Phase and interface engineering of nickel carbide nanobranches for efficient hydrogen oxidation catalysis
The hydrogen oxidation reaction (HOR) has recently attracted great attention, yet the poor performance of HOR over the platinum group metal-free (PGMs-free) catalysts in alkaline conditions strongly impedes the development of hydroxide-exchange membrane fuel cells. Here, we demonstrate that the phas...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 9; no. 46; pp. 26323 - 26329 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
30.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The hydrogen oxidation reaction (HOR) has recently attracted great attention, yet the poor performance of HOR over the platinum group metal-free (PGMs-free) catalysts in alkaline conditions strongly impedes the development of hydroxide-exchange membrane fuel cells. Here, we demonstrate that the phase and interface engineering of nickel carbide (Ni
3
C) nanobranches can significantly enhance the alkaline HOR performance. Specifically, such interface engineering is realized through a facile annealing treatment of a branched Ni
3
C nanostructure. As a promising PGMs-free HOR catalyst, the strong interfacial synergy of Ni/Ni
3
C significantly enhances the HOR performance in alkaline media, with the HOR activity being comparable to that of a commercial Pt/C catalyst, and it demonstrates excellent CO tolerance. Mechanism studies show that the interfacial synergy facilitates electron transfer from Ni to Ni
3
C and thus regulates the absorption strengths of *H and *OH. This work opens up a new avenue for the design of high-performance PGM-free catalysts for electrocatalysis and beyond.
A heterogeneous Ni/Ni
3
C interface has been constructed through carefully annealing a classic metal carbide of Ni
3
C, where the strong interfacial synergy can regulate the binding strengths of *H and *OH and thus enhance the HOR performance. |
---|---|
AbstractList | The hydrogen oxidation reaction (HOR) has recently attracted great attention, yet the poor performance of HOR over the platinum group metal-free (PGMs-free) catalysts in alkaline conditions strongly impedes the development of hydroxide-exchange membrane fuel cells. Here, we demonstrate that the phase and interface engineering of nickel carbide (Ni
3
C) nanobranches can significantly enhance the alkaline HOR performance. Specifically, such interface engineering is realized through a facile annealing treatment of a branched Ni
3
C nanostructure. As a promising PGMs-free HOR catalyst, the strong interfacial synergy of Ni/Ni
3
C significantly enhances the HOR performance in alkaline media, with the HOR activity being comparable to that of a commercial Pt/C catalyst, and it demonstrates excellent CO tolerance. Mechanism studies show that the interfacial synergy facilitates electron transfer from Ni to Ni
3
C and thus regulates the absorption strengths of *H and *OH. This work opens up a new avenue for the design of high-performance PGM-free catalysts for electrocatalysis and beyond. The hydrogen oxidation reaction (HOR) has recently attracted great attention, yet the poor performance of HOR over the platinum group metal-free (PGMs-free) catalysts in alkaline conditions strongly impedes the development of hydroxide-exchange membrane fuel cells. Here, we demonstrate that the phase and interface engineering of nickel carbide (Ni3C) nanobranches can significantly enhance the alkaline HOR performance. Specifically, such interface engineering is realized through a facile annealing treatment of a branched Ni3C nanostructure. As a promising PGMs-free HOR catalyst, the strong interfacial synergy of Ni/Ni3C significantly