Enhancement of the photoelectrochemical water splitting by perovskite BiFeO3 via interfacial engineering
Ferroelectric semiconductors like BiFeO3 are increasingly being investigated for applications in solar energy conversion and storage due to their intrinsic ability to induce ferroelectric polarization-driven separation of the photogenerated charge carriers resulting in above-bandgap photovoltages. N...
Saved in:
Published in | Solar energy Vol. 202; pp. 198 - 203 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Pergamon Press Inc
15.05.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0038-092X 1471-1257 |
DOI | 10.1016/j.solener.2020.03.117 |
Cover
Loading…
Abstract | Ferroelectric semiconductors like BiFeO3 are increasingly being investigated for applications in solar energy conversion and storage due to their intrinsic ability to induce ferroelectric polarization-driven separation of the photogenerated charge carriers resulting in above-bandgap photovoltages. Nevertheless, the BiFeO3 has been commonly prepared using complex and expensive fabrication techniques, e.g., epitaxial growth, radio frequency sputtering and pulsed laser deposition, which are not economically viable for large-scale production. Herein, we report a facile and scalable method for the fabrication of porous perovskite BiFeO3 photoanodes, as well as sequential interfacial engineering methods to enhance their photoelectrochemical performance for water splitting. Upon atomic layer deposition of a TiO2 overlayer and photo-assisted electrodeposition of a cobalt oxide/oxyhydroxide co-catalyst, the photocurrent density of the engineered photoanode for oxygen evolution reaction (1 M NaOH) significantly increased from negligible photocurrent of the pristine BiFeO3 to 0.16 mA cm−2 at 1.23 V vs. reversible hydrogen electrode (RHE) under simulated 1 sun irradiation (100 mW cm−2, AM1.5G spectrum). Furthermore, such functionalization of the BiFeO3 photoanodes shifts the photoelectrochemical oxidation onset potential by 0.7 V down to 0.6 V vs. RHE. The significantly enhanced photoelectro-oxidation activity is facilitated by the improved charge transfer and electrochemical kinetics. |
---|---|
AbstractList | Ferroelectric semiconductors like BiFeO3 are increasingly being investigated for applications in solar energy conversion and storage due to their intrinsic ability to induce ferroelectric polarization-driven separation of the photogenerated charge carriers resulting in above-bandgap photovoltages. Nevertheless, the BiFeO3 has been commonly prepared using complex and expensive fabrication techniques, e.g., epitaxial growth, radio frequency sputtering and pulsed laser deposition, which are not economically viable for large-scale production. Herein, we report a facile and scalable method for the fabrication of porous perovskite BiFeO3 photoanodes, as well as sequential interfacial engineering methods to enhance their photoelectrochemical performance for water splitting. Upon atomic layer deposition of a TiO2 overlayer and photo-assisted electrodeposition of a cobalt oxide/oxyhydroxide co-catalyst, the photocurrent density of the engineered photoanode for oxygen evolution reaction (1 M NaOH) significantly increased from negligible photocurrent of the pristine BiFeO3 to 0.16 mA cm−2 at 1.23 V vs. reversible hydrogen electrode (RHE) under simulated 1 sun irradiation (100 mW cm−2, AM1.5G spectrum). Furthermore, such functionalization of the BiFeO3 photoanodes shifts the photoelectrochemical oxidation onset potential by 0.7 V down to 0.6 V vs. RHE. The significantly enhanced photoelectro-oxidation activity is facilitated by the improved charge transfer and electrochemical kinetics. |
Author | Chen, Hongjun Wang, Dunwei Simonov, Alexandr N. Tricoli, Antonio Ager, Joel W. Liu, Guanyu Karuturi, Siva Krishna |
Author_xml | – sequence: 1 givenname: Guanyu surname: Liu fullname: Liu, Guanyu – sequence: 2 givenname: Siva Krishna surname: Karuturi fullname: Karuturi, Siva Krishna – sequence: 3 givenname: Hongjun surname: Chen fullname: Chen, Hongjun – sequence: 4 givenname: Dunwei surname: Wang fullname: Wang, Dunwei – sequence: 5 givenname: Joel W. surname: Ager fullname: Ager, Joel W. – sequence: 6 givenname: Alexandr N. surname: Simonov fullname: Simonov, Alexandr N. – sequence: 7 givenname: Antonio surname: Tricoli fullname: Tricoli, Antonio |
BookMark | eNqFkEFP3DAQRq0KpC4LPwHJUs9JZxw7zqqnFkFbCYkLSNwsx0w23mbt1Dag_fdkBadeeprLe99I74ydhBiIsUuEGgHbr7s6x4kCpVqAgBqaGlF_YiuUGisUSp-wFUDTVbARj5_ZWc47ANTY6RUbr8Nog6M9hcLjwMtIfB5jiTSRKym6kfbe2Ym_2kKJ53nypfiw5f2Bz5TiS_7jC_Ef_obuGv7iLfdhAQfr_CJR2PpAlBbhnJ0Odsp08XHX7OHm-v7qV3V79_P31ffbyokOSyUdukZKIYYWnp6sGlTXUK8IWqX7zgmhulZtBtyoXkhA22oQBFKRQNlj65o1-_K-O6f495lyMbv4nMLy0ggpZatFI_VCfXunXIo5JxqM88UWH0NJ1k8GwRzTmp35SGuOaQ00Zkm72Oofe05-b9PhP94b-Z6EAg |
CitedBy_id | crossref_primary_10_1039_D4TA00886C crossref_primary_10_1007_s11082_023_06274_7 crossref_primary_10_1016_j_jece_2023_110197 crossref_primary_10_1080_10426914_2021_1945096 crossref_primary_10_1016_j_ceramint_2022_10_124 crossref_primary_10_1016_j_solener_2022_10_058 crossref_primary_10_1088_1402_4896_ad2bc5 crossref_primary_10_1155_2023_4440117 crossref_primary_10_1007_s10854_023_11597_y crossref_primary_10_1155_2022_5628032 crossref_primary_10_1002_adfm_202110020 crossref_primary_10_1002_cey2_79 crossref_primary_10_2139_ssrn_4180234 crossref_primary_10_1021_acsami_4c02723 crossref_primary_10_1016_j_matchemphys_2025_130600 crossref_primary_10_1016_j_apt_2023_104234 crossref_primary_10_1016_j_chemosphere_2022_135071 crossref_primary_10_1039_D3TA05617A crossref_primary_10_3390_nano11102617 crossref_primary_10_1007_s11082_024_07003_4 crossref_primary_10_1021_acsanm_3c04893 crossref_primary_10_1016_j_jpcs_2022_110868 crossref_primary_10_1039_D1CS01069G crossref_primary_10_1016_j_jallcom_2021_159847 crossref_primary_10_1039_D0CS01079K crossref_primary_10_3390_photonics9120968 crossref_primary_10_3390_polym14112148 crossref_primary_10_1515_chem_2023_0177 crossref_primary_10_1016_j_jece_2022_108429 crossref_primary_10_1021_acsaem_1c02548 crossref_primary_10_1007_s10854_023_10154_x crossref_primary_10_1088_1402_4896_ad650e crossref_primary_10_1016_j_mssp_2023_107929 crossref_primary_10_1007_s40684_022_00478_0 crossref_primary_10_1002_smll_202102088 crossref_primary_10_1007_s11082_024_06375_x crossref_primary_10_3390_ma15041489 crossref_primary_10_1016_j_ijhydene_2024_06_265 crossref_primary_10_1016_j_ijhydene_2020_09_101 crossref_primary_10_1088_1402_4896_ace391 crossref_primary_10_1016_j_ijhydene_2024_06_387 crossref_primary_10_1002_er_6326 crossref_primary_10_1039_D2RA05894D crossref_primary_10_1039_D1NH00292A crossref_primary_10_1186_s40580_024_00440_7 crossref_primary_10_1002_ep_14455 crossref_primary_10_1088_2053_1591_ac4328 crossref_primary_10_1515_ntrev_2024_0098 crossref_primary_10_1063_5_0047079 crossref_primary_10_1021_acsaem_3c01926 crossref_primary_10_1016_j_apsusc_2020_148387 crossref_primary_10_1016_j_ijhydene_2024_09_239 crossref_primary_10_1016_j_jpcs_2021_110342 crossref_primary_10_1007_s11581_022_04774_2 crossref_primary_10_1155_2022_4282485 crossref_primary_10_3390_catal13030456 crossref_primary_10_1021_acs_jpcc_1c05639 crossref_primary_10_1002_er_7963 |
Cites_doi | 10.1063/1.1926403 10.1039/c3ee41178h 10.1038/ncomms3651 10.1039/c3ta14824f 10.1063/1.2757132 10.1002/adma.200602377 10.1063/1.4939747 10.1039/C7TC05711C 10.1103/PhysRevB.84.125305 10.1021/nl200708y 10.1038/ncomms8447 10.1021/acsami.5b01394 10.1038/nphoton.2014.255 10.1021/cr1002326 10.1016/S0009-2509(03)00022-8 10.1007/s12274-017-1669-1 10.1063/1.2946486 10.1039/C3NR03998F 10.1016/j.solener.2017.07.031 10.1016/j.nanoen.2018.09.048 10.1063/1.4817907 10.1063/1.3204695 10.1103/PhysRevLett.107.126805 10.1038/ncomms3835 10.1039/C6NR04997D 10.1002/cssc.201500704 10.1007/s10853-016-9873-z 10.1126/science.1251428 10.1039/C8EE01574K 10.1063/1.2887908 10.1021/am500948t 10.1016/j.solener.2019.01.065 10.1016/j.enchem.2019.100014 10.1038/35104607 10.1016/j.solener.2017.01.057 10.1038/nnano.2009.451 10.1016/j.nanoen.2016.10.048 10.1039/C5NR04804D 10.1002/ange.201406044 10.1039/C0SC00578A 10.1021/acs.nanolett.5b03988 10.1140/epjb/e2010-00170-x 10.1021/acsenergylett.7b01153 |
ContentType | Journal Article |
Copyright | Copyright Pergamon Press Inc. May 15, 2020 |
Copyright_xml | – notice: Copyright Pergamon Press Inc. May 15, 2020 |
DBID | AAYXX CITATION 7SP 7ST 8FD C1K FR3 KR7 L7M SOI |
DOI | 10.1016/j.solener.2020.03.117 |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1471-1257 |
EndPage | 203 |
ExternalDocumentID | 10_1016_j_solener_2020_03_117 |
GroupedDBID | --K --M -ET -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHCO AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARJD AATTM AAXKI AAXUO AAYWO AAYXX ABDPE ABFNM ABJNI ABMAC ABWVN ABXDB ABXRA ACDAQ ACGFS ACGOD ACIWK ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADHUB ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEZYN AFJKZ AFPUW AFRAH AFRZQ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHHHB AHIDL AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR AZFZN BELTK BKOJK BKOMP BLXMC BNPGV CITATION CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ H~9 IHE J1W JARJE KOM LY6 M41 MAGPM MO0 N9A NEJ O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ RXW SAC SDF SDG SDP SES SEW SPC SPCBC SSH SSM SSR SSZ T5K TAE TN5 UKR VOH WH7 WUQ XOL XPP YNT ZMT ZY4 ~02 ~A~ ~G- ~KM ~S- 7SP 7ST 8FD C1K EFKBS FR3 KR7 L7M SOI |
ID | FETCH-LOGICAL-c281t-4c1c34422f60dda5f583eb5e0657b8c2258659f195b2401a6702e045e214b16c3 |
ISSN | 0038-092X |
IngestDate | Sun Jul 13 04:10:54 EDT 2025 Tue Jul 01 00:39:35 EDT 2025 Thu Apr 24 23:08:07 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c281t-4c1c34422f60dda5f583eb5e0657b8c2258659f195b2401a6702e045e214b16c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2444672347 |
PQPubID | 9393 |
PageCount | 6 |
ParticipantIDs | proquest_journals_2444672347 crossref_citationtrail_10_1016_j_solener_2020_03_117 crossref_primary_10_1016_j_solener_2020_03_117 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-15 |
PublicationDateYYYYMMDD | 2020-05-15 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Solar energy |
PublicationYear | 2020 |
Publisher | Pergamon Press Inc |
Publisher_xml | – name: Pergamon Press Inc |
References | Mueller (10.1016/j.solener.2020.03.117_b0135) 2003; 58 Iqbal (10.1016/j.solener.2020.03.117_b0055) 2017; 144 Liu (10.1016/j.solener.2020.03.117_b0110) 2018; 53 Pai (10.1016/j.solener.2020.03.117_b0145) 2018; 6 Liu (10.1016/j.solener.2020.03.117_b0105) 2015; 8 Liu (10.1016/j.solener.2020.03.117_b0115) 2016; 108 Yang (10.1016/j.solener.2020.03.117_b0195) 2010; 5 Basu (10.1016/j.solener.2020.03.117_b0015) 2008; 92 Li (10.1016/j.solener.2020.03.117_b0095) 2015; 7 Scheuermann (10.1016/j.solener.2020.03.117_b0160) 2013; 6 Cao (10.1016/j.solener.2020.03.117_b0025) 2014; 126 Lee (10.1016/j.solener.2020.03.117_b0080) 2011; 84 Xie (10.1016/j.solener.2020.03.117_b0185) 2017; 31 Yang (10.1016/j.solener.2020.03.117_b0205) 2014; 6 Seidel (10.1016/j.solener.2020.03.117_b0165) 2011; 107 Yang (10.1016/j.solener.2020.03.117_b0200) 2015; 15 Jang (10.1016/j.solener.2020.03.117_b0060) 2015; 6 Yin (10.1016/j.solener.2020.03.117_b0210) 2019; 12 Abdalla (10.1016/j.solener.2020.03.117_b0005) 2019; 181 Nechache (10.1016/j.solener.2020.03.117_b0140) 2015; 9 Li (10.1016/j.solener.2020.03.117_b0085) 2013; 4 Song (10.1016/j.solener.2020.03.117_b0170) 2018; 11 Joshi (10.1016/j.solener.2020.03.117_b0070) 2008; 92 Li (10.1016/j.solener.2020.03.117_b0090) 2014; 6 Hu (10.1016/j.solener.2020.03.117_b0045) 2014; 344 Ji (10.1016/j.solener.2020.03.117_b0065) 2013; 103 Ali (10.1016/j.solener.2020.03.117_b0010) 2017; 155 Moniz (10.1016/j.solener.2020.03.117_b0130) 2014; 2 Bhatnagar (10.1016/j.solener.2020.03.117_b0020) 2013; 4 Wan (10.1016/j.solener.2020.03.117_b0180) 2018; 3 Rong (10.1016/j.solener.2020.03.117_b0155) 2016; 51 Moniz (10.1016/j.solener.2020.03.117_b0125) 2015; 7 Gao (10.1016/j.solener.2020.03.117_b0035) 2007; 19 Le Formal (10.1016/j.solener.2020.03.117_b0075) 2011; 2 Pintilie (10.1016/j.solener.2020.03.117_b0150) 2005; 86 Liu (10.1016/j.solener.2020.03.117_bib211) 2019; 1 Lu (10.1016/j.solener.2020.03.117_b0120) 2010; 75 10.1016/j.solener.2020.03.117_b0190 Chen (10.1016/j.solener.2020.03.117_b0030) 2007; 91 Grätzel (10.1016/j.solener.2020.03.117_b0040) 2001; 414 Huang (10.1016/j.solener.2020.03.117_b0050) 2016; 8 Ling (10.1016/j.solener.2020.03.117_b0100) 2011; 11 Walter (10.1016/j.solener.2020.03.117_b0175) 2010; 110 |
References_xml | – volume: 86 start-page: 192902 year: 2005 ident: 10.1016/j.solener.2020.03.117_b0150 article-title: Polarization reversal and capacitance-voltage characteristic of epitaxial Pb(Zr, Ti)O3 layers publication-title: Appl. Phys. Lett. doi: 10.1063/1.1926403 – volume: 6 start-page: 2487 year: 2013 ident: 10.1016/j.solener.2020.03.117_b0160 article-title: Effects of catalyst material and atomic layer deposited TiO2 oxide thickness on the water oxidation performance of metal–insulator–silicon anodes publication-title: Energy Environ. Sci. doi: 10.1039/c3ee41178h – volume: 4 start-page: 2651 year: 2013 ident: 10.1016/j.solener.2020.03.117_b0085 article-title: Plasmon-induced photonic and energy-transfer enhancement of solar water splitting by a hematite nanorod array publication-title: Nat. Commun. doi: 10.1038/ncomms3651 – volume: 2 start-page: 2922 year: 2014 ident: 10.1016/j.solener.2020.03.117_b0130 article-title: A simple, low-cost CVD route to thin films of BiFeO3 for efficient water photo-oxidation publication-title: J. Mater. Chem. A doi: 10.1039/c3ta14824f – volume: 91 start-page: 022114 year: 2007 ident: 10.1016/j.solener.2020.03.117_b0030 article-title: Application of weak ferromagnetic BiFeO3 films as the photoelectrode material under visible-light irradiation publication-title: Appl. Phys. Lett. doi: 10.1063/1.2757132 – volume: 19 start-page: 2889 year: 2007 ident: 10.1016/j.solener.2020.03.117_b0035 article-title: Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles publication-title: Adv. Mater. doi: 10.1002/adma.200602377 – volume: 108 start-page: 022902 year: 2016 ident: 10.1016/j.solener.2020.03.117_b0115 article-title: Enhanced ferroelectric photoelectrochemical properties of polycrystalline BiFeO3 film by decorating with Ag nanoparticles publication-title: Appl. Phys. Lett. doi: 10.1063/1.4939747 – volume: 6 start-page: 2483 year: 2018 ident: 10.1016/j.solener.2020.03.117_b0145 article-title: Spray deposition of AgBiS2 and Cu3BiS3 thin films for photovoltaic applications publication-title: J. Mater. Chem. C doi: 10.1039/C7TC05711C – volume: 84 start-page: 125305 year: 2011 ident: 10.1016/j.solener.2020.03.117_b0080 article-title: Polarity control of carrier injection at ferroelectric/metal interfaces for electrically switchable diode and photovoltaic effects publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.125305 – volume: 11 start-page: 2119 year: 2011 ident: 10.1016/j.solener.2020.03.117_b0100 article-title: Sn-doped hematite nanostructures for photoelectrochemical water splitting publication-title: Nano Lett. doi: 10.1021/nl200708y – volume: 6 start-page: 7447 year: 2015 ident: 10.1016/j.solener.2020.03.117_b0060 article-title: Enabling unassisted solar water splitting by iron oxide and silicon publication-title: Nat. commun. doi: 10.1038/ncomms8447 – volume: 7 start-page: 16960 year: 2015 ident: 10.1016/j.solener.2020.03.117_b0095 article-title: Revealing the role of TiO2 surface treatment of hematite nanorods photoanodes for solar water splitting publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b01394 – volume: 9 start-page: 61 year: 2015 ident: 10.1016/j.solener.2020.03.117_b0140 article-title: Bandgap tuning of multiferroic oxide solar cells publication-title: Nat. Photon. doi: 10.1038/nphoton.2014.255 – volume: 110 start-page: 6446 year: 2010 ident: 10.1016/j.solener.2020.03.117_b0175 article-title: Solar water splitting cells publication-title: Chem. Rev. doi: 10.1021/cr1002326 – volume: 58 start-page: 1969 year: 2003 ident: 10.1016/j.solener.2020.03.117_b0135 article-title: Nanoparticle synthesis at high production rates by flame spray pyrolysis publication-title: Chem. Eng. Sci. doi: 10.1016/S0009-2509(03)00022-8 – volume: 11 start-page: 642 year: 2018 ident: 10.1016/j.solener.2020.03.117_b0170 article-title: Domain-engineered BiFeO3 thin-film photoanodes for highly enhanced ferroelectric solar water splitting publication-title: Nano Res. doi: 10.1007/s12274-017-1669-1 – volume: 92 start-page: 242106 year: 2008 ident: 10.1016/j.solener.2020.03.117_b0070 article-title: Microwave synthesis of single-crystalline perovskite BiFeO3 nanocubes for photoelectrode and photocatalytic applications publication-title: Appl. Phys. Lett. doi: 10.1063/1.2946486 – volume: 6 start-page: 24 year: 2014 ident: 10.1016/j.solener.2020.03.117_b0090 article-title: Photocatalysts with internal electric fields publication-title: Nanoscale doi: 10.1039/C3NR03998F – volume: 155 start-page: 770 year: 2017 ident: 10.1016/j.solener.2020.03.117_b0010 article-title: Plasmon aided (BiVO4)x–(TiO2)1–x ternary nanocomposites for efficient solar water splitting publication-title: Sol. Energy doi: 10.1016/j.solener.2017.07.031 – volume: 53 start-page: 745 year: 2018 ident: 10.1016/j.solener.2020.03.117_b0110 article-title: Tuning the morphology and structure of disordered hematite photoanodes for improved water oxidation: a physical and chemical synergistic approach publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.09.048 – volume: 103 start-page: 062901 year: 2013 ident: 10.1016/j.solener.2020.03.117_b0065 article-title: Epitaxial ferroelectric BiFeO3 thin films for unassisted photocatalytic water splitting publication-title: Appl. Phys. Lett. doi: 10.1063/1.4817907 – ident: 10.1016/j.solener.2020.03.117_b0190 doi: 10.1063/1.3204695 – volume: 107 start-page: 126805 year: 2011 ident: 10.1016/j.solener.2020.03.117_b0165 article-title: Efficient photovoltaic current generation at ferroelectric domain walls publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.126805 – volume: 4 start-page: 2835 year: 2013 ident: 10.1016/j.solener.2020.03.117_b0020 article-title: Role of domain walls in the abnormal photovoltaic effect in BiFeO3 publication-title: Nat. Commun. doi: 10.1038/ncomms3835 – volume: 8 start-page: 15795 year: 2016 ident: 10.1016/j.solener.2020.03.117_b0050 article-title: Tunable photoelectrochemical performance of Au/BiFeO3 heterostructure publication-title: Nanoscale doi: 10.1039/C6NR04997D – volume: 8 start-page: 4162 year: 2015 ident: 10.1016/j.solener.2020.03.117_b0105 article-title: Scalable synthesis of efficient water oxidation catalysts: insights into the activity of flame-made manganese oxide nanocrystals publication-title: ChemSusChem doi: 10.1002/cssc.201500704 – volume: 51 start-page: 5712 year: 2016 ident: 10.1016/j.solener.2020.03.117_b0155 article-title: Improved photoelectrocatalytic properties of Ti-doped BiFeO3 films for water oxidation publication-title: J. Mater. Sci. doi: 10.1007/s10853-016-9873-z – volume: 344 start-page: 1005 year: 2014 ident: 10.1016/j.solener.2020.03.117_b0045 article-title: Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation publication-title: Science doi: 10.1126/science.1251428 – volume: 12 start-page: 442 year: 2019 ident: 10.1016/j.solener.2020.03.117_b0210 article-title: Oxide perovskites, double perovskites and derivatives for electrocatalysis, photocatalysis, and photovoltaics publication-title: Energy Environ. Sci. doi: 10.1039/C8EE01574K – volume: 92 start-page: 091905 year: 2008 ident: 10.1016/j.solener.2020.03.117_b0015 article-title: Photoconductivity in BiFeO3 thin films publication-title: Appl. Phys. Lett. doi: 10.1063/1.2887908 – volume: 6 start-page: 12005 year: 2014 ident: 10.1016/j.solener.2020.03.117_b0205 article-title: Improving hematite-based photoelectrochemical water splitting with ultrathin TiO2 by atomic layer deposition publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am500948t – volume: 181 start-page: 333 year: 2019 ident: 10.1016/j.solener.2020.03.117_b0005 article-title: Au/Ga2O3/ZnO heterostructure nanorods arrays for effective photoelectrochemical water splitting publication-title: Sol. Energy doi: 10.1016/j.solener.2019.01.065 – volume: 1 issue: 2 year: 2019 ident: 10.1016/j.solener.2020.03.117_bib211 article-title: Research advances towards large-scale solar hydrogen production from water publication-title: EnergyChem doi: 10.1016/j.enchem.2019.100014 – volume: 414 start-page: 338 year: 2001 ident: 10.1016/j.solener.2020.03.117_b0040 article-title: Photoelectrochemical cells publication-title: Nature doi: 10.1038/35104607 – volume: 144 start-page: 604 year: 2017 ident: 10.1016/j.solener.2020.03.117_b0055 article-title: A facile one-step strategy for in-situ fabrication of WO3-BiVO4 nanoarrays for solar-driven photoelectrochemical water splitting applications publication-title: Sol. Energy doi: 10.1016/j.solener.2017.01.057 – volume: 5 start-page: 143 year: 2010 ident: 10.1016/j.solener.2020.03.117_b0195 article-title: Above-bandgap voltages from ferroelectric photovoltaic devices publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2009.451 – volume: 31 start-page: 28 year: 2017 ident: 10.1016/j.solener.2020.03.117_b0185 article-title: Bi-functional ferroelectric BiFeO3 passivated BiVO4 photoanode for efficient and stable solar water oxidation publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.10.048 – volume: 7 start-page: 16343 year: 2015 ident: 10.1016/j.solener.2020.03.117_b0125 article-title: Visible-light driven water splitting over BiFeO3 photoanodes grown via the LPCVD reaction of [Bi(OtBu)3] and [Fe(OtBu)3]2 and enhanced with a surface nickel oxygen evolution catalyst publication-title: Nanoscale doi: 10.1039/C5NR04804D – volume: 126 start-page: 11207 year: 2014 ident: 10.1016/j.solener.2020.03.117_b0025 article-title: Switchable Charge-Transfer in the Photoelectrochemical Energy-Conversion Process of Ferroelectric BiFeO3 Photoelectrodes publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201406044 – volume: 2 start-page: 737 year: 2011 ident: 10.1016/j.solener.2020.03.117_b0075 article-title: Passivating surface states on water splitting hematite photoanodes with alumina overlayers publication-title: Chem. Sci. doi: 10.1039/C0SC00578A – volume: 15 start-page: 7574 year: 2015 ident: 10.1016/j.solener.2020.03.117_b0200 article-title: Ferroelectric polarization-enhanced photoelectrochemical water splitting in TiO2–BaTiO3 core–shell nanowire photoanodes publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b03988 – volume: 75 start-page: 451 year: 2010 ident: 10.1016/j.solener.2020.03.117_b0120 article-title: On the room temperature multiferroic BiFeO3: magnetic, dielectric and thermal properties publication-title: Eur. Phys. J. B doi: 10.1140/epjb/e2010-00170-x – volume: 3 start-page: 125 year: 2018 ident: 10.1016/j.solener.2020.03.117_b0180 article-title: Tantalum Oxide Electron-Selective Heterocontacts for Silicon Photovoltaics and Photoelectrochemical Water Reduction publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b01153 |
SSID | ssj0017187 |
Score | 2.536837 |
Snippet | Ferroelectric semiconductors like BiFeO3 are increasingly being investigated for applications in solar energy conversion and storage due to their intrinsic... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 198 |
SubjectTerms | Atomic layer epitaxy Bismuth ferrite Catalysts Charge transfer Cobalt Cobalt oxides Current carriers Electrochemistry Electronics industry Energy conversion Energy storage Epitaxial growth Fabrication Ferroelectric materials Ferroelectricity Irradiation Oxidation Oxygen evolution reactions Perovskites Photoelectric effect Photoelectric emission Photovoltages Pulsed laser deposition Pulsed lasers Reaction kinetics Sodium hydroxide Solar energy Solar energy conversion Splitting Titanium dioxide Water splitting |
Title | Enhancement of the photoelectrochemical water splitting by perovskite BiFeO3 via interfacial engineering |
URI | https://www.proquest.com/docview/2444672347 |
Volume | 202 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcoED4ikKBe2BW-TgffjRI6BWEQc4tBW9WbubNXGE7CqxU9EDv53Zh9cOREC5WJYlr-zMl9lvxjPfIPSm1LCpKZVFwBVkZHolI0E0BCucK0azfMGULZD9lM4v-MfL5HIyuRl3l7Rypm729pX8j1XhGtjVdMnewrJhUbgA52BfOIKF4fhPNj6pl8Zo_fd82_W0bNrGz7ZRvRjAtTBSiBvgm67KGSin0Qffbkzqdvq-OtWf2XRbCSsesS6FTaPrQalwzGDPTCw81bZlMFTzVJ3Nr3fgWbrgwsXa6JXYaoGzaiusP1nWQ2WQ7wuZN_XXVRcw-sUnsIFZX-tqnJSg9nu6a8vsHS0zVRV2UnpwtDSmI1dJ3PRpv-tSq3Twu0N3uYXVbGOqFLQRcKWxUaUlruNzV0D7l40tlBv2lWyrwi9TmGWKmBmp8zvoLoUQwzj12Y9QHkRgz3Z6q_5Fhu6vt3ufZpfX7G7rlqucP0QPfJCB3znEPEITXT9G90fSk0_QcoQd3JQYsIP3YQdb7OCAHSy_4wE72GEHA3bwCDt4hJ2n6OL05PzDPPJTNyJFc9JGXBHFOKe0TOPFQiRlkjMtEw1cNZO5Av-fp8lxSY4TCWyQiDSLqYbAQFPCJUkVe4YO6qbWzxGGcF7GRAmSCmCRKpeilCkXizQvgYcn8hDx_jcrlJekN5NRvhV_tNghmoXbrpwmy99uOOoNUvi_76aAJwKSQBnPXtx2vZfo3gD6I3TQrjv9CrhpK19bEP0E3-qTew |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancement+of+the+photoelectrochemical+water+splitting+by+perovskite+BiFeO3+via+interfacial+engineering&rft.jtitle=Solar+energy&rft.au=Liu%2C+Guanyu&rft.au=Karuturi%2C+Siva+Krishna&rft.au=Chen%2C+Hongjun&rft.au=Wang%2C+Dunwei&rft.date=2020-05-15&rft.issn=0038-092X&rft.volume=202&rft.spage=198&rft.epage=203&rft_id=info:doi/10.1016%2Fj.solener.2020.03.117&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_solener_2020_03_117 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-092X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-092X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-092X&client=summon |