Sparse Bayesian modelling of underreported count data
We consider Bayesian inference for regression models of count data subject to underreporting. For the data generating process of counts as well as the fallible reporting process a joint model is specified, where the outcomes in both processes are related to a set of potential covariates. Identificat...
Saved in:
Published in | Statistical modelling Vol. 16; no. 1; pp. 24 - 46 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New Delhi, India
SAGE Publications
01.02.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1471-082X 1477-0342 |
DOI | 10.1177/1471082X15588398 |
Cover
Loading…
Abstract | We consider Bayesian inference for regression models of count data subject to underreporting. For the data generating process of counts as well as the fallible reporting process a joint model is specified, where the outcomes in both processes are related to a set of potential covariates. Identification of the joint model is achieved by additional information provided through validation data and incorporation of variable selection. For posterior inference we propose a convenient Markov chain Monte Carlo (MCMC) sampling scheme which relies on data augmentation and auxiliary mixture sampling techniques for this two-part model. Performance of the method is illustrated for simulated data and applied to analyse real data, collected to estimate risk of cervical cancer death. |
---|---|
AbstractList | We consider Bayesian inference for regression models of count data subject to underreporting. For the data generating process of counts as well as the fallible reporting process a joint model is specified, where the outcomes in both processes are related to a set of potential covariates. Identification of the joint model is achieved by additional information provided through validation data and incorporation of variable selection. For posterior inference we propose a convenient Markov chain Monte Carlo (MCMC) sampling scheme which relies on data augmentation and auxiliary mixture sampling techniques for this two-part model. Performance of the method is illustrated for simulated data and applied to analyse real data, collected to estimate risk of cervical cancer death. |
Author | Wagner, Helga Dvorzak, Michaela |
Author_xml | – sequence: 1 givenname: Michaela surname: Dvorzak fullname: Dvorzak, Michaela email: michaela.dvorzak@joanneum.at – sequence: 2 givenname: Helga surname: Wagner fullname: Wagner, Helga |
BookMark | eNp9j01LAzEQhoNUsK3ePe4fWM3kY5M9alErFDyo4G2Z5qNs2SYlSQ_997bWU0FP8zIzzwvPhIxCDI6QW6B3AErdg1BANfsCKbXmrb4g48NK1ZQLNvrJUB_vV2SS85pSBqppx0S-bzFlVz3i3uUeQ7WJ1g1DH1ZV9NUuWJeS28ZUnK1M3IVSWSx4TS49Dtnd_M4p-Xx--pjN68Xby-vsYVEbpqHUUnuqlVxyL2zbAmuWEqVgzGurdANceuE4CkUZl8q0VoFwlhquBUopDedT0px6TYo5J-c70xcsfQwlYT90QLujfHcufwDpGbhN_QbT_j-kPiEZV65bx10KB7W__78BQtxpMw |
CitedBy_id | crossref_primary_10_1007_s10514_022_10070_9 crossref_primary_10_1093_biomet_asae027 crossref_primary_10_1093_biostatistics_kxad027 crossref_primary_10_3390_ijerph19063327 crossref_primary_10_1007_s11205_023_03225_3 crossref_primary_10_1093_aje_kwab266 crossref_primary_10_4054_DemRes_2017_36_2 crossref_primary_10_1214_20_BJPS493 crossref_primary_10_12688_f1000research_74401_1 crossref_primary_10_1016_j_ecosta_2024_02_001 crossref_primary_10_1016_j_sste_2024_100658 crossref_primary_10_1080_01621459_2019_1573732 crossref_primary_10_1145_3708497 crossref_primary_10_1080_10618600_2020_1840997 crossref_primary_10_1016_j_lana_2023_100564 crossref_primary_10_1214_20_BA1244 crossref_primary_10_1080_03610918_2024_2420262 crossref_primary_10_1002_sim_7456 crossref_primary_10_1111_biom_13371 crossref_primary_10_1093_aje_kwae199 crossref_primary_10_1145_3490953 crossref_primary_10_1371_journal_pntd_0009700 crossref_primary_10_1214_24_AOAS1928 |
Cites_doi | 10.1002/bimj.200290006 10.2307/2532315 10.1016/j.aap.2005.11.006 10.1017/CBO9781139013567 10.1145/2414416.2414419 10.1007/s11222-008-9109-4 10.1080/01621459.1993.10476353 10.1002/9781119013563 10.1007/BF01180702 10.1002/0470090456.ch21 10.1016/S0378-3758(97)00073-6 10.1016/j.econlet.2012.06.001 10.1080/01621459.1988.10478694 10.1061/41127(382)110 10.1214/06-BA105 10.32614/CRAN.package.pogit 10.1002/sim.3134 10.1214/009053604000001147 10.1177/0049124103251951 10.1080/01621459.2013.829001 10.2307/2347906 10.1016/j.csda.2011.06.033 10.1198/106186008X289849 10.1016/j.csda.2010.04.003 10.1093/biomet/63.3.581 |
ContentType | Journal Article |
Copyright | 2016 SAGE Publications |
Copyright_xml | – notice: 2016 SAGE Publications |
DBID | AAYXX CITATION |
DOI | 10.1177/1471082X15588398 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1477-0342 |
EndPage | 46 |
ExternalDocumentID | 10_1177_1471082X15588398 10.1177_1471082X15588398 |
GroupedDBID | -TM .2L 01A 0R~ 123 1~K 29Q 31W 31X 4.4 54M 56W 5VS 7WY 88I 8FE 8FG 8FL 8R4 8R5 8V8 AADIR AADUE AAGLT AAJPV AAQDB AAQXI AARIX AATAA ABAWP ABCCA ABCJG ABEIX ABFXH ABHQH ABIDT ABJCF ABKRH ABPNF ABQPY ABQXT ABRHV ABTDE ABUJY ABUWG ACDXX ACFUR ACFZE ACGFS ACGOD ACIWK ACJER ACLZU ACOFE ACOXC ACROE ACRPL ACSIQ ACUIR ADDLC ADEBD ADNMO ADNON ADRRZ ADTOS ADYCS AEDXQ AEMOZ AENEX AEOBU AESZF AEUHG AEVPJ AEWDL AEWHI AEXNY AFEET AFKRA AFKRG AFMOU AFQAA AFUIA AFWMB AGDVU AGKLV AGNHF AGNWV AGQPQ AGWNL AHDMH AHHFK AHWHD AJUZI ALFTD ALMA_UNASSIGNED_HOLDINGS AMVHM ANDLU ARAPS ARTOV ASPBG AUTPY AUVAJ AVWKF AYPQM AZFZN AZQEC B8T B8Z BDZRT BENPR BEZIV BGLVJ BMVBW BPACV BPHCQ CAG CCPQU CEADM COF CS3 DG~ DOPDO DV7 DV8 DWQXO EBS EJD EMI EST F5P FEDTE FHBDP FRNLG GNUQQ GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION H13 HCIFZ HF~ HVGLF HZ~ J8X J9A K1G K60 K6V K6~ K7- L6V M0C M2P M7S N9A O9- P.B P2P P62 PHGZM PHGZT PQBIZ PQBZA PQQKQ PROAC PTHSS Q2X Q7P ROL S01 SASJQ SAUOL SCNPE SFC SFK SFT SGU SGV SHB SPJ SSDHQ TH9 TN5 ZPLXX ZPPRI ~32 AAYXX ACCVC AJGYC AMNSR CITATION |
ID | FETCH-LOGICAL-c281t-58f0875b3f4d99126b5a5422f8d786135f4e3a4702357c9d714ed0c384a555c33 |
ISSN | 1471-082X |
IngestDate | Tue Jul 01 05:26:14 EDT 2025 Thu Apr 24 23:12:59 EDT 2025 Tue Jun 17 22:45:03 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | MCMC underreporting variable selection Poisson regression parameter identification |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c281t-58f0875b3f4d99126b5a5422f8d786135f4e3a4702357c9d714ed0c384a555c33 |
PageCount | 23 |
ParticipantIDs | crossref_citationtrail_10_1177_1471082X15588398 crossref_primary_10_1177_1471082X15588398 sage_journals_10_1177_1471082X15588398 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20160200 2016-02-00 |
PublicationDateYYYYMMDD | 2016-02-01 |
PublicationDate_xml | – month: 2 year: 2016 text: 20160200 |
PublicationDecade | 2010 |
PublicationPlace | New Delhi, India |
PublicationPlace_xml | – name: New Delhi, India |
PublicationTitle | Statistical modelling |
PublicationYear | 2016 |
Publisher | SAGE Publications |
Publisher_xml | – name: SAGE Publications |
References | Moreno, Girón 1998; 66 Tüchler 2008; 17 Li, Trivedi, Guo 2003; 31 Rubin 1976; 63 Wagner, Duller 2012; 56 Sposto, Preston, Shimizu, Mabuchi 1992; 48 Holmes, Held 2006; 1 Fussl, Frühwirth-Schnatter, Frühwirth 2013; 23 Amoros, Martin, Laumon 2006; 38 George, McCulloch 1993; 88 Mitchell, Beauchamp 1988; 83 Papadopoulos, Santos 2012; 117 Stamey, Young, Seaman 2008; 27 Whittemore, Gong 1991; 40 George, McCulloch 1997; 7 Polson, Scott, Windle 2013; 108 Winkelmann, Zimmermann 1993 Powers, Gerlach, Stamey 2010; 54 Bratcher, Stamey 2002; 44 Gelman, Goegebeur, Tuerlinckx, Van 2000; 49 Winkelmann 1996; 21 Frühwirth-Schnatter, Frühwirth, Held, Rue 2009; 19 Ishwaran, Rao 2005; 33 Ma, Li 2010 bibr3-1471082X15588398 Gelman A (bibr7-1471082X15588398) 2000; 49 bibr25-1471082X15588398 bibr20-1471082X15588398 bibr11-1471082X15588398 bibr17-1471082X15588398 bibr24-1471082X15588398 bibr8-1471082X15588398 bibr26-1471082X15588398 bibr4-1471082X15588398 bibr23-1471082X15588398 bibr5-1471082X15588398 bibr10-1471082X15588398 bibr18-1471082X15588398 bibr27-1471082X15588398 bibr14-1471082X15588398 bibr19-1471082X15588398 bibr22-1471082X15588398 bibr1-1471082X15588398 bibr6-1471082X15588398 bibr15-1471082X15588398 bibr13-1471082X15588398 Winkelmann R (bibr28-1471082X15588398) 1993 bibr2-1471082X15588398 bibr21-1471082X15588398 bibr16-1471082X15588398 bibr12-1471082X15588398 George EI (bibr9-1471082X15588398) 1997; 7 |
References_xml | – volume: 31 start-page: 514 year: 2003 end-page: 544 article-title: Modeling response bias in count: A structural approach with an application to the national crime victimization survey data. – volume: 108 start-page: 1339 year: 2013 end-page: 1349 article-title: Bayesian inference for logistic models using Póly-Gamma latent variables. – volume: 44 start-page: 946 year: 2002 end-page: 956 article-title: Estimation of Poisson rates with misclassified counts. – volume: 27 start-page: 2440 year: 2008 end-page: 2452 article-title: A Bayesian approach to adjust for diagnostic misclassification between two mortality causes in Poisson regression. – volume: 38 start-page: 627 year: 2006 end-page: 635 article-title: Under-reporting of road crash casualties in France. – volume: 19 start-page: 479 year: 2009 end-page: 492 article-title: Improved auxiliary mixture sampling for hierarchical models of non-Gaussian data. – volume: 66 start-page: 147 year: 1998 end-page: 159 article-title: Estimating with incomplete count data –A Bayesian approach. – volume: 40 start-page: 81 year: 1991 end-page: 93 article-title: Poisson regression with misclassified counts: Application to cervical cancer mortality rates. – volume: 23 start-page: 1 year: 2013 end-page: 21 article-title: Efficient MCMC for binomial logit models. – volume: 48 start-page: 605 year: 1992 end-page: 617 article-title: The effect of diagnostic misclassification on non-cancer and cancer mortality dose response in A-bomb survivors. – volume: 83 start-page: 1023 year: 1988 end-page: 1032 article-title: Bayesian variable selection in linear regression. – start-page: 1022 year: 2010 end-page: 1033 article-title: Bayesian modeling of frequency-severity indeterminacy with an application to traffic crashes on two-lane highways. – volume: 49 start-page: 247 year: 2000 end-page: 268 article-title: Diagnostic checks for discrete data regression models using posterior predictive simulations. – volume: 1 start-page: 145 year: 2006 end-page: 168 article-title: Bayesian auxiliary variable models for binary and multinomial regression. – volume: 63 start-page: 581 year: 1976 end-page: 592 article-title: Inference and missing data. – volume: 88 start-page: 881 year: 1993 end-page: 889 article-title: Variable selection via Gibbs sampling. – volume: 7 start-page: 339 year: 1997 end-page: 373 article-title: Approaches for Bayesian variable selection. – volume: 117 start-page: 365 year: 2012 end-page: 367 article-title: Identification issues in some double-index models for non-negative data. – volume: 33 start-page: 730 year: 2005 end-page: 773 article-title: Spike and slab variable selection: Frequentist and Bayesian strategies. – volume: 56 start-page: 1256 year: 2012 end-page: 1274 article-title: Bayesian model selection for logistic regression models with random intercept. – volume: 17 start-page: 76 year: 2008 end-page: 94 article-title: Bayesian variable selection for logistic models using auxiliary mixture sampling. – volume: 21 start-page: 575 year: 1996 end-page: 587 article-title: Markov Chain Monte Carlo analysis of underreported count data with an application to worker absenteeism. – start-page: 93 year: 1993 end-page: 18 article-title: Poisson-Logistic regression. – volume: 54 start-page: 3289 year: 2010 end-page: 3299 article-title: Bayesian variable selection for Poisson regression with underreported responses. – ident: bibr2-1471082X15588398 doi: 10.1002/bimj.200290006 – ident: bibr22-1471082X15588398 doi: 10.2307/2532315 – ident: bibr1-1471082X15588398 doi: 10.1016/j.aap.2005.11.006 – start-page: 93 year: 1993 ident: bibr28-1471082X15588398 publication-title: Department of Economics, University of Munich – ident: bibr3-1471082X15588398 doi: 10.1017/CBO9781139013567 – ident: bibr6-1471082X15588398 doi: 10.1145/2414416.2414419 – ident: bibr5-1471082X15588398 doi: 10.1007/s11222-008-9109-4 – ident: bibr8-1471082X15588398 doi: 10.1080/01621459.1993.10476353 – ident: bibr13-1471082X15588398 doi: 10.1002/9781119013563 – ident: bibr27-1471082X15588398 doi: 10.1007/BF01180702 – ident: bibr14-1471082X15588398 doi: 10.1002/0470090456.ch21 – ident: bibr17-1471082X15588398 doi: 10.1016/S0378-3758(97)00073-6 – ident: bibr18-1471082X15588398 doi: 10.1016/j.econlet.2012.06.001 – ident: bibr16-1471082X15588398 doi: 10.1080/01621459.1988.10478694 – ident: bibr15-1471082X15588398 doi: 10.1061/41127(382)110 – ident: bibr10-1471082X15588398 doi: 10.1214/06-BA105 – ident: bibr4-1471082X15588398 doi: 10.32614/CRAN.package.pogit – volume: 7 start-page: 339 year: 1997 ident: bibr9-1471082X15588398 publication-title: Statistica Sinica – ident: bibr23-1471082X15588398 doi: 10.1002/sim.3134 – ident: bibr11-1471082X15588398 doi: 10.1214/009053604000001147 – ident: bibr12-1471082X15588398 doi: 10.1177/0049124103251951 – ident: bibr19-1471082X15588398 doi: 10.1080/01621459.2013.829001 – ident: bibr26-1471082X15588398 doi: 10.2307/2347906 – ident: bibr25-1471082X15588398 doi: 10.1016/j.csda.2011.06.033 – ident: bibr24-1471082X15588398 doi: 10.1198/106186008X289849 – volume: 49 start-page: 247 year: 2000 ident: bibr7-1471082X15588398 publication-title: Applied Statistics – ident: bibr20-1471082X15588398 doi: 10.1016/j.csda.2010.04.003 – ident: bibr21-1471082X15588398 doi: 10.1093/biomet/63.3.581 |
SSID | ssj0021769 |
Score | 2.1388915 |
Snippet | We consider Bayesian inference for regression models of count data subject to underreporting. For the data generating process of counts as well as the fallible... |
SourceID | crossref sage |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 24 |
Title | Sparse Bayesian modelling of underreported count data |
URI | https://journals.sagepub.com/doi/full/10.1177/1471082X15588398 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA46L3oQf-JvehBBJG5tkzY9qigiTBQnzNNI2nQHRydbJ7i_3pc0zbrpRL2UEtKU9kvf-9K87z2EjkUMXodGMeYpl5j4CcUsaISYC98VulQ51wGy98HtM7lr03ZZs92oS3JxHo-_1ZX8B1VoA1yVSvYPyNpBoQHOAV84AsJw_BXGT2-wLJVnl_xDai2kLmvTM3HMSh02KLYEpJKujbL8zCjRLB1VVFNnalYakvJiy23f-4Mxf60E109MOO8aoQy4rS6v_jpwbbSxtXbgmTBwgHbhDMq2EKu8gFMmMvgyFYy9IxXPWfxL_GqTw0LVD1wGbgX8hQEpYxP_U-65z7glGyzomozksyMsoiUP1gZgjZcuXh4em3ad7Ya6kqF9usnudH12jCk2Ugnl0-yitYZWzbLAuSgwXkcLMttAK02bU3e4iWiBtlOi7VjAnH7qTKHtaLQdhfYWer65bl3dYlP0Ascec3NMWaqKDAg_JQlwdy8QlFPieSlLQgbci6ZE-pyEOk9RHCWhS2TSiH1GOKU09v1tVMv6mdxBTqRyFYmIM5cL4Gkug-8RCD_nqh9hwS6qlw_fiU1GeFWYpNeZ98p30am94q3IhvJD3xP1PjvmexnO7bj3h0H30fJkIh-gWj4YyUNghbk4MrPgE6xdV-4 |
linkProvider | SAGE Publications |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED1BOwAD34jy6QEhMRiaxE6csSCqAm0FopUKS2Q7zgJqqzYd4NdjO2koRSDEfo5Ol8TvWb57D-BESI06NJSYJ1xh4sUUM78aYC48R1ircm4bZNt-o0tue7Q3Y_WVV3B8btqqdEZ2sy7-bjMnrndTDVs9jYNMgztbhDIzPLwE5drT_UOrOG05gfWzM_HYLPi8o_z2jC-YNNPQZTGmvgbP0-yy1pKX80mqE3ufE278V_rrsJozT1TLPpUNWFD9TVhpFbKt4y2gj0N9zlXokr8pM1yJrE-OGVhHgwSZcbNRdsegYmRNJpBpMN2Gbv26c9XAua8Cli5zUkxZYnTshZeQWNND1xeUU-K6CYsDpuGdJkR5nARWCkeGceAQFVelxwinlErP24FSf9BXu4BCI4cjQs4cLjQVcJh-5ZpTcm7iCPMrcDGtbCRz0XHjffEaObnO-HxBKnBWrBhmghu_xJ6aOkfTqv8YuPfXwGNYanRazah5077bh2XNjvIW7QMopaOJOtQMJBVH-bf2AbV7y80 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT8IwFG4UEqMP3o147YMx8aFAt3brHvFC8ALBKAk-kXbrXjRAYDzor_e0K6gYjfH9dOnO2n5n6Xe-D6ETFQPq8CgmMpWaMD_hRATVkEjlU2WtyqUlyLaCRofddHnXcXNML4zL4LhsaFUwI3tYm909TNKKu2OsUDhRAbq6gIUCAF4soiLglAf7slh7at83Z39cNLSediaemAEf95TfnvEFlz6RuizO1NdyM9WxlSc09JLn8iSDyb3NiTf--xXW0aqrQHEtXzIbaEH3N9FKcybfOt5C_GEI_7san8tXbZossfXLMY3reJBi03Y2yu8adIKt2QQ2RNNt1KlfPV40iPNXILEnaEa4SI2evfJTlkCZ6AWKS848LxVJKADmecq0L1loJXHiKAkp00k19gWTnPPY93dQoT_o612EIyOLoyIpqFRQElABnx5qSylNHBNBCVWm2e3FTnzceGC89KjTG59PSAmdzUYMc-GNX2JPTa5708z_GLj318BjtNS-rPfurlu3-2gZiiTH1D5AhWw00YdQiGTqyC23d64jzkI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+Bayesian+modelling+of+underreported+count+data&rft.jtitle=Statistical+modelling&rft.au=Dvorzak%2C+Michaela&rft.au=Wagner%2C+Helga&rft.date=2016-02-01&rft.issn=1471-082X&rft.eissn=1477-0342&rft.volume=16&rft.issue=1&rft.spage=24&rft.epage=46&rft_id=info:doi/10.1177%2F1471082X15588398&rft.externalDBID=n%2Fa&rft.externalDocID=10_1177_1471082X15588398 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-082X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-082X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-082X&client=summon |