Enhancement of the photoelectrochemical water splitting by perovskite BiFeO3 via interfacial engineering

Ferroelectric semiconductors like BiFeO3 are increasingly being investigated for applications in solar energy conversion and storage due to their intrinsic ability to induce ferroelectric polarization-driven separation of the photogenerated charge carriers resulting in above-bandgap photovoltages. N...

Full description

Saved in:
Bibliographic Details
Published inSolar energy Vol. 202; pp. 198 - 203
Main Authors Liu, Guanyu, Karuturi, Siva Krishna, Chen, Hongjun, Wang, Dunwei, Ager, Joel W., Simonov, Alexandr N., Tricoli, Antonio
Format Journal Article
LanguageEnglish
Published New York Pergamon Press Inc 15.05.2020
Subjects
Online AccessGet full text
ISSN0038-092X
1471-1257
DOI10.1016/j.solener.2020.03.117

Cover

Loading…
Abstract Ferroelectric semiconductors like BiFeO3 are increasingly being investigated for applications in solar energy conversion and storage due to their intrinsic ability to induce ferroelectric polarization-driven separation of the photogenerated charge carriers resulting in above-bandgap photovoltages. Nevertheless, the BiFeO3 has been commonly prepared using complex and expensive fabrication techniques, e.g., epitaxial growth, radio frequency sputtering and pulsed laser deposition, which are not economically viable for large-scale production. Herein, we report a facile and scalable method for the fabrication of porous perovskite BiFeO3 photoanodes, as well as sequential interfacial engineering methods to enhance their photoelectrochemical performance for water splitting. Upon atomic layer deposition of a TiO2 overlayer and photo-assisted electrodeposition of a cobalt oxide/oxyhydroxide co-catalyst, the photocurrent density of the engineered photoanode for oxygen evolution reaction (1 M NaOH) significantly increased from negligible photocurrent of the pristine BiFeO3 to 0.16 mA cm−2 at 1.23 V vs. reversible hydrogen electrode (RHE) under simulated 1 sun irradiation (100 mW cm−2, AM1.5G spectrum). Furthermore, such functionalization of the BiFeO3 photoanodes shifts the photoelectrochemical oxidation onset potential by 0.7 V down to 0.6 V vs. RHE. The significantly enhanced photoelectro-oxidation activity is facilitated by the improved charge transfer and electrochemical kinetics.
AbstractList Ferroelectric semiconductors like BiFeO3 are increasingly being investigated for applications in solar energy conversion and storage due to their intrinsic ability to induce ferroelectric polarization-driven separation of the photogenerated charge carriers resulting in above-bandgap photovoltages. Nevertheless, the BiFeO3 has been commonly prepared using complex and expensive fabrication techniques, e.g., epitaxial growth, radio frequency sputtering and pulsed laser deposition, which are not economically viable for large-scale production. Herein, we report a facile and scalable method for the fabrication of porous perovskite BiFeO3 photoanodes, as well as sequential interfacial engineering methods to enhance their photoelectrochemical performance for water splitting. Upon atomic layer deposition of a TiO2 overlayer and photo-assisted electrodeposition of a cobalt oxide/oxyhydroxide co-catalyst, the photocurrent density of the engineered photoanode for oxygen evolution reaction (1 M NaOH) significantly increased from negligible photocurrent of the pristine BiFeO3 to 0.16 mA cm−2 at 1.23 V vs. reversible hydrogen electrode (RHE) under simulated 1 sun irradiation (100 mW cm−2, AM1.5G spectrum). Furthermore, such functionalization of the BiFeO3 photoanodes shifts the photoelectrochemical oxidation onset potential by 0.7 V down to 0.6 V vs. RHE. The significantly enhanced photoelectro-oxidation activity is facilitated by the improved charge transfer and electrochemical kinetics.
Author Chen, Hongjun
Wang, Dunwei
Simonov, Alexandr N.
Tricoli, Antonio
Ager, Joel W.
Liu, Guanyu
Karuturi, Siva Krishna
Author_xml – sequence: 1
  givenname: Guanyu
  surname: Liu
  fullname: Liu, Guanyu
– sequence: 2
  givenname: Siva Krishna
  surname: Karuturi
  fullname: Karuturi, Siva Krishna
– sequence: 3
  givenname: Hongjun
  surname: Chen
  fullname: Chen, Hongjun
– sequence: 4
  givenname: Dunwei
  surname: Wang
  fullname: Wang, Dunwei
– sequence: 5
  givenname: Joel W.
  surname: Ager
  fullname: Ager, Joel W.
– sequence: 6
  givenname: Alexandr N.
  surname: Simonov
  fullname: Simonov, Alexandr N.
– sequence: 7
  givenname: Antonio
  surname: Tricoli
  fullname: Tricoli, Antonio
BookMark eNqFkEFP3DAQRq0KpC4LPwHJUs9JZxw7zqqnFkFbCYkLSNwsx0w23mbt1Dag_fdkBadeeprLe99I74ydhBiIsUuEGgHbr7s6x4kCpVqAgBqaGlF_YiuUGisUSp-wFUDTVbARj5_ZWc47ANTY6RUbr8Nog6M9hcLjwMtIfB5jiTSRKym6kfbe2Ym_2kKJ53nypfiw5f2Bz5TiS_7jC_Ef_obuGv7iLfdhAQfr_CJR2PpAlBbhnJ0Odsp08XHX7OHm-v7qV3V79_P31ffbyokOSyUdukZKIYYWnp6sGlTXUK8IWqX7zgmhulZtBtyoXkhA22oQBFKRQNlj65o1-_K-O6f495lyMbv4nMLy0ggpZatFI_VCfXunXIo5JxqM88UWH0NJ1k8GwRzTmp35SGuOaQ00Zkm72Oofe05-b9PhP94b-Z6EAg
CitedBy_id crossref_primary_10_1039_D4TA00886C
crossref_primary_10_1007_s11082_023_06274_7
crossref_primary_10_1016_j_jece_2023_110197
crossref_primary_10_1080_10426914_2021_1945096
crossref_primary_10_1016_j_ceramint_2022_10_124
crossref_primary_10_1016_j_solener_2022_10_058
crossref_primary_10_1088_1402_4896_ad2bc5
crossref_primary_10_1155_2023_4440117
crossref_primary_10_1007_s10854_023_11597_y
crossref_primary_10_1155_2022_5628032
crossref_primary_10_1002_adfm_202110020
crossref_primary_10_1002_cey2_79
crossref_primary_10_2139_ssrn_4180234
crossref_primary_10_1021_acsami_4c02723
crossref_primary_10_1016_j_matchemphys_2025_130600
crossref_primary_10_1016_j_apt_2023_104234
crossref_primary_10_1016_j_chemosphere_2022_135071
crossref_primary_10_1039_D3TA05617A
crossref_primary_10_3390_nano11102617
crossref_primary_10_1007_s11082_024_07003_4
crossref_primary_10_1021_acsanm_3c04893
crossref_primary_10_1016_j_jpcs_2022_110868
crossref_primary_10_1039_D1CS01069G
crossref_primary_10_1016_j_jallcom_2021_159847
crossref_primary_10_1039_D0CS01079K
crossref_primary_10_3390_photonics9120968
crossref_primary_10_3390_polym14112148
crossref_primary_10_1515_chem_2023_0177
crossref_primary_10_1016_j_jece_2022_108429
crossref_primary_10_1021_acsaem_1c02548
crossref_primary_10_1007_s10854_023_10154_x
crossref_primary_10_1088_1402_4896_ad650e
crossref_primary_10_1016_j_mssp_2023_107929
crossref_primary_10_1007_s40684_022_00478_0
crossref_primary_10_1002_smll_202102088
crossref_primary_10_1007_s11082_024_06375_x
crossref_primary_10_3390_ma15041489
crossref_primary_10_1016_j_ijhydene_2024_06_265
crossref_primary_10_1016_j_ijhydene_2020_09_101
crossref_primary_10_1088_1402_4896_ace391
crossref_primary_10_1016_j_ijhydene_2024_06_387
crossref_primary_10_1002_er_6326
crossref_primary_10_1039_D2RA05894D
crossref_primary_10_1039_D1NH00292A
crossref_primary_10_1186_s40580_024_00440_7
crossref_primary_10_1002_ep_14455
crossref_primary_10_1088_2053_1591_ac4328
crossref_primary_10_1515_ntrev_2024_0098
crossref_primary_10_1063_5_0047079
crossref_primary_10_1021_acsaem_3c01926
crossref_primary_10_1016_j_apsusc_2020_148387
crossref_primary_10_1016_j_ijhydene_2024_09_239
crossref_primary_10_1016_j_jpcs_2021_110342
crossref_primary_10_1007_s11581_022_04774_2
crossref_primary_10_1155_2022_4282485
crossref_primary_10_3390_catal13030456
crossref_primary_10_1021_acs_jpcc_1c05639
crossref_primary_10_1002_er_7963
Cites_doi 10.1063/1.1926403
10.1039/c3ee41178h
10.1038/ncomms3651
10.1039/c3ta14824f
10.1063/1.2757132
10.1002/adma.200602377
10.1063/1.4939747
10.1039/C7TC05711C
10.1103/PhysRevB.84.125305
10.1021/nl200708y
10.1038/ncomms8447
10.1021/acsami.5b01394
10.1038/nphoton.2014.255
10.1021/cr1002326
10.1016/S0009-2509(03)00022-8
10.1007/s12274-017-1669-1
10.1063/1.2946486
10.1039/C3NR03998F
10.1016/j.solener.2017.07.031
10.1016/j.nanoen.2018.09.048
10.1063/1.4817907
10.1063/1.3204695
10.1103/PhysRevLett.107.126805
10.1038/ncomms3835
10.1039/C6NR04997D
10.1002/cssc.201500704
10.1007/s10853-016-9873-z
10.1126/science.1251428
10.1039/C8EE01574K
10.1063/1.2887908
10.1021/am500948t
10.1016/j.solener.2019.01.065
10.1016/j.enchem.2019.100014
10.1038/35104607
10.1016/j.solener.2017.01.057
10.1038/nnano.2009.451
10.1016/j.nanoen.2016.10.048
10.1039/C5NR04804D
10.1002/ange.201406044
10.1039/C0SC00578A
10.1021/acs.nanolett.5b03988
10.1140/epjb/e2010-00170-x
10.1021/acsenergylett.7b01153
ContentType Journal Article
Copyright Copyright Pergamon Press Inc. May 15, 2020
Copyright_xml – notice: Copyright Pergamon Press Inc. May 15, 2020
DBID AAYXX
CITATION
7SP
7ST
8FD
C1K
FR3
KR7
L7M
SOI
DOI 10.1016/j.solener.2020.03.117
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1471-1257
EndPage 203
ExternalDocumentID 10_1016_j_solener_2020_03_117
GroupedDBID --K
--M
-ET
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHCO
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARJD
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABDPE
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACGOD
ACIWK
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADHUB
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEZYN
AFJKZ
AFPUW
AFRAH
AFRZQ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
AZFZN
BELTK
BKOJK
BKOMP
BLXMC
BNPGV
CITATION
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
H~9
IHE
J1W
JARJE
KOM
LY6
M41
MAGPM
MO0
N9A
NEJ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SAC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SSM
SSR
SSZ
T5K
TAE
TN5
UKR
VOH
WH7
WUQ
XOL
XPP
YNT
ZMT
ZY4
~02
~A~
~G-
~KM
~S-
7SP
7ST
8FD
C1K
EFKBS
FR3
KR7
L7M
SOI
ID FETCH-LOGICAL-c281t-4c1c34422f60dda5f583eb5e0657b8c2258659f195b2401a6702e045e214b16c3
ISSN 0038-092X
IngestDate Sun Jul 13 04:10:54 EDT 2025
Tue Jul 01 00:39:35 EDT 2025
Thu Apr 24 23:08:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c281t-4c1c34422f60dda5f583eb5e0657b8c2258659f195b2401a6702e045e214b16c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2444672347
PQPubID 9393
PageCount 6
ParticipantIDs proquest_journals_2444672347
crossref_citationtrail_10_1016_j_solener_2020_03_117
crossref_primary_10_1016_j_solener_2020_03_117
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-15
PublicationDateYYYYMMDD 2020-05-15
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Solar energy
PublicationYear 2020
Publisher Pergamon Press Inc
Publisher_xml – name: Pergamon Press Inc
References Mueller (10.1016/j.solener.2020.03.117_b0135) 2003; 58
Iqbal (10.1016/j.solener.2020.03.117_b0055) 2017; 144
Liu (10.1016/j.solener.2020.03.117_b0110) 2018; 53
Pai (10.1016/j.solener.2020.03.117_b0145) 2018; 6
Liu (10.1016/j.solener.2020.03.117_b0105) 2015; 8
Liu (10.1016/j.solener.2020.03.117_b0115) 2016; 108
Yang (10.1016/j.solener.2020.03.117_b0195) 2010; 5
Basu (10.1016/j.solener.2020.03.117_b0015) 2008; 92
Li (10.1016/j.solener.2020.03.117_b0095) 2015; 7
Scheuermann (10.1016/j.solener.2020.03.117_b0160) 2013; 6
Cao (10.1016/j.solener.2020.03.117_b0025) 2014; 126
Lee (10.1016/j.solener.2020.03.117_b0080) 2011; 84
Xie (10.1016/j.solener.2020.03.117_b0185) 2017; 31
Yang (10.1016/j.solener.2020.03.117_b0205) 2014; 6
Seidel (10.1016/j.solener.2020.03.117_b0165) 2011; 107
Yang (10.1016/j.solener.2020.03.117_b0200) 2015; 15
Jang (10.1016/j.solener.2020.03.117_b0060) 2015; 6
Yin (10.1016/j.solener.2020.03.117_b0210) 2019; 12
Abdalla (10.1016/j.solener.2020.03.117_b0005) 2019; 181
Nechache (10.1016/j.solener.2020.03.117_b0140) 2015; 9
Li (10.1016/j.solener.2020.03.117_b0085) 2013; 4
Song (10.1016/j.solener.2020.03.117_b0170) 2018; 11
Joshi (10.1016/j.solener.2020.03.117_b0070) 2008; 92
Li (10.1016/j.solener.2020.03.117_b0090) 2014; 6
Hu (10.1016/j.solener.2020.03.117_b0045) 2014; 344
Ji (10.1016/j.solener.2020.03.117_b0065) 2013; 103
Ali (10.1016/j.solener.2020.03.117_b0010) 2017; 155
Moniz (10.1016/j.solener.2020.03.117_b0130) 2014; 2
Bhatnagar (10.1016/j.solener.2020.03.117_b0020) 2013; 4
Wan (10.1016/j.solener.2020.03.117_b0180) 2018; 3
Rong (10.1016/j.solener.2020.03.117_b0155) 2016; 51
Moniz (10.1016/j.solener.2020.03.117_b0125) 2015; 7
Gao (10.1016/j.solener.2020.03.117_b0035) 2007; 19
Le Formal (10.1016/j.solener.2020.03.117_b0075) 2011; 2
Pintilie (10.1016/j.solener.2020.03.117_b0150) 2005; 86
Liu (10.1016/j.solener.2020.03.117_bib211) 2019; 1
Lu (10.1016/j.solener.2020.03.117_b0120) 2010; 75
10.1016/j.solener.2020.03.117_b0190
Chen (10.1016/j.solener.2020.03.117_b0030) 2007; 91
Grätzel (10.1016/j.solener.2020.03.117_b0040) 2001; 414
Huang (10.1016/j.solener.2020.03.117_b0050) 2016; 8
Ling (10.1016/j.solener.2020.03.117_b0100) 2011; 11
Walter (10.1016/j.solener.2020.03.117_b0175) 2010; 110
References_xml – volume: 86
  start-page: 192902
  year: 2005
  ident: 10.1016/j.solener.2020.03.117_b0150
  article-title: Polarization reversal and capacitance-voltage characteristic of epitaxial Pb(Zr, Ti)O3 layers
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1926403
– volume: 6
  start-page: 2487
  year: 2013
  ident: 10.1016/j.solener.2020.03.117_b0160
  article-title: Effects of catalyst material and atomic layer deposited TiO2 oxide thickness on the water oxidation performance of metal–insulator–silicon anodes
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee41178h
– volume: 4
  start-page: 2651
  year: 2013
  ident: 10.1016/j.solener.2020.03.117_b0085
  article-title: Plasmon-induced photonic and energy-transfer enhancement of solar water splitting by a hematite nanorod array
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3651
– volume: 2
  start-page: 2922
  year: 2014
  ident: 10.1016/j.solener.2020.03.117_b0130
  article-title: A simple, low-cost CVD route to thin films of BiFeO3 for efficient water photo-oxidation
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta14824f
– volume: 91
  start-page: 022114
  year: 2007
  ident: 10.1016/j.solener.2020.03.117_b0030
  article-title: Application of weak ferromagnetic BiFeO3 films as the photoelectrode material under visible-light irradiation
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2757132
– volume: 19
  start-page: 2889
  year: 2007
  ident: 10.1016/j.solener.2020.03.117_b0035
  article-title: Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200602377
– volume: 108
  start-page: 022902
  year: 2016
  ident: 10.1016/j.solener.2020.03.117_b0115
  article-title: Enhanced ferroelectric photoelectrochemical properties of polycrystalline BiFeO3 film by decorating with Ag nanoparticles
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4939747
– volume: 6
  start-page: 2483
  year: 2018
  ident: 10.1016/j.solener.2020.03.117_b0145
  article-title: Spray deposition of AgBiS2 and Cu3BiS3 thin films for photovoltaic applications
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC05711C
– volume: 84
  start-page: 125305
  year: 2011
  ident: 10.1016/j.solener.2020.03.117_b0080
  article-title: Polarity control of carrier injection at ferroelectric/metal interfaces for electrically switchable diode and photovoltaic effects
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.125305
– volume: 11
  start-page: 2119
  year: 2011
  ident: 10.1016/j.solener.2020.03.117_b0100
  article-title: Sn-doped hematite nanostructures for photoelectrochemical water splitting
  publication-title: Nano Lett.
  doi: 10.1021/nl200708y
– volume: 6
  start-page: 7447
  year: 2015
  ident: 10.1016/j.solener.2020.03.117_b0060
  article-title: Enabling unassisted solar water splitting by iron oxide and silicon
  publication-title: Nat. commun.
  doi: 10.1038/ncomms8447
– volume: 7
  start-page: 16960
  year: 2015
  ident: 10.1016/j.solener.2020.03.117_b0095
  article-title: Revealing the role of TiO2 surface treatment of hematite nanorods photoanodes for solar water splitting
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b01394
– volume: 9
  start-page: 61
  year: 2015
  ident: 10.1016/j.solener.2020.03.117_b0140
  article-title: Bandgap tuning of multiferroic oxide solar cells
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2014.255
– volume: 110
  start-page: 6446
  year: 2010
  ident: 10.1016/j.solener.2020.03.117_b0175
  article-title: Solar water splitting cells
  publication-title: Chem. Rev.
  doi: 10.1021/cr1002326
– volume: 58
  start-page: 1969
  year: 2003
  ident: 10.1016/j.solener.2020.03.117_b0135
  article-title: Nanoparticle synthesis at high production rates by flame spray pyrolysis
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/S0009-2509(03)00022-8
– volume: 11
  start-page: 642
  year: 2018
  ident: 10.1016/j.solener.2020.03.117_b0170
  article-title: Domain-engineered BiFeO3 thin-film photoanodes for highly enhanced ferroelectric solar water splitting
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1669-1
– volume: 92
  start-page: 242106
  year: 2008
  ident: 10.1016/j.solener.2020.03.117_b0070
  article-title: Microwave synthesis of single-crystalline perovskite BiFeO3 nanocubes for photoelectrode and photocatalytic applications
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2946486
– volume: 6
  start-page: 24
  year: 2014
  ident: 10.1016/j.solener.2020.03.117_b0090
  article-title: Photocatalysts with internal electric fields
  publication-title: Nanoscale
  doi: 10.1039/C3NR03998F
– volume: 155
  start-page: 770
  year: 2017
  ident: 10.1016/j.solener.2020.03.117_b0010
  article-title: Plasmon aided (BiVO4)x–(TiO2)1–x ternary nanocomposites for efficient solar water splitting
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2017.07.031
– volume: 53
  start-page: 745
  year: 2018
  ident: 10.1016/j.solener.2020.03.117_b0110
  article-title: Tuning the morphology and structure of disordered hematite photoanodes for improved water oxidation: a physical and chemical synergistic approach
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.09.048
– volume: 103
  start-page: 062901
  year: 2013
  ident: 10.1016/j.solener.2020.03.117_b0065
  article-title: Epitaxial ferroelectric BiFeO3 thin films for unassisted photocatalytic water splitting
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4817907
– ident: 10.1016/j.solener.2020.03.117_b0190
  doi: 10.1063/1.3204695
– volume: 107
  start-page: 126805
  year: 2011
  ident: 10.1016/j.solener.2020.03.117_b0165
  article-title: Efficient photovoltaic current generation at ferroelectric domain walls
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.126805
– volume: 4
  start-page: 2835
  year: 2013
  ident: 10.1016/j.solener.2020.03.117_b0020
  article-title: Role of domain walls in the abnormal photovoltaic effect in BiFeO3
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3835
– volume: 8
  start-page: 15795
  year: 2016
  ident: 10.1016/j.solener.2020.03.117_b0050
  article-title: Tunable photoelectrochemical performance of Au/BiFeO3 heterostructure
  publication-title: Nanoscale
  doi: 10.1039/C6NR04997D
– volume: 8
  start-page: 4162
  year: 2015
  ident: 10.1016/j.solener.2020.03.117_b0105
  article-title: Scalable synthesis of efficient water oxidation catalysts: insights into the activity of flame-made manganese oxide nanocrystals
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201500704
– volume: 51
  start-page: 5712
  year: 2016
  ident: 10.1016/j.solener.2020.03.117_b0155
  article-title: Improved photoelectrocatalytic properties of Ti-doped BiFeO3 films for water oxidation
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-016-9873-z
– volume: 344
  start-page: 1005
  year: 2014
  ident: 10.1016/j.solener.2020.03.117_b0045
  article-title: Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation
  publication-title: Science
  doi: 10.1126/science.1251428
– volume: 12
  start-page: 442
  year: 2019
  ident: 10.1016/j.solener.2020.03.117_b0210
  article-title: Oxide perovskites, double perovskites and derivatives for electrocatalysis, photocatalysis, and photovoltaics
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE01574K
– volume: 92
  start-page: 091905
  year: 2008
  ident: 10.1016/j.solener.2020.03.117_b0015
  article-title: Photoconductivity in BiFeO3 thin films
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2887908
– volume: 6
  start-page: 12005
  year: 2014
  ident: 10.1016/j.solener.2020.03.117_b0205
  article-title: Improving hematite-based photoelectrochemical water splitting with ultrathin TiO2 by atomic layer deposition
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am500948t
– volume: 181
  start-page: 333
  year: 2019
  ident: 10.1016/j.solener.2020.03.117_b0005
  article-title: Au/Ga2O3/ZnO heterostructure nanorods arrays for effective photoelectrochemical water splitting
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.01.065
– volume: 1
  issue: 2
  year: 2019
  ident: 10.1016/j.solener.2020.03.117_bib211
  article-title: Research advances towards large-scale solar hydrogen production from water
  publication-title: EnergyChem
  doi: 10.1016/j.enchem.2019.100014
– volume: 414
  start-page: 338
  year: 2001
  ident: 10.1016/j.solener.2020.03.117_b0040
  article-title: Photoelectrochemical cells
  publication-title: Nature
  doi: 10.1038/35104607
– volume: 144
  start-page: 604
  year: 2017
  ident: 10.1016/j.solener.2020.03.117_b0055
  article-title: A facile one-step strategy for in-situ fabrication of WO3-BiVO4 nanoarrays for solar-driven photoelectrochemical water splitting applications
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2017.01.057
– volume: 5
  start-page: 143
  year: 2010
  ident: 10.1016/j.solener.2020.03.117_b0195
  article-title: Above-bandgap voltages from ferroelectric photovoltaic devices
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2009.451
– volume: 31
  start-page: 28
  year: 2017
  ident: 10.1016/j.solener.2020.03.117_b0185
  article-title: Bi-functional ferroelectric BiFeO3 passivated BiVO4 photoanode for efficient and stable solar water oxidation
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.10.048
– volume: 7
  start-page: 16343
  year: 2015
  ident: 10.1016/j.solener.2020.03.117_b0125
  article-title: Visible-light driven water splitting over BiFeO3 photoanodes grown via the LPCVD reaction of [Bi(OtBu)3] and [Fe(OtBu)3]2 and enhanced with a surface nickel oxygen evolution catalyst
  publication-title: Nanoscale
  doi: 10.1039/C5NR04804D
– volume: 126
  start-page: 11207
  year: 2014
  ident: 10.1016/j.solener.2020.03.117_b0025
  article-title: Switchable Charge-Transfer in the Photoelectrochemical Energy-Conversion Process of Ferroelectric BiFeO3 Photoelectrodes
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201406044
– volume: 2
  start-page: 737
  year: 2011
  ident: 10.1016/j.solener.2020.03.117_b0075
  article-title: Passivating surface states on water splitting hematite photoanodes with alumina overlayers
  publication-title: Chem. Sci.
  doi: 10.1039/C0SC00578A
– volume: 15
  start-page: 7574
  year: 2015
  ident: 10.1016/j.solener.2020.03.117_b0200
  article-title: Ferroelectric polarization-enhanced photoelectrochemical water splitting in TiO2–BaTiO3 core–shell nanowire photoanodes
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b03988
– volume: 75
  start-page: 451
  year: 2010
  ident: 10.1016/j.solener.2020.03.117_b0120
  article-title: On the room temperature multiferroic BiFeO3: magnetic, dielectric and thermal properties
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e2010-00170-x
– volume: 3
  start-page: 125
  year: 2018
  ident: 10.1016/j.solener.2020.03.117_b0180
  article-title: Tantalum Oxide Electron-Selective Heterocontacts for Silicon Photovoltaics and Photoelectrochemical Water Reduction
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b01153
SSID ssj0017187
Score 2.536837
Snippet Ferroelectric semiconductors like BiFeO3 are increasingly being investigated for applications in solar energy conversion and storage due to their intrinsic...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 198
SubjectTerms Atomic layer epitaxy
Bismuth ferrite
Catalysts
Charge transfer
Cobalt
Cobalt oxides
Current carriers
Electrochemistry
Electronics industry
Energy conversion
Energy storage
Epitaxial growth
Fabrication
Ferroelectric materials
Ferroelectricity
Irradiation
Oxidation
Oxygen evolution reactions
Perovskites
Photoelectric effect
Photoelectric emission
Photovoltages
Pulsed laser deposition
Pulsed lasers
Reaction kinetics
Sodium hydroxide
Solar energy
Solar energy conversion
Splitting
Titanium dioxide
Water splitting
Title Enhancement of the photoelectrochemical water splitting by perovskite BiFeO3 via interfacial engineering
URI https://www.proquest.com/docview/2444672347
Volume 202
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcoED4ikKBe2BW-TgffjRI6BWEQc4tBW9WbubNXGE7CqxU9EDv53Zh9cOREC5WJYlr-zMl9lvxjPfIPSm1LCpKZVFwBVkZHolI0E0BCucK0azfMGULZD9lM4v-MfL5HIyuRl3l7Rypm729pX8j1XhGtjVdMnewrJhUbgA52BfOIKF4fhPNj6pl8Zo_fd82_W0bNrGz7ZRvRjAtTBSiBvgm67KGSin0Qffbkzqdvq-OtWf2XRbCSsesS6FTaPrQalwzGDPTCw81bZlMFTzVJ3Nr3fgWbrgwsXa6JXYaoGzaiusP1nWQ2WQ7wuZN_XXVRcw-sUnsIFZX-tqnJSg9nu6a8vsHS0zVRV2UnpwtDSmI1dJ3PRpv-tSq3Twu0N3uYXVbGOqFLQRcKWxUaUlruNzV0D7l40tlBv2lWyrwi9TmGWKmBmp8zvoLoUQwzj12Y9QHkRgz3Z6q_5Fhu6vt3ufZpfX7G7rlqucP0QPfJCB3znEPEITXT9G90fSk0_QcoQd3JQYsIP3YQdb7OCAHSy_4wE72GEHA3bwCDt4hJ2n6OL05PzDPPJTNyJFc9JGXBHFOKe0TOPFQiRlkjMtEw1cNZO5Av-fp8lxSY4TCWyQiDSLqYbAQFPCJUkVe4YO6qbWzxGGcF7GRAmSCmCRKpeilCkXizQvgYcn8hDx_jcrlJekN5NRvhV_tNghmoXbrpwmy99uOOoNUvi_76aAJwKSQBnPXtx2vZfo3gD6I3TQrjv9CrhpK19bEP0E3-qTew
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancement+of+the+photoelectrochemical+water+splitting+by+perovskite+BiFeO3+via+interfacial+engineering&rft.jtitle=Solar+energy&rft.au=Liu%2C+Guanyu&rft.au=Karuturi%2C+Siva+Krishna&rft.au=Chen%2C+Hongjun&rft.au=Wang%2C+Dunwei&rft.date=2020-05-15&rft.issn=0038-092X&rft.volume=202&rft.spage=198&rft.epage=203&rft_id=info:doi/10.1016%2Fj.solener.2020.03.117&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_solener_2020_03_117
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-092X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-092X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-092X&client=summon