enhances the HOR performance in alkaline media, with the HOR activity being comparable to that of a commercial Pt/C catalyst, and it demonstrates excellent CO tolerance. Mechanism studies show that the interfacial synergy facilitates electron transfer from Ni to Ni3C and thus regulates the absorption strengths of *H and *OH. This work opens up a new avenue for the design of high-performance PGM-free catalysts for electrocatalysis and beyond. The hydrogen oxidation reaction (HOR) has recently attracted great attention, yet the poor performance of HOR over the platinum group metal-free (PGMs-free) catalysts in alkaline conditions strongly impedes the development of hydroxide-exchange membrane fuel cells. Here, we demonstrate that the phase and interface engineering of nickel carbide (Ni 3 C) nanobranches can significantly enhance the alkaline HOR performance. Specifically, such interface engineering is realized through a facile annealing treatment of a branched Ni 3 C nanostructure. As a promising PGMs-free HOR catalyst, the strong interfacial synergy of Ni/Ni 3 C significantly enhances the HOR performance in alkaline media, with the HOR activity being comparable to that of a commercial Pt/C catalyst, and it demonstrates excellent CO tolerance. Mechanism studies show that the interfacial synergy facilitates electron transfer from Ni to Ni 3 C and thus regulates the absorption strengths of *H and *OH. This work opens up a new avenue for the design of high-performance PGM-free catalysts for electrocatalysis and beyond. A heterogeneous Ni/Ni 3 C interface has been constructed through carefully annealing a classic metal carbide of Ni 3 C, where the strong interfacial synergy can regulate the binding strengths of *H and *OH and thus enhance the HOR performance. |
Author | Xu, Yong Zhan, Changhong Wang, Yu Geng, Hongbo Wang, Lu Liu, Liangbin Zhang, Ying Huang, Xiaoqing Chen, Wenxing Li, Deyu Ji, Wangjin |
AuthorAffiliation | State Key Laboratory of Physical Chemistry of Solid Surfaces Institute of Functional Nano & Soft Materials (FUNSOM) Changshu Institute of Technology Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices School of Materials Science and Engineering Shanghai Advanced Research Institute Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices Beijing Institute of Technology Chinese Academy of Science School of Materials Engineering Guangdong University of Technology Soochow University Shanghai Synchrotron Radiation Facility Xia-men University Zhangjiang Laboratory College of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Energy Materials School of Materials and Energy Energy & Catalysis Center |
AuthorAffiliation_xml | – name: Energy & Catalysis Center – name: Institute of Functional Nano & Soft Materials (FUNSOM) – name: Shanghai Advanced Research Institute – name: School of Materials Science and Engineering – name: Zhangjiang Laboratory – name: Guangdong University of Technology – name: School of Materials Engineering – name: Xia-men University – name: Chinese Academy of Science – name: Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices – name: Soochow University – name: Collaborative Innovation Center of Advanced Energy Materials – name: School of Materials and Energy – name: Shanghai Synchrotron Radiation Facility – name: Beijing Institute of Technology – name: College of Chemistry and Chemical Engineering – name: Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices – name: Changshu Institute of Technology – name: State Key Laboratory of Physical Chemistry of Solid Surfaces |
Author_xml | – sequence: 1 givenname: Wangjin surname: Ji fullname: Ji, Wangjin – sequence: 2 givenname: Changhong surname: Zhan fullname: Zhan, Changhong – sequence: 3 givenname: Deyu surname: Li fullname: Li, Deyu – sequence: 4 givenname: Yong surname: Xu fullname: Xu, Yong – sequence: 5 givenname: Ying surname: Zhang fullname: Zhang, Ying – sequence: 6 givenname: Lu surname: Wang fullname: Wang, Lu – sequence: 7 givenname: Liangbin surname: Liu fullname: Liu, Liangbin – sequence: 8 givenname: Yu surname: Wang fullname: Wang, Yu – sequence: 9 givenname: Wenxing surname: Chen fullname: Chen, Wenxing – sequence: 10 givenname: Hongbo surname: Geng fullname: Geng, Hongbo – sequence: 11 givenname: Xiaoqing surname: Huang fullname: Huang, Xiaoqing |
BookMark | eNpFkM1LAzEQxYNUsNZevAsBb0I12ewm2WOp9QMKeqjnJc3OtKk1qckW7H9vtFLnMDPwfvMG3jnp-eCBkEvObjkT9V3LO8M0ExpOSL9gFRupspa94671GRmmtGa5NGOyrvvEva5MAmp8S53vIKKxQMEvnQeIzi9pQOqdfYcNtSYuXAvUGx8W0Xi7gkQxRAqIzjrwHV3t2xiW4Gn4cq3pXPD5qjObfXLpgpyi2SQY_s0BeXuYzidPo9nL4_NkPBvZQvNuVLGqRkTBFxY4Sl2qVoBmqihLhaiYUHWlCqFQcpa1EjGrRoOWuRupxIBcH3y3MXzuIHXNOuyizy-bQrKyqlnFZaZuDpSNIaUI2Gyj-zBx33DW_KTZ3PP5-DfNaYavDnBM9sj9py2-ASBrc4U |
CitedBy_id | crossref_primary_10_1016_j_ccr_2022_214980 crossref_primary_10_1007_s12274_022_4969_z crossref_primary_10_1021_acsmaterialslett_2c00699 crossref_primary_10_1039_D4SC00043A crossref_primary_10_1039_D3QM00947E crossref_primary_10_1016_j_electacta_2023_142673 crossref_primary_10_1021_acsami_2c22931 crossref_primary_10_1002_ejic_202200242 crossref_primary_10_1016_j_nanoen_2022_107877 crossref_primary_10_1039_D3EE04251K crossref_primary_10_1002_cctc_202300056 crossref_primary_10_1021_acsnano_2c00641 crossref_primary_10_1002_sstr_202200281 crossref_primary_10_1002_aenm_202103916 |
Cites_doi | 10.1021/acscatal.8b03338 10.1126/science.1172083 10.1103/PhysRevLett.77.3865 10.1038/376238a0 10.1021/ja5119495 10.1021/acscatal.8b00689 10.1016/j.nanoen.2017.12.008 10.1039/C9TA01916B 10.1016/j.cplett.2019.04.072 10.1021/jacs.8b13228 10.1063/1.472933 10.1073/pnas.1006652108 10.1038/ncomms6848 10.1039/c3ee00045a 10.1002/anie.201902751 10.1103/PhysRevB.54.11169 10.1002/anie.201708484 10.1039/D0EE03609A 10.1021/acscatal.9b01744 10.1038/s41467-020-18585-4 10.1038/s41929-020-0446-9 10.1016/0927-0256(96)00008-0 10.1002/anie.201908194 10.1002/aenm.201601390 10.1039/D0TA02528C 10.1039/C3EE43899F 10.1063/1.3382344 10.1002/anie.202013047 10.1039/C7SC01615H 10.1016/0039-6028(90)90668-X 10.1016/0039-6028(96)80007-0 10.1039/D0SC03917A 10.1021/acscatal.6b02794 10.1021/acsami.8b11942 10.1039/C9EE01743G 10.1002/smll.202001642 10.1103/PhysRevB.50.17953 10.1021/cm200410s 10.1149/08512.0041ecst 10.1002/anie.201916314 10.1002/adfm.202002087 10.1038/s41467-021-22635-w 10.1021/acs.jpcc.0c01070 10.1039/C6NR00778C |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2021 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2021 |
DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI |
DOI | 10.1039/d1ta08038e |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 26329 |
ExternalDocumentID | 10_1039_D1TA08038E d1ta08038e |
GroupedDBID | 0-7 0R 705 AAEMU AAGNR AAIWI AANOJ ABASK ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFRAH AFVBQ AGRSR AGSTE ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV BLAPV BSQNT C6K CKLOX EBS ECGLT EE0 EF- GNO HZ H~N J3I JG O-G O9- R7C RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH UCJ -JG 0R~ AAJAE AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AGEGJ AHGCF APEMP CITATION GGIMP H13 HZ~ RAOCF 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI |
ID | FETCH-LOGICAL-c281t-5059fff31bce1f6847d3e8072447ff7037957237f61047d4ffe80a8e860a8a673 |
ISSN | 2050-7488 |
