Construction of amphiphilic networks in blend membranes for CO2 separation
Blend membranes have attracted great attention because they can combine the advantages of different polymers. To investigate the effect of amphiphilic polymer on the separation performance of blend membranes, a series of blend membranes were designed and fabricated by blending an amphiphilic polymer...
Saved in:
Published in | The Korean journal of chemical engineering Vol. 40; no. 1; pp. 175 - 184 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.01.2023
Springer Nature B.V 한국화학공학회 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Blend membranes have attracted great attention because they can combine the advantages of different polymers. To investigate the effect of amphiphilic polymer on the separation performance of blend membranes, a series of blend membranes were designed and fabricated by blending an amphiphilic polymer of poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) into poly(ether-block-amide) (Pebax) polymer for CO
2
separation. For the as-prepared Pebax/PEDOT:PSS blend membranes, the interconnected CO
2
-philic networks were constructed by hydrophilic anionic chains of PSS
−
for accelerating CO
2
transport. Meanwhile, non-CO
2
-philic networks were constructed by the hydrophobic cationic chains of PEDOT
+
, which distributed around the PSS
−
chains to provide low friction diffusion for CO
2
. Therefore, the amphiphilic polymer of PEDOT:PSS was an excellent material for improving CO
2
separation performance of blend membranes. The results showed that the Pebax/PEDOT:PSS blend membranes were endowed with excellent CO
2
separation performance. Pebax/PEDOT:PSS blend membrane demonstrated the optimal separation performance with a CO
2
permeability of 440.2±3.3 Barrer and a CO
2
/CH
4
separation factor of 28±0.6. This study indicates that introducing the amphiphilic polymer into the blend membranes is an efficient strategy for gas separation. |
---|---|
AbstractList | Blend membranes have attracted great attention because they can combine the advantages of different polymers. To investigate the effect of amphiphilic polymer on the separation performance of blend membranes, a series of blend membranes were designed and fabricated by blending an amphiphilic polymer of poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) into poly(ether-block-amide) (Pebax) polymer for CO
2
separation. For the as-prepared Pebax/PEDOT:PSS blend membranes, the interconnected CO
2
-philic networks were constructed by hydrophilic anionic chains of PSS
−
for accelerating CO
2
transport. Meanwhile, non-CO
2
-philic networks were constructed by the hydrophobic cationic chains of PEDOT
+
, which distributed around the PSS
−
chains to provide low friction diffusion for CO
2
. Therefore, the amphiphilic polymer of PEDOT:PSS was an excellent material for improving CO
2
separation performance of blend membranes. The results showed that the Pebax/PEDOT:PSS blend membranes were endowed with excellent CO
2
separation performance. Pebax/PEDOT:PSS blend membrane demonstrated the optimal separation performance with a CO
2
permeability of 440.2±3.3 Barrer and a CO
2
/CH
4
separation factor of 28±0.6. This study indicates that introducing the amphiphilic polymer into the blend membranes is an efficient strategy for gas separation. Blend membranes have attracted great attention because they can combine the advantages of different polymers. To investigate the effect of amphiphilic polymer on the separation performance of blend membranes, a series of blend membranes were designed and fabricated by blending an amphiphilic polymer of poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) into poly(ether-block-amide) (Pebax) polymer for CO2 separation. For the as-prepared Pebax/PEDOT:PSS blend membranes, the interconnected CO2-philic networks were constructed by hydrophilic anionic chains of PSS− for accelerating CO2 transport. Meanwhile, non-CO2-philic networks were constructed by the hydrophobic cationic chains of PEDOT+, which distributed around the PSS− chains to provide low friction diffusion for CO2. Therefore, the amphiphilic polymer of PEDOT:PSS was an excellent material for improving CO2 separation performance of blend membranes. The results showed that the Pebax/PEDOT:PSS blend membranes were endowed with excellent CO2 separation performance. Pebax/PEDOT:PSS blend membrane demonstrated the optimal separation performance with a CO2 permeability of 440.2±3.3 Barrer and a CO2/CH4 separation factor of 28±0.6. This study indicates that introducing the amphiphilic polymer into the blend membranes is an efficient strategy for gas separation. Blend membranes have attracted great attention because they can combine the advantages of different polymers. To investigate the effect of amphiphilic polymer on the separation performance of blend membranes, a series of blend membranes were designed and fabricated by blending an amphiphilic polymer of poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) into poly(ether-block-amide) (Pebax) polymer for CO2 separation. For the as-prepared Pebax/PEDOT:PSS blend membranes, the interconnected CO2-philic networks were constructed by hydrophilic anionic chains of PSS− for accelerating CO2 transport. Meanwhile, non-CO2-philic networks were constructed by the hydrophobic cationic chains of PEDOT+, which distributed around the PSS− chains to provide low friction diffusion for CO2. Therefore, the amphiphilic polymer of PEDOT:PSS was an excellent material for improving CO2 separation performance of blend membranes. The results showed that the Pebax/PEDOT:PSS blend membranes were endowed with excellent CO2 separation performance. Pebax/PEDOT:PSS blend membrane demonstrated the optimal separation performance with a CO2 permeability of 440.2±3.3 Barrer and a CO2/CH4 separation factor of 28±0.6. This study indicates that introducing the amphiphilic polymer into the blend membranes is an efficient strategy for gas separation. KCI Citation Count: 0 |
Author | Huang, Lu Li, Long Wang, Jiangnan Li, Xueqin Lv, Xia Zhang, Jinli |
Author_xml | – sequence: 1 givenname: Jiangnan surname: Wang fullname: Wang, Jiangnan organization: School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University – sequence: 2 givenname: Xia surname: Lv fullname: Lv, Xia organization: School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University – sequence: 3 givenname: Lu surname: Huang fullname: Huang, Lu organization: School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University – sequence: 4 givenname: Long surname: Li fullname: Li, Long organization: School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University – sequence: 5 givenname: Xueqin surname: Li fullname: Li, Xueqin email: lixueqin861003@163.com organization: School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University – sequence: 6 givenname: Jinli surname: Zhang fullname: Zhang, Jinli email: zhangjinli@tju.edu.cn organization: School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002910661$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kF1LwzAUhoNMcFN_gHcB74RqkjZJezmGH5PBQOZ1SLPTma1NZtIh_nvbVRAEhQPn5nleznknaOS8A4SuKLmlhMi7SGlOs4QwllCWikSeoDEtJE8kY2SExoRxkVBK-RmaxLglhHPByBg9z7yLbTiY1nqHfYV1s3-z3dTWYAfthw-7iK3DZQ1ujRtoyqAdRFz5gGdLhiPsddC9fYFOK11HuPze5-j14X41e0oWy8f5bLpIDMtpmwhiDAeaS5bxEtYpz7jgmnHQIod1keVA05KSXKeQpbrUmcwrbkBIStKqYCw9RzdDrguV2hmrvLbHvfFqF9T0ZTVXXSeFyArRwdcDvA_-_QCxVVt_CK67TzEpSC6yVPSUHCgTfIwBKmVse3yqDdrWXVyfKNXQsupaVn3LSnYm_WXug210-PzXYYMTO9ZtIPzc9Lf0BVbTjzQ |
CitedBy_id | crossref_primary_10_1016_j_polymertesting_2023_108225 crossref_primary_10_1016_j_memsci_2024_123307 |
Cites_doi | 10.1016/j.memsci.2021.119440 10.1039/C1EE02668B 10.1016/j.memsci.2017.10.054 10.1002/smll.202201732 10.1016/j.joule.2020.07.005 10.1016/S0376-7388(01)00444-6 10.1021/acsami.6b09786 10.1007/s11814-019-0402-z 10.1016/j.polymer.2022.124533 10.1016/j.memsci.2021.119541 10.1039/C4RA14168G 10.1016/j.memsci.2016.06.025 10.3390/en14216883 10.1007/s11356-021-13447-y 10.1016/j.memsci.2018.09.066 10.1021/acsami.1c00879 10.1002/anie.201811638 10.1016/j.seppur.2020.116539 10.1021/acs.chemrev.0c00762 10.1039/C6EE00811A 10.1016/j.memsci.2021.119244 10.1002/adma.201805813 10.1021/ja993617t 10.1007/s10965-019-1978-z 10.1016/j.memsci.2010.02.008 10.1016/j.ijggc.2012.10.009 10.1016/j.polymer.2021.124323 10.1016/j.memsci.2021.119081 10.1021/ja2087773 10.1016/j.memsci.2019.117644 10.1039/C9EE01384A 10.1021/acsami.5b04492 10.1016/j.memsci.2021.119353 10.1016/j.seppur.2021.119347 10.1016/j.cej.2014.05.122 10.1021/acs.chemrev.0c00119 10.1002/adfm.201700329 10.1016/j.cjche.2019.01.027 10.1016/j.memsci.2021.119612 10.1016/j.apsusc.2017.03.084 10.1016/j.memsci.2020.118691 10.1016/j.seppur.2019.05.060 10.1016/j.seppur.2022.121024 10.1016/j.jtice.2016.04.033 10.1039/D0RE00410C 10.1002/aelm.201700490 10.1007/s11426-016-5574-3 10.1016/j.jtice.2009.05.004 10.1063/1.3276105 10.1002/app.46433 10.1007/s10311-020-01036-3 10.1021/ct9005085 10.1016/j.progpolymsci.2014.01.003 10.1016/j.memsci.2021.119124 10.1021/acsami.8b15269 10.1016/j.pmatsci.2020.100713 10.1002/anie.201708048 10.1039/C8CC03656J 10.1021/acsami.9b07815 10.1016/j.jiec.2017.02.017 10.1021/acs.chemrev.8b00091 10.1039/D0TA08806D 10.1039/C8TC02598C 10.1016/j.polymer.2017.06.033 10.1002/cssc.201600354 10.1039/D0CS01347A 10.1039/B817050A 10.1134/S0965544110040043 10.1016/j.memsci.2012.03.038 10.1021/acs.macromol.0c00877 10.1002/smtd.201900749 10.1016/j.memsci.2019.05.041 10.1016/j.jcou.2020.101296 |
ContentType | Journal Article |
Copyright | Korean Institute of Chemical Engineering (KIChE) 2023 Korean Institute of Chemical Engineering (KIChE) 2023. |
Copyright_xml | – notice: Korean Institute of Chemical Engineering (KIChE) 2023 – notice: Korean Institute of Chemical Engineering (KIChE) 2023. |
DBID | AAYXX CITATION ACYCR |
DOI | 10.1007/s11814-022-1236-7 |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1975-7220 |
EndPage | 184 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10096496 10_1007_s11814_022_1236_7 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X 9ZL AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG5 HG6 HMJXF HRMNR HVGLF HZB HZ~ IJ- IKXTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KDC KOV LLZTM M4Y MA- MZR N2Q NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9N PF0 PT4 PT5 QOK QOR QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 W4F WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z8N Z8Q Z8Z Z92 ZMTXR ZZE ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR CITATION ABRTQ 85H AABYN AAEOY AAFGU AAGCJ AAUCO AAYFA ABFGW ABKAS ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ACYCR ADMDM ADOXG AEEQQ AEFTE AESTI AEVTX AFNRJ AGGBP AIMYW AJDOV AJGSW AKQUC SQXTU UNUBA |
ID | FETCH-LOGICAL-c281t-60cc5e187245bed354565a25ea68ed948e13b108a3e43aba478f5ce67103f9223 |
IEDL.DBID | U2A |
ISSN | 0256-1115 |
IngestDate | Wed Feb 28 03:40:36 EST 2024 Fri Jul 25 11:06:30 EDT 2025 Tue Jul 01 03:29:44 EDT 2025 Thu Apr 24 22:56:14 EDT 2025 Fri Feb 21 02:46:49 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Pebax Blend Membrane Separation CO Amphiphilic Polymer PEDOT:PSS |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c281t-60cc5e187245bed354565a25ea68ed948e13b108a3e43aba478f5ce67103f9223 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2760864366 |
PQPubID | 2044390 |
PageCount | 10 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10096496 proquest_journals_2760864366 crossref_citationtrail_10_1007_s11814_022_1236_7 crossref_primary_10_1007_s11814_022_1236_7 springer_journals_10_1007_s11814_022_1236_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230100 2023-01-00 20230101 2023-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 1 year: 2023 text: 20230100 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | The Korean journal of chemical engineering |
PublicationTitleAbbrev | Korean J. Chem. Eng |
PublicationYear | 2023 |
Publisher | Springer US Springer Nature B.V 한국화학공학회 |
Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: 한국화학공학회 |
References | HonmaYItohKMasunagaHFujiwaraANishizakiTIguchiSSasakiTAdv. Electron. Mater.20184170049010.1002/aelm.201700490 IoannidiAVrouliasDKallitsisJIoannidesTDeimedeVJ. Membr. Sci.202163211935310.1016/j.memsci.2021.119353 Comesaña-GándaraBChenJBezzuC GCartaMRoseIFerrariM-CEspositoEFuocoAJansenJ CMcKeownN BEnergy Environ. Sci.201912273310.1039/C9EE01384A LiuYWangZShiMLiNZhaoSWangJChem. Commun.201854723910.1039/C8CC03656J FaverJMerzK MJ. Chem. Theory Comput.2010654810.1021/ct9005085 ChuahC YGohKYangYGongHLiWKarahanH EGuiverM DWangRBaeT HChem. Rev.2018118865510.1021/acs.chemrev.8b00091 ZhangHGuoRZhangJLiXACS Appl. Mater. Interfaces2018104303110.1021/acsami.8b15269 KhosraviTOmidkhahMRSC Adv.201551284910.1039/C4RA14168G AbdollahiMKhoshbinMBiazarHKhanbabaeiGPolymer201712127410.1016/j.polymer.2017.06.033 HeRCongSXuSHanSGuoHLiangZWangJZhangYJ. Membr. Sci.202162411908110.1016/j.memsci.2021.119081 KimJ HHaS YLeeY MJ. Membr. Sci.200119017910.1016/S0376-7388(01)00444-6 ChengJHuLLiYLiuJZhouJCenKAppl. Surf. Sci.201741020610.1016/j.apsusc.2017.03.084 ZhangNPengDWuHRenYYangLWuXWuYQuZJiangZCaoXJ. Membr. Sci.201854967010.1016/j.memsci.2017.10.054 PalSChandrakumarK R SJ. Am. Chem. Soc.2000122414510.1021/ja993617t MaCWangMWangZGaoMWangJJ. CO2 Util.20204210129610.1016/j.jcou.2020.101296 DaiZBaiLHvalK NZhangXZhangSDengLSci. China. Chem.20165953810.1007/s11426-016-5574-3 LiXHouJGuoRWangZZhangJACS Appl. Mater. Interfaces2019112461810.1021/acsami.9b07815 WangLYangCZhaoBWuXYuZZhaoLZhangHLiNJ. Membr. Sci.201956915710.1016/j.memsci.2019.05.041 HouQWuYZhouSWeiYCaroJWangHAngew. Chem. Int. Ed.20195832710.1002/anie.201811638 Baena-MorenoF Mle SachéEPastor-PérezLReinaT REnviron. Chem. Lett.202018164910.1007/s10311-020-01036-3 LeeJ HJungJ PJangELeeK BHwangY JMinB KKimJ HJ. Membr. Sci.20165182110.1016/j.memsci.2016.06.025 RehmanR USongQPengLChenYGuXChin. J. Chem. Eng.201927239710.1016/j.cjche.2019.01.027 ChengJWangYHuLLiuNXuJZhouJJ. Membr. Sci.202059711764410.1016/j.memsci.2019.117644 XinYWangKZhangYZengFHeXTakyiS ATontiwachwuthikulPEnergies202114688310.3390/en14216883 BernardoPDrioliEPet. Chem.20105027110.1134/S0965544110040043 BasuSKhanA LCano-OdenaALiuCVankelecomI FChem. Soc. Rev.20103975010.1039/B817050A ReijerkerkS RKnoefM HNijmeijerKWesslingMJ. Membr. Sci.201035212610.1016/j.memsci.2010.02.008 PatelRKimS JRohD KKimJ HChem. Eng. J.20142544610.1016/j.cej.2014.05.122 L. Li, L. Huang, X. Lv, J. Wang, X. Li and Z. Wei, Sep. Purif. Technol., 292 (2022). BerggrenMCrispinXFabianoSJonssonM PSimonD TStavrinidouETybrandtKZozoulenkoIAdv. Mater.201931180581310.1002/adma.201805813 ModarresiMMehandzhiyskiAFahlmanMTybrandtKZozoulenkoIMacromolecules202053626710.1021/acs.macromol.0c00877 ZhangYSunarsoJLiuSWangRInt. J. Greenhouse Gas Control2013128410.1016/j.ijggc.2012.10.009 ZhangQZhouMLiuXZhangBJ. Membr. Sci.202163611961210.1016/j.memsci.2021.119612 ShiXXiaoHKanamoriKYonezuALacknerK SChenXJoule20204182310.1016/j.joule.2020.07.005 XingRHoW S WJ. Taiwan Inst. Chem. Eng.20094065410.1016/j.jtice.2009.05.004 TachibanaSHashimotoKMizunoHUenoKWatanabeMPolymer202224112453310.1016/j.polymer.2022.124533 WangSLiXWuHTianZXinQHeGPengDChenSYinYJiangZGuiverM DEnergy Environ. Sci.20169186310.1039/C6EE00811A HanYHoW S WJ. Membr. Sci.202162811924410.1016/j.memsci.2021.119244 QianQAsingerP ALeeM JHanGMizrahi RodriguezKLinSBenedettiF MWuA XChiW SSmithZ PChem. Rev.2020120816110.1021/acs.chemrev.0c00119 LuWYuanDSculleyJZhaoDKrishnaRZhouH CJ. Am. Chem. Soc.20111331812610.1021/ja2087773 TaheriPRaisiAMalehM SEnviron. Sci. Pollut. Res.2021283827410.1007/s11356-021-13447-y Cotlame-SalinasV d CLópez-OlveraAIslas-JácomeAGonzález-ZamoraEIbarraI AReact. Chem. Eng.2021644110.1039/D0RE00410C DuNParkH BDal-CinM MGuiverM DEnergy Environ. Sci.20125730610.1039/C1EE02668B DingSLiXDingSZhangWGuoRZhangJSep. Purif. Technol.202023911653910.1016/j.seppur.2020.116539 YongW FLiF YXiaoY CLiPPramodaK PTongY WChungT SJ. Membr. Sci.2012407–4084710.1016/j.memsci.2012.03.038 GouQLuoHZhengYZhangQLiCWangJOdunmbakuOZhengJXueJSunKLiMSmall202218e220173210.1002/smll.202201732 ShahrezaeiKAbediniRLashkarbolookiMRahimpourAKorean J. Chem. Eng.201936208510.1007/s11814-019-0402-z LiSMcGinnessHWangTGuoRPolymer202123712432310.1016/j.polymer.2021.124323 RazaAAskariMLiangCZPengNFarrukhSHussainAChungT-SJ. Membr. Sci.202162511912410.1016/j.memsci.2021.119124 RezakazemiMEbadi AmooghinAMontazer-RahmatiM MIsmailA FMatsuuraTProg. Polym. Sci.20143981710.1016/j.progpolymsci.2014.01.003 WangHWangMLiangXYuanJYangHWangSRenYWuHPanFJiangZChem. Soc. Rev.202150546810.1039/D0CS01347A TahirZAslamMGilaniM ABiladM RAnjumM WZhuL-PKhanA LSep. Purif. Technol.201922452410.1016/j.seppur.2019.05.060 ZhuBJiangXHeSYangXLongJZhangYShaoLJ. Mater. Chem. A202082423310.1039/D0TA08806D HouMQiWLiLXuRXueJZhangYSongCWangTJ. Membr. Sci.202163511954110.1016/j.memsci.2021.119541 WangYZhangNWuHRenYYangLWangXWuYLiuYZhaoRJiangZJ. Membr. Sci.202161811869110.1016/j.memsci.2020.118691 KolleJ MFayazMSayariAChem. Rev.2021121728010.1021/acs.chemrev.0c00762 WangBShengMXuJZhaoSWangJWangZSmall Methods20204190074910.1002/smtd.201900749 YongWFLeeZKChungTSWeberMStaudtCMaletzkoCChemSusChem20169195310.1002/cssc.201600354 VolkovA VWijeratneKMitrakaEAilUZhaoDTybrandtKAndreasenJWBerggrenMCrispinXZozoulenkoIVAdv. Funct. Mater.201727170032910.1002/adfm.201700329 YongW FZhangHProg. Mater. Sci.202111610071310.1016/j.pmatsci.2020.100713 Ghasemi EstahbanatiEOmidkhahMEbadi AmooghinAJ. Ind. Eng. Chem.2017517710.1016/j.jiec.2017.02.017 ZhangHGuoRHouJWeiZLiXACS Appl. Mater. Interfaces201682904410.1021/acsami.6b09786 LvXHuangLDingSWangJLiLLiangCLiXSep. Purif. Technol.202127611934710.1016/j.seppur.2021.119347 YangYZhaoGChengXDengHFuQACS Appl. Mater. Interfaces2021131459910.1021/acsami.1c00879 KimYChoWKimYChoHKimJ HJ. Mater. Chem. C20186890610.1039/C8TC02598C WangSXieYHeGXinQZhangJYangLLiYWuHZhangYGuiverM DJiangZAngew. Chem. Int. Ed.2017561424610.1002/anie.201708048 DongHZhuZLiKLiQJiWHeBLiJMaXJ. Membr. Sci.202163511944010.1016/j.memsci.2021.119440 SarfrazMBa-ShammakhMJ. Taiwan Inst. Chem. Eng.20166542710.1016/j.jtice.2016.04.033 TorrisiAMellot-DraznieksCBellR GJ. Chem. Phys.201013204470510.1063/1.3276105 LiPSunKOuyangJACS Appl. Mater. Interfaces201571841510.1021/acsami.5b04492 DiddenJThürRVolodinAVankelecomI F JJ. Appl. Polym. Sci.20181354643310.1002/app.46433 WongK KJawadZ AJ. Polym. Res.20192628910.1007/s10965-019-1978-z LiangWChenyangYBinZXiaonaWZijunYLixiangZHongweiZNanwenLJ. Membr. Sci.201956915710.1016/j.memsci.2018.09.066 W F Yong (1236_CR26) 2021; 116 M Rezakazemi (1236_CR12) 2014; 39 Q Gou (1236_CR29) 2022; 18 B Zhu (1236_CR46) 2020; 8 N Du (1236_CR20) 2012; 5 P Taheri (1236_CR22) 2021; 28 A V Volkov (1236_CR36) 2017; 27 A Torrisi (1236_CR38) 2010; 132 J Cheng (1236_CR44) 2020; 597 S Ding (1236_CR52) 2020; 239 S Tachibana (1236_CR61) 2022; 241 R Xing (1236_CR24) 2009; 40 Y Honma (1236_CR34) 2018; 4 A Ioannidi (1236_CR45) 2021; 632 Q Zhang (1236_CR51) 2021; 636 Y Yang (1236_CR37) 2021; 13 V d C Cotlame-Salinas (1236_CR64) 2021; 6 Z Dai (1236_CR69) 2016; 59 J M Kolle (1236_CR65) 2021; 121 J H Lee (1236_CR43) 2016; 518 Q Qian (1236_CR7) 2020; 120 J Didden (1236_CR47) 2018; 135 Y Kim (1236_CR57) 2018; 6 WF Yong (1236_CR28) 2016; 9 X Lv (1236_CR8) 2021; 276 W F Yong (1236_CR25) 2012; 407–408 Z Tahir (1236_CR58) 2019; 224 H Wang (1236_CR13) 2021; 50 Y Wang (1236_CR53) 2021; 618 Y Xin (1236_CR5) 2021; 14 R Patel (1236_CR59) 2014; 254 S Wang (1236_CR62) 2017; 56 C Ma (1236_CR15) 2020; 42 W Liang (1236_CR40) 2019; 569 M Sarfraz (1236_CR19) 2016; 65 J Faver (1236_CR67) 2010; 6 S Basu (1236_CR10) 2010; 39 J H Kim (1236_CR49) 2001; 190 Y Zhang (1236_CR18) 2013; 12 K K Wong (1236_CR23) 2019; 26 R U Rehman (1236_CR41) 2019; 27 X Li (1236_CR2) 2019; 11 W Lu (1236_CR27) 2011; 133 Q Hou (1236_CR1) 2019; 58 B Wang (1236_CR3) 2020; 4 S Li (1236_CR60) 2021; 237 P Bernardo (1236_CR11) 2010; 50 M Hou (1236_CR56) 2021; 635 R He (1236_CR50) 2021; 624 J Cheng (1236_CR71) 2017; 410 1236_CR70 S Wang (1236_CR32) 2017; 56 H Zhang (1236_CR55) 2016; 8 A Raza (1236_CR6) 2021; 625 P Li (1236_CR42) 2015; 7 H Dong (1236_CR63) 2021; 635 T Khosravi (1236_CR73) 2015; 5 M Abdollahi (1236_CR75) 2017; 121 M Modarresi (1236_CR35) 2020; 53 F M Baena-Moreno (1236_CR9) 2020; 18 E Ghasemi Estahbanati (1236_CR72) 2017; 51 N Zhang (1236_CR39) 2018; 549 B Comesaña-Gándara (1236_CR21) 2019; 12 X Shi (1236_CR66) 2020; 4 Y Han (1236_CR17) 2021; 628 S Pal (1236_CR68) 2000; 122 M Berggren (1236_CR33) 2019; 31 S Wang (1236_CR14) 2016; 9 Y Liu (1236_CR30) 2018; 54 S R Reijerkerk (1236_CR48) 2010; 352 L Wang (1236_CR31) 2019; 569 S Wang (1236_CR4) 2016; 9 H Zhang (1236_CR54) 2018; 10 C Y Chuah (1236_CR16) 2018; 118 K Shahrezaei (1236_CR74) 2019; 36 |
References_xml | – reference: DaiZBaiLHvalK NZhangXZhangSDengLSci. China. Chem.20165953810.1007/s11426-016-5574-3 – reference: BasuSKhanA LCano-OdenaALiuCVankelecomI FChem. Soc. Rev.20103975010.1039/B817050A – reference: BerggrenMCrispinXFabianoSJonssonM PSimonD TStavrinidouETybrandtKZozoulenkoIAdv. Mater.201931180581310.1002/adma.201805813 – reference: KimJ HHaS YLeeY MJ. Membr. Sci.200119017910.1016/S0376-7388(01)00444-6 – reference: ZhangHGuoRZhangJLiXACS Appl. Mater. Interfaces2018104303110.1021/acsami.8b15269 – reference: KhosraviTOmidkhahMRSC Adv.201551284910.1039/C4RA14168G – reference: YongWFLeeZKChungTSWeberMStaudtCMaletzkoCChemSusChem20169195310.1002/cssc.201600354 – reference: WangBShengMXuJZhaoSWangJWangZSmall Methods20204190074910.1002/smtd.201900749 – reference: HanYHoW S WJ. Membr. Sci.202162811924410.1016/j.memsci.2021.119244 – reference: ZhuBJiangXHeSYangXLongJZhangYShaoLJ. Mater. Chem. A202082423310.1039/D0TA08806D – reference: PatelRKimS JRohD KKimJ HChem. Eng. J.20142544610.1016/j.cej.2014.05.122 – reference: FaverJMerzK MJ. Chem. Theory Comput.2010654810.1021/ct9005085 – reference: LiXHouJGuoRWangZZhangJACS Appl. Mater. Interfaces2019112461810.1021/acsami.9b07815 – reference: ReijerkerkS RKnoefM HNijmeijerKWesslingMJ. Membr. Sci.201035212610.1016/j.memsci.2010.02.008 – reference: RazaAAskariMLiangCZPengNFarrukhSHussainAChungT-SJ. Membr. Sci.202162511912410.1016/j.memsci.2021.119124 – reference: VolkovA VWijeratneKMitrakaEAilUZhaoDTybrandtKAndreasenJWBerggrenMCrispinXZozoulenkoIVAdv. Funct. Mater.201727170032910.1002/adfm.201700329 – reference: TahirZAslamMGilaniM ABiladM RAnjumM WZhuL-PKhanA LSep. Purif. Technol.201922452410.1016/j.seppur.2019.05.060 – reference: ChuahC YGohKYangYGongHLiWKarahanH EGuiverM DWangRBaeT HChem. Rev.2018118865510.1021/acs.chemrev.8b00091 – reference: ShiXXiaoHKanamoriKYonezuALacknerK SChenXJoule20204182310.1016/j.joule.2020.07.005 – reference: TorrisiAMellot-DraznieksCBellR GJ. Chem. Phys.201013204470510.1063/1.3276105 – reference: WangSLiXWuHTianZXinQHeGPengDChenSYinYJiangZGuiverM DEnergy Environ. Sci.20169186310.1039/C6EE00811A – reference: XingRHoW S WJ. Taiwan Inst. Chem. Eng.20094065410.1016/j.jtice.2009.05.004 – reference: DuNParkH BDal-CinM MGuiverM DEnergy Environ. Sci.20125730610.1039/C1EE02668B – reference: L. Li, L. Huang, X. Lv, J. Wang, X. Li and Z. Wei, Sep. Purif. Technol., 292 (2022). – reference: LiangWChenyangYBinZXiaonaWZijunYLixiangZHongweiZNanwenLJ. Membr. Sci.201956915710.1016/j.memsci.2018.09.066 – reference: LiPSunKOuyangJACS Appl. Mater. Interfaces201571841510.1021/acsami.5b04492 – reference: Comesaña-GándaraBChenJBezzuC GCartaMRoseIFerrariM-CEspositoEFuocoAJansenJ CMcKeownN BEnergy Environ. Sci.201912273310.1039/C9EE01384A – reference: ZhangYSunarsoJLiuSWangRInt. J. Greenhouse Gas Control2013128410.1016/j.ijggc.2012.10.009 – reference: RezakazemiMEbadi AmooghinAMontazer-RahmatiM MIsmailA FMatsuuraTProg. Polym. Sci.20143981710.1016/j.progpolymsci.2014.01.003 – reference: WangYZhangNWuHRenYYangLWangXWuYLiuYZhaoRJiangZJ. Membr. Sci.202161811869110.1016/j.memsci.2020.118691 – reference: HouQWuYZhouSWeiYCaroJWangHAngew. Chem. Int. Ed.20195832710.1002/anie.201811638 – reference: LvXHuangLDingSWangJLiLLiangCLiXSep. Purif. Technol.202127611934710.1016/j.seppur.2021.119347 – reference: LiSMcGinnessHWangTGuoRPolymer202123712432310.1016/j.polymer.2021.124323 – reference: Baena-MorenoF Mle SachéEPastor-PérezLReinaT REnviron. Chem. Lett.202018164910.1007/s10311-020-01036-3 – reference: ChengJWangYHuLLiuNXuJZhouJJ. Membr. Sci.202059711764410.1016/j.memsci.2019.117644 – reference: ChengJHuLLiYLiuJZhouJCenKAppl. Surf. Sci.201741020610.1016/j.apsusc.2017.03.084 – reference: WangSXieYHeGXinQZhangJYangLLiYWuHZhangYGuiverM DJiangZAngew. Chem. Int. Ed.2017561424610.1002/anie.201708048 – reference: HouMQiWLiLXuRXueJZhangYSongCWangTJ. Membr. Sci.202163511954110.1016/j.memsci.2021.119541 – reference: AbdollahiMKhoshbinMBiazarHKhanbabaeiGPolymer201712127410.1016/j.polymer.2017.06.033 – reference: ModarresiMMehandzhiyskiAFahlmanMTybrandtKZozoulenkoIMacromolecules202053626710.1021/acs.macromol.0c00877 – reference: MaCWangMWangZGaoMWangJJ. CO2 Util.20204210129610.1016/j.jcou.2020.101296 – reference: WangLYangCZhaoBWuXYuZZhaoLZhangHLiNJ. Membr. Sci.201956915710.1016/j.memsci.2019.05.041 – reference: HeRCongSXuSHanSGuoHLiangZWangJZhangYJ. Membr. Sci.202162411908110.1016/j.memsci.2021.119081 – reference: RehmanR USongQPengLChenYGuXChin. J. Chem. Eng.201927239710.1016/j.cjche.2019.01.027 – reference: PalSChandrakumarK R SJ. Am. Chem. Soc.2000122414510.1021/ja993617t – reference: BernardoPDrioliEPet. Chem.20105027110.1134/S0965544110040043 – reference: SarfrazMBa-ShammakhMJ. Taiwan Inst. Chem. Eng.20166542710.1016/j.jtice.2016.04.033 – reference: LiuYWangZShiMLiNZhaoSWangJChem. Commun.201854723910.1039/C8CC03656J – reference: ZhangHGuoRHouJWeiZLiXACS Appl. Mater. Interfaces201682904410.1021/acsami.6b09786 – reference: Cotlame-SalinasV d CLópez-OlveraAIslas-JácomeAGonzález-ZamoraEIbarraI AReact. Chem. Eng.2021644110.1039/D0RE00410C – reference: GouQLuoHZhengYZhangQLiCWangJOdunmbakuOZhengJXueJSunKLiMSmall202218e220173210.1002/smll.202201732 – reference: IoannidiAVrouliasDKallitsisJIoannidesTDeimedeVJ. Membr. Sci.202163211935310.1016/j.memsci.2021.119353 – reference: ZhangNPengDWuHRenYYangLWuXWuYQuZJiangZCaoXJ. Membr. Sci.201854967010.1016/j.memsci.2017.10.054 – reference: WangHWangMLiangXYuanJYangHWangSRenYWuHPanFJiangZChem. Soc. Rev.202150546810.1039/D0CS01347A – reference: TaheriPRaisiAMalehM SEnviron. Sci. Pollut. Res.2021283827410.1007/s11356-021-13447-y – reference: TachibanaSHashimotoKMizunoHUenoKWatanabeMPolymer202224112453310.1016/j.polymer.2022.124533 – reference: QianQAsingerP ALeeM JHanGMizrahi RodriguezKLinSBenedettiF MWuA XChiW SSmithZ PChem. Rev.2020120816110.1021/acs.chemrev.0c00119 – reference: ShahrezaeiKAbediniRLashkarbolookiMRahimpourAKorean J. Chem. Eng.201936208510.1007/s11814-019-0402-z – reference: YangYZhaoGChengXDengHFuQACS Appl. Mater. Interfaces2021131459910.1021/acsami.1c00879 – reference: YongW FLiF YXiaoY CLiPPramodaK PTongY WChungT SJ. Membr. Sci.2012407–4084710.1016/j.memsci.2012.03.038 – reference: DingSLiXDingSZhangWGuoRZhangJSep. Purif. Technol.202023911653910.1016/j.seppur.2020.116539 – reference: Ghasemi EstahbanatiEOmidkhahMEbadi AmooghinAJ. Ind. Eng. Chem.2017517710.1016/j.jiec.2017.02.017 – reference: WongK KJawadZ AJ. Polym. Res.20192628910.1007/s10965-019-1978-z – reference: YongW FZhangHProg. Mater. Sci.202111610071310.1016/j.pmatsci.2020.100713 – reference: LuWYuanDSculleyJZhaoDKrishnaRZhouH CJ. Am. Chem. Soc.20111331812610.1021/ja2087773 – reference: HonmaYItohKMasunagaHFujiwaraANishizakiTIguchiSSasakiTAdv. Electron. Mater.20184170049010.1002/aelm.201700490 – reference: KolleJ MFayazMSayariAChem. Rev.2021121728010.1021/acs.chemrev.0c00762 – reference: LeeJ HJungJ PJangELeeK BHwangY JMinB KKimJ HJ. Membr. Sci.20165182110.1016/j.memsci.2016.06.025 – reference: DongHZhuZLiKLiQJiWHeBLiJMaXJ. Membr. Sci.202163511944010.1016/j.memsci.2021.119440 – reference: ZhangQZhouMLiuXZhangBJ. Membr. Sci.202163611961210.1016/j.memsci.2021.119612 – reference: XinYWangKZhangYZengFHeXTakyiS ATontiwachwuthikulPEnergies202114688310.3390/en14216883 – reference: KimYChoWKimYChoHKimJ HJ. Mater. Chem. C20186890610.1039/C8TC02598C – reference: DiddenJThürRVolodinAVankelecomI F JJ. Appl. Polym. Sci.20181354643310.1002/app.46433 – volume: 635 start-page: 119440 year: 2021 ident: 1236_CR63 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2021.119440 – volume: 5 start-page: 7306 year: 2012 ident: 1236_CR20 publication-title: Energy Environ. Sci. doi: 10.1039/C1EE02668B – volume: 549 start-page: 670 year: 2018 ident: 1236_CR39 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2017.10.054 – volume: 18 start-page: e2201732 year: 2022 ident: 1236_CR29 publication-title: Small doi: 10.1002/smll.202201732 – volume: 4 start-page: 1823 year: 2020 ident: 1236_CR66 publication-title: Joule doi: 10.1016/j.joule.2020.07.005 – volume: 190 start-page: 179 year: 2001 ident: 1236_CR49 publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(01)00444-6 – volume: 8 start-page: 29044 year: 2016 ident: 1236_CR55 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b09786 – volume: 36 start-page: 2085 year: 2019 ident: 1236_CR74 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-019-0402-z – volume: 241 start-page: 124533 year: 2022 ident: 1236_CR61 publication-title: Polymer doi: 10.1016/j.polymer.2022.124533 – volume: 635 start-page: 119541 year: 2021 ident: 1236_CR56 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2021.119541 – volume: 5 start-page: 12849 year: 2015 ident: 1236_CR73 publication-title: RSC Adv. doi: 10.1039/C4RA14168G – volume: 518 start-page: 21 year: 2016 ident: 1236_CR43 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2016.06.025 – volume: 14 start-page: 6883 year: 2021 ident: 1236_CR5 publication-title: Energies doi: 10.3390/en14216883 – volume: 28 start-page: 38274 year: 2021 ident: 1236_CR22 publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-021-13447-y – volume: 569 start-page: 157 year: 2019 ident: 1236_CR40 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2018.09.066 – volume: 13 start-page: 14599 year: 2021 ident: 1236_CR37 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c00879 – volume: 58 start-page: 327 year: 2019 ident: 1236_CR1 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201811638 – volume: 239 start-page: 116539 year: 2020 ident: 1236_CR52 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2020.116539 – volume: 121 start-page: 7280 year: 2021 ident: 1236_CR65 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00762 – volume: 9 start-page: 1863 year: 2016 ident: 1236_CR4 publication-title: Energy Environ. Sci. doi: 10.1039/C6EE00811A – volume: 628 start-page: 119244 year: 2021 ident: 1236_CR17 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2021.119244 – volume: 31 start-page: 1805813 year: 2019 ident: 1236_CR33 publication-title: Adv. Mater. doi: 10.1002/adma.201805813 – volume: 122 start-page: 4145 year: 2000 ident: 1236_CR68 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja993617t – volume: 26 start-page: 289 year: 2019 ident: 1236_CR23 publication-title: J. Polym. Res. doi: 10.1007/s10965-019-1978-z – volume: 352 start-page: 126 year: 2010 ident: 1236_CR48 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2010.02.008 – volume: 12 start-page: 84 year: 2013 ident: 1236_CR18 publication-title: Int. J. Greenhouse Gas Control doi: 10.1016/j.ijggc.2012.10.009 – volume: 237 start-page: 124323 year: 2021 ident: 1236_CR60 publication-title: Polymer doi: 10.1016/j.polymer.2021.124323 – volume: 624 start-page: 119081 year: 2021 ident: 1236_CR50 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2021.119081 – volume: 133 start-page: 18126 year: 2011 ident: 1236_CR27 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2087773 – volume: 597 start-page: 117644 year: 2020 ident: 1236_CR44 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2019.117644 – volume: 12 start-page: 2733 year: 2019 ident: 1236_CR21 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE01384A – volume: 7 start-page: 18415 year: 2015 ident: 1236_CR42 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b04492 – volume: 632 start-page: 119353 year: 2021 ident: 1236_CR45 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2021.119353 – volume: 276 start-page: 119347 year: 2021 ident: 1236_CR8 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2021.119347 – volume: 254 start-page: 46 year: 2014 ident: 1236_CR59 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.05.122 – volume: 120 start-page: 8161 year: 2020 ident: 1236_CR7 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00119 – volume: 27 start-page: 1700329 year: 2017 ident: 1236_CR36 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201700329 – volume: 27 start-page: 2397 year: 2019 ident: 1236_CR41 publication-title: Chin. J. Chem. Eng. doi: 10.1016/j.cjche.2019.01.027 – volume: 636 start-page: 119612 year: 2021 ident: 1236_CR51 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2021.119612 – volume: 410 start-page: 206 year: 2017 ident: 1236_CR71 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.03.084 – volume: 618 start-page: 118691 year: 2021 ident: 1236_CR53 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2020.118691 – volume: 224 start-page: 524 year: 2019 ident: 1236_CR58 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2019.05.060 – ident: 1236_CR70 doi: 10.1016/j.seppur.2022.121024 – volume: 65 start-page: 427 year: 2016 ident: 1236_CR19 publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2016.04.033 – volume: 6 start-page: 441 year: 2021 ident: 1236_CR64 publication-title: React. Chem. Eng. doi: 10.1039/D0RE00410C – volume: 4 start-page: 1700490 year: 2018 ident: 1236_CR34 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201700490 – volume: 59 start-page: 538 year: 2016 ident: 1236_CR69 publication-title: Sci. China. Chem. doi: 10.1007/s11426-016-5574-3 – volume: 40 start-page: 654 year: 2009 ident: 1236_CR24 publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2009.05.004 – volume: 132 start-page: 044705 year: 2010 ident: 1236_CR38 publication-title: J. Chem. Phys. doi: 10.1063/1.3276105 – volume: 135 start-page: 46433 year: 2018 ident: 1236_CR47 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.46433 – volume: 18 start-page: 1649 year: 2020 ident: 1236_CR9 publication-title: Environ. Chem. Lett. doi: 10.1007/s10311-020-01036-3 – volume: 6 start-page: 548 year: 2010 ident: 1236_CR67 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct9005085 – volume: 39 start-page: 817 year: 2014 ident: 1236_CR12 publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2014.01.003 – volume: 9 start-page: 1863 year: 2016 ident: 1236_CR14 publication-title: Energy Environ. Sci. doi: 10.1039/C6EE00811A – volume: 625 start-page: 119124 year: 2021 ident: 1236_CR6 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2021.119124 – volume: 10 start-page: 43031 year: 2018 ident: 1236_CR54 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b15269 – volume: 116 start-page: 100713 year: 2021 ident: 1236_CR26 publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2020.100713 – volume: 56 start-page: 14246 year: 2017 ident: 1236_CR32 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201708048 – volume: 54 start-page: 7239 year: 2018 ident: 1236_CR30 publication-title: Chem. Commun. doi: 10.1039/C8CC03656J – volume: 11 start-page: 24618 year: 2019 ident: 1236_CR2 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b07815 – volume: 51 start-page: 77 year: 2017 ident: 1236_CR72 publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2017.02.017 – volume: 118 start-page: 8655 year: 2018 ident: 1236_CR16 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00091 – volume: 8 start-page: 24233 year: 2020 ident: 1236_CR46 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA08806D – volume: 6 start-page: 8906 year: 2018 ident: 1236_CR57 publication-title: J. Mater. Chem. C doi: 10.1039/C8TC02598C – volume: 121 start-page: 274 year: 2017 ident: 1236_CR75 publication-title: Polymer doi: 10.1016/j.polymer.2017.06.033 – volume: 9 start-page: 1953 year: 2016 ident: 1236_CR28 publication-title: ChemSusChem doi: 10.1002/cssc.201600354 – volume: 50 start-page: 5468 year: 2021 ident: 1236_CR13 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS01347A – volume: 39 start-page: 750 year: 2010 ident: 1236_CR10 publication-title: Chem. Soc. Rev. doi: 10.1039/B817050A – volume: 50 start-page: 271 year: 2010 ident: 1236_CR11 publication-title: Pet. Chem. doi: 10.1134/S0965544110040043 – volume: 407–408 start-page: 47 year: 2012 ident: 1236_CR25 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2012.03.038 – volume: 53 start-page: 6267 year: 2020 ident: 1236_CR35 publication-title: Macromolecules doi: 10.1021/acs.macromol.0c00877 – volume: 4 start-page: 1900749 year: 2020 ident: 1236_CR3 publication-title: Small Methods doi: 10.1002/smtd.201900749 – volume: 569 start-page: 157 year: 2019 ident: 1236_CR31 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2019.05.041 – volume: 56 start-page: 14246 year: 2017 ident: 1236_CR62 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201708048 – volume: 42 start-page: 101296 year: 2020 ident: 1236_CR15 publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2020.101296 |
SSID | ssj0055620 |
Score | 2.3293638 |
Snippet | Blend membranes have attracted great attention because they can combine the advantages of different polymers. To investigate the effect of amphiphilic polymer... |
SourceID | nrf proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 175 |
SubjectTerms | Biotechnology Carbon dioxide Catalysis Chemistry Chemistry and Materials Science Gas separation Industrial Chemistry/Chemical Engineering Materials Science Membranes Networks Polymers Polystyrene resins Separation Technology Thermodynamics 화학공학 |
Title | Construction of amphiphilic networks in blend membranes for CO2 separation |
URI | https://link.springer.com/article/10.1007/s11814-022-1236-7 https://www.proquest.com/docview/2760864366 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002910661 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Korean Journal of Chemical Engineering, 2023, 40(1), 274, pp.175-184 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xOBQOFdAitgVkqT1RRdr4Fee4rFheKr2wEj1ZtuNUq4UsYvn_6swmZgGVSpx8sJ1IM4nnG8_MNwDflZPeBarbMsYTqbbIysrlWcl57n2RVzWnauSfV_psLC9u1E1Xxz1P2e4pJLk4qZfFbmiMZEbZ58QYkhWrsK7Qdac8rjEfpONXoUFvL1aIYA_xTgpl_usRL4zRavNQv8CZr0KjC4sz2oKPHVRkg1a327ASmx34MEwd2nZg8xmZ4Ce4oN6biQ2WzWrmUFGTe7owCaxps73nbNIwj4amYnfxDh1lPOgYwlY2_MXZPLY84LPmM4xHJ9fDs6zrlJAFbvLHTPdDUDE3BZfKx0oQLFKOq-i0iVUpTcyFz_vGiSiF804WplYhaoQXoka1iF1Ya2ZN3AOGrjIP2isTQpQB4Qw6bDX5ZRFFl4vQg34SmQ0djTh1s7i1SwJkkrJFKVuSsi16cPS05b7l0Pjf4m-oBzsNE0vM1zT-mdnpg0V8f057Si1L3YP9pCfb_XRzywuNDpoUGqd_JN0tp9985Zd3rf4KG9Ryvr2G2Yc1VGw8QGDy6A9hfTA6Pr6i8fT35cnh4sP8C2gG2SI |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4BPdAeqgKtuhRaSy2XVpE2fsU59IC2Rbu8emElbq7tONWKkkUsEurv6R_tzCZmoSpIPXDKwXYSzdieb-yZbwA-KCe9C5S3ZYwnUm2RlZXLs5Lz3Psir2pO2chHx3o4lvun6nQJfqdcmHm0e7qSnO_Ui2Q3NEYyo-hzYgzJii6S8iD-ukY_bfZ59AWVusP53teTwTDrSglkgZv8KtP9EFTMTcGl8rEShBuU4yo6bWJVShNz4fO-cSJK4byThalViBrtr6jxvwW-dxmeIPYwtHTGfDdt9woBRHuQQ4R-iK_S1em_fvmO8VtuLus7uPavq9i5hdt7Ac87aMp227m0BkuxWYfVQaoItw7PbpEXbsA-1fpM7LNsWjOHE2NyQQc0gTVtdPmMTRrm0bBV7Dyeo2OOGytDmMwG3zibxZZ3fNq8hPGjiPMVrDTTJr4Ghq45D9orE0KUAcWLDmJNfmBE0eUi9KCfRGZDR1tO1TN-2gXhMknZopQtSdkWPfh4M-Si5ex4qPN71IM9CxNLTNv0_DG1Z5cW_YkRjSm1LHUPtpKebLfIZ5YXGh1CKTQ2f0q6WzTf-8nN_-r9DlaHJ0eH9nB0fPAGnlK5-_YIaAtWUMlxG0HRlX87n5QMvj_2KvgDS6ESKA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB61RQL1gKCASClgCbiAVs36td4DhyolalooHIjUm7G9XhS13URNpIpfxV9kJrtuWgRIHHrag9f7mLE939gz3wC8Vk56FyhvyxhPpNoiKyuXZyXnufdFXtWcspE_HeuDsTw8USdr8DPlwiyj3dORZJvTQCxNzWJ3VtW7q8Q3NEwyo0h0Yg_Jii6q8ij-uESfbf5-tI8KfsP58MPXwUHWlRXIAjf5ItP9EFTMTcGl8rEShCGU4yo6bWJVShNz4fO-cSJK4byThalViBptsajxHwQ-dx3uSEo-xgk05ntp6VcIJtpNHSL3Q6yVjlH_9Mk3DOF6c1HfwLi_Hcsurd3wAdzvYCrba8fVQ1iLzRbcG6TqcFuweY3I8BEcUt3PxETLpjVzOEgmM9qsCaxpI83nbNIwj0auYufxHJ10XGQZQmY2-MzZPLYc5NPmMYxvRZxPYKOZNvEpMHTTedBemRCiDAil0FmsySeMKLpchB70k8hs6CjMqZLGmV2RL5OULUrZkpRt0YO3V11mLX_Hv25-hXqwp2FiiXWbrt-n9vTCom8xoj6llqXuwU7Sk-0m_NzyQqNzKIXG5ndJd6vmv75y-7_ufgl3v-wP7cfR8dEz2mEgVgAKItqBDdRxfI74aOFfLMckg2-3PQl-AZfYFlc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+amphiphilic+networks+in+blend+membranes+for+CO2+separation&rft.jtitle=The+Korean+journal+of+chemical+engineering&rft.au=Wang%2C+Jiangnan&rft.au=Xia%2C+Lv&rft.au=Huang%2C+Lu&rft.au=Long%2C+Li&rft.date=2023-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0256-1115&rft.eissn=1975-7220&rft.volume=40&rft.issue=1&rft.spage=175&rft.epage=184&rft_id=info:doi/10.1007%2Fs11814-022-1236-7&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0256-1115&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0256-1115&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0256-1115&client=summon |