Proton conduction of an ionic HOF with multiple water molecules and application as a membrane filler in direct methanol fuel cells

Owing to their clean and green energy, fuel cells are considered to be one of the most environmentally friendly technologies for achieving the conversion of chemical and electrical energy. Direct methanol fuel cells (DMFCs) have attracted much attention due to their light weight, compactness and hig...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. C, Materials for optical and electronic devices Vol. 11; no. 43; pp. 15288 - 15293
Main Authors Zhao, Fang, Cao, Li-Hui, Ji, Can
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 09.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Owing to their clean and green energy, fuel cells are considered to be one of the most environmentally friendly technologies for achieving the conversion of chemical and electrical energy. Direct methanol fuel cells (DMFCs) have attracted much attention due to their light weight, compactness and high energy density. In this work, an ionic hydrogen-bonded organic framework ( iHOF-8 ) with a dense 2D hydrogen-bonded network was synthesized from 1,3,5-tris[(4-sulfonyl)phenyl] benzene (H 3 SPB) and 1,1′-diamino-4,4′-bipyridine diiodide (DBpy·2I). The proton conductivity of iHOF-8 could reach 5.02 × 10 −3 S cm −1 at 98% RH and 100 °C. Furthermore, Nafion composite membranes with different iHOF-8 doping contents were also prepared. The 9%-iHOF-8/Nafion membrane could realize an ultrahigh proton conductivity of 1.6 × 10 −1 S cm −1 at 98% RH and 100 °C, which is 2.58 times larger than that of the recast Nafion. In particular, the 9%-iHOF-8/Nafion composite membrane was used as the solid electrolyte for DMFC tests. The results showed that the 9%-iHOF-8/Nafion composite membrane had a maximum power density of 73.5 mW cm −2 and a maximum current density of 599.4 mA cm −2 , which are 1.47 and 1.80 times higher than those of the recast Nafion, respectively. This work indicates that the 9%-iHOF-8/Nafion membrane has great promise as a PEM for DMFCs and can be potentially applied in future energy conversion devices. The proton conduction properties of iHOF-8 and its Nafion-based composite membrane were investigated and the results proved to be of potential value in DMFCs.
AbstractList Owing to their clean and green energy, fuel cells are considered to be one of the most environmentally friendly technologies for achieving the conversion of chemical and electrical energy. Direct methanol fuel cells (DMFCs) have attracted much attention due to their light weight, compactness and high energy density. In this work, an ionic hydrogen-bonded organic framework ( iHOF-8 ) with a dense 2D hydrogen-bonded network was synthesized from 1,3,5-tris[(4-sulfonyl)phenyl] benzene (H 3 SPB) and 1,1′-diamino-4,4′-bipyridine diiodide (DBpy·2I). The proton conductivity of iHOF-8 could reach 5.02 × 10 −3 S cm −1 at 98% RH and 100 °C. Furthermore, Nafion composite membranes with different iHOF-8 doping contents were also prepared. The 9%-iHOF-8/Nafion membrane could realize an ultrahigh proton conductivity of 1.6 × 10 −1 S cm −1 at 98% RH and 100 °C, which is 2.58 times larger than that of the recast Nafion. In particular, the 9%-iHOF-8/Nafion composite membrane was used as the solid electrolyte for DMFC tests. The results showed that the 9%-iHOF-8/Nafion composite membrane had a maximum power density of 73.5 mW cm −2 and a maximum current density of 599.4 mA cm −2 , which are 1.47 and 1.80 times higher than those of the recast Nafion, respectively. This work indicates that the 9%-iHOF-8/Nafion membrane has great promise as a PEM for DMFCs and can be potentially applied in future energy conversion devices. The proton conduction properties of iHOF-8 and its Nafion-based composite membrane were investigated and the results proved to be of potential value in DMFCs.
Owing to their clean and green energy, fuel cells are considered to be one of the most environmentally friendly technologies for achieving the conversion of chemical and electrical energy. Direct methanol fuel cells (DMFCs) have attracted much attention due to their light weight, compactness and high energy density. In this work, an ionic hydrogen-bonded organic framework (iHOF-8) with a dense 2D hydrogen-bonded network was synthesized from 1,3,5-tris[(4-sulfonyl)phenyl] benzene (H 3 SPB) and 1,1′-diamino-4,4′-bipyridine diiodide (DBpy·2I). The proton conductivity of iHOF-8 could reach 5.02 × 10 −3 S cm −1 at 98% RH and 100 °C. Furthermore, Nafion composite membranes with different iHOF-8 doping contents were also prepared. The 9%-iHOF-8/Nafion membrane could realize an ultrahigh proton conductivity of 1.6 × 10 −1 S cm −1 at 98% RH and 100 °C, which is 2.58 times larger than that of the recast Nafion. In particular, the 9%-iHOF-8/Nafion composite membrane was used as the solid electrolyte for DMFC tests. The results showed that the 9%-iHOF-8/Nafion composite membrane had a maximum power density of 73.5 mW cm −2 and a maximum current density of 599.4 mA cm −2 , which are 1.47 and 1.80 times higher than those of the recast Nafion, respectively. This work indicates that the 9%-iHOF-8/Nafion membrane has great promise as a PEM for DMFCs and can be potentially applied in future energy conversion devices.
Owing to their clean and green energy, fuel cells are considered to be one of the most environmentally friendly technologies for achieving the conversion of chemical and electrical energy. Direct methanol fuel cells (DMFCs) have attracted much attention due to their light weight, compactness and high energy density. In this work, an ionic hydrogen-bonded organic framework (iHOF-8) with a dense 2D hydrogen-bonded network was synthesized from 1,3,5-tris[(4-sulfonyl)phenyl] benzene (H3SPB) and 1,1′-diamino-4,4′-bipyridine diiodide (DBpy·2I). The proton conductivity of iHOF-8 could reach 5.02 × 10−3 S cm−1 at 98% RH and 100 °C. Furthermore, Nafion composite membranes with different iHOF-8 doping contents were also prepared. The 9%-iHOF-8/Nafion membrane could realize an ultrahigh proton conductivity of 1.6 × 10−1 S cm−1 at 98% RH and 100 °C, which is 2.58 times larger than that of the recast Nafion. In particular, the 9%-iHOF-8/Nafion composite membrane was used as the solid electrolyte for DMFC tests. The results showed that the 9%-iHOF-8/Nafion composite membrane had a maximum power density of 73.5 mW cm−2 and a maximum current density of 599.4 mA cm−2, which are 1.47 and 1.80 times higher than those of the recast Nafion, respectively. This work indicates that the 9%-iHOF-8/Nafion membrane has great promise as a PEM for DMFCs and can be potentially applied in future energy conversion devices.
Author Ji, Can
Cao, Li-Hui
Zhao, Fang
AuthorAffiliation College of Chemistry and Chemical Engineering
Xi'an Manareco New Materials Co., Ltd
Shaanxi Key Laboratory of Chemical Additives for Industry
Shaanxi University of Science and Technology
AuthorAffiliation_xml – sequence: 0
  name: Xi'an Manareco New Materials Co., Ltd
– sequence: 0
  name: College of Chemistry and Chemical Engineering
– sequence: 0
  name: Shaanxi University of Science and Technology
– sequence: 0
  name: Shaanxi Key Laboratory of Chemical Additives for Industry
Author_xml – sequence: 1
  givenname: Fang
  surname: Zhao
  fullname: Zhao, Fang
– sequence: 2
  givenname: Li-Hui
  surname: Cao
  fullname: Cao, Li-Hui
– sequence: 3
  givenname: Can
  surname: Ji
  fullname: Ji, Can
BookMark eNptkc9rHCEUxyUkkDTJJfeC0FthUx3nh3Ms26QJLKSH5Dy8eSrr4uhUHUKv-ctrd8MWSr345fn5vsf7-oGc-uA1ITec3XIm-i9KZGSCVwJPyEXFGrbqGlGfHnXVnpPrlHasHMlb2fYX5O1HDDl4isGrBbMtMhgKnhZlkT483dNXm7d0Wly2s9P0FbKOdApO4-J0KqiiMM_OIuzdUEp00tMYwWtqrHMFt54qGzXm8pK34IOjZtGOonYuXZEzAy7p6_f7krzc3z2vH1abp--P66-bFVaS51Wte9apsW8RalODKcVOgxgV73sFZUWB3HDZjMBZ3zcgUDay4hyVMmMHSlyST4e-cww_F53ysAtL9GXkUEnZVU1Xy7ZQnw8UxpBS1GaYo50g_ho4G_7EPHwTz-t9zOsCs39gtHmfQ45g3f8tHw-WmPDY-u_Pid_rUoy9
CitedBy_id crossref_primary_10_1016_j_jssc_2024_125109
crossref_primary_10_1016_j_polymer_2024_127241
crossref_primary_10_1021_prechem_4c00102
crossref_primary_10_1016_j_ijhydene_2024_12_513
crossref_primary_10_1016_j_jcis_2024_07_086
crossref_primary_10_1021_acs_cgd_4c01228
crossref_primary_10_1016_j_cej_2024_156211
crossref_primary_10_1039_D4TC04584J
Cites_doi 10.1021/acsami.1c15748
10.1039/C4CC09420D
10.1039/D2QM00656A
10.1016/j.memsci.2018.03.049
10.1039/C6CS00528D
10.1039/C9CC06739F
10.1021/acs.chemrev.9b00550
10.1038/nmat4611
10.3390/membranes12030263
10.1016/j.rser.2018.04.105
10.1016/j.jpowsour.2009.11.021
10.1002/ange.201804753
10.1021/acsaem.3c01182
10.1021/acs.cgd.1c00949
10.1016/j.est.2021.102296
10.1039/d3qi01120h
10.1515/revce-2019-0079
10.1021/acsmaterialslett.3c00569
10.1039/D1TA10480B
10.1021/acs.accounts.2c00686
10.1039/C9CC07802A
10.1016/j.jssc.2022.122948
10.1039/D0CE00902D
10.1039/D3QI01007D
10.1002/ange.202112922
10.1039/D3TC00889D
10.1039/C9CS00299E
10.1039/D3TC02090H
10.1002/anie.201604534
10.1126/sciadv.abb1110
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
DBID AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1039/d3tc03123c
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
CrossRef
Solid State and Superconductivity Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 2050-7534
EndPage 15293
ExternalDocumentID 10_1039_D3TC03123C
d3tc03123c
GroupedDBID -JG
0-7
0R~
4.4
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
GGIMP
GNO
H13
HZ~
H~N
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c281t-4e907db96ca4f4af2817ea3bd199da2053c1f185ba10995a3c858211cddfb7ad3
ISSN 2050-7526
IngestDate Mon Jun 30 03:47:51 EDT 2025
Tue Jul 01 04:26:57 EDT 2025
Thu Apr 24 23:09:30 EDT 2025
Tue Dec 17 20:58:37 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 43
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c281t-4e907db96ca4f4af2817ea3bd199da2053c1f185ba10995a3c858211cddfb7ad3
Notes Electronic supplementary information (ESI) available: The crystal structures, PXRD patterns, TGA curves, stress-strain curves, and proton conductivities of crystals and membranes. CCDC
For ESI and crystallographic data in CIF or other electronic format see DOI
2268869
https://doi.org/10.1039/d3tc03123c
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3676-0242
PQID 2887257486
PQPubID 2047521
PageCount 6
ParticipantIDs crossref_citationtrail_10_1039_D3TC03123C
proquest_journals_2887257486
crossref_primary_10_1039_D3TC03123C
rsc_primary_d3tc03123c
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-09
PublicationDateYYYYMMDD 2023-11-09
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-09
  day: 09
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. C, Materials for optical and electronic devices
PublicationYear 2023
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Xiao (D3TC03123C/cit13/1) 2021
Zhang (D3TC03123C/cit29/1) 2022; 55
Ranjani (D3TC03123C/cit5/1) 2018; 555
Liu (D3TC03123C/cit11/1) 2022; 10
Roul (D3TC03123C/cit7/1) 2023; 11
Heinz (D3TC03123C/cit22/1) 2023; 10
Wang (D3TC03123C/cit28/1) 2020; 56
Xu (D3TC03123C/cit17/1) 2016; 15
Yang (D3TC03123C/cit31/1) 2022; 6
Li (D3TC03123C/cit6/1) 2021; 133
Sasmal (D3TC03123C/cit26/1) 2018; 130
Karmakar (D3TC03123C/cit15/1) 2016; 55
Kumar (D3TC03123C/cit8/1) 2010; 195
Liu (D3TC03123C/cit27/1) 2019; 48
Jhariat (D3TC03123C/cit24/1) 2020; 22
Meng (D3TC03123C/cit16/1) 2017; 46
Cao (D3TC03123C/cit21/1) 2021; 22
Tang (D3TC03123C/cit18/1) 2023
Wali (D3TC03123C/cit2/1) 2021; 35
Li (D3TC03123C/cit3/1) 2022; 38
Arunkumar (D3TC03123C/cit9/1) 2023; 6
Auffarth (D3TC03123C/cit12/1) 2023; 5
Khan (D3TC03123C/cit10/1) 2022; 12
Liu (D3TC03123C/cit25/1) 2020; 6
Li (D3TC03123C/cit14/1) 2015; 51
Guo (D3TC03123C/cit1/1) 2018; 91
Xu (D3TC03123C/cit4/1) 2021; 13
Geng (D3TC03123C/cit23/1) 2020; 120
Shi (D3TC03123C/cit20/1) 2022; 309
Yang (D3TC03123C/cit30/1) 2023; 11
Cao (D3TC03123C/cit19/1) 2019; 55
References_xml – issn: 2021
  volume-title: Recent advances in electrocatalysts for proton exchange membrane fuel cells and alkaline membrane fuel cells
  end-page: 2006292
  publication-title: Adv. Mater.
  doi: Xiao Wang Wu Chen Yang Zhu Siddharth Kong Lu Li
– volume: 13
  start-page: 56566
  year: 2021
  ident: D3TC03123C/cit4/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c15748
– volume: 51
  start-page: 6556
  year: 2015
  ident: D3TC03123C/cit14/1
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC09420D
– volume: 6
  start-page: 3402
  year: 2022
  ident: D3TC03123C/cit31/1
  publication-title: Mater. Chem. Front.
  doi: 10.1039/D2QM00656A
– volume: 555
  start-page: 497
  year: 2018
  ident: D3TC03123C/cit5/1
  publication-title: J. Membrane Sci.
  doi: 10.1016/j.memsci.2018.03.049
– volume: 46
  start-page: 464
  year: 2017
  ident: D3TC03123C/cit16/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00528D
– volume: 55
  start-page: 12671
  year: 2019
  ident: D3TC03123C/cit19/1
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC06739F
– volume: 120
  start-page: 8814
  year: 2020
  ident: D3TC03123C/cit23/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00550
– volume: 15
  start-page: 722
  year: 2016
  ident: D3TC03123C/cit17/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4611
– volume: 12
  start-page: 263
  year: 2022
  ident: D3TC03123C/cit10/1
  publication-title: Membranes
  doi: 10.3390/membranes12030263
– volume: 91
  start-page: 1121
  year: 2018
  ident: D3TC03123C/cit1/1
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2018.04.105
– volume: 195
  start-page: 5922
  year: 2010
  ident: D3TC03123C/cit8/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.11.021
– volume: 130
  start-page: 11060
  year: 2018
  ident: D3TC03123C/cit26/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.201804753
– volume: 6
  start-page: 7702
  year: 2023
  ident: D3TC03123C/cit9/1
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.3c01182
– volume: 22
  start-page: 37
  year: 2021
  ident: D3TC03123C/cit21/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.1c00949
– volume: 35
  start-page: 102296
  year: 2021
  ident: D3TC03123C/cit2/1
  publication-title: J. Energ. Storage
  doi: 10.1016/j.est.2021.102296
– start-page: 2006292
  volume-title: Adv. Mater.
  year: 2021
  ident: D3TC03123C/cit13/1
– year: 2023
  ident: D3TC03123C/cit18/1
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/d3qi01120h
– volume: 38
  start-page: 327
  year: 2022
  ident: D3TC03123C/cit3/1
  publication-title: Rev. Chem. Eng.
  doi: 10.1515/revce-2019-0079
– volume: 5
  start-page: 2039
  year: 2023
  ident: D3TC03123C/cit12/1
  publication-title: ACS Mater. Lett.
  doi: 10.1021/acsmaterialslett.3c00569
– volume: 10
  start-page: 7660
  year: 2022
  ident: D3TC03123C/cit11/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA10480B
– volume: 55
  start-page: 3752
  year: 2022
  ident: D3TC03123C/cit29/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.2c00686
– volume: 56
  start-page: 66
  year: 2020
  ident: D3TC03123C/cit28/1
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC07802A
– volume: 309
  start-page: 122948
  year: 2022
  ident: D3TC03123C/cit20/1
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2022.122948
– volume: 22
  start-page: 6425
  year: 2020
  ident: D3TC03123C/cit24/1
  publication-title: Cryst. Eng. Commun.
  doi: 10.1039/D0CE00902D
– volume: 10
  start-page: 4763
  year: 2023
  ident: D3TC03123C/cit22/1
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D3QI01007D
– volume: 133
  start-page: 26781
  year: 2021
  ident: D3TC03123C/cit6/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.202112922
– volume: 11
  start-page: 11072
  year: 2023
  ident: D3TC03123C/cit7/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D3TC00889D
– volume: 48
  start-page: 5266
  year: 2019
  ident: D3TC03123C/cit27/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00299E
– volume: 11
  start-page: 12206
  year: 2023
  ident: D3TC03123C/cit30/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D3TC02090H
– volume: 55
  start-page: 10667
  year: 2016
  ident: D3TC03123C/cit15/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201604534
– volume: 6
  start-page: eabb1110
  year: 2020
  ident: D3TC03123C/cit25/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abb1110
SSID ssj0000816869
Score 2.3139591
Snippet Owing to their clean and green energy, fuel cells are considered to be one of the most environmentally friendly technologies for achieving the conversion of...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 15288
SubjectTerms Benzene
Clean energy
Electrolytic cells
Energy conversion
Fuel cells
Hydrogen bonding
Maximum power density
Membranes
Methanol
Proton conduction
Protons
Solid electrolytes
Weight reduction
Title Proton conduction of an ionic HOF with multiple water molecules and application as a membrane filler in direct methanol fuel cells
URI https://www.proquest.com/docview/2887257486
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6lrZDggKBQkVLQSnBBkUvs9fNYhUQBhZaDI-Vm7ctSpMSuEkdIHPvb-GHMvmwjCgIuVjJZO47ny-zs7Mx8CL2NiGBlSA19uxcmXHopuPkeZ4wAPqTkujz683U8X4afVtFqMPjey1o6NOySf7u3ruR_tAoy0Kuqkv0HzbYXBQG8Bv3CETQMx7_S8ZddrbpiwJJWmCawele_Gq01rc38ZmbCrG3S4FeqWiJuDSOuNN2ZezvYinNGcUpvYQUNvmepywR1uqy2i5ptmlb1ZlQe5GakQv773_i2W_VF6vePuCOUuxxNTG2Q-0TlN9a3TdutoEfII6S2X72gtg7ozqidZlUC0dqbH9YmZaVu04CsoOrHMgKii_o6i2kiJi5dVaej2HvsrGIwjsZeEgW2f3ZfZqOizqz7PfiGpGekwWUxVIJ2xof3hqXxl-lkTFQ3VkEaDrYvILybNF2iwPVNMVsuFkU-XeVH6CSAxQpY25Oraf5x0cb6NLmJZlds7951yiXZ--7yP_tG3YLnaOfYaLTXkz9Bj61K8ZXB3lM0kNUpetRrYnmKHugkYr5_hu4MHnGHR1yXmFZY4xEDHrHCI3Z4xBqPuMUjDBW4h0dMQYQdHrHBI15X2OAROzxihUes8fgcLWfTfDL3LMeHx4PUb7xQZuNEsCzmNASbUYIwkZQw4WeZoPC4CPdL8CkZVVu4ESU8VaXdPheiZAkV5AwdV3UlXyDM4tCXaVQG4DSHNI0ykbI4kISORUJLkQ3RO_d0C24b4Cselk2hEzFIVnwg-URrYjJEb9qxt6bty72jLpySCmsW9gVgK4F5MEzjIToDxbXnd3o-__N5L9HD7s9xgY6b3UG-Ate3Ya8tsn4Ad_21SQ
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proton+conduction+of+an+ionic+HOF+with+multiple+water+molecules+and+application+as+a+membrane+filler+in+direct+methanol+fuel+cells&rft.jtitle=Journal+of+materials+chemistry.+C%2C+Materials+for+optical+and+electronic+devices&rft.au=Zhao%2C+Fang&rft.au=Li-Hui%2C+Cao&rft.au=Ji%2C+Can&rft.date=2023-11-09&rft.pub=Royal+Society+of+Chemistry&rft.issn=2050-7526&rft.eissn=2050-7534&rft.volume=11&rft.issue=43&rft.spage=15288&rft.epage=15293&rft_id=info:doi/10.1039%2Fd3tc03123c&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7526&client=summon