IngestDate | Thu Oct 10 15:56:26 EDT 2024 Fri Aug 23 01:29:48 EDT 2024 Mon Apr 18 07:58:26 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 46 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c281t-5059fff31bce1f6847d3e8072447ff7037957237f61047d4ffe80a8e860a8a673 |
Notes | 10.1039/d1ta08038e Electronic supplementary information (ESI) available. See DOI |
ORCID | 0000-0003-0552-1385 0000-0001-9669-4358 0000-0002-2525-7086 |
PQID | 2604590516 |
PQPubID | 2047523 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2604590516 crossref_primary_10_1039_D1TA08038E rsc_primary_d1ta08038e |
PublicationCentury | 2000 |
PublicationDate | 2021-11-30 |
PublicationDateYYYYMMDD | 2021-11-30 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | An (D1TA08038E/cit2) 2021; 14 Qin (D1TA08038E/cit3) 2019; 9 Shi (D1TA08038E/cit4) 2017; 7 Duan (D1TA08038E/cit17) 2020; 11 Sheng (D1TA08038E/cit19) 2014; 7 Gasteiger (D1TA08038E/cit1) 2009; 324 Lin (D1TA08038E/cit26) 2021; 12 Xu (D1TA08038E/cit27) 2015; 137 Blöchl (D1TA08038E/cit44) 1994; 50 Yang (D1TA08038E/cit9) 2019; 58 Yang (D1TA08038E/cit31) 2020; 11 Cong (D1TA08038E/cit11) 2018; 44 Kresse (D1TA08038E/cit40) 1996; 6 Grimme (D1TA08038E/cit45) 2010; 132 Sheng (D1TA08038E/cit13) 2015; 6 Ni (D1TA08038E/cit20) 2020; 59 Wang (D1TA08038E/cit21) 2020; 16 Perdew (D1TA08038E/cit43) 1996; 105 Jiang (D1TA08038E/cit7) 2020; 8 Wang (D1TA08038E/cit23) 2019; 12 Tryk (D1TA08038E/cit30) 2018; 85 Schaefer (D1TA08038E/cit22) 2011; 23 Floner (D1TA08038E/cit32) 1990; 234 Davydova (D1TA08038E/cit10) 2018; 8 Ni (D1TA08038E/cit25) 2019; 58 Zhou (D1TA08038E/cit29) 2020; 3 Perdew (D1TA08038E/cit42) 1996; 77 Yang (D1TA08038E/cit33) 2019; 7 Liu (D1TA08038E/cit16) 2019; 141 Singh (D1TA08038E/cit6) 2020; 30 Li (D1TA08038E/cit15) 2017; 56 Hammer (D1TA08038E/cit37) 1995; 376 Shi (D1TA08038E/cit5) 2016; 8 Jiang (D1TA08038E/cit34) 2019; 728 Norskov (D1TA08038E/cit38) 2011; 108 Kresse (D1TA08038E/cit41) 1996; 54 Giles (D1TA08038E/cit8) 2019; 9 Gao (D1TA08038E/cit12) 2017; 8 Liu (D1TA08038E/cit35) 2019; 141 Hou (D1TA08038E/cit28) 2018; 10 Wang (D1TA08038E/cit24) 2017; 7 Sheng (D1TA08038E/cit14) 2013; 6 Wang (D1TA08038E/cit18) 2021; 60 Hammer (D1TA08038E/cit36) 1995; 343 Mao (D1TA08038E/cit39) 2020; 124 |
References_xml | – volume: 9 start-page: 1129 year: 2019 ident: D1TA08038E/cit8 publication-title: ACS Catal. doi: 10.1021/acscatal.8b03338 contributor: fullname: Giles – volume: 324 start-page: 48 year: 2009 ident: D1TA08038E/cit1 publication-title: Science doi: 10.1126/science.1172083 contributor: fullname: Gasteiger – volume: 77 start-page: 3865 year: 1996 ident: D1TA08038E/cit42 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 contributor: fullname: Perdew – volume: 376 start-page: 238 year: 1995 ident: D1TA08038E/cit37 publication-title: Nature doi: 10.1038/376238a0 contributor: fullname: Hammer – volume: 137 start-page: 4119 year: 2015 ident: D1TA08038E/cit27 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5119495 contributor: fullname: Xu – volume: 8 start-page: 6665 year: 2018 ident: D1TA08038E/cit10 publication-title: ACS Catal. doi: 10.1021/acscatal.8b00689 contributor: fullname: Davydova – volume: 44 start-page: 288 year: 2018 ident: D1TA08038E/cit11 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.12.008 contributor: fullname: Cong – volume: 7 start-page: 10936 year: 2019 ident: D1TA08038E/cit33 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA01916B contributor: fullname: Yang – volume: 728 start-page: 19 year: 2019 ident: D1TA08038E/cit34 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2019.04.072 contributor: fullname: Jiang – volume: 141 start-page: 3232 year: 2019 ident: D1TA08038E/cit35 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b13228 contributor: fullname: Liu – volume: 105 start-page: 9982 year: 1996 ident: D1TA08038E/cit43 publication-title: J. Chem. Phys. doi: 10.1063/1.472933 contributor: fullname: Perdew – volume: 108 start-page: 937 year: 2011 ident: D1TA08038E/cit38 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1006652108 contributor: fullname: Norskov – volume: 6 start-page: 5848 year: 2015 ident: D1TA08038E/cit13 publication-title: Nat. Commun. doi: 10.1038/ncomms6848 contributor: fullname: Sheng – volume: 6 start-page: 1509 year: 2013 ident: D1TA08038E/cit14 publication-title: Energy Environ. Sci. doi: 10.1039/c3ee00045a contributor: fullname: Sheng – volume: 58 start-page: 7445 year: 2019 ident: D1TA08038E/cit25 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201902751 contributor: fullname: Ni – volume: 54 start-page: 11169 year: 1996 ident: D1TA08038E/cit41 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.54.11169 contributor: fullname: Kresse – volume: 56 start-page: 15594 year: 2017 ident: D1TA08038E/cit15 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201708484 contributor: fullname: Li – volume: 14 start-page: 2620 year: 2021 ident: D1TA08038E/cit2 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE03609A contributor: fullname: An – volume: 9 start-page: 9614 year: 2019 ident: D1TA08038E/cit3 publication-title: ACS Catal. doi: 10.1021/acscatal.9b01744 contributor: fullname: Qin – volume: 11 start-page: 4789 year: 2020 ident: D1TA08038E/cit17 publication-title: Nat. Commun. doi: 10.1038/s41467-020-18585-4 contributor: fullname: Duan – volume: 3 start-page: 454 year: 2020 ident: D1TA08038E/cit29 publication-title: Nat. Catal. doi: 10.1038/s41929-020-0446-9 contributor: fullname: Zhou – volume: 6 start-page: 15 year: 1996 ident: D1TA08038E/cit40 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 contributor: fullname: Kresse – volume: 58 start-page: 14179 year: 2019 ident: D1TA08038E/cit9 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201908194 contributor: fullname: Yang – volume: 7 start-page: 1601390 year: 2017 ident: D1TA08038E/cit24 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601390 contributor: fullname: Wang – volume: 8 start-page: 10168 year: 2020 ident: D1TA08038E/cit7 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA02528C contributor: fullname: Jiang – volume: 7 start-page: 1719 year: 2014 ident: D1TA08038E/cit19 publication-title: Energy Environ. Sci. doi: 10.1039/C3EE43899F contributor: fullname: Sheng – volume: 132 start-page: 154104 year: 2010 ident: D1TA08038E/cit45 publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 contributor: fullname: Grimme – volume: 60 start-page: 5771 year: 2021 ident: D1TA08038E/cit18 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202013047 contributor: fullname: Wang – volume: 8 start-page: 5728 year: 2017 ident: D1TA08038E/cit12 publication-title: Chem. Sci. doi: 10.1039/C7SC01615H contributor: fullname: Gao – volume: 234 start-page: 87 year: 1990 ident: D1TA08038E/cit32 publication-title: Surf. Sci. doi: 10.1016/0039-6028(90)90668-X contributor: fullname: Floner – volume: 343 start-page: 211 year: 1995 ident: D1TA08038E/cit36 publication-title: Surf. Sci. doi: 10.1016/0039-6028(96)80007-0 contributor: fullname: Hammer – volume: 141 start-page: 3232 year: 2019 ident: D1TA08038E/cit16 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b13228 contributor: fullname: Liu – volume: 11 start-page: 12118 year: 2020 ident: D1TA08038E/cit31 publication-title: Chem. Sci. doi: 10.1039/D0SC03917A contributor: fullname: Yang – volume: 7 start-page: 267 year: 2017 ident: D1TA08038E/cit4 publication-title: ACS Catal. doi: 10.1021/acscatal.6b02794 contributor: fullname: Shi – volume: 10 start-page: 38024 year: 2018 ident: D1TA08038E/cit28 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b11942 contributor: fullname: Hou – volume: 12 start-page: 3522 year: 2019 ident: D1TA08038E/cit23 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE01743G contributor: fullname: Wang – volume: 16 start-page: 2001642 year: 2020 ident: D1TA08038E/cit21 publication-title: Small doi: 10.1002/smll.202001642 contributor: fullname: Wang – volume: 50 start-page: 17953 year: 1994 ident: D1TA08038E/cit44 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.50.17953 contributor: fullname: Blöchl – volume: 23 start-page: 2475 year: 2011 ident: D1TA08038E/cit22 publication-title: Chem. Mater. doi: 10.1021/cm200410s contributor: fullname: Schaefer – volume: 85 start-page: 41 year: 2018 ident: D1TA08038E/cit30 publication-title: ECS Trans. doi: 10.1149/08512.0041ecst contributor: fullname: Tryk – volume: 59 start-page: 10797 year: 2020 ident: D1TA08038E/cit20 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201916314 contributor: fullname: Ni – volume: 30 start-page: 2002087 year: 2020 ident: D1TA08038E/cit6 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202002087 contributor: fullname: Singh – volume: 12 start-page: 2350 year: 2021 ident: D1TA08038E/cit26 publication-title: Nat. Commun. doi: 10.1038/s41467-021-22635-w contributor: fullname: Lin – volume: 124 start-page: 10523 year: 2020 ident: D1TA08038E/cit39 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.0c01070 contributor: fullname: Mao – volume: 8 start-page: 13893 year: 2016 ident: D1TA08038E/cit5 publication-title: Nanoscale doi: 10.1039/C6NR00778C contributor: fullname: Shi |
SSID | ssj0000800699 |
Score | 2.4687731 |
Snippet | The hydrogen oxidation reaction (HOR) has recently attracted great attention, yet the poor performance of HOR over the platinum group metal-free (PGMs-free)... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Publisher |
StartPage | 26323 |
SubjectTerms | Carbides Catalysis Catalysts Electron transfer Engineering Fuel cells Fuel technology Nickel Oxidation Platinum |
Title | Phase and interface engineering of nickel carbide nanobranches for efficient hydrogen oxidation catalysis |
URI | https://www.proquest.com/docview/2604590516 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l6QUOFa-KQEErwS1ysb1-rI8RpCooFA6OyM3y2ruNEbJR6kgt_43_xuzTrlQQcLGSdfzIzued2fU33yD0mvl1VaZ15IE7ka8ZOfEoqZgXlzQOK1LWoRLT-XiRnK-jD5t4M5n8HLGW9j07rX7cmVfyP1aFNrCrzJL9B8u6k0IDfAb7whYsDNu_svHnLfggo58ky02X8JDyQWBQkTQaeEy_SQFq1tR83pZtx2QtjS2_0mrfSkJCEgK2N_Wug0vNu-tGF1qaq7UdKVnymxAWol39N-eVrRt3Ol_oFCC7R11EJxiqNXqbsCU5uQN_R3EKvpTt5dfGoVWuZRtGQHu57YyLleQhnRzPb_a2ZbNXrsT-xqxihIFVT3T0J7lWYomqiohibnsYD0M_9qX0qR6u-bhNF8W1A3o2wm10a3ROiE5uNq5efs_u9CM-kTKsddCXEFETygdvaRkCF5-Ks_VqVeTLTX6ADkMY5-gUHS6W-fuVW-ST4Xiiapi6m7cSuSR7M5z-dlA0zHQOdrYMjQp38gfoyBgZLzToHqIJbx-h-yP1yseoUfDDYFXs4IdH8MOdwBp-2MAPj-GHARnYwQ9b-GEHP-zg9wStz5b523PPVO7wqpAGvQdhdSaEIAGreCASiIBqwqmfQiyZCgFOJs3iNCSpSKRSSB0JAXtLymkC2zJJyTGatl3LnyLME5ZGNU1qRiDYF4LChCWsWOozCNYJCWfole264rsWaCkUsYJkxbsgX6gOXs7Qie3VwjzAVwVM5aNY6tMlM3QMPe2OHwzz7M_HPUf3BjCfoGm_2_MXEKT27KWBwi9h9ZjM |
link.rule.ids | 315,783,787,27938,27939 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase+and+interface+engineering+of+nickel+carbide+nanobranches+for+efficient+hydrogen+oxidation+catalysis&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Ji%2C+Wangjin&rft.au=Zhan%2C+Changhong&rft.au=Li%2C+Deyu&rft.au=Xu%2C+Yong&rft.date=2021-11-30&rft.pub=Royal+Society+of+Chemistry&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=9&rft.issue=46&rft.spage=26323&rft.epage=26329&rft_id=info:doi/10.1039%2Fd1ta08038e&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |