Structure-property-performance relationship of vanadium- and manganese-based metal-organic frameworks and their derivatives for energy storage and conversion applications
Energy crises are currently the main challenges for human life. Promising solutions are expected from research on novel materials with a wide range of functional benefits. The new family of materials, known as metal-organic frameworks (MOFs), with coordination bonds between a metal and organic matte...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 12; no. 19; pp. 11149 - 11175 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
14.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Energy crises are currently the main challenges for human life. Promising solutions are expected from research on novel materials with a wide range of functional benefits. The new family of materials, known as metal-organic frameworks (MOFs), with coordination bonds between a metal and organic matter as the center atom and ligand, respectively, are an exciting class of such functional materials. MOFs represent inorganic-organic hybrids of crystals, making them beneficial for different applications. In the past few years, several attempts have been made to modify pristine MOFs and achieve better characteristics, including a larger surface area, greater availability of active sites, highly stable materials, and improved transport and diffusion of mass. The present review summarizes MOFs containing vanadium and manganese, including multi-metallic materials, composites, and derivatives. It focuses on the structure, porosity, and stability and their impact on energy storage and conversion applications. Each MOF type containing vanadium and manganese is examined to highlight the association of porous structures and characteristics. This review will further provide a deep understanding and transparent insights into the functions of MOFs and their suitability for certain applications. Other interested researchers are recommended to examine material optimization and synthesis of various vanadium and manganese-based MOFs that are more stable while also showing higher capacity. Vanadium and manganese-MOFs have many different oxidation states that are useful for energy-related applications, and their comprehensive review in comparison with other first row transition metals has not been carried out yet.
The current review discusses on vanadium- and manganese-based metal-organic frameworks and their derivatives for energy storage and conversion applications along with the potential future advancements in these fields. |
---|---|
AbstractList | Energy crises are currently the main challenges for human life. Promising solutions are expected from research on novel materials with a wide range of functional benefits. The new family of materials, known as metal–organic frameworks (MOFs), with coordination bonds between a metal and organic matter as the center atom and ligand, respectively, are an exciting class of such functional materials. MOFs represent inorganic–organic hybrids of crystals, making them beneficial for different applications. In the past few years, several attempts have been made to modify pristine MOFs and achieve better characteristics, including a larger surface area, greater availability of active sites, highly stable materials, and improved transport and diffusion of mass. The present review summarizes MOFs containing vanadium and manganese, including multi-metallic materials, composites, and derivatives. It focuses on the structure, porosity, and stability and their impact on energy storage and conversion applications. Each MOF type containing vanadium and manganese is examined to highlight the association of porous structures and characteristics. This review will further provide a deep understanding and transparent insights into the functions of MOFs and their suitability for certain applications. Other interested researchers are recommended to examine material optimization and synthesis of various vanadium and manganese-based MOFs that are more stable while also showing higher capacity. Vanadium and manganese-MOFs have many different oxidation states that are useful for energy-related applications, and their comprehensive review in comparison with other first row transition metals has not been carried out yet. Energy crises are currently the main challenges for human life. Promising solutions are expected from research on novel materials with a wide range of functional benefits. The new family of materials, known as metal-organic frameworks (MOFs), with coordination bonds between a metal and organic matter as the center atom and ligand, respectively, are an exciting class of such functional materials. MOFs represent inorganic-organic hybrids of crystals, making them beneficial for different applications. In the past few years, several attempts have been made to modify pristine MOFs and achieve better characteristics, including a larger surface area, greater availability of active sites, highly stable materials, and improved transport and diffusion of mass. The present review summarizes MOFs containing vanadium and manganese, including multi-metallic materials, composites, and derivatives. It focuses on the structure, porosity, and stability and their impact on energy storage and conversion applications. Each MOF type containing vanadium and manganese is examined to highlight the association of porous structures and characteristics. This review will further provide a deep understanding and transparent insights into the functions of MOFs and their suitability for certain applications. Other interested researchers are recommended to examine material optimization and synthesis of various vanadium and manganese-based MOFs that are more stable while also showing higher capacity. Vanadium and manganese-MOFs have many different oxidation states that are useful for energy-related applications, and their comprehensive review in comparison with other first row transition metals has not been carried out yet. The current review discusses on vanadium- and manganese-based metal-organic frameworks and their derivatives for energy storage and conversion applications along with the potential future advancements in these fields. |
Author | Sanati, Soheila Wang, Qiyou Abazari, Reza Dubal, Deepak P Liu, Min Nanjundan, Ashok Kumar |
AuthorAffiliation | Department of Chemistry Central South University Queensland University of Technology School of Engineering and Centre for Future Materials School of Chemistry & Physics Hunan Joint International Research Center for Carbon Dioxide Resource Utilization School of Physics Faculty of Basic Sciences University of Southern Queensland University of Maragheh State Key Laboratory of Powder Metallurgy Centre for Materials Science |
AuthorAffiliation_xml | – sequence: 0 name: University of Southern Queensland – sequence: 0 name: Department of Chemistry – sequence: 0 name: Central South University – sequence: 0 name: Queensland University of Technology – sequence: 0 name: School of Physics – sequence: 0 name: University of Maragheh – sequence: 0 name: School of Engineering and Centre for Future Materials – sequence: 0 name: Hunan Joint International Research Center for Carbon Dioxide Resource Utilization – sequence: 0 name: Faculty of Basic Sciences – sequence: 0 name: Centre for Materials Science – sequence: 0 name: School of Chemistry & Physics – sequence: 0 name: State Key Laboratory of Powder Metallurgy |
Author_xml | – sequence: 1 givenname: Reza surname: Abazari fullname: Abazari, Reza – sequence: 2 givenname: Soheila surname: Sanati fullname: Sanati, Soheila – sequence: 3 givenname: Ashok Kumar surname: Nanjundan fullname: Nanjundan, Ashok Kumar – sequence: 4 givenname: Qiyou surname: Wang fullname: Wang, Qiyou – sequence: 5 givenname: Deepak P surname: Dubal fullname: Dubal, Deepak P – sequence: 6 givenname: Min surname: Liu fullname: Liu, Min |
BookMark | eNptkUtv1DAUhSNUJErphj2SJXZILnbsJPayKq-KSiwo6-jGuZm6zdjh2hk0f4lfiZlBRUJ44cfVd8-xfZ5XJyEGrKqXUlxIoezbUWcQolPtw5PqtBaN4J227cnj3phn1XlK96IMI0Rr7Wn182um1eWVkC8UF6S852WeIm0hOGSEM2QfQ7rzC4sT20GA0a9bziCMrDAbCJiQD5CwnDHDzCOVondsItjij0gP6QDnO_TERiS_K5I7TKy4MAxImz1LORJs8AC6GHZIqbgyWJbZu-MNXlRPJ5gTnv9Zz6pvH97fXn3iN18-Xl9d3nBXG5l5K0xnjW5bowdjhZNgNahSkM2g664D12hV69YapXQzDUrJYYSuqTs5qFGjOqteH3XLh3xfMeX-Pq4UimWvRKN13RppC_XmSDmKKRFO_UJ-C7Tvpeh_x9G_07eXhzg-F1j8AzufD6_KBH7-f8urYwsl9yj9N2H1C5-CnDw |
CitedBy_id | crossref_primary_10_1016_j_ijhydene_2025_02_020 crossref_primary_10_1016_j_ijhydene_2024_11_147 crossref_primary_10_1016_j_ijhydene_2025_02_022 crossref_primary_10_1021_acs_inorgchem_4c01850 crossref_primary_10_1002_asia_202401522 crossref_primary_10_1016_j_ijhydene_2025_02_028 crossref_primary_10_1016_j_molliq_2025_126988 crossref_primary_10_1016_j_ccr_2024_216231 crossref_primary_10_1016_j_cej_2024_158345 crossref_primary_10_1016_j_cej_2024_158463 crossref_primary_10_1016_j_ijhydene_2024_11_388 crossref_primary_10_1002_open_202400428 crossref_primary_10_1016_j_inoche_2024_113826 crossref_primary_10_1016_j_ijhydene_2024_10_104 crossref_primary_10_1016_j_apsadv_2025_100708 crossref_primary_10_1016_j_est_2024_115185 crossref_primary_10_1016_j_inoche_2024_113589 crossref_primary_10_1016_j_jpcs_2025_112632 crossref_primary_10_1007_s10904_024_03525_2 crossref_primary_10_1016_j_crcon_2025_100308 crossref_primary_10_1021_acsaem_4c02343 crossref_primary_10_1039_D5NJ00269A crossref_primary_10_1016_j_synthmet_2025_117836 crossref_primary_10_1016_j_ccr_2024_216343 crossref_primary_10_1016_j_molstruc_2024_140233 crossref_primary_10_1016_j_cej_2024_159149 crossref_primary_10_1016_j_ijhydene_2024_10_352 crossref_primary_10_1016_j_mcat_2025_115025 crossref_primary_10_1007_s11581_024_05970_y crossref_primary_10_1016_j_jallcom_2024_175653 crossref_primary_10_1021_acsmaterialslett_4c00866 crossref_primary_10_1016_j_cej_2024_154814 crossref_primary_10_1016_j_inoche_2024_113315 crossref_primary_10_1021_acs_inorgchem_4c03217 crossref_primary_10_1016_j_diamond_2024_111536 crossref_primary_10_1016_j_mcat_2024_114811 crossref_primary_10_1039_D4TA05268D crossref_primary_10_1016_j_nanoso_2024_101295 crossref_primary_10_1016_j_ijhydene_2025_02_168 crossref_primary_10_1016_j_ccr_2024_216256 crossref_primary_10_1016_j_est_2025_115535 crossref_primary_10_1016_j_ica_2024_122297 crossref_primary_10_1016_j_matchemphys_2024_129835 crossref_primary_10_1021_acs_inorgchem_4c05162 crossref_primary_10_1016_j_cej_2024_157318 crossref_primary_10_1002_aoc_7774 crossref_primary_10_1016_j_mtcomm_2025_111932 crossref_primary_10_1016_j_ijhydene_2024_10_042 crossref_primary_10_1016_j_mtsust_2024_100894 crossref_primary_10_1016_j_apmt_2025_102652 crossref_primary_10_1016_j_envres_2024_120367 crossref_primary_10_1016_j_psep_2024_09_036 crossref_primary_10_1021_acs_inorgchem_4c02036 crossref_primary_10_1016_j_enconman_2024_118964 crossref_primary_10_1016_j_ijhydene_2024_11_450 crossref_primary_10_1002_smll_202409133 crossref_primary_10_1002_adfm_202422428 crossref_primary_10_1016_j_ijhydene_2024_11_451 crossref_primary_10_1016_j_molstruc_2024_141021 crossref_primary_10_1039_D5CC00389J crossref_primary_10_1016_j_enconman_2024_118769 crossref_primary_10_1021_acs_inorgchem_4c04683 crossref_primary_10_1021_acs_inorgchem_4c05056 crossref_primary_10_1007_s10854_024_13743_6 crossref_primary_10_1016_j_jiec_2024_10_059 crossref_primary_10_1016_j_cej_2025_161068 crossref_primary_10_1016_j_jiec_2025_01_014 crossref_primary_10_1016_j_jallcom_2024_177574 |
Cites_doi | 10.1002/anie.201903941 10.1002/cssc.202001230 10.1016/j.fuel.2023.127724 10.1002/aenm.201801065 10.1039/C4RA06958G 10.1021/acs.inorgchem.2c02709 10.1002/chem.202201784 10.1021/acs.inorgchem.1c03216 10.1016/j.nanoen.2018.03.034 10.1021/acsaem.9b02392 10.1021/acscatal.7b03404 10.1021/acsaem.3c02271 10.1039/D0CC01146K 10.1039/D3TA05074B 10.1002/aenm.201400133 10.1021/acsami.9b16473 10.1016/j.jece.2022.108028 10.1021/nl400760a 10.1016/j.jpowsour.2016.05.093 10.1002/adma.202370174 10.1039/C4EE03749A 10.1039/D1TA00900A 10.1016/j.cej.2019.122210 10.1002/adfm.202210002 10.1016/j.ccr.2023.215030 10.1039/D2TA09988H 10.1016/j.cej.2024.149243 10.1016/j.mtener.2021.100816 10.1021/acs.jpcc.2c05083 10.1016/j.jelechem.2023.117576 10.1002/smll.201800659 10.1039/D1TA10008D 10.1039/D3CC06073J 10.1021/acscatal.9b00191 10.1002/smll.202004891 10.1021/acsaem.8b02128 10.1016/j.jcis.2022.04.126 10.1021/acs.inorgchem.2c03327 10.1002/adfm.202100614 10.1039/D3CS00767G 10.1002/aenm.201703341 10.1021/acsomega.3c07326 10.1021/acssuschemeng.9b06590 10.1002/slct.201900305 10.1039/C7TA00201G 10.1021/acsnano.1c06402 10.1039/C9TA03220G 10.1021/acs.inorgchem.3c03052 10.1016/j.ccr.2014.10.008 10.1038/ncomms15356 10.1002/adfm.201802564 10.1002/cssc.201902272 10.1002/smll.202300673 10.1039/C1SC00394A 10.1021/acsami.9b05564 10.1039/C8EE03651A 10.1039/C9NR02206F 10.1016/j.ultsonch.2017.12.027 10.1016/j.jpowsour.2019.227687 10.1002/smll.202306353 10.1016/j.enchem.2020.100027 10.1016/j.ultsonch.2018.02.001 10.1002/aenm.201601491 10.1002/smll.202300510 10.1002/celc.201600116 10.1021/acsami.1c10063 10.1021/acsami.2c09998 10.1016/j.jallcom.2020.155604 10.1016/j.apsusc.2019.07.026 10.1002/1521-3773(20020118)41:2<281::AID-ANIE281>3.0.CO;2-Y 10.1016/j.est.2021.103508 10.1021/acs.nanolett.7b05403 10.1038/s41467-023-39127-8 10.1016/j.ccr.2023.215538 10.1039/c0ee00026d 10.1039/C9TA01628G 10.1002/ange.202207066 10.1021/acsomega.9b03550 10.1039/C5CS00303B 10.1016/j.electacta.2017.10.016 10.1016/j.cej.2018.04.207 10.1002/anie.202010093 10.1021/acs.accounts.1c00707 10.1039/C4CC05742B 10.1038/s41557-019-0266-1 10.1039/C7NR09081A 10.1039/C8NR07991A 10.1002/smll.202003983 10.1021/jacs.2c00276 10.1016/j.electacta.2021.139060 10.1021/acsami.2c04304 10.1021/acs.inorgchem.7b01486 10.1002/adfm.202204499 10.1002/adfm.201800003 10.1039/D1NJ06107K 10.1016/j.jcis.2021.02.108 10.1016/j.jcis.2019.09.009 10.1021/acsami.8b00953 10.1021/acsenergylett.8b01426 10.1016/j.nanoen.2019.103935 10.1021/acsami.9b10868 10.1149/1945-7111/ad0b43 10.1039/C8TA07839D 10.1002/cey2.459 10.1002/anie.201303971 10.1016/j.colsurfa.2020.125011 10.1038/nenergy.2016.39 10.1016/j.jpowsour.2014.12.094 10.1016/j.mtchem.2021.100758 10.1016/j.jcis.2021.12.045 10.1039/C6CS00426A 10.1039/C8TA05760E 10.1016/j.ijhydene.2021.09.123 10.1021/acsami.2c23314 10.1016/j.jallcom.2019.04.027 10.1039/D1MA00719J 10.1016/j.electacta.2020.137438 10.1021/acsaem.2c00066 10.1016/j.jallcom.2020.154524 10.1002/adma.202108856 10.1039/D2NJ02358J 10.1021/acsami.6b11775 10.1016/j.mtchem.2021.100731 10.1021/acsami.6b12755 10.1021/acsami.3c00013 10.1016/j.gee.2017.05.003 10.1021/acsami.7b15499 10.1016/j.cej.2023.144340 10.1002/anie.202214707 10.1002/aenm.201700547 10.1039/C8MH01091A 10.1039/C8TA07449F 10.1021/acsami.6b01047 10.1002/anie.202209350 10.1002/adma.202003297 10.1016/j.trac.2022.116741 10.1002/smll.201801815 10.1021/acsami.1c22129 10.1039/C3EE44004D 10.1016/j.ccr.2021.214264 10.1016/j.carbon.2020.01.006 10.1021/acsaem.8b01691 10.1038/nmat4766 10.1039/C3NJ01130E 10.1016/j.electacta.2018.01.112 10.1021/ic201396m 10.1021/acsami.9b00415 10.1039/C9TA04554F 10.1021/jacs.6b12353 10.1021/acscatal.6b00014 10.1016/j.ccr.2022.214561 10.1038/nmat2297 10.1039/D3TA03231K 10.1039/C8TA02546K 10.1002/aenm.201801307 10.1002/advs.201500185 10.1039/D1TA02896K 10.1016/j.spmi.2012.03.017 10.1021/am502638d 10.1039/C8EE03283A 10.1002/ange.202206353 10.1016/j.jpowsour.2021.230077 10.1016/j.chempr.2016.12.002 10.1016/j.colsurfa.2021.126596 10.1016/j.surfin.2021.101232 10.1039/D3TA05158G 10.1002/adma.202105163 10.1016/j.ccr.2020.213554 10.1002/smtd.201800415 10.1002/adfm.201503662 10.1016/j.est.2023.109873 10.1016/j.cej.2022.139524 10.1039/D1CC06340E 10.1039/D2TA00135G 10.1039/D2NR04841H 10.1016/j.pmatsci.2019.100579 10.1002/anie.201900787 10.1002/smm2.1088 10.1002/aenm.201801193 10.1039/C8TA10998B 10.1002/aenm.202003759 10.1007/s11051-022-05411-9 10.1002/chem.202300137 10.1021/acs.inorgchem.0c03634 10.1002/adfm.201801554 10.1039/D2TA02470E 10.1016/j.jechem.2023.08.042 10.1016/j.ijhydene.2022.12.313 10.1002/adma.201804973 10.1002/chem.202000207 10.1021/acsami.5b07024 10.1016/j.ccr.2022.214664 10.1039/C7SC05295B 10.1039/C5TA09473A 10.1021/acs.inorgchem.2c00542 10.1002/ente.202201416 10.1002/smll.202301449 10.1016/j.cej.2019.01.081 10.1039/D1SE01883C 10.1039/D1TA08777K 10.1002/anie.201800269 10.1021/acsami.8b04223 10.1016/j.nanoen.2020.104868 10.1002/aenm.201700885 10.1039/C8NJ04402C 10.1002/ange.202008129 10.1039/C4TA00200H 10.1021/acsami.6b14801 10.1002/smll.202207266 10.1002/aenm.201700518 10.1039/D1EE03614A 10.1016/j.ccr.2022.214699 10.1039/C4TA01241K 10.1016/S1872-2067(23)64532-2 10.1002/anie.202116934 10.1002/open.201900324 10.1002/aenm.201200833 10.1016/j.cej.2019.122982 10.1021/acs.inorgchem.4c00053 10.1039/C8EE01011K 10.1002/anie.201813634 10.1039/C9NR10491G 10.1039/C4CS00106K 10.1039/D1TA10326A 10.1021/acsami.7b10334 10.1016/j.molliq.2017.10.145 10.1039/D1CS00891A 10.1016/j.apcatb.2019.01.007 10.1021/acsami.5b03414 10.1038/s41467-018-05341-y 10.1002/ange.201711376 10.1038/nprot.2016.001 10.1021/acs.organomet.1c00376 10.1016/j.jcis.2020.08.041 10.1016/j.nanoen.2022.107146 10.1039/D2TA09766D 10.1016/j.jcat.2013.05.021 10.1039/D1TA08646D 10.1021/nn4023894 10.1021/acs.accounts.6b00479 10.1039/C9SC03916C 10.1016/j.elecom.2021.107024 10.1039/D2TA05756E 10.1038/s41467-021-25095-4 10.1016/j.ccr.2020.213221 10.1016/j.ccr.2022.214505 10.1021/acsami.9b13729 10.1002/smll.201900348 10.1002/smll.201000773 10.1016/j.electacta.2020.136850 10.1021/acsami.2c10346 10.1002/advs.201600371 10.1002/adma.201704303 10.1016/j.jechem.2020.06.016 10.1016/j.apcatb.2018.05.054 10.1016/j.catcom.2011.12.012 10.1016/j.ijhydene.2022.02.037 10.1039/C7EE00398F 10.1039/D1TA10213C 10.1016/j.jelechem.2021.114993 10.1039/C7TA01308F 10.1016/j.micromeso.2020.110064 10.1002/adfm.202213095 10.1021/acs.chemrev.6b00504 10.1039/C9TA03498F 10.1021/acs.inorgchem.9b02658 10.1016/j.cclet.2020.12.015 10.1039/C6NJ02179D 10.1016/j.electacta.2020.136225 10.1080/10298436.2023.2273318 10.1002/admi.202101599 10.1016/j.carbon.2022.07.057 10.1039/D1TA07237D 10.1021/acsami.3c04506 10.1038/ncomms15341 10.1002/chem.201703851 10.1021/acs.chemrev.1c00243 10.1016/j.microc.2022.107506 10.1039/D2TA09369C 10.1039/D2TA07938K 10.1021/acs.inorgchem.0c02504 10.1016/j.ijhydene.2020.12.192 10.1002/adfm.202302659 10.1039/C7CS00109F 10.1038/nmat3191 10.1016/j.electacta.2018.03.033 10.1039/C8DT02706D 10.1039/D3TC00970J 10.1002/cey2.44 10.1016/j.nanoen.2013.04.008 10.1021/acsami.0c11722 10.1002/adma.201305492 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2024 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2024 |
DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI |
DOI | 10.1039/d4ta00736k |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 11175 |
ExternalDocumentID | 10_1039_D4TA00736K d4ta00736k |
GroupedDBID | -JG 0-7 0R~ 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFVBQ AGEGJ AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K EBS ECGLT EE0 EF- GGIMP GNO H13 HZ~ H~N J3I O-G O9- R7C RAOCF RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH UCJ AAYXX AFRZK AKMSF ALUYA CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI |
ID | FETCH-LOGICAL-c281t-60879846684b890c1a94a384615b4277ac543246983345fb331bda75271b3d4e3 |
ISSN | 2050-7488 |
IngestDate | Mon Jun 30 11:42:57 EDT 2025 Thu Apr 24 23:09:36 EDT 2025 Tue Jul 01 03:28:14 EDT 2025 Tue Dec 17 20:58:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c281t-60879846684b890c1a94a384615b4277ac543246983345fb331bda75271b3d4e3 |
Notes | Prof. Deepak Dubal is currently working as Full Professor at Queensland University of Technology (QUT), Australia. He is a productive, well-cited, and multiplefellowship-winning scientist. His achievements are honoured by several prestigious fellowships such as Brain Korea-21 (South Korea-2011), Alexander von Humboldt (Germany-2012), Marie Curie (Spain-2014), and Australian Future Fellowship (Australia-2018). His research expertise lies in the design and development of multifunctional materials for clean energy conversion and storage technologies with a special focus on supercapacitors, lithium-ion batteries, Li-ion capacitors, and electrochemical flow cells. In addition, his team is extending its research area in biomass valorisation and battery recycling, aiding circular economy and sustainable practices. 2 Dr Soheila Sanati obtained her PhD in Inorganic Chemistry at Azarbaijan Shahid Madani University (Iran) in February 2019. Her research interests mainly focus on the design, synthesis, and applications of layered double hydroxides and metal-organic framework-based nanostructured materials for energy storage and conversion, irradiation thermal treatment, renewable clean energy and environmental protection applications. h reduction and the resource utilization of perfluorocarbons. index 69). His research focuses on electrocatalytic energy conversion, photo-electrocatalytic CO Dr Reza Abazari obtained his MSc in Inorganic Chemistry from K. N. Toosi University of Technology (Iran) in 2012 and his PhD from Tarbiat Modares University in 2019. Currently, he is working as a Youth Research Professor at University of Maragheh, Iran. His research interests include the design and synthesis of nanostructured materials based on crystalline porous frameworks for electrochemical energy storage and photocatalytic applications. Prof. Min Liu received his PhD (2010) from Chinese Academy of Sciences. In 2010-2015, he joined the University of Tokyo as a research fellow with Prof. Kazuhito Hashimoto and Prof. Kazunari Domen, separately. In 2015-2017, he joined the University of Toronto as a postdoctoral fellow with Prof. Edward Sargent. Since 2017, he has been working as a professor at Central South University. He has published more than 200 papers with over 21,000 citations ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9007-4817 0000-0001-6502-0844 0009-0001-2947-6737 |
PQID | 3054426819 |
PQPubID | 2047523 |
PageCount | 27 |
ParticipantIDs | proquest_journals_3054426819 crossref_primary_10_1039_D4TA00736K rsc_primary_d4ta00736k crossref_citationtrail_10_1039_D4TA00736K |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-05-14 |
PublicationDateYYYYMMDD | 2024-05-14 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2024 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Xu (D4TA00736K/cit80/1) 2021; 427 Liu (D4TA00736K/cit193/1) 2023; 170 Mondal (D4TA00736K/cit261/1) 2023; 470 You (D4TA00736K/cit272/1) 2022; 10 Thomas (D4TA00736K/cit184/1) 2023; 11 He (D4TA00736K/cit243/1) 2019; 12 Wei (D4TA00736K/cit135/1) 2019; 11 Li (D4TA00736K/cit287/1) 2013; 3 Abazari (D4TA00736K/cit17/1) 2019; 11 Yin (D4TA00736K/cit260/1) 2021; 13 Chen (D4TA00736K/cit255/1) 2022; 613 Zhai (D4TA00736K/cit78/1) 2021; 9 Karthik (D4TA00736K/cit5/1) 2023; 15 Khan (D4TA00736K/cit91/1) 2015; 285 Lamiel (D4TA00736K/cit51/1) 2023; 480 Zhang (D4TA00736K/cit81/1) 2022; 97 Luo (D4TA00736K/cit102/1) 2022; 461 Heshmatpour (D4TA00736K/cit271/1) 2014; 4 Guo (D4TA00736K/cit279/1) 2019; 11 Chen (D4TA00736K/cit227/1) 2023; 5 Gong (D4TA00736K/cit276/1) 2018; 264 Lin (D4TA00736K/cit292/1) 2022; 34 Li (D4TA00736K/cit137/1) 2018; 8 Prasankumar (D4TA00736K/cit186/1) 2022; 199 Liu (D4TA00736K/cit123/1) 2017; 7 Zhu (D4TA00736K/cit277/1) 2018; 28 Liu (D4TA00736K/cit231/1) 2016; 3 Liu (D4TA00736K/cit234/1) 2019; 11 Hu (D4TA00736K/cit290/1) 2016; 40 Barthelet (D4TA00736K/cit39/1) 2002; 41 Bruce (D4TA00736K/cit296/1) 2011; 11 Yu (D4TA00736K/cit142/1) 2022; 28 Liu (D4TA00736K/cit267/1) 2023; 942 Ren (D4TA00736K/cit241/1) 2020; 2 Ding (D4TA00736K/cit98/1) 2019; 10 Zhang (D4TA00736K/cit28/1) 2024; 76 Lindberg (D4TA00736K/cit202/1) 2020; 345 Kaushal (D4TA00736K/cit24/1) 2021; 2 Wu (D4TA00736K/cit200/1) 2020; 838 Sundriyal (D4TA00736K/cit217/1) 2019; 4 Chongdar (D4TA00736K/cit43/1) 2022; 58 Yu (D4TA00736K/cit108/1) 2019; 9 Du (D4TA00736K/cit226/1) 2019; 378 Liu (D4TA00736K/cit238/1) 2021; 24 Cai (D4TA00736K/cit89/1) 2020; 160 Wang (D4TA00736K/cit48/1) 2017; 2 Huang (D4TA00736K/cit206/1) 2016; 4 Lin (D4TA00736K/cit145/1) 2019; 15 Wang (D4TA00736K/cit140/1) 2021; 11 Ji (D4TA00736K/cit148/1) 2017; 23 Soundharrajan (D4TA00736K/cit289/1) 2016; 8 Li (D4TA00736K/cit166/1) 2016; 6 Xu (D4TA00736K/cit112/1) 2022; 126 Dalavi (D4TA00736K/cit6/1) 2022; 10 Zhuang (D4TA00736K/cit203/1) 2021; 25 Liu (D4TA00736K/cit54/1) 2022; 10 Cao (D4TA00736K/cit285/1) 2015; 3 Li (D4TA00736K/cit103/1) 2020; 2 Lam (D4TA00736K/cit240/1) 2021; 8 Villenoisy (D4TA00736K/cit63/1) 2023; 35 Erçarıkcı (D4TA00736K/cit195/1) 2023; 11 Du (D4TA00736K/cit37/1) 2022; 10 Xi (D4TA00736K/cit246/1) 2023; 11 Saini (D4TA00736K/cit57/1) 2022; 10 Yao (D4TA00736K/cit236/1) 2020; 8 Wan (D4TA00736K/cit120/1) 2019; 58 Chen (D4TA00736K/cit165/1) 2019; 7 Mondal (D4TA00736K/cit244/1) 2023; 470 Maiti (D4TA00736K/cit216/1) 2014; 6 Yuan (D4TA00736K/cit14/1) 2017; 8 Yang (D4TA00736K/cit254/1) 2020; 12 El Hankari (D4TA00736K/cit21/1) 2019; 106 Zhao (D4TA00736K/cit253/1) 2014; 2 Zhao (D4TA00736K/cit136/1) 2021; 31 Phan (D4TA00736K/cit35/1) 2011; 50 Han (D4TA00736K/cit132/1) 2021; 32 Pu (D4TA00736K/cit212/1) 2022; 3 Yap (D4TA00736K/cit82/1) 2017; 2 Pan (D4TA00736K/cit31/1) 2022; 61 Wu (D4TA00736K/cit109/1) 2024; 483 Wang (D4TA00736K/cit60/1) 2022; 134 Wang (D4TA00736K/cit106/1) 2023; 54 Liang (D4TA00736K/cit210/1) 2019; 6 Liang (D4TA00736K/cit207/1) 2018; 10 Aiyappa (D4TA00736K/cit113/1) 2019; 3 Khan (D4TA00736K/cit117/1) 2023; 11 Abazari (D4TA00736K/cit105/1) 2022; 61 Li (D4TA00736K/cit29/1) 2022; 61 Chen (D4TA00736K/cit119/1) 2021; 54 Sheberla (D4TA00736K/cit190/1) 2017; 16 Wang (D4TA00736K/cit13/1) 2023; 19 Hu (D4TA00736K/cit73/1) 2023; 15 Ma (D4TA00736K/cit88/1) 2019; 2 Liu (D4TA00736K/cit36/1) 2022; 32 Lu (D4TA00736K/cit219/1) 2019; 7 Liu (D4TA00736K/cit247/1) 2023; 15 Hasanzadeh (D4TA00736K/cit133/1) 2012; 19 Ding (D4TA00736K/cit265/1) 2019; 493 Han (D4TA00736K/cit237/1) 2021; 882 Fan (D4TA00736K/cit20/1) 2018; 6 Manikandan (D4TA00736K/cit223/1) 2021; 393 Fang (D4TA00736K/cit291/1) 2021; 593 Chen (D4TA00736K/cit101/1) 2022; 469 Tang (D4TA00736K/cit143/1) 2019; 245 Farzinpour (D4TA00736K/cit192/1) 2023; 341 Zhang (D4TA00736K/cit168/1) 2021; 366 Sanati (D4TA00736K/cit182/1) 2019; 362 Sanati (D4TA00736K/cit107/1) 2020; 56 Yuan (D4TA00736K/cit221/1) 2020; 830 Fang (D4TA00736K/cit259/1) 2018; 3 He (D4TA00736K/cit74/1) 2023; 11 Niu (D4TA00736K/cit282/1) 2017; 56 Soundharrajan (D4TA00736K/cit262/1) 2018; 18 Wang (D4TA00736K/cit44/1) 2016; 11 He (D4TA00736K/cit263/1) 2019; 64 Banerjee (D4TA00736K/cit288/1) 2013; 2 Niknam (D4TA00736K/cit201/1) 2021; 44 Huang (D4TA00736K/cit1/1) 2023; 33 Hussain (D4TA00736K/cit194/1) 2023; 33 Xia (D4TA00736K/cit269/1) 2013; 7 Huang (D4TA00736K/cit275/1) 2014; 2 Cai (D4TA00736K/cit53/1) 2021; 121 Gonen (D4TA00736K/cit176/1) 2018; 10 Pan (D4TA00736K/cit12/1) 2022; 61 Sanati (D4TA00736K/cit41/1) 2023; 48 Guan (D4TA00736K/cit162/1) 2021; 624 Yuan (D4TA00736K/cit286/1) 2014; 53 Li (D4TA00736K/cit30/1) 2020; 410 Bucur (D4TA00736K/cit250/1) 2017; 10 Rassu (D4TA00736K/cit75/1) 2022; 465 Ji (D4TA00736K/cit147/1) 2015; 8 Yu (D4TA00736K/cit38/1) 2023; 23 Zhang (D4TA00736K/cit188/1) 2022; 14 Senftle (D4TA00736K/cit299/1) 2017; 50 Tian (D4TA00736K/cit281/1) 2019; 792 Pan (D4TA00736K/cit127/1) 2019; 11 Shen (D4TA00736K/cit160/1) 2017; 139 Li (D4TA00736K/cit77/1) 2016; 8 Zhou (D4TA00736K/cit164/1) 2021; 12 Wu (D4TA00736K/cit298/1) 2014; 26 Yuan (D4TA00736K/cit97/1) 2018; 30 Centrone (D4TA00736K/cit33/1) 2010; 6 Sadhukhan (D4TA00736K/cit114/1) 2023; 14 Zhong (D4TA00736K/cit215/1) 2015; 44 Salehi (D4TA00736K/cit228/1) 2024; 9 Qi (D4TA00736K/cit170/1) 2019; 557 Abazari (D4TA00736K/cit71/1) 2024; 63 Yan (D4TA00736K/cit191/1) 2018; 14 Ko (D4TA00736K/cit67/1) 2022; 46 Sanati (D4TA00736K/cit230/1) 2018; 249 Li (D4TA00736K/cit110/1) 2020; 5 Zhao (D4TA00736K/cit155/1) 2018; 236 Furukawa (D4TA00736K/cit23/1) 2014; 43 Hou (D4TA00736K/cit171/1) 2019; 9 Guo (D4TA00736K/cit144/1) 2020; 357 Lv (D4TA00736K/cit139/1) 2020; 12 Kim (D4TA00736K/cit297/1) 2018; 10 Gong (D4TA00736K/cit266/1) 2022; 23 Kaveevivitchai (D4TA00736K/cit32/1) 2015; 278 Li (D4TA00736K/cit161/1) 2018; 130 Hashem (D4TA00736K/cit100/1) 2020; 9 Li (D4TA00736K/cit125/1) 2020; 2 Sanati (D4TA00736K/cit55/1) 2022; 15 Ghahremani (D4TA00736K/cit181/1) 2023; 24 Chen (D4TA00736K/cit220/1) 2021; 505 Guo (D4TA00736K/cit27/1) 2023; 33 Li (D4TA00736K/cit302/1) 2019; 12 Gao (D4TA00736K/cit8/1) 2023 Li (D4TA00736K/cit173/1) 2018; 47 Liu (D4TA00736K/cit199/1) 2020; 450 Zhou (D4TA00736K/cit141/1) 2019; 58 Maki (D4TA00736K/cit232/1) 2018; 270 Song (D4TA00736K/cit93/1) 2019 Voort (D4TA00736K/cit124/1) 2014; 38 Pan (D4TA00736K/cit69/1) 2021; 126 Ding (D4TA00736K/cit264/1) 2019; 11 Rubio-Martinez (D4TA00736K/cit87/1) 2017; 46 Sikma (D4TA00736K/cit22/1) 2022; 134 Sanati (D4TA00736K/cit185/1) 2019; 58 McNamara (D4TA00736K/cit34/1) 2013; 305 Bondarchuk (D4TA00736K/cit198/1) 2016; 324 Veerasubramani (D4TA00736K/cit204/1) 2017; 5 Wang (D4TA00736K/cit130/1) 2017; 4 Du (D4TA00736K/cit251/1) 2022; 61 Wu (D4TA00736K/cit122/1) 2010; 3 Lee (D4TA00736K/cit295/1) 2017; 7 Shi (D4TA00736K/cit45/1) 2023; 19 Duan (D4TA00736K/cit154/1) 2017; 8 Das (D4TA00736K/cit11/1) 2023; 11 Chen (D4TA00736K/cit169/1) 2021; 46 Lv (D4TA00736K/cit301/1) 2022; 10 You (D4TA00736K/cit294/1) 2014; 7 Wang (D4TA00736K/cit252/1) 2015; 7 Sun (D4TA00736K/cit280/1) 2017; 9 Saeed (D4TA00736K/cit239/1) 2022; 23 Liu (D4TA00736K/cit121/1) 2017; 7 Wang (D4TA00736K/cit3/1) 2023; 11 Chandra Sekhar (D4TA00736K/cit205/1) 2020; 16 Campagnol (D4TA00736K/cit84/1) 2014; 50 Kim (D4TA00736K/cit47/1) 2012; 3 Peng (D4TA00736K/cit70/1) 2023; 62 Lourenço (D4TA00736K/cit172/1) 2021; 582 Liu (D4TA00736K/cit58/1) 2022; 14 Zhou (D4TA00736K/cit128/1) 2020; 13 Li (D4TA00736K/cit157/1) 2019; 7 Duan (D4TA00736K/cit174/1) 2022; 47 Zhou (D4TA00736K/cit76/1) 2020; 13 Wang (D4TA00736K/cit115/1) 2019; 12 Guan (D4TA00736K/cit233/1) 2018; 48 Mehdizadeh (D4TA00736K/cit270/1) 2012; 52 Xu (D4TA00736K/cit79/1) 2024; 53 Zhang (D4TA00736K/cit156/1) 2020; 59 Abazari (D4TA00736K/cit72/1) 2023; 62 Thi Dang (D4TA00736K/cit86/1) 2020; 298 Guo (D4TA00736K/cit208/1) 2020; 3 Hu (D4TA00736K/cit284/1) 2022; 6 Zhong (D4TA00736K/cit15/1) 2023; 11 Ren (D4TA00736K/cit274/1) 2018; 14 Wang (D4TA00736K/cit65/1) 2022; 51 Feng (D4TA00736K/cit66/1) 2022; 470 Pan (D4TA00736K/cit40/1) 2024; 499 Zhou (D4TA00736K/cit56/1) 2022; 451 Adegoke (D4TA00736K/cit92/1) 2021; 21 Kalhorizadeh (D4TA00736K/cit16/1) 2022; 46 Bin Wu (D4TA00736K/cit94/1) 2017; 3 Sun (D4TA00736K/cit68/1) 2023; 15 Kearns (D4TA00736K/cit52/1) 2021; 9 Shen (D4TA00736K/cit187/1) 2022; 5 Peng (D4TA00736K/cit9/1) 2023; 62 Abazari (D4TA00736K/cit62/1) 2024; 20 Zhong (D4TA00736K/cit209/1) 2017; 9 Basse (D4TA00736K/cit26/1) 2021; 40 Shinde (D4TA00736K/cit213/1) 2020; 387 Gong (D4TA00736K/cit249/1) 2022; 23 Hong (D4TA00736K/cit2/1) 2023; 11 Li (D4TA00736K/cit256/1) 2021; 33 Maiti (D4TA00736K/cit214/1) 2015; 7 Xia (D4TA00736K/cit273/1) 2018; 348 VanGelder (D4TA00736K/cit149/1) 2018; 9 Ghafarifar (D4TA00736K/cit90/1) 2020; 15 Wang (D4TA00736K/cit248/1) 2023; 452 Cheng (D4TA00736K/cit175/1) 2020; 132 Cao (D4TA00736K/cit95/1) 2017; 46 Coduri (D4TA00736K/cit242/1) 2022; 10 Kong (D4TA00736K/cit118/1) 2019; 31 Zhou (D4TA00736K/cit159/1) 2020; 13 Gao (D4TA00736K/cit245/1) 2020; 74 Abazari (D4TA00736K/cit42/1) 2022; 61 Pan (D4TA00736K/cit258/1) 2016; 1 Liang (D4TA00736K/cit158/1) 2018; 57 Lu (D4TA00736K/cit197/1) 2013; 13 Abazari (D4TA00736K/cit183/1) 2019; 7 Liu (D4TA00736K/cit225/1) 2020; 601 Abazari (D4TA00736K/cit83/1) 2018; 42 Kong (D4TA00736K/cit278/1) 2018; 6 Wang (D4TA00736K/cit50/1) 2023; 19 Safy (D4TA00736K/cit99/1) 2020; 26 Hussain (D4TA00736K/cit49/1) 2022; 10 Ma (D4TA00736K/cit59/1) 2022; 157 Zhong (D4TA00736K/cit46/1) 2023; 19 Rui (D4TA00736K/cit131/1) 2018; 28 Liu (D4TA00736K/cit224/1) 2017; 5 Xu (D4TA00736K/cit126/1) 2018; 6 Abazari (D4TA00736K/cit179/1) 2021; 9 Yadav (D4TA00736K/cit61/1) 2020; 16 Abazari (D4TA00736K/cit4/1) 2021; 60 Sanati (D4TA00736K/cit104/1) 2024; 60 Abazari (D4TA00736K/cit85/1) 2018; 46 Watanabe (D4TA00736K/cit116/1) 2017; 117 Xu (D4TA00736K/cit153/1) 2019; 58 Raja (D4TA00736K/cit129/1) 2018; 8 Gao (D4TA00736K/cit196/1) 2019; 7 Ji (D4TA00736K/cit150/1) 2019; 7 Song (D4TA00736K/cit257/1) 2018; 28 Dong (D4TA00736K/cit146/1) 2021; 46 Sun (D4TA00736K/cit163/1) 2020; 32 Goswami (D4TA00736K/cit152/1) 2022; 14 Abazari (D4TA00736K/cit180/1) 2019; 11 Sanati (D4TA00736K/cit229/1) 2018; 42 Peng (D4TA00736K/cit235/1) 2022; 179 Chen (D4TA00736K/cit19/1) 2022; 55 Jiang (D4TA00736K/cit134/1) 2018; 9 Yao (D4TA00736K/cit177/1) 2022; 623 Sanati (D4TA00736K/cit7/1) 2021; 60 Ja |
References_xml | – issn: 2023 publication-title: Advanced Catalysts Based on Metal-Organic Frameworks, Part 1 doi: Gao Abazari – issn: 2019 end-page: p 1-38 publication-title: Layer. Mater. Energy Storage Convers. doi: Song Zhang Zheng Sun – volume: 58 start-page: 16358 year: 2019 ident: D4TA00736K/cit120/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201903941 – volume: 13 start-page: 5647 year: 2020 ident: D4TA00736K/cit159/1 publication-title: ChemSusChem doi: 10.1002/cssc.202001230 – volume: 341 start-page: 127724 year: 2023 ident: D4TA00736K/cit192/1 publication-title: Fuel doi: 10.1016/j.fuel.2023.127724 – volume: 8 start-page: 1801065 year: 2018 ident: D4TA00736K/cit129/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801065 – volume: 4 start-page: 55815 year: 2014 ident: D4TA00736K/cit271/1 publication-title: RSC Adv. doi: 10.1039/C4RA06958G – volume: 61 start-page: 18873 year: 2022 ident: D4TA00736K/cit12/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.2c02709 – volume: 28 start-page: e202201784 year: 2022 ident: D4TA00736K/cit142/1 publication-title: Chem. - Eur. J. doi: 10.1002/chem.202201784 – volume: 61 start-page: 3396 year: 2022 ident: D4TA00736K/cit105/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.1c03216 – volume: 48 start-page: 73 year: 2018 ident: D4TA00736K/cit233/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.03.034 – volume: 3 start-page: 2727 year: 2020 ident: D4TA00736K/cit208/1 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.9b02392 – volume: 8 start-page: 3194 year: 2018 ident: D4TA00736K/cit300/1 publication-title: ACS Catal. doi: 10.1021/acscatal.7b03404 – volume: 23 start-page: 12043 year: 2023 ident: D4TA00736K/cit38/1 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.3c02271 – volume: 56 start-page: 6652 year: 2020 ident: D4TA00736K/cit107/1 publication-title: Chem. Commun. doi: 10.1039/D0CC01146K – volume: 11 start-page: 23148 year: 2023 ident: D4TA00736K/cit184/1 publication-title: J. Mater. Chem. A doi: 10.1039/D3TA05074B – volume: 4 start-page: 1400133 year: 2014 ident: D4TA00736K/cit293/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201400133 – volume: 11 start-page: 45442 year: 2019 ident: D4TA00736K/cit17/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b16473 – volume: 10 start-page: 108028 year: 2022 ident: D4TA00736K/cit37/1 publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2022.108028 – volume: 13 start-page: 2628 year: 2013 ident: D4TA00736K/cit197/1 publication-title: Nano Lett. doi: 10.1021/nl400760a – volume: 324 start-page: 439 year: 2016 ident: D4TA00736K/cit198/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.05.093 – volume: 35 start-page: 2370174 year: 2023 ident: D4TA00736K/cit63/1 publication-title: Adv. Mater. doi: 10.1002/adma.202370174 – volume: 8 start-page: 776 year: 2015 ident: D4TA00736K/cit147/1 publication-title: Energy Environ. Sci. doi: 10.1039/C4EE03749A – volume: 9 start-page: 11001 year: 2021 ident: D4TA00736K/cit179/1 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA00900A – volume: 378 start-page: 122210 year: 2019 ident: D4TA00736K/cit226/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122210 – volume: 33 start-page: 2210002 year: 2023 ident: D4TA00736K/cit194/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202210002 – volume: 480 start-page: 215030 year: 2023 ident: D4TA00736K/cit51/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2023.215030 – volume: 11 start-page: 7898 year: 2023 ident: D4TA00736K/cit2/1 publication-title: J. Mater. Chem. A doi: 10.1039/D2TA09988H – volume: 483 start-page: 149243 year: 2024 ident: D4TA00736K/cit109/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2024.149243 – volume: 21 start-page: 100816 year: 2021 ident: D4TA00736K/cit92/1 publication-title: Mater. Today Energy doi: 10.1016/j.mtener.2021.100816 – volume: 126 start-page: 14094 year: 2022 ident: D4TA00736K/cit112/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.2c05083 – volume: 942 start-page: 117576 year: 2023 ident: D4TA00736K/cit267/1 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2023.117576 – volume: 14 start-page: 1800659 year: 2018 ident: D4TA00736K/cit274/1 publication-title: Small doi: 10.1002/smll.201800659 – volume: 10 start-page: 2751 year: 2022 ident: D4TA00736K/cit57/1 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA10008D – volume: 60 start-page: 3129 year: 2024 ident: D4TA00736K/cit104/1 publication-title: Chem. Commun. doi: 10.1039/D3CC06073J – volume: 9 start-page: 1605 year: 2019 ident: D4TA00736K/cit108/1 publication-title: ACS Catal. doi: 10.1021/acscatal.9b00191 – volume: 13 start-page: 5647 year: 2020 ident: D4TA00736K/cit128/1 publication-title: ChemSusChem doi: 10.1002/cssc.202001230 – volume: 16 start-page: 2004891 year: 2020 ident: D4TA00736K/cit61/1 publication-title: Small doi: 10.1002/smll.202004891 – volume: 2 start-page: 2063 year: 2019 ident: D4TA00736K/cit189/1 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b02128 – volume: 623 start-page: 1111 year: 2022 ident: D4TA00736K/cit177/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2022.04.126 – volume: 61 start-page: 20913 year: 2022 ident: D4TA00736K/cit31/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.2c03327 – volume: 31 start-page: 2100614 year: 2021 ident: D4TA00736K/cit136/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202100614 – volume: 53 start-page: 137 year: 2024 ident: D4TA00736K/cit79/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D3CS00767G – volume: 8 start-page: 1703341 year: 2018 ident: D4TA00736K/cit137/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703341 – volume: 9 start-page: 4581 year: 2024 ident: D4TA00736K/cit228/1 publication-title: ACS Omega doi: 10.1021/acsomega.3c07326 – volume: 8 start-page: 3191 year: 2020 ident: D4TA00736K/cit236/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.9b06590 – volume: 4 start-page: 2585 year: 2019 ident: D4TA00736K/cit217/1 publication-title: ChemistrySelect doi: 10.1002/slct.201900305 – volume: 5 start-page: 11781 year: 2017 ident: D4TA00736K/cit224/1 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA00201G – volume: 12 start-page: 18742 year: 2021 ident: D4TA00736K/cit64/1 publication-title: ACS Nano doi: 10.1021/acsnano.1c06402 – volume: 7 start-page: 14971 year: 2019 ident: D4TA00736K/cit165/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA03220G – volume: 62 start-page: 18680 year: 2023 ident: D4TA00736K/cit72/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.3c03052 – volume: 285 start-page: 11 year: 2015 ident: D4TA00736K/cit91/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2014.10.008 – volume: 8 start-page: 15356 year: 2017 ident: D4TA00736K/cit14/1 publication-title: Nat. Commun. doi: 10.1038/ncomms15356 – volume: 28 start-page: 1802564 year: 2018 ident: D4TA00736K/cit257/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201802564 – volume: 13 start-page: 205 year: 2020 ident: D4TA00736K/cit76/1 publication-title: ChemSusChem doi: 10.1002/cssc.201902272 – volume: 19 start-page: 2300673 year: 2023 ident: D4TA00736K/cit13/1 publication-title: Small doi: 10.1002/smll.202300673 – volume: 3 start-page: 126 year: 2012 ident: D4TA00736K/cit47/1 publication-title: Chem. Sci. doi: 10.1039/C1SC00394A – volume: 11 start-page: 23236 year: 2019 ident: D4TA00736K/cit234/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b05564 – volume: 12 start-page: 2327 year: 2019 ident: D4TA00736K/cit243/1 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE03651A – volume: 11 start-page: 10763 year: 2019 ident: D4TA00736K/cit279/1 publication-title: Nanoscale doi: 10.1039/C9NR02206F – volume: 42 start-page: 577 year: 2018 ident: D4TA00736K/cit83/1 publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2017.12.027 – volume: 450 start-page: 227687 year: 2020 ident: D4TA00736K/cit199/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.227687 – volume: 20 start-page: 2306353 year: 2024 ident: D4TA00736K/cit62/1 publication-title: Small doi: 10.1002/smll.202306353 – volume: 2 start-page: 100027 year: 2020 ident: D4TA00736K/cit125/1 publication-title: EnergyChem doi: 10.1016/j.enchem.2020.100027 – volume: 46 start-page: 59 year: 2018 ident: D4TA00736K/cit85/1 publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2018.02.001 – volume: 7 start-page: 1601491 year: 2017 ident: D4TA00736K/cit295/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601491 – volume: 19 start-page: 2300510 year: 2023 ident: D4TA00736K/cit50/1 publication-title: Small doi: 10.1002/smll.202300510 – volume: 3 start-page: 906 year: 2016 ident: D4TA00736K/cit231/1 publication-title: ChemElectroChem doi: 10.1002/celc.201600116 – volume: 13 start-page: 35837 year: 2021 ident: D4TA00736K/cit260/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c10063 – volume: 14 start-page: 37804 year: 2022 ident: D4TA00736K/cit138/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c09998 – volume: 838 start-page: 155604 year: 2020 ident: D4TA00736K/cit200/1 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.155604 – volume: 493 start-page: 368 year: 2019 ident: D4TA00736K/cit265/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.07.026 – volume: 41 start-page: 281 year: 2002 ident: D4TA00736K/cit39/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/1521-3773(20020118)41:2<281::AID-ANIE281>3.0.CO;2-Y – volume: 44 start-page: 103508 year: 2021 ident: D4TA00736K/cit201/1 publication-title: J. Energy Storage doi: 10.1016/j.est.2021.103508 – volume: 18 start-page: 2402 year: 2018 ident: D4TA00736K/cit262/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b05403 – volume: 14 start-page: 3394 year: 2023 ident: D4TA00736K/cit114/1 publication-title: Nat. Commun. doi: 10.1038/s41467-023-39127-8 – volume: 499 start-page: 215538 year: 2024 ident: D4TA00736K/cit40/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2023.215538 – volume: 3 start-page: 1191 year: 2010 ident: D4TA00736K/cit122/1 publication-title: Energy Environ. Sci. doi: 10.1039/c0ee00026d – volume: 7 start-page: 11953 year: 2019 ident: D4TA00736K/cit183/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA01628G – volume: 134 start-page: e202207066 year: 2022 ident: D4TA00736K/cit60/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.202207066 – volume: 5 start-page: 31 year: 2020 ident: D4TA00736K/cit110/1 publication-title: ACS Omega doi: 10.1021/acsomega.9b03550 – volume: 44 start-page: 7484 year: 2015 ident: D4TA00736K/cit215/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00303B – volume: 256 start-page: 63 year: 2017 ident: D4TA00736K/cit283/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.10.016 – volume: 348 start-page: 908 year: 2018 ident: D4TA00736K/cit273/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.04.207 – volume: 60 start-page: 11048 year: 2021 ident: D4TA00736K/cit7/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202010093 – volume: 55 start-page: 579 year: 2022 ident: D4TA00736K/cit19/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.1c00707 – volume: 50 start-page: 12545 year: 2014 ident: D4TA00736K/cit84/1 publication-title: Chem. Commun. doi: 10.1039/C4CC05742B – volume: 11 start-page: 669 year: 2019 ident: D4TA00736K/cit127/1 publication-title: Nat. Chem. doi: 10.1038/s41557-019-0266-1 – volume: 10 start-page: 9634 year: 2018 ident: D4TA00736K/cit176/1 publication-title: Nanoscale doi: 10.1039/C7NR09081A – volume: 10 start-page: 22329 year: 2018 ident: D4TA00736K/cit207/1 publication-title: Nanoscale doi: 10.1039/C8NR07991A – volume: 16 start-page: 2003983 year: 2020 ident: D4TA00736K/cit205/1 publication-title: Small doi: 10.1002/smll.202003983 – volume: 144 start-page: 10201 year: 2022 ident: D4TA00736K/cit25/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c00276 – volume: 393 start-page: 139060 year: 2021 ident: D4TA00736K/cit223/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2021.139060 – volume: 14 start-page: 29722 year: 2022 ident: D4TA00736K/cit152/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c04304 – volume: 56 start-page: 9966 year: 2017 ident: D4TA00736K/cit282/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.7b01486 – volume: 32 start-page: 2204499 year: 2022 ident: D4TA00736K/cit36/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202204499 – volume: 28 start-page: 1800003 year: 2018 ident: D4TA00736K/cit277/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201800003 – volume: 46 start-page: 9440 year: 2022 ident: D4TA00736K/cit16/1 publication-title: New J. Chem. doi: 10.1039/D1NJ06107K – volume: 593 start-page: 251 year: 2021 ident: D4TA00736K/cit291/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.02.108 – volume: 557 start-page: 28 year: 2019 ident: D4TA00736K/cit170/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.09.009 – volume: 10 start-page: 14684 year: 2018 ident: D4TA00736K/cit268/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b00953 – volume: 3 start-page: 2480 year: 2018 ident: D4TA00736K/cit259/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b01426 – volume: 64 start-page: 103935 year: 2019 ident: D4TA00736K/cit263/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.103935 – volume: 11 start-page: 33012 year: 2019 ident: D4TA00736K/cit135/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b10868 – volume: 170 start-page: 110524 year: 2023 ident: D4TA00736K/cit193/1 publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/ad0b43 – volume: 6 start-page: 24486 year: 2018 ident: D4TA00736K/cit20/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA07839D – volume: 5 start-page: e459 year: 2023 ident: D4TA00736K/cit227/1 publication-title: Carbon Energy doi: 10.1002/cey2.459 – volume: 53 start-page: 1488 year: 2014 ident: D4TA00736K/cit286/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201303971 – volume: 601 start-page: 125011 year: 2020 ident: D4TA00736K/cit225/1 publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2020.125011 – volume: 1 start-page: 16039 year: 2016 ident: D4TA00736K/cit258/1 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.39 – volume: 278 start-page: 265 year: 2015 ident: D4TA00736K/cit32/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.12.094 – volume: 23 start-page: 100758 year: 2022 ident: D4TA00736K/cit239/1 publication-title: Mater. Today Chem. doi: 10.1016/j.mtchem.2021.100758 – volume: 613 start-page: 435 year: 2022 ident: D4TA00736K/cit255/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.12.045 – volume: 46 start-page: 2660 year: 2017 ident: D4TA00736K/cit95/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00426A – volume: 7 start-page: 14 year: 2019 ident: D4TA00736K/cit196/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA05760E – volume: 46 start-page: 38724 year: 2021 ident: D4TA00736K/cit169/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2021.09.123 – volume: 15 start-page: 13554 year: 2023 ident: D4TA00736K/cit247/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c23314 – volume: 792 start-page: 487 year: 2019 ident: D4TA00736K/cit281/1 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.04.027 – volume: 2 start-page: 7308 year: 2021 ident: D4TA00736K/cit24/1 publication-title: Mater. Adv. doi: 10.1039/D1MA00719J – volume: 3 start-page: 1 year: 2017 ident: D4TA00736K/cit94/1 publication-title: Sci. Adv. – volume: 366 start-page: 137438 year: 2021 ident: D4TA00736K/cit168/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2020.137438 – volume: 5 start-page: 2596 year: 2022 ident: D4TA00736K/cit187/1 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.2c00066 – volume: 830 start-page: 154524 year: 2020 ident: D4TA00736K/cit221/1 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.154524 – volume: 34 start-page: 2108856 year: 2022 ident: D4TA00736K/cit292/1 publication-title: Adv. Mater. doi: 10.1002/adma.202108856 – volume: 46 start-page: 15758 year: 2022 ident: D4TA00736K/cit67/1 publication-title: New J. Chem. doi: 10.1039/D2NJ02358J – volume: 8 start-page: 29551 year: 2016 ident: D4TA00736K/cit77/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b11775 – volume: 23 start-page: 100731 year: 2022 ident: D4TA00736K/cit266/1 publication-title: Mater. Today Chem. doi: 10.1016/j.mtchem.2021.100731 – volume: 8 start-page: 32414 year: 2016 ident: D4TA00736K/cit151/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b12755 – volume: 15 start-page: 11927 year: 2023 ident: D4TA00736K/cit5/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.3c00013 – volume: 2 start-page: 218 year: 2017 ident: D4TA00736K/cit82/1 publication-title: Green Energy Environ. doi: 10.1016/j.gee.2017.05.003 – volume: 10 start-page: 660 year: 2018 ident: D4TA00736K/cit297/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b15499 – volume: 470 start-page: 144340 year: 2023 ident: D4TA00736K/cit261/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.144340 – volume: 62 start-page: e202214707 year: 2023 ident: D4TA00736K/cit9/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202214707 – volume: 7 start-page: 1700547 year: 2017 ident: D4TA00736K/cit121/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700547 – volume: 6 start-page: 571 year: 2019 ident: D4TA00736K/cit210/1 publication-title: Mater. Horiz. doi: 10.1039/C8MH01091A – volume: 6 start-page: 22697 year: 2018 ident: D4TA00736K/cit126/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA07449F – volume: 8 start-page: 8546 year: 2016 ident: D4TA00736K/cit289/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b01047 – volume: 61 start-page: e202209350 year: 2022 ident: D4TA00736K/cit251/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202209350 – volume: 32 start-page: 2003297 year: 2020 ident: D4TA00736K/cit163/1 publication-title: Adv. Mater. doi: 10.1002/adma.202003297 – volume: 157 start-page: 116741 year: 2022 ident: D4TA00736K/cit59/1 publication-title: TrAC, Trends Anal. Chem. doi: 10.1016/j.trac.2022.116741 – volume: 14 start-page: 1801815 year: 2018 ident: D4TA00736K/cit191/1 publication-title: Small doi: 10.1002/smll.201801815 – volume: 14 start-page: 9046 year: 2022 ident: D4TA00736K/cit188/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c22129 – volume: 7 start-page: 1643 year: 2014 ident: D4TA00736K/cit294/1 publication-title: Energy Environ. Sci. doi: 10.1039/C3EE44004D – volume: 451 start-page: 214264 year: 2022 ident: D4TA00736K/cit56/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2021.214264 – volume: 160 start-page: 64 year: 2020 ident: D4TA00736K/cit89/1 publication-title: Carbon doi: 10.1016/j.carbon.2020.01.006 – volume: 15 start-page: 52581 year: 2023 ident: D4TA00736K/cit68/1 publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 1134 year: 2019 ident: D4TA00736K/cit88/1 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b01691 – volume: 15 start-page: 537 year: 2020 ident: D4TA00736K/cit90/1 publication-title: Iran. J. Parasitol. – volume: 16 start-page: 220 year: 2017 ident: D4TA00736K/cit190/1 publication-title: Nat. Mater. doi: 10.1038/nmat4766 – volume: 38 start-page: 1853 year: 2014 ident: D4TA00736K/cit124/1 publication-title: New J. Chem. doi: 10.1039/C3NJ01130E – volume: 264 start-page: 358 year: 2018 ident: D4TA00736K/cit276/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.01.112 – volume: 50 start-page: 7388 year: 2011 ident: D4TA00736K/cit35/1 publication-title: Inorg. Chem. doi: 10.1021/ic201396m – volume: 11 start-page: 14759 year: 2019 ident: D4TA00736K/cit180/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b00415 – volume: 7 start-page: 18519 year: 2019 ident: D4TA00736K/cit157/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA04554F – volume: 139 start-page: 1778 year: 2017 ident: D4TA00736K/cit160/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b12353 – volume: 6 start-page: 2797 year: 2016 ident: D4TA00736K/cit166/1 publication-title: ACS Catal. doi: 10.1021/acscatal.6b00014 – volume: 465 start-page: 214561 year: 2022 ident: D4TA00736K/cit75/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2022.214561 – volume: 7 start-page: 845 year: 2008 ident: D4TA00736K/cit218/1 publication-title: Nat. Mater. doi: 10.1038/nmat2297 – volume: 11 start-page: 20423 year: 2023 ident: D4TA00736K/cit15/1 publication-title: J. Mater. Chem. A doi: 10.1039/D3TA03231K – volume: 6 start-page: 12316 year: 2018 ident: D4TA00736K/cit278/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA02546K – volume: 9 start-page: 1801307 year: 2019 ident: D4TA00736K/cit171/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801307 – volume: 3 start-page: 1500185 year: 2015 ident: D4TA00736K/cit285/1 publication-title: Adv. Sci. doi: 10.1002/advs.201500185 – volume: 9 start-page: 20320 year: 2021 ident: D4TA00736K/cit78/1 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA02896K – volume: 52 start-page: 92 year: 2012 ident: D4TA00736K/cit270/1 publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2012.03.017 – volume: 6 start-page: 10754 year: 2014 ident: D4TA00736K/cit216/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am502638d – volume: 12 start-page: 1046 year: 2019 ident: D4TA00736K/cit302/1 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE03283A – volume: 134 start-page: e202206353 year: 2022 ident: D4TA00736K/cit22/1 publication-title: Angew. Chem. doi: 10.1002/ange.202206353 – volume: 505 start-page: 230077 year: 2021 ident: D4TA00736K/cit220/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2021.230077 – volume: 2 start-page: 52 year: 2017 ident: D4TA00736K/cit48/1 publication-title: Chem doi: 10.1016/j.chempr.2016.12.002 – volume: 624 start-page: 126596 year: 2021 ident: D4TA00736K/cit162/1 publication-title: Eng. Aspects doi: 10.1016/j.colsurfa.2021.126596 – volume: 25 start-page: 101232 year: 2021 ident: D4TA00736K/cit203/1 publication-title: Surf. Interfaces doi: 10.1016/j.surfin.2021.101232 – volume: 11 start-page: 24519 year: 2023 ident: D4TA00736K/cit74/1 publication-title: J. Mater. Chem. A doi: 10.1039/D3TA05158G – volume: 33 start-page: 2105163 year: 2021 ident: D4TA00736K/cit256/1 publication-title: Adv. Mater. doi: 10.1002/adma.202105163 – volume: 427 start-page: 213554 year: 2021 ident: D4TA00736K/cit80/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2020.213554 – volume: 3 start-page: 1800415 year: 2019 ident: D4TA00736K/cit113/1 publication-title: Small Methods doi: 10.1002/smtd.201800415 – volume: 25 start-page: 7530 year: 2015 ident: D4TA00736K/cit222/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201503662 – volume: 76 start-page: 109873 year: 2024 ident: D4TA00736K/cit28/1 publication-title: J. Energy Storage doi: 10.1016/j.est.2023.109873 – volume: 452 start-page: 139524 year: 2023 ident: D4TA00736K/cit248/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.139524 – volume: 58 start-page: 3429 year: 2022 ident: D4TA00736K/cit43/1 publication-title: Chem. Commun. doi: 10.1039/D1CC06340E – volume: 10 start-page: 5631 year: 2022 ident: D4TA00736K/cit272/1 publication-title: J. Mater. Chem. A doi: 10.1039/D2TA00135G – volume: 14 start-page: 17372 year: 2022 ident: D4TA00736K/cit211/1 publication-title: Nanoscale doi: 10.1039/D2NR04841H – volume: 106 start-page: 100579 year: 2019 ident: D4TA00736K/cit21/1 publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2019.100579 – volume: 58 start-page: 5018 year: 2019 ident: D4TA00736K/cit153/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201900787 – volume: 3 start-page: 608 year: 2022 ident: D4TA00736K/cit212/1 publication-title: SmartMat doi: 10.1002/smm2.1088 – volume: 8 start-page: 1801193 year: 2018 ident: D4TA00736K/cit18/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801193 – volume: 7 start-page: 5333 year: 2019 ident: D4TA00736K/cit219/1 publication-title: J. Mater. Chem. doi: 10.1039/C8TA10998B – volume: 11 start-page: 2003759 year: 2021 ident: D4TA00736K/cit140/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202003759 – volume: 24 start-page: 23 year: 2021 ident: D4TA00736K/cit238/1 publication-title: J. Nanopart. Res. doi: 10.1007/s11051-022-05411-9 – volume: 29 start-page: e202300137 year: 2023 ident: D4TA00736K/cit111/1 publication-title: Chem. - Eur. J. doi: 10.1002/chem.202300137 – volume: 60 start-page: 2056 year: 2021 ident: D4TA00736K/cit4/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.0c03634 – volume: 28 start-page: 1801554 year: 2018 ident: D4TA00736K/cit131/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201801554 – volume: 10 start-page: 16457 year: 2022 ident: D4TA00736K/cit178/1 publication-title: J. Mater. Chem. A doi: 10.1039/D2TA02470E – volume: 87 start-page: 540 year: 2023 ident: D4TA00736K/cit10/1 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2023.08.042 – volume: 48 start-page: 14749 year: 2023 ident: D4TA00736K/cit41/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2022.12.313 – volume: 31 start-page: 1804973 year: 2019 ident: D4TA00736K/cit118/1 publication-title: Adv. Mater. doi: 10.1002/adma.201804973 – volume: 26 start-page: 7109 year: 2020 ident: D4TA00736K/cit99/1 publication-title: Chem. - Eur. J. doi: 10.1002/chem.202000207 – volume: 2 start-page: 100027 year: 2020 ident: D4TA00736K/cit103/1 publication-title: EnergyChem doi: 10.1016/j.enchem.2020.100027 – volume: 7 start-page: 20999 year: 2015 ident: D4TA00736K/cit252/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b07024 – volume: 469 start-page: 214664 year: 2022 ident: D4TA00736K/cit101/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2022.214664 – volume: 9 start-page: 1692 year: 2018 ident: D4TA00736K/cit149/1 publication-title: Chem. Sci. doi: 10.1039/C7SC05295B – volume: 4 start-page: 1290 year: 2016 ident: D4TA00736K/cit206/1 publication-title: J. Mater. Chem. A doi: 10.1039/C5TA09473A – volume: 61 start-page: 9514 year: 2022 ident: D4TA00736K/cit42/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.2c00542 – volume: 11 start-page: 2201416 year: 2023 ident: D4TA00736K/cit117/1 publication-title: Energy Technol. doi: 10.1002/ente.202201416 – volume: 19 start-page: 2301449 year: 2023 ident: D4TA00736K/cit45/1 publication-title: Small doi: 10.1002/smll.202301449 – volume: 362 start-page: 743 year: 2019 ident: D4TA00736K/cit182/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.01.081 – volume: 6 start-page: 1175 year: 2022 ident: D4TA00736K/cit284/1 publication-title: Sustainable Energy Fuels doi: 10.1039/D1SE01883C – volume: 9 start-page: 27252 year: 2021 ident: D4TA00736K/cit52/1 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA08777K – volume: 57 start-page: 9604 year: 2018 ident: D4TA00736K/cit158/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201800269 – volume: 10 start-page: 27712 year: 2018 ident: D4TA00736K/cit167/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b04223 – volume: 74 start-page: 104868 year: 2020 ident: D4TA00736K/cit245/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104868 – volume: 7 start-page: 1700885 year: 2017 ident: D4TA00736K/cit123/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700885 – volume: 42 start-page: 18426 year: 2018 ident: D4TA00736K/cit229/1 publication-title: New J. Chem. doi: 10.1039/C8NJ04402C – volume: 132 start-page: 18391 year: 2020 ident: D4TA00736K/cit175/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.202008129 – volume: 2 start-page: 8048 year: 2014 ident: D4TA00736K/cit275/1 publication-title: J. Mater. Chem. A doi: 10.1039/C4TA00200H – volume: 9 start-page: 5254 year: 2017 ident: D4TA00736K/cit280/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b14801 – volume: 19 start-page: 2207266 year: 2023 ident: D4TA00736K/cit46/1 publication-title: Small doi: 10.1002/smll.202207266 – volume: 7 start-page: 1700518 year: 2017 ident: D4TA00736K/cit96/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700518 – start-page: 1 volume-title: Layer. Mater. Energy Storage Convers. year: 2019 ident: D4TA00736K/cit93/1 – volume: 15 start-page: 3119 year: 2022 ident: D4TA00736K/cit55/1 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE03614A – volume: 470 start-page: 214699 year: 2022 ident: D4TA00736K/cit66/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2022.214699 – volume: 2 start-page: 13509 year: 2014 ident: D4TA00736K/cit253/1 publication-title: J. Mater. Chem. A doi: 10.1039/C4TA01241K – volume: 62 start-page: e202214707 year: 2023 ident: D4TA00736K/cit70/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202214707 – volume: 54 start-page: 229 year: 2023 ident: D4TA00736K/cit106/1 publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(23)64532-2 – volume: 61 start-page: e202116934 year: 2022 ident: D4TA00736K/cit29/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202116934 – volume: 9 start-page: 524 year: 2020 ident: D4TA00736K/cit100/1 publication-title: ChemistryOpen doi: 10.1002/open.201900324 – volume: 3 start-page: 428 year: 2013 ident: D4TA00736K/cit287/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201200833 – volume: 387 start-page: 122982 year: 2020 ident: D4TA00736K/cit213/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122982 – volume: 63 start-page: 5642 year: 2024 ident: D4TA00736K/cit71/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.4c00053 – volume: 12 start-page: 187 year: 2019 ident: D4TA00736K/cit115/1 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE01011K – volume: 58 start-page: 4227 year: 2019 ident: D4TA00736K/cit141/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201813634 – volume: 12 start-page: 4552 year: 2020 ident: D4TA00736K/cit254/1 publication-title: Nanoscale doi: 10.1039/C9NR10491G – volume: 43 start-page: 5700 year: 2014 ident: D4TA00736K/cit23/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00106K – volume: 10 start-page: 5082 year: 2022 ident: D4TA00736K/cit242/1 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA10326A – volume: 9 start-page: 34085 year: 2017 ident: D4TA00736K/cit209/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b10334 – volume: 249 start-page: 318 year: 2018 ident: D4TA00736K/cit230/1 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2017.10.145 – volume: 51 start-page: 6417 year: 2022 ident: D4TA00736K/cit65/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D1CS00891A – volume: 245 start-page: 528 year: 2019 ident: D4TA00736K/cit143/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2019.01.007 – volume: 7 start-page: 16357 year: 2015 ident: D4TA00736K/cit214/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b03414 – volume: 9 start-page: 2885 year: 2018 ident: D4TA00736K/cit134/1 publication-title: Nat. Commun. doi: 10.1038/s41467-018-05341-y – volume: 130 start-page: 1906 year: 2018 ident: D4TA00736K/cit161/1 publication-title: Angew. Chem. doi: 10.1002/ange.201711376 – volume: 11 start-page: 149 year: 2016 ident: D4TA00736K/cit44/1 publication-title: Nat. Protoc. doi: 10.1038/nprot.2016.001 – volume: 40 start-page: 2736 year: 2021 ident: D4TA00736K/cit26/1 publication-title: Organometallics doi: 10.1021/acs.organomet.1c00376 – volume: 582 start-page: 124 year: 2021 ident: D4TA00736K/cit172/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.08.041 – volume: 97 start-page: 107146 year: 2022 ident: D4TA00736K/cit81/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107146 – volume: 11 start-page: 7679 year: 2023 ident: D4TA00736K/cit246/1 publication-title: J. Mater. Chem. A doi: 10.1039/D2TA09766D – volume: 305 start-page: 217 year: 2013 ident: D4TA00736K/cit34/1 publication-title: J. Catal. doi: 10.1016/j.jcat.2013.05.021 – volume: 10 start-page: 10 year: 2022 ident: D4TA00736K/cit54/1 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA08646D – volume: 7 start-page: 7083 year: 2013 ident: D4TA00736K/cit269/1 publication-title: ACS Nano doi: 10.1021/nn4023894 – volume: 50 start-page: 472 year: 2017 ident: D4TA00736K/cit299/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00479 – volume: 10 start-page: 10209 year: 2019 ident: D4TA00736K/cit98/1 publication-title: Chem. Sci. doi: 10.1039/C9SC03916C – volume: 126 start-page: 107024 year: 2021 ident: D4TA00736K/cit69/1 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2021.107024 – volume: 10 start-page: 25406 year: 2022 ident: D4TA00736K/cit301/1 publication-title: J. Mater. Chem. A doi: 10.1039/D2TA05756E – volume: 12 start-page: 4827 year: 2021 ident: D4TA00736K/cit164/1 publication-title: Nat. Commun. doi: 10.1038/s41467-021-25095-4 – volume: 23 start-page: 100731 year: 2022 ident: D4TA00736K/cit249/1 publication-title: Mater. Today Chem. doi: 10.1016/j.mtchem.2021.100731 – volume: 410 start-page: 213221 year: 2020 ident: D4TA00736K/cit30/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2020.213221 – volume: 461 start-page: 214505 year: 2022 ident: D4TA00736K/cit102/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2022.214505 – volume: 11 start-page: 44109 year: 2019 ident: D4TA00736K/cit264/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b13729 – volume: 15 start-page: e1900348 year: 2019 ident: D4TA00736K/cit145/1 publication-title: Small doi: 10.1002/smll.201900348 – volume: 6 start-page: 1598 year: 2010 ident: D4TA00736K/cit33/1 publication-title: Small doi: 10.1002/smll.201000773 – volume: 357 start-page: 136850 year: 2020 ident: D4TA00736K/cit144/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2020.136850 – volume: 14 start-page: 36882 year: 2022 ident: D4TA00736K/cit58/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c10346 – volume: 4 start-page: 1600371 year: 2017 ident: D4TA00736K/cit130/1 publication-title: Adv. Sci. doi: 10.1002/advs.201600371 – volume: 30 start-page: 1704303 year: 2018 ident: D4TA00736K/cit97/1 publication-title: Adv. Mater. doi: 10.1002/adma.201704303 – volume: 54 start-page: 712 year: 2021 ident: D4TA00736K/cit119/1 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.06.016 – volume: 236 start-page: 569 year: 2018 ident: D4TA00736K/cit155/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2018.05.054 – volume: 19 start-page: 10 year: 2012 ident: D4TA00736K/cit133/1 publication-title: Catal. Commun. doi: 10.1016/j.catcom.2011.12.012 – volume: 47 start-page: 12927 year: 2022 ident: D4TA00736K/cit174/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2022.02.037 – volume: 10 start-page: 905 year: 2017 ident: D4TA00736K/cit250/1 publication-title: Energy Environ. Sci. doi: 10.1039/C7EE00398F – volume: 10 start-page: 4475 year: 2022 ident: D4TA00736K/cit49/1 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA10213C – volume: 882 start-page: 114993 year: 2021 ident: D4TA00736K/cit237/1 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2021.114993 – volume-title: Advanced Catalysts Based on Metal-Organic Frameworks, Part 1 year: 2023 ident: D4TA00736K/cit8/1 – volume: 5 start-page: 11100 year: 2017 ident: D4TA00736K/cit204/1 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA01308F – volume: 298 start-page: 110064 year: 2020 ident: D4TA00736K/cit86/1 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2020.110064 – volume: 33 start-page: 2213095 year: 2023 ident: D4TA00736K/cit1/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202213095 – volume: 117 start-page: 7190 year: 2017 ident: D4TA00736K/cit116/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00504 – volume: 7 start-page: 13096 year: 2019 ident: D4TA00736K/cit150/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA03498F – volume: 58 start-page: 16100 year: 2019 ident: D4TA00736K/cit185/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.9b02658 – volume: 32 start-page: 2263 year: 2021 ident: D4TA00736K/cit132/1 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2020.12.015 – volume: 40 start-page: 9746 year: 2016 ident: D4TA00736K/cit290/1 publication-title: New J. Chem. doi: 10.1039/C6NJ02179D – volume: 345 start-page: 136225 year: 2020 ident: D4TA00736K/cit202/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2020.136225 – volume: 24 start-page: 2273318 year: 2023 ident: D4TA00736K/cit181/1 publication-title: Int. J. Pavement Eng. doi: 10.1080/10298436.2023.2273318 – volume: 8 start-page: 2101599 year: 2021 ident: D4TA00736K/cit240/1 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.202101599 – volume: 199 start-page: 249 year: 2022 ident: D4TA00736K/cit186/1 publication-title: Carbon doi: 10.1016/j.carbon.2022.07.057 – volume: 10 start-page: 1179 year: 2022 ident: D4TA00736K/cit6/1 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA07237D – volume: 15 start-page: 37300 year: 2023 ident: D4TA00736K/cit73/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.3c04506 – volume: 470 start-page: 144340 year: 2023 ident: D4TA00736K/cit244/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.144340 – volume: 8 start-page: 15341 year: 2017 ident: D4TA00736K/cit154/1 publication-title: Nat. Commun. doi: 10.1038/ncomms15341 – volume: 23 start-page: 16637 year: 2017 ident: D4TA00736K/cit148/1 publication-title: Chem.–Eur. J. doi: 10.1002/chem.201703851 – volume: 121 start-page: 12278 year: 2021 ident: D4TA00736K/cit53/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00243 – volume: 179 start-page: 107506 year: 2022 ident: D4TA00736K/cit235/1 publication-title: Microchem. J. doi: 10.1016/j.microc.2022.107506 – volume: 11 start-page: 5222 year: 2023 ident: D4TA00736K/cit3/1 publication-title: J. Mater. Chem. A doi: 10.1039/D2TA09369C – volume: 11 start-page: 6090 year: 2023 ident: D4TA00736K/cit11/1 publication-title: J. Mater. Chem. A doi: 10.1039/D2TA07938K – volume: 59 start-page: 15467 year: 2020 ident: D4TA00736K/cit156/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.0c02504 – volume: 46 start-page: 10773 year: 2021 ident: D4TA00736K/cit146/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.12.192 – volume: 33 start-page: 2302659 year: 2023 ident: D4TA00736K/cit27/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202302659 – volume: 46 start-page: 3453 year: 2017 ident: D4TA00736K/cit87/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00109F – volume: 11 start-page: 19 year: 2011 ident: D4TA00736K/cit296/1 publication-title: Nat. Mater. doi: 10.1038/nmat3191 – volume: 270 start-page: 395 year: 2018 ident: D4TA00736K/cit232/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.03.033 – volume: 47 start-page: 14679 year: 2018 ident: D4TA00736K/cit173/1 publication-title: Dalton Trans. doi: 10.1039/C8DT02706D – volume: 11 start-page: 9593 year: 2023 ident: D4TA00736K/cit195/1 publication-title: J. Mater. Chem. C doi: 10.1039/D3TC00970J – volume: 2 start-page: 176 year: 2020 ident: D4TA00736K/cit241/1 publication-title: Carbon Energy doi: 10.1002/cey2.44 – volume: 2 start-page: 1158 year: 2013 ident: D4TA00736K/cit288/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2013.04.008 – volume: 12 start-page: 48495 year: 2020 ident: D4TA00736K/cit139/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c11722 – volume: 26 start-page: 3258 year: 2014 ident: D4TA00736K/cit298/1 publication-title: Adv. Mater. doi: 10.1002/adma.201305492 |
SSID | ssj0000800699 |
Score | 2.635181 |
SecondaryResourceType | review_article |
Snippet | Energy crises are currently the main challenges for human life. Promising solutions are expected from research on novel materials with a wide range of... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 11149 |
SubjectTerms | Crystals Energy storage Functional materials Heavy metals Hybrids Manganese Metal-organic frameworks Metals Organic matter Oxidation Porosity Transition metals Vanadium |
Title | Structure-property-performance relationship of vanadium- and manganese-based metal-organic frameworks and their derivatives for energy storage and conversion applications |
URI | https://www.proquest.com/docview/3054426819 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELb2cYED4rWisCBLcIEqSxI7r2MFXS1QFsG2Um-R4zjLsqVd9bHS9sR_4I_wm_gljO34ASoIuESR4zpN5rNnMv5mBqEnKRM0qTOY30meBpQXLKionO5xwVnKKQ8rGTv89jg9GtHX42S8tf3MYy2tltUBX2-MK_kfqUIbyFVGyf6DZO2g0ADnIF84goTh-FcyPlHJX1dzYSgL5EL61ufLK9fgBQbMDfFNErTASLxUhK_V50DtIECfUybrUQZSs9WytjSb2HF09SfebQyZa2G4l2eyxPhcFUmTGWxVCnEdUCiJl5ISpEPnppfaNdf198x_YxuDGa3fX5ebgnQH3Z6OLTJXvBsp57-JBJNkX7tP0KvYmulg-g9ibVXQCZNOUOX5ncETTOwFUDafZGyMTqyw-Dg77yoSutt30Gvj-7Or2cr3mMRUbvZHzmOq_TKGFKtIL-2TuLU3DpNQplnVqkH4bboAr1UesT9JCk8VgBLRyVhbuyKSSVE3Kq2QyJyvNV0yuW-anjvVbOgIx-_Kw9FgUA774-E22o3hkwjW9N1ef_hqYD2K0vZPVcFU--9NPl5SPHfD_2yBuc-q7bmpeaNsq-FNdKMVPO5phN9CW2J6G133UmXeQd8s1r9_-WpQLk8dvrGPbzxrsMU3BoDgX_CNFb5hhBbZ2CFbdVfIxh6yMdwHa8DhFtmqo0M29pF9F40O-8MXR0FbbSTgcR4tgzTMswKs8TSnVV6EPGIFZQQaoqSi8MYZT2T2yrTICaFJUxESVTXLkjiLKlJTQfbQznQ2FfcQbpqsEZwwwUUFnyN53tR1JngR1hFtOE866KmRQMnbVPyyIsykVJQQUpQv6bCnpPWmgx7bvhc6Ac3GXvtGkGW7QC1KUOUUDHCw-TtoD4Rrf--wcP_Pv3uArrkJtI92QNLiIRjhy-pRi74fdAHsQQ |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure%E2%80%93property%E2%80%93performance+relationship+of+vanadium-+and+manganese-based+metal%E2%80%93organic+frameworks+and+their+derivatives+for+energy+storage+and+conversion+applications&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Abazari%2C+Reza&rft.au=Sanati%2C+Soheila&rft.au=Nanjundan%2C+Ashok+Kumar&rft.au=Wang%2C+Qiyou&rft.date=2024-05-14&rft.pub=Royal+Society+of+Chemistry&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=12&rft.issue=19&rft.spage=11149&rft.epage=11175&rft_id=info:doi/10.1039%2Fd4ta00736k&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |