Structure-property-performance relationship of vanadium- and manganese-based metal-organic frameworks and their derivatives for energy storage and conversion applications

Energy crises are currently the main challenges for human life. Promising solutions are expected from research on novel materials with a wide range of functional benefits. The new family of materials, known as metal-organic frameworks (MOFs), with coordination bonds between a metal and organic matte...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 12; no. 19; pp. 11149 - 11175
Main Authors Abazari, Reza, Sanati, Soheila, Nanjundan, Ashok Kumar, Wang, Qiyou, Dubal, Deepak P, Liu, Min
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 14.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Energy crises are currently the main challenges for human life. Promising solutions are expected from research on novel materials with a wide range of functional benefits. The new family of materials, known as metal-organic frameworks (MOFs), with coordination bonds between a metal and organic matter as the center atom and ligand, respectively, are an exciting class of such functional materials. MOFs represent inorganic-organic hybrids of crystals, making them beneficial for different applications. In the past few years, several attempts have been made to modify pristine MOFs and achieve better characteristics, including a larger surface area, greater availability of active sites, highly stable materials, and improved transport and diffusion of mass. The present review summarizes MOFs containing vanadium and manganese, including multi-metallic materials, composites, and derivatives. It focuses on the structure, porosity, and stability and their impact on energy storage and conversion applications. Each MOF type containing vanadium and manganese is examined to highlight the association of porous structures and characteristics. This review will further provide a deep understanding and transparent insights into the functions of MOFs and their suitability for certain applications. Other interested researchers are recommended to examine material optimization and synthesis of various vanadium and manganese-based MOFs that are more stable while also showing higher capacity. Vanadium and manganese-MOFs have many different oxidation states that are useful for energy-related applications, and their comprehensive review in comparison with other first row transition metals has not been carried out yet. The current review discusses on vanadium- and manganese-based metal-organic frameworks and their derivatives for energy storage and conversion applications along with the potential future advancements in these fields.
AbstractList Energy crises are currently the main challenges for human life. Promising solutions are expected from research on novel materials with a wide range of functional benefits. The new family of materials, known as metal–organic frameworks (MOFs), with coordination bonds between a metal and organic matter as the center atom and ligand, respectively, are an exciting class of such functional materials. MOFs represent inorganic–organic hybrids of crystals, making them beneficial for different applications. In the past few years, several attempts have been made to modify pristine MOFs and achieve better characteristics, including a larger surface area, greater availability of active sites, highly stable materials, and improved transport and diffusion of mass. The present review summarizes MOFs containing vanadium and manganese, including multi-metallic materials, composites, and derivatives. It focuses on the structure, porosity, and stability and their impact on energy storage and conversion applications. Each MOF type containing vanadium and manganese is examined to highlight the association of porous structures and characteristics. This review will further provide a deep understanding and transparent insights into the functions of MOFs and their suitability for certain applications. Other interested researchers are recommended to examine material optimization and synthesis of various vanadium and manganese-based MOFs that are more stable while also showing higher capacity. Vanadium and manganese-MOFs have many different oxidation states that are useful for energy-related applications, and their comprehensive review in comparison with other first row transition metals has not been carried out yet.
Energy crises are currently the main challenges for human life. Promising solutions are expected from research on novel materials with a wide range of functional benefits. The new family of materials, known as metal-organic frameworks (MOFs), with coordination bonds between a metal and organic matter as the center atom and ligand, respectively, are an exciting class of such functional materials. MOFs represent inorganic-organic hybrids of crystals, making them beneficial for different applications. In the past few years, several attempts have been made to modify pristine MOFs and achieve better characteristics, including a larger surface area, greater availability of active sites, highly stable materials, and improved transport and diffusion of mass. The present review summarizes MOFs containing vanadium and manganese, including multi-metallic materials, composites, and derivatives. It focuses on the structure, porosity, and stability and their impact on energy storage and conversion applications. Each MOF type containing vanadium and manganese is examined to highlight the association of porous structures and characteristics. This review will further provide a deep understanding and transparent insights into the functions of MOFs and their suitability for certain applications. Other interested researchers are recommended to examine material optimization and synthesis of various vanadium and manganese-based MOFs that are more stable while also showing higher capacity. Vanadium and manganese-MOFs have many different oxidation states that are useful for energy-related applications, and their comprehensive review in comparison with other first row transition metals has not been carried out yet. The current review discusses on vanadium- and manganese-based metal-organic frameworks and their derivatives for energy storage and conversion applications along with the potential future advancements in these fields.
Author Sanati, Soheila
Wang, Qiyou
Abazari, Reza
Dubal, Deepak P
Liu, Min
Nanjundan, Ashok Kumar
AuthorAffiliation Department of Chemistry
Central South University
Queensland University of Technology
School of Engineering and Centre for Future Materials
School of Chemistry & Physics
Hunan Joint International Research Center for Carbon Dioxide Resource Utilization
School of Physics
Faculty of Basic Sciences
University of Southern Queensland
University of Maragheh
State Key Laboratory of Powder Metallurgy
Centre for Materials Science
AuthorAffiliation_xml – sequence: 0
  name: University of Southern Queensland
– sequence: 0
  name: Department of Chemistry
– sequence: 0
  name: Central South University
– sequence: 0
  name: Queensland University of Technology
– sequence: 0
  name: School of Physics
– sequence: 0
  name: University of Maragheh
– sequence: 0
  name: School of Engineering and Centre for Future Materials
– sequence: 0
  name: Hunan Joint International Research Center for Carbon Dioxide Resource Utilization
– sequence: 0
  name: Faculty of Basic Sciences
– sequence: 0
  name: Centre for Materials Science
– sequence: 0
  name: School of Chemistry & Physics
– sequence: 0
  name: State Key Laboratory of Powder Metallurgy
Author_xml – sequence: 1
  givenname: Reza
  surname: Abazari
  fullname: Abazari, Reza
– sequence: 2
  givenname: Soheila
  surname: Sanati
  fullname: Sanati, Soheila
– sequence: 3
  givenname: Ashok Kumar
  surname: Nanjundan
  fullname: Nanjundan, Ashok Kumar
– sequence: 4
  givenname: Qiyou
  surname: Wang
  fullname: Wang, Qiyou
– sequence: 5
  givenname: Deepak P
  surname: Dubal
  fullname: Dubal, Deepak P
– sequence: 6
  givenname: Min
  surname: Liu
  fullname: Liu, Min
BookMark eNptkUtv1DAUhSNUJErphj2SJXZILnbsJPayKq-KSiwo6-jGuZm6zdjh2hk0f4lfiZlBRUJ44cfVd8-xfZ5XJyEGrKqXUlxIoezbUWcQolPtw5PqtBaN4J227cnj3phn1XlK96IMI0Rr7Wn182um1eWVkC8UF6S852WeIm0hOGSEM2QfQ7rzC4sT20GA0a9bziCMrDAbCJiQD5CwnDHDzCOVondsItjij0gP6QDnO_TERiS_K5I7TKy4MAxImz1LORJs8AC6GHZIqbgyWJbZu-MNXlRPJ5gTnv9Zz6pvH97fXn3iN18-Xl9d3nBXG5l5K0xnjW5bowdjhZNgNahSkM2g664D12hV69YapXQzDUrJYYSuqTs5qFGjOqteH3XLh3xfMeX-Pq4UimWvRKN13RppC_XmSDmKKRFO_UJ-C7Tvpeh_x9G_07eXhzg-F1j8AzufD6_KBH7-f8urYwsl9yj9N2H1C5-CnDw
CitedBy_id crossref_primary_10_1016_j_ijhydene_2025_02_020
crossref_primary_10_1016_j_ijhydene_2024_11_147
crossref_primary_10_1016_j_ijhydene_2025_02_022
crossref_primary_10_1021_acs_inorgchem_4c01850
crossref_primary_10_1002_asia_202401522
crossref_primary_10_1016_j_ijhydene_2025_02_028
crossref_primary_10_1016_j_molliq_2025_126988
crossref_primary_10_1016_j_ccr_2024_216231
crossref_primary_10_1016_j_cej_2024_158345
crossref_primary_10_1016_j_cej_2024_158463
crossref_primary_10_1016_j_ijhydene_2024_11_388
crossref_primary_10_1002_open_202400428
crossref_primary_10_1016_j_inoche_2024_113826
crossref_primary_10_1016_j_ijhydene_2024_10_104
crossref_primary_10_1016_j_apsadv_2025_100708
crossref_primary_10_1016_j_est_2024_115185
crossref_primary_10_1016_j_inoche_2024_113589
crossref_primary_10_1016_j_jpcs_2025_112632
crossref_primary_10_1007_s10904_024_03525_2
crossref_primary_10_1016_j_crcon_2025_100308
crossref_primary_10_1021_acsaem_4c02343
crossref_primary_10_1039_D5NJ00269A
crossref_primary_10_1016_j_synthmet_2025_117836
crossref_primary_10_1016_j_ccr_2024_216343
crossref_primary_10_1016_j_molstruc_2024_140233
crossref_primary_10_1016_j_cej_2024_159149
crossref_primary_10_1016_j_ijhydene_2024_10_352
crossref_primary_10_1016_j_mcat_2025_115025
crossref_primary_10_1007_s11581_024_05970_y
crossref_primary_10_1016_j_jallcom_2024_175653
crossref_primary_10_1021_acsmaterialslett_4c00866
crossref_primary_10_1016_j_cej_2024_154814
crossref_primary_10_1016_j_inoche_2024_113315
crossref_primary_10_1021_acs_inorgchem_4c03217
crossref_primary_10_1016_j_diamond_2024_111536
crossref_primary_10_1016_j_mcat_2024_114811
crossref_primary_10_1039_D4TA05268D
crossref_primary_10_1016_j_nanoso_2024_101295
crossref_primary_10_1016_j_ijhydene_2025_02_168
crossref_primary_10_1016_j_ccr_2024_216256
crossref_primary_10_1016_j_est_2025_115535
crossref_primary_10_1016_j_ica_2024_122297
crossref_primary_10_1016_j_matchemphys_2024_129835
crossref_primary_10_1021_acs_inorgchem_4c05162
crossref_primary_10_1016_j_cej_2024_157318
crossref_primary_10_1002_aoc_7774
crossref_primary_10_1016_j_mtcomm_2025_111932
crossref_primary_10_1016_j_ijhydene_2024_10_042
crossref_primary_10_1016_j_mtsust_2024_100894
crossref_primary_10_1016_j_apmt_2025_102652
crossref_primary_10_1016_j_envres_2024_120367
crossref_primary_10_1016_j_psep_2024_09_036
crossref_primary_10_1021_acs_inorgchem_4c02036
crossref_primary_10_1016_j_enconman_2024_118964
crossref_primary_10_1016_j_ijhydene_2024_11_450
crossref_primary_10_1002_smll_202409133
crossref_primary_10_1002_adfm_202422428
crossref_primary_10_1016_j_ijhydene_2024_11_451
crossref_primary_10_1016_j_molstruc_2024_141021
crossref_primary_10_1039_D5CC00389J
crossref_primary_10_1016_j_enconman_2024_118769
crossref_primary_10_1021_acs_inorgchem_4c04683
crossref_primary_10_1021_acs_inorgchem_4c05056
crossref_primary_10_1007_s10854_024_13743_6
crossref_primary_10_1016_j_jiec_2024_10_059
crossref_primary_10_1016_j_cej_2025_161068
crossref_primary_10_1016_j_jiec_2025_01_014
crossref_primary_10_1016_j_jallcom_2024_177574
Cites_doi 10.1002/anie.201903941
10.1002/cssc.202001230
10.1016/j.fuel.2023.127724
10.1002/aenm.201801065
10.1039/C4RA06958G
10.1021/acs.inorgchem.2c02709
10.1002/chem.202201784
10.1021/acs.inorgchem.1c03216
10.1016/j.nanoen.2018.03.034
10.1021/acsaem.9b02392
10.1021/acscatal.7b03404
10.1021/acsaem.3c02271
10.1039/D0CC01146K
10.1039/D3TA05074B
10.1002/aenm.201400133
10.1021/acsami.9b16473
10.1016/j.jece.2022.108028
10.1021/nl400760a
10.1016/j.jpowsour.2016.05.093
10.1002/adma.202370174
10.1039/C4EE03749A
10.1039/D1TA00900A
10.1016/j.cej.2019.122210
10.1002/adfm.202210002
10.1016/j.ccr.2023.215030
10.1039/D2TA09988H
10.1016/j.cej.2024.149243
10.1016/j.mtener.2021.100816
10.1021/acs.jpcc.2c05083
10.1016/j.jelechem.2023.117576
10.1002/smll.201800659
10.1039/D1TA10008D
10.1039/D3CC06073J
10.1021/acscatal.9b00191
10.1002/smll.202004891
10.1021/acsaem.8b02128
10.1016/j.jcis.2022.04.126
10.1021/acs.inorgchem.2c03327
10.1002/adfm.202100614
10.1039/D3CS00767G
10.1002/aenm.201703341
10.1021/acsomega.3c07326
10.1021/acssuschemeng.9b06590
10.1002/slct.201900305
10.1039/C7TA00201G
10.1021/acsnano.1c06402
10.1039/C9TA03220G
10.1021/acs.inorgchem.3c03052
10.1016/j.ccr.2014.10.008
10.1038/ncomms15356
10.1002/adfm.201802564
10.1002/cssc.201902272
10.1002/smll.202300673
10.1039/C1SC00394A
10.1021/acsami.9b05564
10.1039/C8EE03651A
10.1039/C9NR02206F
10.1016/j.ultsonch.2017.12.027
10.1016/j.jpowsour.2019.227687
10.1002/smll.202306353
10.1016/j.enchem.2020.100027
10.1016/j.ultsonch.2018.02.001
10.1002/aenm.201601491
10.1002/smll.202300510
10.1002/celc.201600116
10.1021/acsami.1c10063
10.1021/acsami.2c09998
10.1016/j.jallcom.2020.155604
10.1016/j.apsusc.2019.07.026
10.1002/1521-3773(20020118)41:2<281::AID-ANIE281>3.0.CO;2-Y
10.1016/j.est.2021.103508
10.1021/acs.nanolett.7b05403
10.1038/s41467-023-39127-8
10.1016/j.ccr.2023.215538
10.1039/c0ee00026d
10.1039/C9TA01628G
10.1002/ange.202207066
10.1021/acsomega.9b03550
10.1039/C5CS00303B
10.1016/j.electacta.2017.10.016
10.1016/j.cej.2018.04.207
10.1002/anie.202010093
10.1021/acs.accounts.1c00707
10.1039/C4CC05742B
10.1038/s41557-019-0266-1
10.1039/C7NR09081A
10.1039/C8NR07991A
10.1002/smll.202003983
10.1021/jacs.2c00276
10.1016/j.electacta.2021.139060
10.1021/acsami.2c04304
10.1021/acs.inorgchem.7b01486
10.1002/adfm.202204499
10.1002/adfm.201800003
10.1039/D1NJ06107K
10.1016/j.jcis.2021.02.108
10.1016/j.jcis.2019.09.009
10.1021/acsami.8b00953
10.1021/acsenergylett.8b01426
10.1016/j.nanoen.2019.103935
10.1021/acsami.9b10868
10.1149/1945-7111/ad0b43
10.1039/C8TA07839D
10.1002/cey2.459
10.1002/anie.201303971
10.1016/j.colsurfa.2020.125011
10.1038/nenergy.2016.39
10.1016/j.jpowsour.2014.12.094
10.1016/j.mtchem.2021.100758
10.1016/j.jcis.2021.12.045
10.1039/C6CS00426A
10.1039/C8TA05760E
10.1016/j.ijhydene.2021.09.123
10.1021/acsami.2c23314
10.1016/j.jallcom.2019.04.027
10.1039/D1MA00719J
10.1016/j.electacta.2020.137438
10.1021/acsaem.2c00066
10.1016/j.jallcom.2020.154524
10.1002/adma.202108856
10.1039/D2NJ02358J
10.1021/acsami.6b11775
10.1016/j.mtchem.2021.100731
10.1021/acsami.6b12755
10.1021/acsami.3c00013
10.1016/j.gee.2017.05.003
10.1021/acsami.7b15499
10.1016/j.cej.2023.144340
10.1002/anie.202214707
10.1002/aenm.201700547
10.1039/C8MH01091A
10.1039/C8TA07449F
10.1021/acsami.6b01047
10.1002/anie.202209350
10.1002/adma.202003297
10.1016/j.trac.2022.116741
10.1002/smll.201801815
10.1021/acsami.1c22129
10.1039/C3EE44004D
10.1016/j.ccr.2021.214264
10.1016/j.carbon.2020.01.006
10.1021/acsaem.8b01691
10.1038/nmat4766
10.1039/C3NJ01130E
10.1016/j.electacta.2018.01.112
10.1021/ic201396m
10.1021/acsami.9b00415
10.1039/C9TA04554F
10.1021/jacs.6b12353
10.1021/acscatal.6b00014
10.1016/j.ccr.2022.214561
10.1038/nmat2297
10.1039/D3TA03231K
10.1039/C8TA02546K
10.1002/aenm.201801307
10.1002/advs.201500185
10.1039/D1TA02896K
10.1016/j.spmi.2012.03.017
10.1021/am502638d
10.1039/C8EE03283A
10.1002/ange.202206353
10.1016/j.jpowsour.2021.230077
10.1016/j.chempr.2016.12.002
10.1016/j.colsurfa.2021.126596
10.1016/j.surfin.2021.101232
10.1039/D3TA05158G
10.1002/adma.202105163
10.1016/j.ccr.2020.213554
10.1002/smtd.201800415
10.1002/adfm.201503662
10.1016/j.est.2023.109873
10.1016/j.cej.2022.139524
10.1039/D1CC06340E
10.1039/D2TA00135G
10.1039/D2NR04841H
10.1016/j.pmatsci.2019.100579
10.1002/anie.201900787
10.1002/smm2.1088
10.1002/aenm.201801193
10.1039/C8TA10998B
10.1002/aenm.202003759
10.1007/s11051-022-05411-9
10.1002/chem.202300137
10.1021/acs.inorgchem.0c03634
10.1002/adfm.201801554
10.1039/D2TA02470E
10.1016/j.jechem.2023.08.042
10.1016/j.ijhydene.2022.12.313
10.1002/adma.201804973
10.1002/chem.202000207
10.1021/acsami.5b07024
10.1016/j.ccr.2022.214664
10.1039/C7SC05295B
10.1039/C5TA09473A
10.1021/acs.inorgchem.2c00542
10.1002/ente.202201416
10.1002/smll.202301449
10.1016/j.cej.2019.01.081
10.1039/D1SE01883C
10.1039/D1TA08777K
10.1002/anie.201800269
10.1021/acsami.8b04223
10.1016/j.nanoen.2020.104868
10.1002/aenm.201700885
10.1039/C8NJ04402C
10.1002/ange.202008129
10.1039/C4TA00200H
10.1021/acsami.6b14801
10.1002/smll.202207266
10.1002/aenm.201700518
10.1039/D1EE03614A
10.1016/j.ccr.2022.214699
10.1039/C4TA01241K
10.1016/S1872-2067(23)64532-2
10.1002/anie.202116934
10.1002/open.201900324
10.1002/aenm.201200833
10.1016/j.cej.2019.122982
10.1021/acs.inorgchem.4c00053
10.1039/C8EE01011K
10.1002/anie.201813634
10.1039/C9NR10491G
10.1039/C4CS00106K
10.1039/D1TA10326A
10.1021/acsami.7b10334
10.1016/j.molliq.2017.10.145
10.1039/D1CS00891A
10.1016/j.apcatb.2019.01.007
10.1021/acsami.5b03414
10.1038/s41467-018-05341-y
10.1002/ange.201711376
10.1038/nprot.2016.001
10.1021/acs.organomet.1c00376
10.1016/j.jcis.2020.08.041
10.1016/j.nanoen.2022.107146
10.1039/D2TA09766D
10.1016/j.jcat.2013.05.021
10.1039/D1TA08646D
10.1021/nn4023894
10.1021/acs.accounts.6b00479
10.1039/C9SC03916C
10.1016/j.elecom.2021.107024
10.1039/D2TA05756E
10.1038/s41467-021-25095-4
10.1016/j.ccr.2020.213221
10.1016/j.ccr.2022.214505
10.1021/acsami.9b13729
10.1002/smll.201900348
10.1002/smll.201000773
10.1016/j.electacta.2020.136850
10.1021/acsami.2c10346
10.1002/advs.201600371
10.1002/adma.201704303
10.1016/j.jechem.2020.06.016
10.1016/j.apcatb.2018.05.054
10.1016/j.catcom.2011.12.012
10.1016/j.ijhydene.2022.02.037
10.1039/C7EE00398F
10.1039/D1TA10213C
10.1016/j.jelechem.2021.114993
10.1039/C7TA01308F
10.1016/j.micromeso.2020.110064
10.1002/adfm.202213095
10.1021/acs.chemrev.6b00504
10.1039/C9TA03498F
10.1021/acs.inorgchem.9b02658
10.1016/j.cclet.2020.12.015
10.1039/C6NJ02179D
10.1016/j.electacta.2020.136225
10.1080/10298436.2023.2273318
10.1002/admi.202101599
10.1016/j.carbon.2022.07.057
10.1039/D1TA07237D
10.1021/acsami.3c04506
10.1038/ncomms15341
10.1002/chem.201703851
10.1021/acs.chemrev.1c00243
10.1016/j.microc.2022.107506
10.1039/D2TA09369C
10.1039/D2TA07938K
10.1021/acs.inorgchem.0c02504
10.1016/j.ijhydene.2020.12.192
10.1002/adfm.202302659
10.1039/C7CS00109F
10.1038/nmat3191
10.1016/j.electacta.2018.03.033
10.1039/C8DT02706D
10.1039/D3TC00970J
10.1002/cey2.44
10.1016/j.nanoen.2013.04.008
10.1021/acsami.0c11722
10.1002/adma.201305492
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2024
Copyright_xml – notice: Copyright Royal Society of Chemistry 2024
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
DOI 10.1039/d4ta00736k
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 11175
ExternalDocumentID 10_1039_D4TA00736K
d4ta00736k
GroupedDBID -JG
0-7
0R~
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
GGIMP
GNO
H13
HZ~
H~N
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
ID FETCH-LOGICAL-c281t-60879846684b890c1a94a384615b4277ac543246983345fb331bda75271b3d4e3
ISSN 2050-7488
IngestDate Mon Jun 30 11:42:57 EDT 2025
Thu Apr 24 23:09:36 EDT 2025
Tue Jul 01 03:28:14 EDT 2025
Tue Dec 17 20:58:25 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c281t-60879846684b890c1a94a384615b4277ac543246983345fb331bda75271b3d4e3
Notes Prof. Deepak Dubal is currently working as Full Professor at Queensland University of Technology (QUT), Australia. He is a productive, well-cited, and multiplefellowship-winning scientist. His achievements are honoured by several prestigious fellowships such as Brain Korea-21 (South Korea-2011), Alexander von Humboldt (Germany-2012), Marie Curie (Spain-2014), and Australian Future Fellowship (Australia-2018). His research expertise lies in the design and development of multifunctional materials for clean energy conversion and storage technologies with a special focus on supercapacitors, lithium-ion batteries, Li-ion capacitors, and electrochemical flow cells. In addition, his team is extending its research area in biomass valorisation and battery recycling, aiding circular economy and sustainable practices.
2
Dr Soheila Sanati obtained her PhD in Inorganic Chemistry at Azarbaijan Shahid Madani University (Iran) in February 2019. Her research interests mainly focus on the design, synthesis, and applications of layered double hydroxides and metal-organic framework-based nanostructured materials for energy storage and conversion, irradiation thermal treatment, renewable clean energy and environmental protection applications.
h
reduction and the resource utilization of perfluorocarbons.
index 69). His research focuses on electrocatalytic energy conversion, photo-electrocatalytic CO
Dr Reza Abazari obtained his MSc in Inorganic Chemistry from K. N. Toosi University of Technology (Iran) in 2012 and his PhD from Tarbiat Modares University in 2019. Currently, he is working as a Youth Research Professor at University of Maragheh, Iran. His research interests include the design and synthesis of nanostructured materials based on crystalline porous frameworks for electrochemical energy storage and photocatalytic applications.
Prof. Min Liu received his PhD (2010) from Chinese Academy of Sciences. In 2010-2015, he joined the University of Tokyo as a research fellow with Prof. Kazuhito Hashimoto and Prof. Kazunari Domen, separately. In 2015-2017, he joined the University of Toronto as a postdoctoral fellow with Prof. Edward Sargent. Since 2017, he has been working as a professor at Central South University. He has published more than 200 papers with over 21,000 citations
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9007-4817
0000-0001-6502-0844
0009-0001-2947-6737
PQID 3054426819
PQPubID 2047523
PageCount 27
ParticipantIDs proquest_journals_3054426819
crossref_primary_10_1039_D4TA00736K
rsc_primary_d4ta00736k
crossref_citationtrail_10_1039_D4TA00736K
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-14
PublicationDateYYYYMMDD 2024-05-14
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-14
  day: 14
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2024
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Xu (D4TA00736K/cit80/1) 2021; 427
Liu (D4TA00736K/cit193/1) 2023; 170
Mondal (D4TA00736K/cit261/1) 2023; 470
You (D4TA00736K/cit272/1) 2022; 10
Thomas (D4TA00736K/cit184/1) 2023; 11
He (D4TA00736K/cit243/1) 2019; 12
Wei (D4TA00736K/cit135/1) 2019; 11
Li (D4TA00736K/cit287/1) 2013; 3
Abazari (D4TA00736K/cit17/1) 2019; 11
Yin (D4TA00736K/cit260/1) 2021; 13
Chen (D4TA00736K/cit255/1) 2022; 613
Zhai (D4TA00736K/cit78/1) 2021; 9
Karthik (D4TA00736K/cit5/1) 2023; 15
Khan (D4TA00736K/cit91/1) 2015; 285
Lamiel (D4TA00736K/cit51/1) 2023; 480
Zhang (D4TA00736K/cit81/1) 2022; 97
Luo (D4TA00736K/cit102/1) 2022; 461
Heshmatpour (D4TA00736K/cit271/1) 2014; 4
Guo (D4TA00736K/cit279/1) 2019; 11
Chen (D4TA00736K/cit227/1) 2023; 5
Gong (D4TA00736K/cit276/1) 2018; 264
Lin (D4TA00736K/cit292/1) 2022; 34
Li (D4TA00736K/cit137/1) 2018; 8
Prasankumar (D4TA00736K/cit186/1) 2022; 199
Liu (D4TA00736K/cit123/1) 2017; 7
Zhu (D4TA00736K/cit277/1) 2018; 28
Liu (D4TA00736K/cit231/1) 2016; 3
Liu (D4TA00736K/cit234/1) 2019; 11
Hu (D4TA00736K/cit290/1) 2016; 40
Barthelet (D4TA00736K/cit39/1) 2002; 41
Bruce (D4TA00736K/cit296/1) 2011; 11
Yu (D4TA00736K/cit142/1) 2022; 28
Liu (D4TA00736K/cit267/1) 2023; 942
Ren (D4TA00736K/cit241/1) 2020; 2
Ding (D4TA00736K/cit98/1) 2019; 10
Zhang (D4TA00736K/cit28/1) 2024; 76
Lindberg (D4TA00736K/cit202/1) 2020; 345
Kaushal (D4TA00736K/cit24/1) 2021; 2
Wu (D4TA00736K/cit200/1) 2020; 838
Sundriyal (D4TA00736K/cit217/1) 2019; 4
Chongdar (D4TA00736K/cit43/1) 2022; 58
Yu (D4TA00736K/cit108/1) 2019; 9
Du (D4TA00736K/cit226/1) 2019; 378
Liu (D4TA00736K/cit238/1) 2021; 24
Cai (D4TA00736K/cit89/1) 2020; 160
Wang (D4TA00736K/cit48/1) 2017; 2
Huang (D4TA00736K/cit206/1) 2016; 4
Lin (D4TA00736K/cit145/1) 2019; 15
Wang (D4TA00736K/cit140/1) 2021; 11
Ji (D4TA00736K/cit148/1) 2017; 23
Soundharrajan (D4TA00736K/cit289/1) 2016; 8
Li (D4TA00736K/cit166/1) 2016; 6
Xu (D4TA00736K/cit112/1) 2022; 126
Dalavi (D4TA00736K/cit6/1) 2022; 10
Zhuang (D4TA00736K/cit203/1) 2021; 25
Liu (D4TA00736K/cit54/1) 2022; 10
Cao (D4TA00736K/cit285/1) 2015; 3
Li (D4TA00736K/cit103/1) 2020; 2
Lam (D4TA00736K/cit240/1) 2021; 8
Villenoisy (D4TA00736K/cit63/1) 2023; 35
Erçarıkcı (D4TA00736K/cit195/1) 2023; 11
Du (D4TA00736K/cit37/1) 2022; 10
Xi (D4TA00736K/cit246/1) 2023; 11
Saini (D4TA00736K/cit57/1) 2022; 10
Yao (D4TA00736K/cit236/1) 2020; 8
Wan (D4TA00736K/cit120/1) 2019; 58
Chen (D4TA00736K/cit165/1) 2019; 7
Mondal (D4TA00736K/cit244/1) 2023; 470
Maiti (D4TA00736K/cit216/1) 2014; 6
Yuan (D4TA00736K/cit14/1) 2017; 8
Yang (D4TA00736K/cit254/1) 2020; 12
El Hankari (D4TA00736K/cit21/1) 2019; 106
Zhao (D4TA00736K/cit253/1) 2014; 2
Zhao (D4TA00736K/cit136/1) 2021; 31
Phan (D4TA00736K/cit35/1) 2011; 50
Han (D4TA00736K/cit132/1) 2021; 32
Pu (D4TA00736K/cit212/1) 2022; 3
Yap (D4TA00736K/cit82/1) 2017; 2
Pan (D4TA00736K/cit31/1) 2022; 61
Wu (D4TA00736K/cit109/1) 2024; 483
Wang (D4TA00736K/cit60/1) 2022; 134
Wang (D4TA00736K/cit106/1) 2023; 54
Liang (D4TA00736K/cit210/1) 2019; 6
Liang (D4TA00736K/cit207/1) 2018; 10
Aiyappa (D4TA00736K/cit113/1) 2019; 3
Khan (D4TA00736K/cit117/1) 2023; 11
Abazari (D4TA00736K/cit105/1) 2022; 61
Li (D4TA00736K/cit29/1) 2022; 61
Chen (D4TA00736K/cit119/1) 2021; 54
Sheberla (D4TA00736K/cit190/1) 2017; 16
Wang (D4TA00736K/cit13/1) 2023; 19
Hu (D4TA00736K/cit73/1) 2023; 15
Ma (D4TA00736K/cit88/1) 2019; 2
Liu (D4TA00736K/cit36/1) 2022; 32
Lu (D4TA00736K/cit219/1) 2019; 7
Liu (D4TA00736K/cit247/1) 2023; 15
Hasanzadeh (D4TA00736K/cit133/1) 2012; 19
Ding (D4TA00736K/cit265/1) 2019; 493
Han (D4TA00736K/cit237/1) 2021; 882
Fan (D4TA00736K/cit20/1) 2018; 6
Manikandan (D4TA00736K/cit223/1) 2021; 393
Fang (D4TA00736K/cit291/1) 2021; 593
Chen (D4TA00736K/cit101/1) 2022; 469
Tang (D4TA00736K/cit143/1) 2019; 245
Farzinpour (D4TA00736K/cit192/1) 2023; 341
Zhang (D4TA00736K/cit168/1) 2021; 366
Sanati (D4TA00736K/cit182/1) 2019; 362
Sanati (D4TA00736K/cit107/1) 2020; 56
Yuan (D4TA00736K/cit221/1) 2020; 830
Fang (D4TA00736K/cit259/1) 2018; 3
He (D4TA00736K/cit74/1) 2023; 11
Niu (D4TA00736K/cit282/1) 2017; 56
Soundharrajan (D4TA00736K/cit262/1) 2018; 18
Wang (D4TA00736K/cit44/1) 2016; 11
He (D4TA00736K/cit263/1) 2019; 64
Banerjee (D4TA00736K/cit288/1) 2013; 2
Niknam (D4TA00736K/cit201/1) 2021; 44
Huang (D4TA00736K/cit1/1) 2023; 33
Hussain (D4TA00736K/cit194/1) 2023; 33
Xia (D4TA00736K/cit269/1) 2013; 7
Huang (D4TA00736K/cit275/1) 2014; 2
Cai (D4TA00736K/cit53/1) 2021; 121
Gonen (D4TA00736K/cit176/1) 2018; 10
Pan (D4TA00736K/cit12/1) 2022; 61
Sanati (D4TA00736K/cit41/1) 2023; 48
Guan (D4TA00736K/cit162/1) 2021; 624
Yuan (D4TA00736K/cit286/1) 2014; 53
Li (D4TA00736K/cit30/1) 2020; 410
Bucur (D4TA00736K/cit250/1) 2017; 10
Rassu (D4TA00736K/cit75/1) 2022; 465
Ji (D4TA00736K/cit147/1) 2015; 8
Yu (D4TA00736K/cit38/1) 2023; 23
Zhang (D4TA00736K/cit188/1) 2022; 14
Senftle (D4TA00736K/cit299/1) 2017; 50
Tian (D4TA00736K/cit281/1) 2019; 792
Pan (D4TA00736K/cit127/1) 2019; 11
Shen (D4TA00736K/cit160/1) 2017; 139
Li (D4TA00736K/cit77/1) 2016; 8
Zhou (D4TA00736K/cit164/1) 2021; 12
Wu (D4TA00736K/cit298/1) 2014; 26
Yuan (D4TA00736K/cit97/1) 2018; 30
Centrone (D4TA00736K/cit33/1) 2010; 6
Sadhukhan (D4TA00736K/cit114/1) 2023; 14
Zhong (D4TA00736K/cit215/1) 2015; 44
Salehi (D4TA00736K/cit228/1) 2024; 9
Qi (D4TA00736K/cit170/1) 2019; 557
Abazari (D4TA00736K/cit71/1) 2024; 63
Yan (D4TA00736K/cit191/1) 2018; 14
Ko (D4TA00736K/cit67/1) 2022; 46
Sanati (D4TA00736K/cit230/1) 2018; 249
Li (D4TA00736K/cit110/1) 2020; 5
Zhao (D4TA00736K/cit155/1) 2018; 236
Furukawa (D4TA00736K/cit23/1) 2014; 43
Hou (D4TA00736K/cit171/1) 2019; 9
Guo (D4TA00736K/cit144/1) 2020; 357
Lv (D4TA00736K/cit139/1) 2020; 12
Kim (D4TA00736K/cit297/1) 2018; 10
Gong (D4TA00736K/cit266/1) 2022; 23
Kaveevivitchai (D4TA00736K/cit32/1) 2015; 278
Li (D4TA00736K/cit161/1) 2018; 130
Hashem (D4TA00736K/cit100/1) 2020; 9
Li (D4TA00736K/cit125/1) 2020; 2
Sanati (D4TA00736K/cit55/1) 2022; 15
Ghahremani (D4TA00736K/cit181/1) 2023; 24
Chen (D4TA00736K/cit220/1) 2021; 505
Guo (D4TA00736K/cit27/1) 2023; 33
Li (D4TA00736K/cit302/1) 2019; 12
Gao (D4TA00736K/cit8/1) 2023
Li (D4TA00736K/cit173/1) 2018; 47
Liu (D4TA00736K/cit199/1) 2020; 450
Zhou (D4TA00736K/cit141/1) 2019; 58
Maki (D4TA00736K/cit232/1) 2018; 270
Song (D4TA00736K/cit93/1) 2019
Voort (D4TA00736K/cit124/1) 2014; 38
Pan (D4TA00736K/cit69/1) 2021; 126
Ding (D4TA00736K/cit264/1) 2019; 11
Rubio-Martinez (D4TA00736K/cit87/1) 2017; 46
Sikma (D4TA00736K/cit22/1) 2022; 134
Sanati (D4TA00736K/cit185/1) 2019; 58
McNamara (D4TA00736K/cit34/1) 2013; 305
Bondarchuk (D4TA00736K/cit198/1) 2016; 324
Veerasubramani (D4TA00736K/cit204/1) 2017; 5
Wang (D4TA00736K/cit130/1) 2017; 4
Du (D4TA00736K/cit251/1) 2022; 61
Wu (D4TA00736K/cit122/1) 2010; 3
Lee (D4TA00736K/cit295/1) 2017; 7
Shi (D4TA00736K/cit45/1) 2023; 19
Duan (D4TA00736K/cit154/1) 2017; 8
Das (D4TA00736K/cit11/1) 2023; 11
Chen (D4TA00736K/cit169/1) 2021; 46
Lv (D4TA00736K/cit301/1) 2022; 10
You (D4TA00736K/cit294/1) 2014; 7
Wang (D4TA00736K/cit252/1) 2015; 7
Sun (D4TA00736K/cit280/1) 2017; 9
Saeed (D4TA00736K/cit239/1) 2022; 23
Liu (D4TA00736K/cit121/1) 2017; 7
Wang (D4TA00736K/cit3/1) 2023; 11
Chandra Sekhar (D4TA00736K/cit205/1) 2020; 16
Campagnol (D4TA00736K/cit84/1) 2014; 50
Kim (D4TA00736K/cit47/1) 2012; 3
Peng (D4TA00736K/cit70/1) 2023; 62
Lourenço (D4TA00736K/cit172/1) 2021; 582
Liu (D4TA00736K/cit58/1) 2022; 14
Zhou (D4TA00736K/cit128/1) 2020; 13
Li (D4TA00736K/cit157/1) 2019; 7
Duan (D4TA00736K/cit174/1) 2022; 47
Zhou (D4TA00736K/cit76/1) 2020; 13
Wang (D4TA00736K/cit115/1) 2019; 12
Guan (D4TA00736K/cit233/1) 2018; 48
Mehdizadeh (D4TA00736K/cit270/1) 2012; 52
Xu (D4TA00736K/cit79/1) 2024; 53
Zhang (D4TA00736K/cit156/1) 2020; 59
Abazari (D4TA00736K/cit72/1) 2023; 62
Thi Dang (D4TA00736K/cit86/1) 2020; 298
Guo (D4TA00736K/cit208/1) 2020; 3
Hu (D4TA00736K/cit284/1) 2022; 6
Zhong (D4TA00736K/cit15/1) 2023; 11
Ren (D4TA00736K/cit274/1) 2018; 14
Wang (D4TA00736K/cit65/1) 2022; 51
Feng (D4TA00736K/cit66/1) 2022; 470
Pan (D4TA00736K/cit40/1) 2024; 499
Zhou (D4TA00736K/cit56/1) 2022; 451
Adegoke (D4TA00736K/cit92/1) 2021; 21
Kalhorizadeh (D4TA00736K/cit16/1) 2022; 46
Bin Wu (D4TA00736K/cit94/1) 2017; 3
Sun (D4TA00736K/cit68/1) 2023; 15
Kearns (D4TA00736K/cit52/1) 2021; 9
Shen (D4TA00736K/cit187/1) 2022; 5
Peng (D4TA00736K/cit9/1) 2023; 62
Abazari (D4TA00736K/cit62/1) 2024; 20
Zhong (D4TA00736K/cit209/1) 2017; 9
Basse (D4TA00736K/cit26/1) 2021; 40
Shinde (D4TA00736K/cit213/1) 2020; 387
Gong (D4TA00736K/cit249/1) 2022; 23
Hong (D4TA00736K/cit2/1) 2023; 11
Li (D4TA00736K/cit256/1) 2021; 33
Maiti (D4TA00736K/cit214/1) 2015; 7
Xia (D4TA00736K/cit273/1) 2018; 348
VanGelder (D4TA00736K/cit149/1) 2018; 9
Ghafarifar (D4TA00736K/cit90/1) 2020; 15
Wang (D4TA00736K/cit248/1) 2023; 452
Cheng (D4TA00736K/cit175/1) 2020; 132
Cao (D4TA00736K/cit95/1) 2017; 46
Coduri (D4TA00736K/cit242/1) 2022; 10
Kong (D4TA00736K/cit118/1) 2019; 31
Zhou (D4TA00736K/cit159/1) 2020; 13
Gao (D4TA00736K/cit245/1) 2020; 74
Abazari (D4TA00736K/cit42/1) 2022; 61
Pan (D4TA00736K/cit258/1) 2016; 1
Liang (D4TA00736K/cit158/1) 2018; 57
Lu (D4TA00736K/cit197/1) 2013; 13
Abazari (D4TA00736K/cit183/1) 2019; 7
Liu (D4TA00736K/cit225/1) 2020; 601
Abazari (D4TA00736K/cit83/1) 2018; 42
Kong (D4TA00736K/cit278/1) 2018; 6
Wang (D4TA00736K/cit50/1) 2023; 19
Safy (D4TA00736K/cit99/1) 2020; 26
Hussain (D4TA00736K/cit49/1) 2022; 10
Ma (D4TA00736K/cit59/1) 2022; 157
Zhong (D4TA00736K/cit46/1) 2023; 19
Rui (D4TA00736K/cit131/1) 2018; 28
Liu (D4TA00736K/cit224/1) 2017; 5
Xu (D4TA00736K/cit126/1) 2018; 6
Abazari (D4TA00736K/cit179/1) 2021; 9
Yadav (D4TA00736K/cit61/1) 2020; 16
Abazari (D4TA00736K/cit4/1) 2021; 60
Sanati (D4TA00736K/cit104/1) 2024; 60
Abazari (D4TA00736K/cit85/1) 2018; 46
Watanabe (D4TA00736K/cit116/1) 2017; 117
Xu (D4TA00736K/cit153/1) 2019; 58
Raja (D4TA00736K/cit129/1) 2018; 8
Gao (D4TA00736K/cit196/1) 2019; 7
Ji (D4TA00736K/cit150/1) 2019; 7
Song (D4TA00736K/cit257/1) 2018; 28
Dong (D4TA00736K/cit146/1) 2021; 46
Sun (D4TA00736K/cit163/1) 2020; 32
Goswami (D4TA00736K/cit152/1) 2022; 14
Abazari (D4TA00736K/cit180/1) 2019; 11
Sanati (D4TA00736K/cit229/1) 2018; 42
Peng (D4TA00736K/cit235/1) 2022; 179
Chen (D4TA00736K/cit19/1) 2022; 55
Jiang (D4TA00736K/cit134/1) 2018; 9
Yao (D4TA00736K/cit177/1) 2022; 623
Sanati (D4TA00736K/cit7/1) 2021; 60
Ja
References_xml – issn: 2023
  publication-title: Advanced Catalysts Based on Metal-Organic Frameworks, Part 1
  doi: Gao Abazari
– issn: 2019
  end-page: p 1-38
  publication-title: Layer. Mater. Energy Storage Convers.
  doi: Song Zhang Zheng Sun
– volume: 58
  start-page: 16358
  year: 2019
  ident: D4TA00736K/cit120/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201903941
– volume: 13
  start-page: 5647
  year: 2020
  ident: D4TA00736K/cit159/1
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202001230
– volume: 341
  start-page: 127724
  year: 2023
  ident: D4TA00736K/cit192/1
  publication-title: Fuel
  doi: 10.1016/j.fuel.2023.127724
– volume: 8
  start-page: 1801065
  year: 2018
  ident: D4TA00736K/cit129/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801065
– volume: 4
  start-page: 55815
  year: 2014
  ident: D4TA00736K/cit271/1
  publication-title: RSC Adv.
  doi: 10.1039/C4RA06958G
– volume: 61
  start-page: 18873
  year: 2022
  ident: D4TA00736K/cit12/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.2c02709
– volume: 28
  start-page: e202201784
  year: 2022
  ident: D4TA00736K/cit142/1
  publication-title: Chem. - Eur. J.
  doi: 10.1002/chem.202201784
– volume: 61
  start-page: 3396
  year: 2022
  ident: D4TA00736K/cit105/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.1c03216
– volume: 48
  start-page: 73
  year: 2018
  ident: D4TA00736K/cit233/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.03.034
– volume: 3
  start-page: 2727
  year: 2020
  ident: D4TA00736K/cit208/1
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.9b02392
– volume: 8
  start-page: 3194
  year: 2018
  ident: D4TA00736K/cit300/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b03404
– volume: 23
  start-page: 12043
  year: 2023
  ident: D4TA00736K/cit38/1
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.3c02271
– volume: 56
  start-page: 6652
  year: 2020
  ident: D4TA00736K/cit107/1
  publication-title: Chem. Commun.
  doi: 10.1039/D0CC01146K
– volume: 11
  start-page: 23148
  year: 2023
  ident: D4TA00736K/cit184/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D3TA05074B
– volume: 4
  start-page: 1400133
  year: 2014
  ident: D4TA00736K/cit293/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201400133
– volume: 11
  start-page: 45442
  year: 2019
  ident: D4TA00736K/cit17/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b16473
– volume: 10
  start-page: 108028
  year: 2022
  ident: D4TA00736K/cit37/1
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2022.108028
– volume: 13
  start-page: 2628
  year: 2013
  ident: D4TA00736K/cit197/1
  publication-title: Nano Lett.
  doi: 10.1021/nl400760a
– volume: 324
  start-page: 439
  year: 2016
  ident: D4TA00736K/cit198/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.05.093
– volume: 35
  start-page: 2370174
  year: 2023
  ident: D4TA00736K/cit63/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202370174
– volume: 8
  start-page: 776
  year: 2015
  ident: D4TA00736K/cit147/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE03749A
– volume: 9
  start-page: 11001
  year: 2021
  ident: D4TA00736K/cit179/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA00900A
– volume: 378
  start-page: 122210
  year: 2019
  ident: D4TA00736K/cit226/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122210
– volume: 33
  start-page: 2210002
  year: 2023
  ident: D4TA00736K/cit194/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202210002
– volume: 480
  start-page: 215030
  year: 2023
  ident: D4TA00736K/cit51/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2023.215030
– volume: 11
  start-page: 7898
  year: 2023
  ident: D4TA00736K/cit2/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA09988H
– volume: 483
  start-page: 149243
  year: 2024
  ident: D4TA00736K/cit109/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2024.149243
– volume: 21
  start-page: 100816
  year: 2021
  ident: D4TA00736K/cit92/1
  publication-title: Mater. Today Energy
  doi: 10.1016/j.mtener.2021.100816
– volume: 126
  start-page: 14094
  year: 2022
  ident: D4TA00736K/cit112/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.2c05083
– volume: 942
  start-page: 117576
  year: 2023
  ident: D4TA00736K/cit267/1
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2023.117576
– volume: 14
  start-page: 1800659
  year: 2018
  ident: D4TA00736K/cit274/1
  publication-title: Small
  doi: 10.1002/smll.201800659
– volume: 10
  start-page: 2751
  year: 2022
  ident: D4TA00736K/cit57/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA10008D
– volume: 60
  start-page: 3129
  year: 2024
  ident: D4TA00736K/cit104/1
  publication-title: Chem. Commun.
  doi: 10.1039/D3CC06073J
– volume: 9
  start-page: 1605
  year: 2019
  ident: D4TA00736K/cit108/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b00191
– volume: 13
  start-page: 5647
  year: 2020
  ident: D4TA00736K/cit128/1
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202001230
– volume: 16
  start-page: 2004891
  year: 2020
  ident: D4TA00736K/cit61/1
  publication-title: Small
  doi: 10.1002/smll.202004891
– volume: 2
  start-page: 2063
  year: 2019
  ident: D4TA00736K/cit189/1
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b02128
– volume: 623
  start-page: 1111
  year: 2022
  ident: D4TA00736K/cit177/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2022.04.126
– volume: 61
  start-page: 20913
  year: 2022
  ident: D4TA00736K/cit31/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.2c03327
– volume: 31
  start-page: 2100614
  year: 2021
  ident: D4TA00736K/cit136/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202100614
– volume: 53
  start-page: 137
  year: 2024
  ident: D4TA00736K/cit79/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D3CS00767G
– volume: 8
  start-page: 1703341
  year: 2018
  ident: D4TA00736K/cit137/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703341
– volume: 9
  start-page: 4581
  year: 2024
  ident: D4TA00736K/cit228/1
  publication-title: ACS Omega
  doi: 10.1021/acsomega.3c07326
– volume: 8
  start-page: 3191
  year: 2020
  ident: D4TA00736K/cit236/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.9b06590
– volume: 4
  start-page: 2585
  year: 2019
  ident: D4TA00736K/cit217/1
  publication-title: ChemistrySelect
  doi: 10.1002/slct.201900305
– volume: 5
  start-page: 11781
  year: 2017
  ident: D4TA00736K/cit224/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA00201G
– volume: 12
  start-page: 18742
  year: 2021
  ident: D4TA00736K/cit64/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c06402
– volume: 7
  start-page: 14971
  year: 2019
  ident: D4TA00736K/cit165/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA03220G
– volume: 62
  start-page: 18680
  year: 2023
  ident: D4TA00736K/cit72/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.3c03052
– volume: 285
  start-page: 11
  year: 2015
  ident: D4TA00736K/cit91/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2014.10.008
– volume: 8
  start-page: 15356
  year: 2017
  ident: D4TA00736K/cit14/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15356
– volume: 28
  start-page: 1802564
  year: 2018
  ident: D4TA00736K/cit257/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201802564
– volume: 13
  start-page: 205
  year: 2020
  ident: D4TA00736K/cit76/1
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201902272
– volume: 19
  start-page: 2300673
  year: 2023
  ident: D4TA00736K/cit13/1
  publication-title: Small
  doi: 10.1002/smll.202300673
– volume: 3
  start-page: 126
  year: 2012
  ident: D4TA00736K/cit47/1
  publication-title: Chem. Sci.
  doi: 10.1039/C1SC00394A
– volume: 11
  start-page: 23236
  year: 2019
  ident: D4TA00736K/cit234/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b05564
– volume: 12
  start-page: 2327
  year: 2019
  ident: D4TA00736K/cit243/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE03651A
– volume: 11
  start-page: 10763
  year: 2019
  ident: D4TA00736K/cit279/1
  publication-title: Nanoscale
  doi: 10.1039/C9NR02206F
– volume: 42
  start-page: 577
  year: 2018
  ident: D4TA00736K/cit83/1
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2017.12.027
– volume: 450
  start-page: 227687
  year: 2020
  ident: D4TA00736K/cit199/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.227687
– volume: 20
  start-page: 2306353
  year: 2024
  ident: D4TA00736K/cit62/1
  publication-title: Small
  doi: 10.1002/smll.202306353
– volume: 2
  start-page: 100027
  year: 2020
  ident: D4TA00736K/cit125/1
  publication-title: EnergyChem
  doi: 10.1016/j.enchem.2020.100027
– volume: 46
  start-page: 59
  year: 2018
  ident: D4TA00736K/cit85/1
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2018.02.001
– volume: 7
  start-page: 1601491
  year: 2017
  ident: D4TA00736K/cit295/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601491
– volume: 19
  start-page: 2300510
  year: 2023
  ident: D4TA00736K/cit50/1
  publication-title: Small
  doi: 10.1002/smll.202300510
– volume: 3
  start-page: 906
  year: 2016
  ident: D4TA00736K/cit231/1
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201600116
– volume: 13
  start-page: 35837
  year: 2021
  ident: D4TA00736K/cit260/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c10063
– volume: 14
  start-page: 37804
  year: 2022
  ident: D4TA00736K/cit138/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c09998
– volume: 838
  start-page: 155604
  year: 2020
  ident: D4TA00736K/cit200/1
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.155604
– volume: 493
  start-page: 368
  year: 2019
  ident: D4TA00736K/cit265/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.07.026
– volume: 41
  start-page: 281
  year: 2002
  ident: D4TA00736K/cit39/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/1521-3773(20020118)41:2<281::AID-ANIE281>3.0.CO;2-Y
– volume: 44
  start-page: 103508
  year: 2021
  ident: D4TA00736K/cit201/1
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2021.103508
– volume: 18
  start-page: 2402
  year: 2018
  ident: D4TA00736K/cit262/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b05403
– volume: 14
  start-page: 3394
  year: 2023
  ident: D4TA00736K/cit114/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-39127-8
– volume: 499
  start-page: 215538
  year: 2024
  ident: D4TA00736K/cit40/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2023.215538
– volume: 3
  start-page: 1191
  year: 2010
  ident: D4TA00736K/cit122/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c0ee00026d
– volume: 7
  start-page: 11953
  year: 2019
  ident: D4TA00736K/cit183/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA01628G
– volume: 134
  start-page: e202207066
  year: 2022
  ident: D4TA00736K/cit60/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.202207066
– volume: 5
  start-page: 31
  year: 2020
  ident: D4TA00736K/cit110/1
  publication-title: ACS Omega
  doi: 10.1021/acsomega.9b03550
– volume: 44
  start-page: 7484
  year: 2015
  ident: D4TA00736K/cit215/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00303B
– volume: 256
  start-page: 63
  year: 2017
  ident: D4TA00736K/cit283/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.10.016
– volume: 348
  start-page: 908
  year: 2018
  ident: D4TA00736K/cit273/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.04.207
– volume: 60
  start-page: 11048
  year: 2021
  ident: D4TA00736K/cit7/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202010093
– volume: 55
  start-page: 579
  year: 2022
  ident: D4TA00736K/cit19/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.1c00707
– volume: 50
  start-page: 12545
  year: 2014
  ident: D4TA00736K/cit84/1
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC05742B
– volume: 11
  start-page: 669
  year: 2019
  ident: D4TA00736K/cit127/1
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-019-0266-1
– volume: 10
  start-page: 9634
  year: 2018
  ident: D4TA00736K/cit176/1
  publication-title: Nanoscale
  doi: 10.1039/C7NR09081A
– volume: 10
  start-page: 22329
  year: 2018
  ident: D4TA00736K/cit207/1
  publication-title: Nanoscale
  doi: 10.1039/C8NR07991A
– volume: 16
  start-page: 2003983
  year: 2020
  ident: D4TA00736K/cit205/1
  publication-title: Small
  doi: 10.1002/smll.202003983
– volume: 144
  start-page: 10201
  year: 2022
  ident: D4TA00736K/cit25/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c00276
– volume: 393
  start-page: 139060
  year: 2021
  ident: D4TA00736K/cit223/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2021.139060
– volume: 14
  start-page: 29722
  year: 2022
  ident: D4TA00736K/cit152/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c04304
– volume: 56
  start-page: 9966
  year: 2017
  ident: D4TA00736K/cit282/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.7b01486
– volume: 32
  start-page: 2204499
  year: 2022
  ident: D4TA00736K/cit36/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202204499
– volume: 28
  start-page: 1800003
  year: 2018
  ident: D4TA00736K/cit277/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201800003
– volume: 46
  start-page: 9440
  year: 2022
  ident: D4TA00736K/cit16/1
  publication-title: New J. Chem.
  doi: 10.1039/D1NJ06107K
– volume: 593
  start-page: 251
  year: 2021
  ident: D4TA00736K/cit291/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.02.108
– volume: 557
  start-page: 28
  year: 2019
  ident: D4TA00736K/cit170/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2019.09.009
– volume: 10
  start-page: 14684
  year: 2018
  ident: D4TA00736K/cit268/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b00953
– volume: 3
  start-page: 2480
  year: 2018
  ident: D4TA00736K/cit259/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b01426
– volume: 64
  start-page: 103935
  year: 2019
  ident: D4TA00736K/cit263/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.103935
– volume: 11
  start-page: 33012
  year: 2019
  ident: D4TA00736K/cit135/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b10868
– volume: 170
  start-page: 110524
  year: 2023
  ident: D4TA00736K/cit193/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/ad0b43
– volume: 6
  start-page: 24486
  year: 2018
  ident: D4TA00736K/cit20/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA07839D
– volume: 5
  start-page: e459
  year: 2023
  ident: D4TA00736K/cit227/1
  publication-title: Carbon Energy
  doi: 10.1002/cey2.459
– volume: 53
  start-page: 1488
  year: 2014
  ident: D4TA00736K/cit286/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201303971
– volume: 601
  start-page: 125011
  year: 2020
  ident: D4TA00736K/cit225/1
  publication-title: Colloids Surf., A
  doi: 10.1016/j.colsurfa.2020.125011
– volume: 1
  start-page: 16039
  year: 2016
  ident: D4TA00736K/cit258/1
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.39
– volume: 278
  start-page: 265
  year: 2015
  ident: D4TA00736K/cit32/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.12.094
– volume: 23
  start-page: 100758
  year: 2022
  ident: D4TA00736K/cit239/1
  publication-title: Mater. Today Chem.
  doi: 10.1016/j.mtchem.2021.100758
– volume: 613
  start-page: 435
  year: 2022
  ident: D4TA00736K/cit255/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.12.045
– volume: 46
  start-page: 2660
  year: 2017
  ident: D4TA00736K/cit95/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00426A
– volume: 7
  start-page: 14
  year: 2019
  ident: D4TA00736K/cit196/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA05760E
– volume: 46
  start-page: 38724
  year: 2021
  ident: D4TA00736K/cit169/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.09.123
– volume: 15
  start-page: 13554
  year: 2023
  ident: D4TA00736K/cit247/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c23314
– volume: 792
  start-page: 487
  year: 2019
  ident: D4TA00736K/cit281/1
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.04.027
– volume: 2
  start-page: 7308
  year: 2021
  ident: D4TA00736K/cit24/1
  publication-title: Mater. Adv.
  doi: 10.1039/D1MA00719J
– volume: 3
  start-page: 1
  year: 2017
  ident: D4TA00736K/cit94/1
  publication-title: Sci. Adv.
– volume: 366
  start-page: 137438
  year: 2021
  ident: D4TA00736K/cit168/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2020.137438
– volume: 5
  start-page: 2596
  year: 2022
  ident: D4TA00736K/cit187/1
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.2c00066
– volume: 830
  start-page: 154524
  year: 2020
  ident: D4TA00736K/cit221/1
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.154524
– volume: 34
  start-page: 2108856
  year: 2022
  ident: D4TA00736K/cit292/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202108856
– volume: 46
  start-page: 15758
  year: 2022
  ident: D4TA00736K/cit67/1
  publication-title: New J. Chem.
  doi: 10.1039/D2NJ02358J
– volume: 8
  start-page: 29551
  year: 2016
  ident: D4TA00736K/cit77/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b11775
– volume: 23
  start-page: 100731
  year: 2022
  ident: D4TA00736K/cit266/1
  publication-title: Mater. Today Chem.
  doi: 10.1016/j.mtchem.2021.100731
– volume: 8
  start-page: 32414
  year: 2016
  ident: D4TA00736K/cit151/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b12755
– volume: 15
  start-page: 11927
  year: 2023
  ident: D4TA00736K/cit5/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.3c00013
– volume: 2
  start-page: 218
  year: 2017
  ident: D4TA00736K/cit82/1
  publication-title: Green Energy Environ.
  doi: 10.1016/j.gee.2017.05.003
– volume: 10
  start-page: 660
  year: 2018
  ident: D4TA00736K/cit297/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b15499
– volume: 470
  start-page: 144340
  year: 2023
  ident: D4TA00736K/cit261/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.144340
– volume: 62
  start-page: e202214707
  year: 2023
  ident: D4TA00736K/cit9/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202214707
– volume: 7
  start-page: 1700547
  year: 2017
  ident: D4TA00736K/cit121/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700547
– volume: 6
  start-page: 571
  year: 2019
  ident: D4TA00736K/cit210/1
  publication-title: Mater. Horiz.
  doi: 10.1039/C8MH01091A
– volume: 6
  start-page: 22697
  year: 2018
  ident: D4TA00736K/cit126/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA07449F
– volume: 8
  start-page: 8546
  year: 2016
  ident: D4TA00736K/cit289/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b01047
– volume: 61
  start-page: e202209350
  year: 2022
  ident: D4TA00736K/cit251/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202209350
– volume: 32
  start-page: 2003297
  year: 2020
  ident: D4TA00736K/cit163/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202003297
– volume: 157
  start-page: 116741
  year: 2022
  ident: D4TA00736K/cit59/1
  publication-title: TrAC, Trends Anal. Chem.
  doi: 10.1016/j.trac.2022.116741
– volume: 14
  start-page: 1801815
  year: 2018
  ident: D4TA00736K/cit191/1
  publication-title: Small
  doi: 10.1002/smll.201801815
– volume: 14
  start-page: 9046
  year: 2022
  ident: D4TA00736K/cit188/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c22129
– volume: 7
  start-page: 1643
  year: 2014
  ident: D4TA00736K/cit294/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C3EE44004D
– volume: 451
  start-page: 214264
  year: 2022
  ident: D4TA00736K/cit56/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2021.214264
– volume: 160
  start-page: 64
  year: 2020
  ident: D4TA00736K/cit89/1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.01.006
– volume: 15
  start-page: 52581
  year: 2023
  ident: D4TA00736K/cit68/1
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 1134
  year: 2019
  ident: D4TA00736K/cit88/1
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b01691
– volume: 15
  start-page: 537
  year: 2020
  ident: D4TA00736K/cit90/1
  publication-title: Iran. J. Parasitol.
– volume: 16
  start-page: 220
  year: 2017
  ident: D4TA00736K/cit190/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4766
– volume: 38
  start-page: 1853
  year: 2014
  ident: D4TA00736K/cit124/1
  publication-title: New J. Chem.
  doi: 10.1039/C3NJ01130E
– volume: 264
  start-page: 358
  year: 2018
  ident: D4TA00736K/cit276/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.01.112
– volume: 50
  start-page: 7388
  year: 2011
  ident: D4TA00736K/cit35/1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic201396m
– volume: 11
  start-page: 14759
  year: 2019
  ident: D4TA00736K/cit180/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b00415
– volume: 7
  start-page: 18519
  year: 2019
  ident: D4TA00736K/cit157/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA04554F
– volume: 139
  start-page: 1778
  year: 2017
  ident: D4TA00736K/cit160/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b12353
– volume: 6
  start-page: 2797
  year: 2016
  ident: D4TA00736K/cit166/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b00014
– volume: 465
  start-page: 214561
  year: 2022
  ident: D4TA00736K/cit75/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2022.214561
– volume: 7
  start-page: 845
  year: 2008
  ident: D4TA00736K/cit218/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2297
– volume: 11
  start-page: 20423
  year: 2023
  ident: D4TA00736K/cit15/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D3TA03231K
– volume: 6
  start-page: 12316
  year: 2018
  ident: D4TA00736K/cit278/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA02546K
– volume: 9
  start-page: 1801307
  year: 2019
  ident: D4TA00736K/cit171/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801307
– volume: 3
  start-page: 1500185
  year: 2015
  ident: D4TA00736K/cit285/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201500185
– volume: 9
  start-page: 20320
  year: 2021
  ident: D4TA00736K/cit78/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA02896K
– volume: 52
  start-page: 92
  year: 2012
  ident: D4TA00736K/cit270/1
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2012.03.017
– volume: 6
  start-page: 10754
  year: 2014
  ident: D4TA00736K/cit216/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am502638d
– volume: 12
  start-page: 1046
  year: 2019
  ident: D4TA00736K/cit302/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE03283A
– volume: 134
  start-page: e202206353
  year: 2022
  ident: D4TA00736K/cit22/1
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202206353
– volume: 505
  start-page: 230077
  year: 2021
  ident: D4TA00736K/cit220/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2021.230077
– volume: 2
  start-page: 52
  year: 2017
  ident: D4TA00736K/cit48/1
  publication-title: Chem
  doi: 10.1016/j.chempr.2016.12.002
– volume: 624
  start-page: 126596
  year: 2021
  ident: D4TA00736K/cit162/1
  publication-title: Eng. Aspects
  doi: 10.1016/j.colsurfa.2021.126596
– volume: 25
  start-page: 101232
  year: 2021
  ident: D4TA00736K/cit203/1
  publication-title: Surf. Interfaces
  doi: 10.1016/j.surfin.2021.101232
– volume: 11
  start-page: 24519
  year: 2023
  ident: D4TA00736K/cit74/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D3TA05158G
– volume: 33
  start-page: 2105163
  year: 2021
  ident: D4TA00736K/cit256/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202105163
– volume: 427
  start-page: 213554
  year: 2021
  ident: D4TA00736K/cit80/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2020.213554
– volume: 3
  start-page: 1800415
  year: 2019
  ident: D4TA00736K/cit113/1
  publication-title: Small Methods
  doi: 10.1002/smtd.201800415
– volume: 25
  start-page: 7530
  year: 2015
  ident: D4TA00736K/cit222/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201503662
– volume: 76
  start-page: 109873
  year: 2024
  ident: D4TA00736K/cit28/1
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.109873
– volume: 452
  start-page: 139524
  year: 2023
  ident: D4TA00736K/cit248/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.139524
– volume: 58
  start-page: 3429
  year: 2022
  ident: D4TA00736K/cit43/1
  publication-title: Chem. Commun.
  doi: 10.1039/D1CC06340E
– volume: 10
  start-page: 5631
  year: 2022
  ident: D4TA00736K/cit272/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA00135G
– volume: 14
  start-page: 17372
  year: 2022
  ident: D4TA00736K/cit211/1
  publication-title: Nanoscale
  doi: 10.1039/D2NR04841H
– volume: 106
  start-page: 100579
  year: 2019
  ident: D4TA00736K/cit21/1
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2019.100579
– volume: 58
  start-page: 5018
  year: 2019
  ident: D4TA00736K/cit153/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201900787
– volume: 3
  start-page: 608
  year: 2022
  ident: D4TA00736K/cit212/1
  publication-title: SmartMat
  doi: 10.1002/smm2.1088
– volume: 8
  start-page: 1801193
  year: 2018
  ident: D4TA00736K/cit18/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801193
– volume: 7
  start-page: 5333
  year: 2019
  ident: D4TA00736K/cit219/1
  publication-title: J. Mater. Chem.
  doi: 10.1039/C8TA10998B
– volume: 11
  start-page: 2003759
  year: 2021
  ident: D4TA00736K/cit140/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202003759
– volume: 24
  start-page: 23
  year: 2021
  ident: D4TA00736K/cit238/1
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-022-05411-9
– volume: 29
  start-page: e202300137
  year: 2023
  ident: D4TA00736K/cit111/1
  publication-title: Chem. - Eur. J.
  doi: 10.1002/chem.202300137
– volume: 60
  start-page: 2056
  year: 2021
  ident: D4TA00736K/cit4/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.0c03634
– volume: 28
  start-page: 1801554
  year: 2018
  ident: D4TA00736K/cit131/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201801554
– volume: 10
  start-page: 16457
  year: 2022
  ident: D4TA00736K/cit178/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA02470E
– volume: 87
  start-page: 540
  year: 2023
  ident: D4TA00736K/cit10/1
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2023.08.042
– volume: 48
  start-page: 14749
  year: 2023
  ident: D4TA00736K/cit41/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.12.313
– volume: 31
  start-page: 1804973
  year: 2019
  ident: D4TA00736K/cit118/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804973
– volume: 26
  start-page: 7109
  year: 2020
  ident: D4TA00736K/cit99/1
  publication-title: Chem. - Eur. J.
  doi: 10.1002/chem.202000207
– volume: 2
  start-page: 100027
  year: 2020
  ident: D4TA00736K/cit103/1
  publication-title: EnergyChem
  doi: 10.1016/j.enchem.2020.100027
– volume: 7
  start-page: 20999
  year: 2015
  ident: D4TA00736K/cit252/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b07024
– volume: 469
  start-page: 214664
  year: 2022
  ident: D4TA00736K/cit101/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2022.214664
– volume: 9
  start-page: 1692
  year: 2018
  ident: D4TA00736K/cit149/1
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC05295B
– volume: 4
  start-page: 1290
  year: 2016
  ident: D4TA00736K/cit206/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA09473A
– volume: 61
  start-page: 9514
  year: 2022
  ident: D4TA00736K/cit42/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.2c00542
– volume: 11
  start-page: 2201416
  year: 2023
  ident: D4TA00736K/cit117/1
  publication-title: Energy Technol.
  doi: 10.1002/ente.202201416
– volume: 19
  start-page: 2301449
  year: 2023
  ident: D4TA00736K/cit45/1
  publication-title: Small
  doi: 10.1002/smll.202301449
– volume: 362
  start-page: 743
  year: 2019
  ident: D4TA00736K/cit182/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.01.081
– volume: 6
  start-page: 1175
  year: 2022
  ident: D4TA00736K/cit284/1
  publication-title: Sustainable Energy Fuels
  doi: 10.1039/D1SE01883C
– volume: 9
  start-page: 27252
  year: 2021
  ident: D4TA00736K/cit52/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA08777K
– volume: 57
  start-page: 9604
  year: 2018
  ident: D4TA00736K/cit158/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201800269
– volume: 10
  start-page: 27712
  year: 2018
  ident: D4TA00736K/cit167/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b04223
– volume: 74
  start-page: 104868
  year: 2020
  ident: D4TA00736K/cit245/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104868
– volume: 7
  start-page: 1700885
  year: 2017
  ident: D4TA00736K/cit123/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700885
– volume: 42
  start-page: 18426
  year: 2018
  ident: D4TA00736K/cit229/1
  publication-title: New J. Chem.
  doi: 10.1039/C8NJ04402C
– volume: 132
  start-page: 18391
  year: 2020
  ident: D4TA00736K/cit175/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.202008129
– volume: 2
  start-page: 8048
  year: 2014
  ident: D4TA00736K/cit275/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA00200H
– volume: 9
  start-page: 5254
  year: 2017
  ident: D4TA00736K/cit280/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b14801
– volume: 19
  start-page: 2207266
  year: 2023
  ident: D4TA00736K/cit46/1
  publication-title: Small
  doi: 10.1002/smll.202207266
– volume: 7
  start-page: 1700518
  year: 2017
  ident: D4TA00736K/cit96/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700518
– start-page: 1
  volume-title: Layer. Mater. Energy Storage Convers.
  year: 2019
  ident: D4TA00736K/cit93/1
– volume: 15
  start-page: 3119
  year: 2022
  ident: D4TA00736K/cit55/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE03614A
– volume: 470
  start-page: 214699
  year: 2022
  ident: D4TA00736K/cit66/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2022.214699
– volume: 2
  start-page: 13509
  year: 2014
  ident: D4TA00736K/cit253/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA01241K
– volume: 62
  start-page: e202214707
  year: 2023
  ident: D4TA00736K/cit70/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202214707
– volume: 54
  start-page: 229
  year: 2023
  ident: D4TA00736K/cit106/1
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(23)64532-2
– volume: 61
  start-page: e202116934
  year: 2022
  ident: D4TA00736K/cit29/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202116934
– volume: 9
  start-page: 524
  year: 2020
  ident: D4TA00736K/cit100/1
  publication-title: ChemistryOpen
  doi: 10.1002/open.201900324
– volume: 3
  start-page: 428
  year: 2013
  ident: D4TA00736K/cit287/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201200833
– volume: 387
  start-page: 122982
  year: 2020
  ident: D4TA00736K/cit213/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122982
– volume: 63
  start-page: 5642
  year: 2024
  ident: D4TA00736K/cit71/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.4c00053
– volume: 12
  start-page: 187
  year: 2019
  ident: D4TA00736K/cit115/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE01011K
– volume: 58
  start-page: 4227
  year: 2019
  ident: D4TA00736K/cit141/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201813634
– volume: 12
  start-page: 4552
  year: 2020
  ident: D4TA00736K/cit254/1
  publication-title: Nanoscale
  doi: 10.1039/C9NR10491G
– volume: 43
  start-page: 5700
  year: 2014
  ident: D4TA00736K/cit23/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00106K
– volume: 10
  start-page: 5082
  year: 2022
  ident: D4TA00736K/cit242/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA10326A
– volume: 9
  start-page: 34085
  year: 2017
  ident: D4TA00736K/cit209/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b10334
– volume: 249
  start-page: 318
  year: 2018
  ident: D4TA00736K/cit230/1
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2017.10.145
– volume: 51
  start-page: 6417
  year: 2022
  ident: D4TA00736K/cit65/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00891A
– volume: 245
  start-page: 528
  year: 2019
  ident: D4TA00736K/cit143/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2019.01.007
– volume: 7
  start-page: 16357
  year: 2015
  ident: D4TA00736K/cit214/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b03414
– volume: 9
  start-page: 2885
  year: 2018
  ident: D4TA00736K/cit134/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05341-y
– volume: 130
  start-page: 1906
  year: 2018
  ident: D4TA00736K/cit161/1
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201711376
– volume: 11
  start-page: 149
  year: 2016
  ident: D4TA00736K/cit44/1
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2016.001
– volume: 40
  start-page: 2736
  year: 2021
  ident: D4TA00736K/cit26/1
  publication-title: Organometallics
  doi: 10.1021/acs.organomet.1c00376
– volume: 582
  start-page: 124
  year: 2021
  ident: D4TA00736K/cit172/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.08.041
– volume: 97
  start-page: 107146
  year: 2022
  ident: D4TA00736K/cit81/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107146
– volume: 11
  start-page: 7679
  year: 2023
  ident: D4TA00736K/cit246/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA09766D
– volume: 305
  start-page: 217
  year: 2013
  ident: D4TA00736K/cit34/1
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2013.05.021
– volume: 10
  start-page: 10
  year: 2022
  ident: D4TA00736K/cit54/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA08646D
– volume: 7
  start-page: 7083
  year: 2013
  ident: D4TA00736K/cit269/1
  publication-title: ACS Nano
  doi: 10.1021/nn4023894
– volume: 50
  start-page: 472
  year: 2017
  ident: D4TA00736K/cit299/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00479
– volume: 10
  start-page: 10209
  year: 2019
  ident: D4TA00736K/cit98/1
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC03916C
– volume: 126
  start-page: 107024
  year: 2021
  ident: D4TA00736K/cit69/1
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2021.107024
– volume: 10
  start-page: 25406
  year: 2022
  ident: D4TA00736K/cit301/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA05756E
– volume: 12
  start-page: 4827
  year: 2021
  ident: D4TA00736K/cit164/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25095-4
– volume: 23
  start-page: 100731
  year: 2022
  ident: D4TA00736K/cit249/1
  publication-title: Mater. Today Chem.
  doi: 10.1016/j.mtchem.2021.100731
– volume: 410
  start-page: 213221
  year: 2020
  ident: D4TA00736K/cit30/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2020.213221
– volume: 461
  start-page: 214505
  year: 2022
  ident: D4TA00736K/cit102/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2022.214505
– volume: 11
  start-page: 44109
  year: 2019
  ident: D4TA00736K/cit264/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b13729
– volume: 15
  start-page: e1900348
  year: 2019
  ident: D4TA00736K/cit145/1
  publication-title: Small
  doi: 10.1002/smll.201900348
– volume: 6
  start-page: 1598
  year: 2010
  ident: D4TA00736K/cit33/1
  publication-title: Small
  doi: 10.1002/smll.201000773
– volume: 357
  start-page: 136850
  year: 2020
  ident: D4TA00736K/cit144/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2020.136850
– volume: 14
  start-page: 36882
  year: 2022
  ident: D4TA00736K/cit58/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c10346
– volume: 4
  start-page: 1600371
  year: 2017
  ident: D4TA00736K/cit130/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201600371
– volume: 30
  start-page: 1704303
  year: 2018
  ident: D4TA00736K/cit97/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704303
– volume: 54
  start-page: 712
  year: 2021
  ident: D4TA00736K/cit119/1
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.06.016
– volume: 236
  start-page: 569
  year: 2018
  ident: D4TA00736K/cit155/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2018.05.054
– volume: 19
  start-page: 10
  year: 2012
  ident: D4TA00736K/cit133/1
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2011.12.012
– volume: 47
  start-page: 12927
  year: 2022
  ident: D4TA00736K/cit174/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.02.037
– volume: 10
  start-page: 905
  year: 2017
  ident: D4TA00736K/cit250/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE00398F
– volume: 10
  start-page: 4475
  year: 2022
  ident: D4TA00736K/cit49/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA10213C
– volume: 882
  start-page: 114993
  year: 2021
  ident: D4TA00736K/cit237/1
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2021.114993
– volume-title: Advanced Catalysts Based on Metal-Organic Frameworks, Part 1
  year: 2023
  ident: D4TA00736K/cit8/1
– volume: 5
  start-page: 11100
  year: 2017
  ident: D4TA00736K/cit204/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA01308F
– volume: 298
  start-page: 110064
  year: 2020
  ident: D4TA00736K/cit86/1
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2020.110064
– volume: 33
  start-page: 2213095
  year: 2023
  ident: D4TA00736K/cit1/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202213095
– volume: 117
  start-page: 7190
  year: 2017
  ident: D4TA00736K/cit116/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00504
– volume: 7
  start-page: 13096
  year: 2019
  ident: D4TA00736K/cit150/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA03498F
– volume: 58
  start-page: 16100
  year: 2019
  ident: D4TA00736K/cit185/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.9b02658
– volume: 32
  start-page: 2263
  year: 2021
  ident: D4TA00736K/cit132/1
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2020.12.015
– volume: 40
  start-page: 9746
  year: 2016
  ident: D4TA00736K/cit290/1
  publication-title: New J. Chem.
  doi: 10.1039/C6NJ02179D
– volume: 345
  start-page: 136225
  year: 2020
  ident: D4TA00736K/cit202/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2020.136225
– volume: 24
  start-page: 2273318
  year: 2023
  ident: D4TA00736K/cit181/1
  publication-title: Int. J. Pavement Eng.
  doi: 10.1080/10298436.2023.2273318
– volume: 8
  start-page: 2101599
  year: 2021
  ident: D4TA00736K/cit240/1
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.202101599
– volume: 199
  start-page: 249
  year: 2022
  ident: D4TA00736K/cit186/1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2022.07.057
– volume: 10
  start-page: 1179
  year: 2022
  ident: D4TA00736K/cit6/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA07237D
– volume: 15
  start-page: 37300
  year: 2023
  ident: D4TA00736K/cit73/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.3c04506
– volume: 470
  start-page: 144340
  year: 2023
  ident: D4TA00736K/cit244/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.144340
– volume: 8
  start-page: 15341
  year: 2017
  ident: D4TA00736K/cit154/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15341
– volume: 23
  start-page: 16637
  year: 2017
  ident: D4TA00736K/cit148/1
  publication-title: Chem.–Eur. J.
  doi: 10.1002/chem.201703851
– volume: 121
  start-page: 12278
  year: 2021
  ident: D4TA00736K/cit53/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00243
– volume: 179
  start-page: 107506
  year: 2022
  ident: D4TA00736K/cit235/1
  publication-title: Microchem. J.
  doi: 10.1016/j.microc.2022.107506
– volume: 11
  start-page: 5222
  year: 2023
  ident: D4TA00736K/cit3/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA09369C
– volume: 11
  start-page: 6090
  year: 2023
  ident: D4TA00736K/cit11/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA07938K
– volume: 59
  start-page: 15467
  year: 2020
  ident: D4TA00736K/cit156/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.0c02504
– volume: 46
  start-page: 10773
  year: 2021
  ident: D4TA00736K/cit146/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.12.192
– volume: 33
  start-page: 2302659
  year: 2023
  ident: D4TA00736K/cit27/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202302659
– volume: 46
  start-page: 3453
  year: 2017
  ident: D4TA00736K/cit87/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00109F
– volume: 11
  start-page: 19
  year: 2011
  ident: D4TA00736K/cit296/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3191
– volume: 270
  start-page: 395
  year: 2018
  ident: D4TA00736K/cit232/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.03.033
– volume: 47
  start-page: 14679
  year: 2018
  ident: D4TA00736K/cit173/1
  publication-title: Dalton Trans.
  doi: 10.1039/C8DT02706D
– volume: 11
  start-page: 9593
  year: 2023
  ident: D4TA00736K/cit195/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D3TC00970J
– volume: 2
  start-page: 176
  year: 2020
  ident: D4TA00736K/cit241/1
  publication-title: Carbon Energy
  doi: 10.1002/cey2.44
– volume: 2
  start-page: 1158
  year: 2013
  ident: D4TA00736K/cit288/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2013.04.008
– volume: 12
  start-page: 48495
  year: 2020
  ident: D4TA00736K/cit139/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c11722
– volume: 26
  start-page: 3258
  year: 2014
  ident: D4TA00736K/cit298/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201305492
SSID ssj0000800699
Score 2.635181
SecondaryResourceType review_article
Snippet Energy crises are currently the main challenges for human life. Promising solutions are expected from research on novel materials with a wide range of...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 11149
SubjectTerms Crystals
Energy storage
Functional materials
Heavy metals
Hybrids
Manganese
Metal-organic frameworks
Metals
Organic matter
Oxidation
Porosity
Transition metals
Vanadium
Title Structure-property-performance relationship of vanadium- and manganese-based metal-organic frameworks and their derivatives for energy storage and conversion applications
URI https://www.proquest.com/docview/3054426819
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELb2cYED4rWisCBLcIEqSxI7r2MFXS1QFsG2Um-R4zjLsqVd9bHS9sR_4I_wm_gljO34ASoIuESR4zpN5rNnMv5mBqEnKRM0qTOY30meBpQXLKionO5xwVnKKQ8rGTv89jg9GtHX42S8tf3MYy2tltUBX2-MK_kfqUIbyFVGyf6DZO2g0ADnIF84goTh-FcyPlHJX1dzYSgL5EL61ufLK9fgBQbMDfFNErTASLxUhK_V50DtIECfUybrUQZSs9WytjSb2HF09SfebQyZa2G4l2eyxPhcFUmTGWxVCnEdUCiJl5ISpEPnppfaNdf198x_YxuDGa3fX5ebgnQH3Z6OLTJXvBsp57-JBJNkX7tP0KvYmulg-g9ibVXQCZNOUOX5ncETTOwFUDafZGyMTqyw-Dg77yoSutt30Gvj-7Or2cr3mMRUbvZHzmOq_TKGFKtIL-2TuLU3DpNQplnVqkH4bboAr1UesT9JCk8VgBLRyVhbuyKSSVE3Kq2QyJyvNV0yuW-anjvVbOgIx-_Kw9FgUA774-E22o3hkwjW9N1ef_hqYD2K0vZPVcFU--9NPl5SPHfD_2yBuc-q7bmpeaNsq-FNdKMVPO5phN9CW2J6G133UmXeQd8s1r9_-WpQLk8dvrGPbzxrsMU3BoDgX_CNFb5hhBbZ2CFbdVfIxh6yMdwHa8DhFtmqo0M29pF9F40O-8MXR0FbbSTgcR4tgzTMswKs8TSnVV6EPGIFZQQaoqSi8MYZT2T2yrTICaFJUxESVTXLkjiLKlJTQfbQznQ2FfcQbpqsEZwwwUUFnyN53tR1JngR1hFtOE866KmRQMnbVPyyIsykVJQQUpQv6bCnpPWmgx7bvhc6Ac3GXvtGkGW7QC1KUOUUDHCw-TtoD4Rrf--wcP_Pv3uArrkJtI92QNLiIRjhy-pRi74fdAHsQQ
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure%E2%80%93property%E2%80%93performance+relationship+of+vanadium-+and+manganese-based+metal%E2%80%93organic+frameworks+and+their+derivatives+for+energy+storage+and+conversion+applications&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Abazari%2C+Reza&rft.au=Sanati%2C+Soheila&rft.au=Nanjundan%2C+Ashok+Kumar&rft.au=Wang%2C+Qiyou&rft.date=2024-05-14&rft.pub=Royal+Society+of+Chemistry&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=12&rft.issue=19&rft.spage=11149&rft.epage=11175&rft_id=info:doi/10.1039%2Fd4ta00736k&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon