Phase and interface engineering of nickel carbide nanobranches for efficient hydrogen oxidation catalysis

The hydrogen oxidation reaction (HOR) has recently attracted great attention, yet the poor performance of HOR over the platinum group metal-free (PGMs-free) catalysts in alkaline conditions strongly impedes the development of hydroxide-exchange membrane fuel cells. Here, we demonstrate that the phas...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 9; no. 46; pp. 26323 - 26329
Main Authors Ji, Wangjin, Zhan, Changhong, Li, Deyu, Xu, Yong, Zhang, Ying, Wang, Lu, Liu, Liangbin, Wang, Yu, Chen, Wenxing, Geng, Hongbo, Huang, Xiaoqing
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 30.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The hydrogen oxidation reaction (HOR) has recently attracted great attention, yet the poor performance of HOR over the platinum group metal-free (PGMs-free) catalysts in alkaline conditions strongly impedes the development of hydroxide-exchange membrane fuel cells. Here, we demonstrate that the phase and interface engineering of nickel carbide (Ni 3 C) nanobranches can significantly enhance the alkaline HOR performance. Specifically, such interface engineering is realized through a facile annealing treatment of a branched Ni 3 C nanostructure. As a promising PGMs-free HOR catalyst, the strong interfacial synergy of Ni/Ni 3 C significantly enhances the HOR performance in alkaline media, with the HOR activity being comparable to that of a commercial Pt/C catalyst, and it demonstrates excellent CO tolerance. Mechanism studies show that the interfacial synergy facilitates electron transfer from Ni to Ni 3 C and thus regulates the absorption strengths of *H and *OH. This work opens up a new avenue for the design of high-performance PGM-free catalysts for electrocatalysis and beyond. A heterogeneous Ni/Ni 3 C interface has been constructed through carefully annealing a classic metal carbide of Ni 3 C, where the strong interfacial synergy can regulate the binding strengths of *H and *OH and thus enhance the HOR performance.
AbstractList The hydrogen oxidation reaction (HOR) has recently attracted great attention, yet the poor performance of HOR over the platinum group metal-free (PGMs-free) catalysts in alkaline conditions strongly impedes the development of hydroxide-exchange membrane fuel cells. Here, we demonstrate that the phase and interface engineering of nickel carbide (Ni 3 C) nanobranches can significantly enhance the alkaline HOR performance. Specifically, such interface engineering is realized through a facile annealing treatment of a branched Ni 3 C nanostructure. As a promising PGMs-free HOR catalyst, the strong interfacial synergy of Ni/Ni 3 C significantly enhances the HOR performance in alkaline media, with the HOR activity being comparable to that of a commercial Pt/C catalyst, and it demonstrates excellent CO tolerance. Mechanism studies show that the interfacial synergy facilitates electron transfer from Ni to Ni 3 C and thus regulates the absorption strengths of *H and *OH. This work opens up a new avenue for the design of high-performance PGM-free catalysts for electrocatalysis and beyond.
The hydrogen oxidation reaction (HOR) has recently attracted great attention, yet the poor performance of HOR over the platinum group metal-free (PGMs-free) catalysts in alkaline conditions strongly impedes the development of hydroxide-exchange membrane fuel cells. Here, we demonstrate that the phase and interface engineering of nickel carbide (Ni3C) nanobranches can significantly enhance the alkaline HOR performance. Specifically, such interface engineering is realized through a facile annealing treatment of a branched Ni3C nanostructure. As a promising PGMs-free HOR catalyst, the strong interfacial synergy of Ni/Ni3C significantly enhances the HOR performance in alkaline media, with the HOR activity being comparable to that of a commercial Pt/C catalyst, and it demonstrates excellent CO tolerance. Mechanism studies show that the interfacial synergy facilitates electron transfer from Ni to Ni3C and thus regulates the absorption strengths of *H and *OH. This work opens up a new avenue for the design of high-performance PGM-free catalysts for electrocatalysis and beyond.
The hydrogen oxidation reaction (HOR) has recently attracted great attention, yet the poor performance of HOR over the platinum group metal-free (PGMs-free) catalysts in alkaline conditions strongly impedes the development of hydroxide-exchange membrane fuel cells. Here, we demonstrate that the phase and interface engineering of nickel carbide (Ni 3 C) nanobranches can significantly enhance the alkaline HOR performance. Specifically, such interface engineering is realized through a facile annealing treatment of a branched Ni 3 C nanostructure. As a promising PGMs-free HOR catalyst, the strong interfacial synergy of Ni/Ni 3 C significantly enhances the HOR performance in alkaline media, with the HOR activity being comparable to that of a commercial Pt/C catalyst, and it demonstrates excellent CO tolerance. Mechanism studies show that the interfacial synergy facilitates electron transfer from Ni to Ni 3 C and thus regulates the absorption strengths of *H and *OH. This work opens up a new avenue for the design of high-performance PGM-free catalysts for electrocatalysis and beyond. A heterogeneous Ni/Ni 3 C interface has been constructed through carefully annealing a classic metal carbide of Ni 3 C, where the strong interfacial synergy can regulate the binding strengths of *H and *OH and thus enhance the HOR performance.
Author Xu, Yong
Zhan, Changhong
Wang, Yu
Geng, Hongbo
Wang, Lu
Liu, Liangbin
Zhang, Ying
Huang, Xiaoqing
Chen, Wenxing
Li, Deyu
Ji, Wangjin
AuthorAffiliation State Key Laboratory of Physical Chemistry of Solid Surfaces
Institute of Functional Nano & Soft Materials (FUNSOM)
Changshu Institute of Technology
Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices
School of Materials Science and Engineering
Shanghai Advanced Research Institute
Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices
Beijing Institute of Technology
Chinese Academy of Science
School of Materials Engineering
Guangdong University of Technology
Soochow University
Shanghai Synchrotron Radiation Facility
Xia-men University
Zhangjiang Laboratory
College of Chemistry and Chemical Engineering
Collaborative Innovation Center of Advanced Energy Materials
School of Materials and Energy
Energy & Catalysis Center
AuthorAffiliation_xml – name: Energy & Catalysis Center
– name: Institute of Functional Nano & Soft Materials (FUNSOM)
– name: Shanghai Advanced Research Institute
– name: School of Materials Science and Engineering
– name: Zhangjiang Laboratory
– name: Guangdong University of Technology
– name: School of Materials Engineering
– name: Xia-men University
– name: Chinese Academy of Science
– name: Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices
– name: Soochow University
– name: Collaborative Innovation Center of Advanced Energy Materials
– name: School of Materials and Energy
– name: Shanghai Synchrotron Radiation Facility
– name: Beijing Institute of Technology
– name: College of Chemistry and Chemical Engineering
– name: Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices
– name: Changshu Institute of Technology
– name: State Key Laboratory of Physical Chemistry of Solid Surfaces
Author_xml – sequence: 1
  givenname: Wangjin
  surname: Ji
  fullname: Ji, Wangjin
– sequence: 2
  givenname: Changhong
  surname: Zhan
  fullname: Zhan, Changhong
– sequence: 3
  givenname: Deyu
  surname: Li
  fullname: Li, Deyu
– sequence: 4
  givenname: Yong
  surname: Xu
  fullname: Xu, Yong
– sequence: 5
  givenname: Ying
  surname: Zhang
  fullname: Zhang, Ying
– sequence: 6
  givenname: Lu
  surname: Wang
  fullname: Wang, Lu
– sequence: 7
  givenname: Liangbin
  surname: Liu
  fullname: Liu, Liangbin
– sequence: 8
  givenname: Yu
  surname: Wang
  fullname: Wang, Yu
– sequence: 9
  givenname: Wenxing
  surname: Chen
  fullname: Chen, Wenxing
– sequence: 10
  givenname: Hongbo
  surname: Geng
  fullname: Geng, Hongbo
– sequence: 11
  givenname: Xiaoqing
  surname: Huang
  fullname: Huang, Xiaoqing
BookMark eNpFkM1LAzEQxYNUsNZevAsBb0I12ewm2WOp9QMKeqjnJc3OtKk1qckW7H9vtFLnMDPwfvMG3jnp-eCBkEvObjkT9V3LO8M0ExpOSL9gFRupspa94671GRmmtGa5NGOyrvvEva5MAmp8S53vIKKxQMEvnQeIzi9pQOqdfYcNtSYuXAvUGx8W0Xi7gkQxRAqIzjrwHV3t2xiW4Gn4cq3pXPD5qjObfXLpgpyi2SQY_s0BeXuYzidPo9nL4_NkPBvZQvNuVLGqRkTBFxY4Sl2qVoBmqihLhaiYUHWlCqFQcpa1EjGrRoOWuRupxIBcH3y3MXzuIHXNOuyizy-bQrKyqlnFZaZuDpSNIaUI2Gyj-zBx33DW_KTZ3PP5-DfNaYavDnBM9sj9py2-ASBrc4U
CitedBy_id crossref_primary_10_1016_j_ccr_2022_214980
crossref_primary_10_1007_s12274_022_4969_z
crossref_primary_10_1021_acsmaterialslett_2c00699
crossref_primary_10_1039_D4SC00043A
crossref_primary_10_1039_D3QM00947E
crossref_primary_10_1016_j_electacta_2023_142673
crossref_primary_10_1021_acsami_2c22931
crossref_primary_10_1002_ejic_202200242
crossref_primary_10_1016_j_nanoen_2022_107877
crossref_primary_10_1039_D3EE04251K
crossref_primary_10_1002_cctc_202300056
crossref_primary_10_1021_acsnano_2c00641
crossref_primary_10_1002_sstr_202200281
crossref_primary_10_1002_aenm_202103916
Cites_doi 10.1021/acscatal.8b03338
10.1126/science.1172083
10.1103/PhysRevLett.77.3865
10.1038/376238a0
10.1021/ja5119495
10.1021/acscatal.8b00689
10.1016/j.nanoen.2017.12.008
10.1039/C9TA01916B
10.1016/j.cplett.2019.04.072
10.1021/jacs.8b13228
10.1063/1.472933
10.1073/pnas.1006652108
10.1038/ncomms6848
10.1039/c3ee00045a
10.1002/anie.201902751
10.1103/PhysRevB.54.11169
10.1002/anie.201708484
10.1039/D0EE03609A
10.1021/acscatal.9b01744
10.1038/s41467-020-18585-4
10.1038/s41929-020-0446-9
10.1016/0927-0256(96)00008-0
10.1002/anie.201908194
10.1002/aenm.201601390
10.1039/D0TA02528C
10.1039/C3EE43899F
10.1063/1.3382344
10.1002/anie.202013047
10.1039/C7SC01615H
10.1016/0039-6028(90)90668-X
10.1016/0039-6028(96)80007-0
10.1039/D0SC03917A
10.1021/acscatal.6b02794
10.1021/acsami.8b11942
10.1039/C9EE01743G
10.1002/smll.202001642
10.1103/PhysRevB.50.17953
10.1021/cm200410s
10.1149/08512.0041ecst
10.1002/anie.201916314
10.1002/adfm.202002087
10.1038/s41467-021-22635-w
10.1021/acs.jpcc.0c01070
10.1039/C6NR00778C
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2021
Copyright_xml – notice: Copyright Royal Society of Chemistry 2021
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
DOI 10.1039/d1ta08038e
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 26329
ExternalDocumentID 10_1039_D1TA08038E
d1ta08038e
GroupedDBID 0-7
0R
705
AAEMU
AAGNR
AAIWI
AANOJ
ABASK
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFRAH
AFVBQ
AGRSR
AGSTE
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CKLOX
EBS
ECGLT
EE0
EF-
GNO
HZ
H~N
J3I
JG
O-G
O9-
R7C
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
-JG
0R~
AAJAE
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AGEGJ
AHGCF
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
ID FETCH-LOGICAL-c281t-5059fff31bce1f6847d3e8072447ff7037957237f61047d4ffe80a8e860a8a673
ISSN 2050-7488
IngestDate Thu Oct 10 15:56:26 EDT 2024
Fri Aug 23 01:29:48 EDT 2024
Mon Apr 18 07:58:26 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 46
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c281t-5059fff31bce1f6847d3e8072447ff7037957237f61047d4ffe80a8e860a8a673
Notes 10.1039/d1ta08038e
Electronic supplementary information (ESI) available. See DOI
ORCID 0000-0003-0552-1385
0000-0001-9669-4358
0000-0002-2525-7086
PQID 2604590516
PQPubID 2047523
PageCount 7
ParticipantIDs proquest_journals_2604590516
crossref_primary_10_1039_D1TA08038E
rsc_primary_d1ta08038e
PublicationCentury 2000
PublicationDate 2021-11-30
PublicationDateYYYYMMDD 2021-11-30
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-30
  day: 30
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2021
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References An (D1TA08038E/cit2) 2021; 14
Qin (D1TA08038E/cit3) 2019; 9
Shi (D1TA08038E/cit4) 2017; 7
Duan (D1TA08038E/cit17) 2020; 11
Sheng (D1TA08038E/cit19) 2014; 7
Gasteiger (D1TA08038E/cit1) 2009; 324
Lin (D1TA08038E/cit26) 2021; 12
Xu (D1TA08038E/cit27) 2015; 137
Blöchl (D1TA08038E/cit44) 1994; 50
Yang (D1TA08038E/cit9) 2019; 58
Yang (D1TA08038E/cit31) 2020; 11
Cong (D1TA08038E/cit11) 2018; 44
Kresse (D1TA08038E/cit40) 1996; 6
Grimme (D1TA08038E/cit45) 2010; 132
Sheng (D1TA08038E/cit13) 2015; 6
Ni (D1TA08038E/cit20) 2020; 59
Wang (D1TA08038E/cit21) 2020; 16
Perdew (D1TA08038E/cit43) 1996; 105
Jiang (D1TA08038E/cit7) 2020; 8
Wang (D1TA08038E/cit23) 2019; 12
Tryk (D1TA08038E/cit30) 2018; 85
Schaefer (D1TA08038E/cit22) 2011; 23
Floner (D1TA08038E/cit32) 1990; 234
Davydova (D1TA08038E/cit10) 2018; 8
Ni (D1TA08038E/cit25) 2019; 58
Zhou (D1TA08038E/cit29) 2020; 3
Perdew (D1TA08038E/cit42) 1996; 77
Yang (D1TA08038E/cit33) 2019; 7
Liu (D1TA08038E/cit16) 2019; 141
Singh (D1TA08038E/cit6) 2020; 30
Li (D1TA08038E/cit15) 2017; 56
Hammer (D1TA08038E/cit37) 1995; 376
Shi (D1TA08038E/cit5) 2016; 8
Jiang (D1TA08038E/cit34) 2019; 728
Norskov (D1TA08038E/cit38) 2011; 108
Kresse (D1TA08038E/cit41) 1996; 54
Giles (D1TA08038E/cit8) 2019; 9
Gao (D1TA08038E/cit12) 2017; 8
Liu (D1TA08038E/cit35) 2019; 141
Hou (D1TA08038E/cit28) 2018; 10
Wang (D1TA08038E/cit24) 2017; 7
Sheng (D1TA08038E/cit14) 2013; 6
Wang (D1TA08038E/cit18) 2021; 60
Hammer (D1TA08038E/cit36) 1995; 343
Mao (D1TA08038E/cit39) 2020; 124
References_xml – volume: 9
  start-page: 1129
  year: 2019
  ident: D1TA08038E/cit8
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b03338
  contributor:
    fullname: Giles
– volume: 324
  start-page: 48
  year: 2009
  ident: D1TA08038E/cit1
  publication-title: Science
  doi: 10.1126/science.1172083
  contributor:
    fullname: Gasteiger
– volume: 77
  start-page: 3865
  year: 1996
  ident: D1TA08038E/cit42
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
  contributor:
    fullname: Perdew
– volume: 376
  start-page: 238
  year: 1995
  ident: D1TA08038E/cit37
  publication-title: Nature
  doi: 10.1038/376238a0
  contributor:
    fullname: Hammer
– volume: 137
  start-page: 4119
  year: 2015
  ident: D1TA08038E/cit27
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5119495
  contributor:
    fullname: Xu
– volume: 8
  start-page: 6665
  year: 2018
  ident: D1TA08038E/cit10
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b00689
  contributor:
    fullname: Davydova
– volume: 44
  start-page: 288
  year: 2018
  ident: D1TA08038E/cit11
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.12.008
  contributor:
    fullname: Cong
– volume: 7
  start-page: 10936
  year: 2019
  ident: D1TA08038E/cit33
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA01916B
  contributor:
    fullname: Yang
– volume: 728
  start-page: 19
  year: 2019
  ident: D1TA08038E/cit34
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2019.04.072
  contributor:
    fullname: Jiang
– volume: 141
  start-page: 3232
  year: 2019
  ident: D1TA08038E/cit35
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b13228
  contributor:
    fullname: Liu
– volume: 105
  start-page: 9982
  year: 1996
  ident: D1TA08038E/cit43
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.472933
  contributor:
    fullname: Perdew
– volume: 108
  start-page: 937
  year: 2011
  ident: D1TA08038E/cit38
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1006652108
  contributor:
    fullname: Norskov
– volume: 6
  start-page: 5848
  year: 2015
  ident: D1TA08038E/cit13
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6848
  contributor:
    fullname: Sheng
– volume: 6
  start-page: 1509
  year: 2013
  ident: D1TA08038E/cit14
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee00045a
  contributor:
    fullname: Sheng
– volume: 58
  start-page: 7445
  year: 2019
  ident: D1TA08038E/cit25
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201902751
  contributor:
    fullname: Ni
– volume: 54
  start-page: 11169
  year: 1996
  ident: D1TA08038E/cit41
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.54.11169
  contributor:
    fullname: Kresse
– volume: 56
  start-page: 15594
  year: 2017
  ident: D1TA08038E/cit15
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201708484
  contributor:
    fullname: Li
– volume: 14
  start-page: 2620
  year: 2021
  ident: D1TA08038E/cit2
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE03609A
  contributor:
    fullname: An
– volume: 9
  start-page: 9614
  year: 2019
  ident: D1TA08038E/cit3
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b01744
  contributor:
    fullname: Qin
– volume: 11
  start-page: 4789
  year: 2020
  ident: D1TA08038E/cit17
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18585-4
  contributor:
    fullname: Duan
– volume: 3
  start-page: 454
  year: 2020
  ident: D1TA08038E/cit29
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-020-0446-9
  contributor:
    fullname: Zhou
– volume: 6
  start-page: 15
  year: 1996
  ident: D1TA08038E/cit40
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
  contributor:
    fullname: Kresse
– volume: 58
  start-page: 14179
  year: 2019
  ident: D1TA08038E/cit9
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201908194
  contributor:
    fullname: Yang
– volume: 7
  start-page: 1601390
  year: 2017
  ident: D1TA08038E/cit24
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601390
  contributor:
    fullname: Wang
– volume: 8
  start-page: 10168
  year: 2020
  ident: D1TA08038E/cit7
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA02528C
  contributor:
    fullname: Jiang
– volume: 7
  start-page: 1719
  year: 2014
  ident: D1TA08038E/cit19
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C3EE43899F
  contributor:
    fullname: Sheng
– volume: 132
  start-page: 154104
  year: 2010
  ident: D1TA08038E/cit45
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3382344
  contributor:
    fullname: Grimme
– volume: 60
  start-page: 5771
  year: 2021
  ident: D1TA08038E/cit18
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202013047
  contributor:
    fullname: Wang
– volume: 8
  start-page: 5728
  year: 2017
  ident: D1TA08038E/cit12
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC01615H
  contributor:
    fullname: Gao
– volume: 234
  start-page: 87
  year: 1990
  ident: D1TA08038E/cit32
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(90)90668-X
  contributor:
    fullname: Floner
– volume: 343
  start-page: 211
  year: 1995
  ident: D1TA08038E/cit36
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(96)80007-0
  contributor:
    fullname: Hammer
– volume: 141
  start-page: 3232
  year: 2019
  ident: D1TA08038E/cit16
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b13228
  contributor:
    fullname: Liu
– volume: 11
  start-page: 12118
  year: 2020
  ident: D1TA08038E/cit31
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC03917A
  contributor:
    fullname: Yang
– volume: 7
  start-page: 267
  year: 2017
  ident: D1TA08038E/cit4
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02794
  contributor:
    fullname: Shi
– volume: 10
  start-page: 38024
  year: 2018
  ident: D1TA08038E/cit28
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b11942
  contributor:
    fullname: Hou
– volume: 12
  start-page: 3522
  year: 2019
  ident: D1TA08038E/cit23
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE01743G
  contributor:
    fullname: Wang
– volume: 16
  start-page: 2001642
  year: 2020
  ident: D1TA08038E/cit21
  publication-title: Small
  doi: 10.1002/smll.202001642
  contributor:
    fullname: Wang
– volume: 50
  start-page: 17953
  year: 1994
  ident: D1TA08038E/cit44
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.50.17953
  contributor:
    fullname: Blöchl
– volume: 23
  start-page: 2475
  year: 2011
  ident: D1TA08038E/cit22
  publication-title: Chem. Mater.
  doi: 10.1021/cm200410s
  contributor:
    fullname: Schaefer
– volume: 85
  start-page: 41
  year: 2018
  ident: D1TA08038E/cit30
  publication-title: ECS Trans.
  doi: 10.1149/08512.0041ecst
  contributor:
    fullname: Tryk
– volume: 59
  start-page: 10797
  year: 2020
  ident: D1TA08038E/cit20
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201916314
  contributor:
    fullname: Ni
– volume: 30
  start-page: 2002087
  year: 2020
  ident: D1TA08038E/cit6
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202002087
  contributor:
    fullname: Singh
– volume: 12
  start-page: 2350
  year: 2021
  ident: D1TA08038E/cit26
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22635-w
  contributor:
    fullname: Lin
– volume: 124
  start-page: 10523
  year: 2020
  ident: D1TA08038E/cit39
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.0c01070
  contributor:
    fullname: Mao
– volume: 8
  start-page: 13893
  year: 2016
  ident: D1TA08038E/cit5
  publication-title: Nanoscale
  doi: 10.1039/C6NR00778C
  contributor:
    fullname: Shi
SSID ssj0000800699
Score 2.4687731
Snippet The hydrogen oxidation reaction (HOR) has recently attracted great attention, yet the poor performance of HOR over the platinum group metal-free (PGMs-free)...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Publisher
StartPage 26323
SubjectTerms Carbides
Catalysis
Catalysts
Electron transfer
Engineering
Fuel cells
Fuel technology
Nickel
Oxidation
Platinum
Title Phase and interface engineering of nickel carbide nanobranches for efficient hydrogen oxidation catalysis
URI https://www.proquest.com/docview/2604590516
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l6QUOFa-KQEErwS1ysb1-rI8RpCooFA6OyM3y2ruNEbJR6kgt_43_xuzTrlQQcLGSdfzIzued2fU33yD0mvl1VaZ15IE7ka8ZOfEoqZgXlzQOK1LWoRLT-XiRnK-jD5t4M5n8HLGW9j07rX7cmVfyP1aFNrCrzJL9B8u6k0IDfAb7whYsDNu_svHnLfggo58ky02X8JDyQWBQkTQaeEy_SQFq1tR83pZtx2QtjS2_0mrfSkJCEgK2N_Wug0vNu-tGF1qaq7UdKVnymxAWol39N-eVrRt3Ol_oFCC7R11EJxiqNXqbsCU5uQN_R3EKvpTt5dfGoVWuZRtGQHu57YyLleQhnRzPb_a2ZbNXrsT-xqxihIFVT3T0J7lWYomqiohibnsYD0M_9qX0qR6u-bhNF8W1A3o2wm10a3ROiE5uNq5efs_u9CM-kTKsddCXEFETygdvaRkCF5-Ks_VqVeTLTX6ADkMY5-gUHS6W-fuVW-ST4Xiiapi6m7cSuSR7M5z-dlA0zHQOdrYMjQp38gfoyBgZLzToHqIJbx-h-yP1yseoUfDDYFXs4IdH8MOdwBp-2MAPj-GHARnYwQ9b-GEHP-zg9wStz5b523PPVO7wqpAGvQdhdSaEIAGreCASiIBqwqmfQiyZCgFOJs3iNCSpSKRSSB0JAXtLymkC2zJJyTGatl3LnyLME5ZGNU1qRiDYF4LChCWsWOozCNYJCWfole264rsWaCkUsYJkxbsgX6gOXs7Qie3VwjzAVwVM5aNY6tMlM3QMPe2OHwzz7M_HPUf3BjCfoGm_2_MXEKT27KWBwi9h9ZjM
link.rule.ids 315,783,787,27938,27939
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase+and+interface+engineering+of+nickel+carbide+nanobranches+for+efficient+hydrogen+oxidation+catalysis&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Ji%2C+Wangjin&rft.au=Zhan%2C+Changhong&rft.au=Li%2C+Deyu&rft.au=Xu%2C+Yong&rft.date=2021-11-30&rft.pub=Royal+Society+of+Chemistry&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=9&rft.issue=46&rft.spage=26323&rft.epage=26329&rft_id=info:doi/10.1039%2Fd1ta08038e&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon