
  publication-title: React. Chem. Eng.
  doi: 10.1039/D0RE00410C
– volume: 4
  start-page: 1700490
  year: 2018
  ident: 1236_CR34
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201700490
– volume: 59
  start-page: 538
  year: 2016
  ident: 1236_CR69
  publication-title: Sci. China. Chem.
  doi: 10.1007/s11426-016-5574-3
– volume: 40
  start-page: 654
  year: 2009
  ident: 1236_CR24
  publication-title: J. Taiwan Inst. Chem. Eng.
  doi: 10.1016/j.jtice.2009.05.004
– volume: 132
  start-page: 044705
  year: 2010
  ident: 1236_CR38
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3276105
– volume: 135
  start-page: 46433
  year: 2018
  ident: 1236_CR47
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.46433
– volume: 18
  start-page: 1649
  year: 2020
  ident: 1236_CR9
  publication-title: Environ. Chem. Lett.
  doi: 10.1007/s10311-020-01036-3
– volume: 6
  start-page: 548
  year: 2010
  ident: 1236_CR67
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct9005085
– volume: 39
  start-page: 817
  year: 2014
  ident: 1236_CR12
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2014.01.003
– volume: 9
  start-page: 1863
  year: 2016
  ident: 1236_CR14
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE00811A
– volume: 625
  start-page: 119124
  year: 2021
  ident: 1236_CR6
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2021.119124
– volume: 10
  start-page: 43031
  year: 2018
  ident: 1236_CR54
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b15269
– volume: 116
  start-page: 100713
  year: 2021
  ident: 1236_CR26
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2020.100713
– volume: 56
  start-page: 14246
  year: 2017
  ident: 1236_CR32
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201708048
– volume: 54
  start-page: 7239
  year: 2018
  ident: 1236_CR30
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC03656J
– volume: 11
  start-page: 24618
  year: 2019
  ident: 1236_CR2
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b07815
– volume: 51
  start-page: 77
  year: 2017
  ident: 1236_CR72
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2017.02.017
– volume: 118
  start-page: 8655
  year: 2018
  ident: 1236_CR16
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00091
– volume: 8
  start-page: 24233
  year: 2020
  ident: 1236_CR46
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA08806D
– volume: 6
  start-page: 8906
  year: 2018
  ident: 1236_CR57
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC02598C
– volume: 121
  start-page: 274
  year: 2017
  ident: 1236_CR75
  publication-title: Polymer
  doi: 10.1016/j.polymer.2017.06.033
– volume: 9
  start-page: 1953
  year: 2016
  ident: 1236_CR28
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201600354
– volume: 50
  start-page: 5468
  year: 2021
  ident: 1236_CR13
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS01347A
– volume: 39
  start-page: 750
  year: 2010
  ident: 1236_CR10
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B817050A
– volume: 50
  start-page: 271
  year: 2010
  ident: 1236_CR11
  publication-title: Pet. Chem.
  doi: 10.1134/S0965544110040043
– volume: 407–408
  start-page: 47
  year: 2012
  ident: 1236_CR25
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2012.03.038
– volume: 53
  start-page: 6267
  year: 2020
  ident: 1236_CR35
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.0c00877
– volume: 4
  start-page: 1900749
  year: 2020
  ident: 1236_CR3
  publication-title: Small Methods
  doi: 10.1002/smtd.201900749
– volume: 569
  start-page: 157
  year: 2019
  ident: 1236_CR31
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2019.05.041
– volume: 56
  start-page: 14246
  year: 2017
  ident: 1236_CR62
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201708048
– volume: 42
  start-page: 101296
  year: 2020
  ident: 1236_CR15
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2020.101296
SSID ssj0055620
Score 2.3293638
Snippet Blend membranes have attracted great attention because they can combine the advantages of different polymers. To investigate the effect of amphiphilic polymer...
SourceID nrf
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 175
SubjectTerms Biotechnology
Carbon dioxide
Catalysis
Chemistry
Chemistry and Materials Science
Gas separation
Industrial Chemistry/Chemical Engineering
Materials Science
Membranes
Networks
Polymers
Polystyrene resins
Separation Technology
Thermodynamics
화학공학
Title Construction of amphiphilic networks in blend membranes for CO2 separation
URI https://link.springer.com/article/10.1007/s11814-022-1236-7
https://www.proquest.com/docview/2760864366
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002910661
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Korean Journal of Chemical Engineering, 2023, 40(1), 274, pp.175-184
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xOBQOFdAitgVkqT1RRdr4Fee4rFheKr2wEj1ZtuNUq4UsYvn_6swmZgGVSpx8sJ1IM4nnG8_MNwDflZPeBarbMsYTqbbIysrlWcl57n2RVzWnauSfV_psLC9u1E1Xxz1P2e4pJLk4qZfFbmiMZEbZ58QYkhWrsK7Qdac8rjEfpONXoUFvL1aIYA_xTgpl_usRL4zRavNQv8CZr0KjC4sz2oKPHVRkg1a327ASmx34MEwd2nZg8xmZ4Ce4oN6biQ2WzWrmUFGTe7owCaxps73nbNIwj4amYnfxDh1lPOgYwlY2_MXZPLY84LPmM4xHJ9fDs6zrlJAFbvLHTPdDUDE3BZfKx0oQLFKOq-i0iVUpTcyFz_vGiSiF804WplYhaoQXoka1iF1Ya2ZN3AOGrjIP2isTQpQB4Qw6bDX5ZRFFl4vQg34SmQ0djTh1s7i1SwJkkrJFKVuSsi16cPS05b7l0Pjf4m-oBzsNE0vM1zT-mdnpg0V8f057Si1L3YP9pCfb_XRzywuNDpoUGqd_JN0tp9985Zd3rf4KG9Ryvr2G2Yc1VGw8QGDy6A9hfTA6Pr6i8fT35cnh4sP8C2gG2SI
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4BPdAeqgKtuhRaSy2XVpE2fsU59IC2Rbu8emElbq7tONWKkkUsEurv6R_tzCZmoSpIPXDKwXYSzdieb-yZbwA-KCe9C5S3ZYwnUm2RlZXLs5Lz3Psir2pO2chHx3o4lvun6nQJfqdcmHm0e7qSnO_Ui2Q3NEYyo-hzYgzJii6S8iD-ukY_bfZ59AWVusP53teTwTDrSglkgZv8KtP9EFTMTcGl8rEShBuU4yo6bWJVShNz4fO-cSJK4byThalViBrtr6jxvwW-dxmeIPYwtHTGfDdt9woBRHuQQ4R-iK_S1em_fvmO8VtuLus7uPavq9i5hdt7Ac87aMp227m0BkuxWYfVQaoItw7PbpEXbsA-1fpM7LNsWjOHE2NyQQc0gTVtdPmMTRrm0bBV7Dyeo2OOGytDmMwG3zibxZZ3fNq8hPGjiPMVrDTTJr4Ghq45D9orE0KUAcWLDmJNfmBE0eUi9KCfRGZDR1tO1TN-2gXhMknZopQtSdkWPfh4M-Si5ex4qPN71IM9CxNLTNv0_DG1Z5cW_YkRjSm1LHUPtpKebLfIZ5YXGh1CKTQ2f0q6WzTf-8nN_-r9DlaHJ0eH9nB0fPAGnlK5-_YIaAtWUMlxG0HRlX87n5QMvj_2KvgDS6ESKA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB61RQL1gKCASClgCbiAVs36td4DhyolalooHIjUm7G9XhS13URNpIpfxV9kJrtuWgRIHHrag9f7mLE939gz3wC8Vk56FyhvyxhPpNoiKyuXZyXnufdFXtWcspE_HeuDsTw8USdr8DPlwiyj3dORZJvTQCxNzWJ3VtW7q8Q3NEwyo0h0Yg_Jii6q8ij-uESfbf5-tI8KfsP58MPXwUHWlRXIAjf5ItP9EFTMTcGl8rEShCGU4yo6bWJVShNz4fO-cSJK4byThalViBptsajxHwQ-dx3uSEo-xgk05ntp6VcIJtpNHSL3Q6yVjlH_9Mk3DOF6c1HfwLi_Hcsurd3wAdzvYCrba8fVQ1iLzRbcG6TqcFuweY3I8BEcUt3PxETLpjVzOEgmM9qsCaxpI83nbNIwj0auYufxHJ10XGQZQmY2-MzZPLYc5NPmMYxvRZxPYKOZNvEpMHTTedBemRCiDAil0FmsySeMKLpchB70k8hs6CjMqZLGmV2RL5OULUrZkpRt0YO3V11mLX_Hv25-hXqwp2FiiXWbrt-n9vTCom8xoj6llqXuwU7Sk-0m_NzyQqNzKIXG5ndJd6vmv75y-7_ufgl3v-wP7cfR8dEz2mEgVgAKItqBDdRxfI74aOFfLMckg2-3PQl-AZfYFlc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+amphiphilic+networks+in+blend+membranes+for+CO2+separation&rft.jtitle=The+Korean+journal+of+chemical+engineering&rft.au=Wang%2C+Jiangnan&rft.au=Xia%2C+Lv&rft.au=Huang%2C+Lu&rft.au=Long%2C+Li&rft.date=2023-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0256-1115&rft.eissn=1975-7220&rft.volume=40&rft.issue=1&rft.spage=175&rft.epage=184&rft_id=info:doi/10.1007%2Fs11814-022-1236-7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0256-1115&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0256-1115&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0256-1115&client=summon