Electrochemical inactivation of enteric viruses MS2, T4, and Phi6 using doped laser-induced graphene electrodes and filters

Pathogenic virus inactivation is crucial to eliminate the substantial risk they cause to human health and to ensure safe drinking water. Conventional water disinfection methods generate harmful disinfection by-products and have high energy demands or the possibility of regrowth of microorganisms. Al...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science. Nano Vol. 1; no. 8; pp. 277 - 289
Main Authors Nair, Akhila M, Kumar, Ashish, Barbhuiya, Najmul H, Singh, Swatantra P
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 10.08.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pathogenic virus inactivation is crucial to eliminate the substantial risk they cause to human health and to ensure safe drinking water. Conventional water disinfection methods generate harmful disinfection by-products and have high energy demands or the possibility of regrowth of microorganisms. Alternatively, emerging techniques like electrochemical disinfection have opened new opportunities in water treatment by using efficient electrodes to inactivate microbes. Furthermore, graphene-based electrodes have shown their effectiveness at low voltage for electrochemical disinfection. Laser-induced graphene (LIG) is a single-step, low-cost fabrication technique of graphene surfaces, and its catalytic activity can be improved further by doping. In the present study, we have fabricated titanium suboxide (TSO)-doped LIG electrodes and filters in a single step for electrochemical virus inactivation. Three model surrogates with structural resemblance to enteric viruses, viz. bacteriophages MS2, T4, and Phi6, were employed during the disinfection experiments. In the batch mode, under varying voltages and TSO doping concentration, the highest virus inactivation was attained at 2.5 V using LIG-TiO x 10 electrodes. Subsequently, LIG-TiO x filters were fabricated where the complete removal of ∼6 log was achieved for MS2 at 2.5 V, and for T4 and Phi6 at 10 V. The trend in inactivation efficiency in both operating conditions was MS2 > Phi6 > T4, highlighting the varying susceptibilities between the viruses to disinfection. Furthermore, the viruses' inactivation mechanism was recognized as combining nanofiber-enhanced electric field-induced electroporation and electrochemically generated reactive species. The present work will help to design electrochemical disinfection devices and show how the best efficiency can be achieved for different viruses in water purification applications. Titanium suboxide-doped laser-induced graphene holds great potential to inactivate model enteric viruses MS2, T4, and Phi6. The mechanism of inactivation was recognized as the combination of electric field-induced effects and electrooxidation.
AbstractList Pathogenic virus inactivation is crucial to eliminate the substantial risk they cause to human health and to ensure safe drinking water. Conventional water disinfection methods generate harmful disinfection by-products and have high energy demands or the possibility of regrowth of microorganisms. Alternatively, emerging techniques like electrochemical disinfection have opened new opportunities in water treatment by using efficient electrodes to inactivate microbes. Furthermore, graphene-based electrodes have shown their effectiveness at low voltage for electrochemical disinfection. Laser-induced graphene (LIG) is a single-step, low-cost fabrication technique of graphene surfaces, and its catalytic activity can be improved further by doping. In the present study, we have fabricated titanium suboxide (TSO)-doped LIG electrodes and filters in a single step for electrochemical virus inactivation. Three model surrogates with structural resemblance to enteric viruses, viz. bacteriophages MS2, T4, and Phi6, were employed during the disinfection experiments. In the batch mode, under varying voltages and TSO doping concentration, the highest virus inactivation was attained at 2.5 V using LIG-TiO x 10 electrodes. Subsequently, LIG-TiO x filters were fabricated where the complete removal of ∼6 log was achieved for MS2 at 2.5 V, and for T4 and Phi6 at 10 V. The trend in inactivation efficiency in both operating conditions was MS2 > Phi6 > T4, highlighting the varying susceptibilities between the viruses to disinfection. Furthermore, the viruses' inactivation mechanism was recognized as combining nanofiber-enhanced electric field-induced electroporation and electrochemically generated reactive species. The present work will help to design electrochemical disinfection devices and show how the best efficiency can be achieved for different viruses in water purification applications. Titanium suboxide-doped laser-induced graphene holds great potential to inactivate model enteric viruses MS2, T4, and Phi6. The mechanism of inactivation was recognized as the combination of electric field-induced effects and electrooxidation.
Pathogenic virus inactivation is crucial to eliminate the substantial risk they cause to human health and to ensure safe drinking water. Conventional water disinfection methods generate harmful disinfection by-products and have high energy demands or the possibility of regrowth of microorganisms. Alternatively, emerging techniques like electrochemical disinfection have opened new opportunities in water treatment by using efficient electrodes to inactivate microbes. Furthermore, graphene-based electrodes have shown their effectiveness at low voltage for electrochemical disinfection. Laser-induced graphene (LIG) is a single-step, low-cost fabrication technique of graphene surfaces, and its catalytic activity can be improved further by doping. In the present study, we have fabricated titanium suboxide (TSO)-doped LIG electrodes and filters in a single step for electrochemical virus inactivation. Three model surrogates with structural resemblance to enteric viruses, viz. bacteriophages MS2, T4, and Phi6, were employed during the disinfection experiments. In the batch mode, under varying voltages and TSO doping concentration, the highest virus inactivation was attained at 2.5 V using LIG-TiOx10 electrodes. Subsequently, LIG-TiOx filters were fabricated where the complete removal of ∼6 log was achieved for MS2 at 2.5 V, and for T4 and Phi6 at 10 V. The trend in inactivation efficiency in both operating conditions was MS2 > Phi6 > T4, highlighting the varying susceptibilities between the viruses to disinfection. Furthermore, the viruses' inactivation mechanism was recognized as combining nanofiber-enhanced electric field-induced electroporation and electrochemically generated reactive species. The present work will help to design electrochemical disinfection devices and show how the best efficiency can be achieved for different viruses in water purification applications.
Pathogenic virus inactivation is crucial to eliminate the substantial risk they cause to human health and to ensure safe drinking water. Conventional water disinfection methods generate harmful disinfection by-products and have high energy demands or the possibility of regrowth of microorganisms. Alternatively, emerging techniques like electrochemical disinfection have opened new opportunities in water treatment by using efficient electrodes to inactivate microbes. Furthermore, graphene-based electrodes have shown their effectiveness at low voltage for electrochemical disinfection. Laser-induced graphene (LIG) is a single-step, low-cost fabrication technique of graphene surfaces, and its catalytic activity can be improved further by doping. In the present study, we have fabricated titanium suboxide (TSO)-doped LIG electrodes and filters in a single step for electrochemical virus inactivation. Three model surrogates with structural resemblance to enteric viruses, viz. bacteriophages MS2, T4, and Phi6, were employed during the disinfection experiments. In the batch mode, under varying voltages and TSO doping concentration, the highest virus inactivation was attained at 2.5 V using LIG-TiO x 10 electrodes. Subsequently, LIG-TiO x filters were fabricated where the complete removal of ∼6 log was achieved for MS2 at 2.5 V, and for T4 and Phi6 at 10 V. The trend in inactivation efficiency in both operating conditions was MS2 > Phi6 > T4, highlighting the varying susceptibilities between the viruses to disinfection. Furthermore, the viruses' inactivation mechanism was recognized as combining nanofiber-enhanced electric field-induced electroporation and electrochemically generated reactive species. The present work will help to design electrochemical disinfection devices and show how the best efficiency can be achieved for different viruses in water purification applications.
Author Singh, Swatantra P
Barbhuiya, Najmul H
Kumar, Ashish
Nair, Akhila M
AuthorAffiliation Indian Institute of Technology Bombay
Interdisciplinary Program in Climate Studies
Centre for Research in Nanotechnology & Science (CRNTS)
Environmental Science and Engineering Department (ESED)
Centre of Excellence on Membrane Technologies for Desalination, Brine Management, and Water Recycling (DeSaltM)
AuthorAffiliation_xml – name: Centre for Research in Nanotechnology & Science (CRNTS)
– name: Indian Institute of Technology Bombay
– name: Environmental Science and Engineering Department (ESED)
– name: Centre of Excellence on Membrane Technologies for Desalination, Brine Management, and Water Recycling (DeSaltM)
– name: Interdisciplinary Program in Climate Studies
Author_xml – sequence: 1
  givenname: Akhila M
  surname: Nair
  fullname: Nair, Akhila M
– sequence: 2
  givenname: Ashish
  surname: Kumar
  fullname: Kumar, Ashish
– sequence: 3
  givenname: Najmul H
  surname: Barbhuiya
  fullname: Barbhuiya, Najmul H
– sequence: 4
  givenname: Swatantra P
  surname: Singh
  fullname: Singh, Swatantra P
BookMark eNpFkEtLw0AURgepYK3duBcG3Emj88prKTU-oD7Aug7jzE07JZ3EmaQg_nmnRnR174XzfRfOMRrZxgJCp5RcUsLzK83BEkKZgAM0ZiSmUUYTOvrbY36Ept5vSIAoi3mSjtFXUYPqXKPWsDVK1thYqTqzk51pLG4qDLYDZxTeGdd78Pjxlc3wUsywtBq_rE2Ce2_sCuumBY1r6cFFxupehWvlZLsGCxiGJzrk97HK1KHUn6DDStYepr9zgt5ui-X8Plo83z3MrxeRYhntIkFVliVE04ypWDLOCYmFUDkjLM8EaMY1sDhOkioX8j1QVGjgMc-lTKlINZ-g86G3dc1HD74rN03vbHhZskxkQVia8EBdDJRyjfcOqrJ1ZivdZ0lJufdb3vDi6cdvEeCzAXZe_XH__vk3mXJ3tw
CitedBy_id crossref_primary_10_1016_j_scitotenv_2023_169043
crossref_primary_10_1016_j_jes_2024_06_005
crossref_primary_10_1021_acsomega_4c00959
crossref_primary_10_1021_acsanm_4c01366
crossref_primary_10_1021_acsestengg_4c00154
Cites_doi 10.1016/j.watres.2018.08.010
10.1021/es203607d
10.3390/ma15217804
10.1021/acs.est.8b02308
10.1016/j.ceja.2021.100195
10.1021/acsami.7b04863
10.1002/anie.201101432
10.3390/ma14123179
10.1016/j.seppur.2019.116321
10.1016/j.chemosphere.2023.138988
10.1016/j.rser.2014.05.042
10.1016/j.jhazmat.2005.11.096
10.1016/j.watres.2014.09.041
10.1089/109287503768335896
10.1128/MMBR.69.2.357-371.2005
10.1021/acsanm.8b00175
10.2105/AJPH.82.7.955
10.1021/cr9001319
10.1038/s41598-017-03509-y
10.1016/j.watres.2012.05.005
10.1021/es4034414
10.1016/S0043-1354(03)00009-5
10.1021/acs.est.1c01255
10.3390/nano13050947
10.1039/C6RA14507H
10.1021/acs.est.8b07297
10.1016/j.chemosphere.2018.05.026
10.1021/acsami.2c17106
10.1111/j.1539-6924.1993.tb00013.x
10.1039/C9CC02415H
10.1016/S0167-577X(00)00033-1
10.1016/S0043-1354(01)00187-7
10.1016/j.coviro.2011.11.003
10.1021/es2000062
10.1021/jp209390b
10.1016/j.apcatb.2018.02.013
10.1016/j.watres.2016.01.040
10.1007/s11581-021-04301-9
10.1021/cr500310b
10.1016/j.envint.2020.105813
10.1016/j.jhazmat.2007.04.050
10.1016/j.seppur.2015.09.059
10.1016/j.aquaculture.2023.739479
10.1016/j.chemosphere.2014.10.075
10.1016/j.watres.2008.11.028
10.1021/nn100145x
10.1016/j.tibtech.2015.06.002
10.1021/acsomega.1c06093
10.1021/ja312199h
10.1007/978-1-60327-164-6_7
10.1016/j.chemosphere.2022.135878
10.1016/j.cej.2022.134967
10.1016/j.chemosphere.2016.08.042
10.2166/wrd.2013.007
10.1021/acsami.2c10348
10.1021/acsnano.5b00436
10.3390/ijms23105335
10.1371/journal.pbio.0040193
10.1128/AEM.00663-13
10.1016/j.watres.2008.11.033
10.1021/acs.est.2c01793
10.3389/fchem.2019.00190
10.1128/AEM.02897-15
10.1021/es072435t
10.1002/adma.201203700
10.1021/acsanm.1c00930
10.1016/j.cej.2022.137327
10.1073/pnas.1708483114
10.1021/acsami.9b00510
10.1038/s41467-021-24028-5
10.1016/j.apmt.2023.101753
10.1016/j.electacta.2014.06.175
10.1126/science.1170645
10.1021/acs.est.0c06254
10.1016/j.str.2006.03.018
10.1128/AEM.01482-20
10.1021/acsnano.7b06263
10.1021/acsestengg.1c00015
10.1099/0022-1317-32-2-249
10.1109/TNB.2011.2163078
10.1007/s11783-020-1253-x
10.1021/nl5020958
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
DBID AAYXX
CITATION
7QH
7ST
7UA
C1K
F1W
H97
L.G
SOI
DOI 10.1039/d3en00124e
DatabaseName CrossRef
Aqualine
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Environment Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2051-8161
EndPage 289
ExternalDocumentID 10_1039_D3EN00124E
d3en00124e
GroupedDBID -JG
0R~
4.4
AAEMU
AAGNR
AAIWI
AANOJ
ABASK
ABDVN
ABGFH
ABRYZ
ACGFS
ACLDK
ADMRA
AETIL
AFOGI
AFRAH
AGRSR
AGSTE
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
H13
HZ~
H~N
J3I
O-G
O9-
RAOCF
RCNCU
RPMJG
RRC
RSCEA
RVUXY
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
ADSRN
AEFDR
AENGV
AFLYV
AGEGJ
AHGCF
AKBGW
APEMP
CITATION
GGIMP
7QH
7ST
7UA
C1K
F1W
H97
L.G
SOI
ID FETCH-LOGICAL-c281t-41c8860d182c5a23300544c9202984ed23de25566f94ab18214de3539aa7147d3
ISSN 2051-8153
IngestDate Fri Sep 13 04:08:53 EDT 2024
Fri Aug 23 03:18:43 EDT 2024
Fri Aug 11 04:19:34 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c281t-41c8860d182c5a23300544c9202984ed23de25566f94ab18214de3539aa7147d3
Notes Electronic supplementary information (ESI) available. See DOI
https://doi.org/10.1039/d3en00124e
ORCID 0000-0003-3118-6381
0000-0002-9027-6566
0000-0003-1898-3378
0000-0001-9699-4756
PQID 2848124763
PQPubID 2047519
PageCount 13
ParticipantIDs crossref_primary_10_1039_D3EN00124E
rsc_primary_d3en00124e
proquest_journals_2848124763
PublicationCentury 2000
PublicationDate 2023-08-10
PublicationDateYYYYMMDD 2023-08-10
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-10
  day: 10
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Environmental science. Nano
PublicationYear 2023
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Mamane (D3EN00124E/cit4/1) 2007; 146
Zhang (D3EN00124E/cit29/1) 2023; 571
Wigginton (D3EN00124E/cit70/1) 2012; 2
Singh (D3EN00124E/cit32/1) 2018; 12
Thamaraiselvan (D3EN00124E/cit34/1) 2021; 8
D3EN00124E/cit1/1
Pi (D3EN00124E/cit62/1) 2022; 435
Gallard (D3EN00124E/cit8/1) 2002; 36
Huo (D3EN00124E/cit81/1) 2021; 12
Alberts (D3EN00124E/cit79/1) 2003
Lazarova (D3EN00124E/cit11/1) 2013; 3
Xia (D3EN00124E/cit54/1) 2020; 237
Huiskonen (D3EN00124E/cit73/1) 2006; 14
Rajab (D3EN00124E/cit19/1) 2015; 121
Abbas (D3EN00124E/cit25/1) 2022; 15
Peng (D3EN00124E/cit35/1) 2015; 9
Kropinski (D3EN00124E/cit47/1) 2009; 501
Mase (D3EN00124E/cit90/1) 2013; 135
Chen (D3EN00124E/cit77/1) 2017; 114
Liu (D3EN00124E/cit43/1) 2014; 14
Wang (D3EN00124E/cit83/1) 2021
Kumar (D3EN00124E/cit37/1) 2022; 14
Mook (D3EN00124E/cit15/1) 2014; 38
Liu (D3EN00124E/cit68/1) 2012; 116
Lin (D3EN00124E/cit51/1) 2014; 5
Huo (D3EN00124E/cit44/1) 2022; 56
Barbhuiya (D3EN00124E/cit28/1) 2021; 14
Haas (D3EN00124E/cit3/1) 1993; 13
Carratalà (D3EN00124E/cit72/1) 2016; 82
Huo (D3EN00124E/cit65/1) 2017; 4
Cotillas (D3EN00124E/cit14/1) 2018; 229
Arif (D3EN00124E/cit60/1) 2017; 7
Choi (D3EN00124E/cit23/1) 2010; 4
Trellu (D3EN00124E/cit67/1) 2018; 208
Singh (D3EN00124E/cit26/1) 2018; 1
Gao (D3EN00124E/cit50/1) 2000; 44
Fong (D3EN00124E/cit5/1) 2005; 69
Gupta (D3EN00124E/cit33/1) 2019; 55
Yang (D3EN00124E/cit56/1) 2022; 28
Thakur (D3EN00124E/cit59/1) 2019; 11
Vecitis (D3EN00124E/cit41/1) 2011; 45
Serrano-Aroca (D3EN00124E/cit45/1) 2022; 23
Schiff (D3EN00124E/cit6/1) 1984; 15
Sigstam (D3EN00124E/cit69/1) 2013; 79
Kotnik (D3EN00124E/cit84/1) 2015; 33
Ganiyu (D3EN00124E/cit88/1) 2015; 156
Kumar (D3EN00124E/cit38/1) 2022; 307
Yang (D3EN00124E/cit63/1) 2022; 446
Drees (D3EN00124E/cit20/1) 2003; 37
Vecitis (D3EN00124E/cit39/1) 2012; 46
Freitas (D3EN00124E/cit21/1) 2019; 7
Mitch (D3EN00124E/cit10/1) 2003; 20
Zhang (D3EN00124E/cit55/1) 2014; 139
Qiao (D3EN00124E/cit71/1) 2018; 52
Montgomery (D3EN00124E/cit2/1) 2007; 41
Zhou (D3EN00124E/cit85/1) 2020; 14
Bruguera-Casamada (D3EN00124E/cit18/1) 2016; 163
Gligorovski (D3EN00124E/cit82/1) 2015; 115
Xu (D3EN00124E/cit52/1) 2016; 6
Chen (D3EN00124E/cit66/1) 2020; 140
Zhang (D3EN00124E/cit80/1) 2021; 55
Kumar (D3EN00124E/cit48/1) 2023
Bitounis (D3EN00124E/cit24/1) 2013; 25
Whitworth (D3EN00124E/cit46/1) 2020; 86
Misra (D3EN00124E/cit49/1) 2023; 15
Huang (D3EN00124E/cit16/1) 2016; 92
Guo (D3EN00124E/cit13/1) 2012; 46
Gong (D3EN00124E/cit7/1) 2015; 68
Lin (D3EN00124E/cit22/1) 2013; 47
Beikzadeh (D3EN00124E/cit30/1) 2023; 31
Hand (D3EN00124E/cit17/1) 2021; 55
Panizza (D3EN00124E/cit89/1) 2009; 109
Gelbart (D3EN00124E/cit76/1) 2009; 323
Guo (D3EN00124E/cit12/1) 2009; 43
Liu (D3EN00124E/cit61/1) 2019; 53
de Paepe (D3EN00124E/cit75/1) 2006; 4
Singh (D3EN00124E/cit27/1) 2017; 9
Cui (D3EN00124E/cit57/1) 2021; 4
Sun (D3EN00124E/cit87/1) 2021; 1
El-Hag (D3EN00124E/cit78/1) 2011; 10
Dixit (D3EN00124E/cit31/1) 2022; 7
Liang (D3EN00124E/cit42/1) 2018; 145
Jeong (D3EN00124E/cit58/1) 2009; 43
Morris (D3EN00124E/cit9/1) 1992; 82
Rahaman (D3EN00124E/cit40/1) 2012; 46
Bamford (D3EN00124E/cit74/1) 1976; 32
Tominaka (D3EN00124E/cit53/1) 2011; 50
Zhou (D3EN00124E/cit64/1) 2020; 7
Rajkumar (D3EN00124E/cit86/1) 2006; 136
Tesfahunegn (D3EN00124E/cit36/1) 2023; 13
References_xml – issn: 1984
  issue: vol. 15
  publication-title: Enteric Viruses in Water
  doi: Schiff Stefanovic Young Pennekamp
– issn: 2003
  publication-title: Molecular Biology of the Cell
  doi: Alberts Johnson Lewis Raff Roberts Walter
– volume: 145
  start-page: 172
  year: 2018
  ident: D3EN00124E/cit42/1
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.08.010
  contributor:
    fullname: Liang
– volume: 46
  start-page: 1556
  issue: 3
  year: 2012
  ident: D3EN00124E/cit40/1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es203607d
  contributor:
    fullname: Rahaman
– volume: 15
  start-page: 7804
  issue: 21
  year: 2022
  ident: D3EN00124E/cit25/1
  publication-title: Materials
  doi: 10.3390/ma15217804
  contributor:
    fullname: Abbas
– volume: 52
  start-page: 10408
  issue: 18
  year: 2018
  ident: D3EN00124E/cit71/1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b02308
  contributor:
    fullname: Qiao
– volume: 8
  start-page: 100195
  year: 2021
  ident: D3EN00124E/cit34/1
  publication-title: Chem. Eng. J. Adv.
  doi: 10.1016/j.ceja.2021.100195
  contributor:
    fullname: Thamaraiselvan
– volume: 5
  start-page: 1
  issue: 1
  year: 2014
  ident: D3EN00124E/cit51/1
  publication-title: Nat. Commun.
  contributor:
    fullname: Lin
– volume: 9
  start-page: 18238
  issue: 21
  year: 2017
  ident: D3EN00124E/cit27/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b04863
  contributor:
    fullname: Singh
– volume: 50
  start-page: 7418
  issue: 32
  year: 2011
  ident: D3EN00124E/cit53/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201101432
  contributor:
    fullname: Tominaka
– volume: 14
  start-page: 3179
  issue: 12
  year: 2021
  ident: D3EN00124E/cit28/1
  publication-title: Materials
  doi: 10.3390/ma14123179
  contributor:
    fullname: Barbhuiya
– volume: 237
  start-page: 116321
  year: 2020
  ident: D3EN00124E/cit54/1
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2019.116321
  contributor:
    fullname: Xia
– start-page: 138988
  year: 2023
  ident: D3EN00124E/cit48/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2023.138988
  contributor:
    fullname: Kumar
– volume: 38
  start-page: 36
  year: 2014
  ident: D3EN00124E/cit15/1
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2014.05.042
  contributor:
    fullname: Mook
– volume: 136
  start-page: 203
  issue: 2
  year: 2006
  ident: D3EN00124E/cit86/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2005.11.096
  contributor:
    fullname: Rajkumar
– volume: 68
  start-page: 77
  year: 2015
  ident: D3EN00124E/cit7/1
  publication-title: Water Res.
  doi: 10.1016/j.watres.2014.09.041
  contributor:
    fullname: Gong
– volume: 20
  start-page: 389
  issue: 5
  year: 2003
  ident: D3EN00124E/cit10/1
  publication-title: Environ. Eng. Sci.
  doi: 10.1089/109287503768335896
  contributor:
    fullname: Mitch
– volume-title: Molecular Biology of the Cell
  year: 2003
  ident: D3EN00124E/cit79/1
  contributor:
    fullname: Alberts
– volume: 69
  start-page: 357
  issue: 2
  year: 2005
  ident: D3EN00124E/cit5/1
  publication-title: Microbiol. Mol. Biol. Rev.
  doi: 10.1128/MMBR.69.2.357-371.2005
  contributor:
    fullname: Fong
– volume: 1
  start-page: 1713
  issue: 4
  year: 2018
  ident: D3EN00124E/cit26/1
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.8b00175
  contributor:
    fullname: Singh
– volume: 82
  start-page: 955
  issue: 7
  year: 1992
  ident: D3EN00124E/cit9/1
  publication-title: Am. J. Public Health
  doi: 10.2105/AJPH.82.7.955
  contributor:
    fullname: Morris
– volume: 109
  start-page: 6541
  issue: 12
  year: 2009
  ident: D3EN00124E/cit89/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr9001319
  contributor:
    fullname: Panizza
– volume: 7
  start-page: 3646
  issue: 1
  year: 2017
  ident: D3EN00124E/cit60/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-03509-y
  contributor:
    fullname: Arif
– volume: 46
  start-page: 4031
  issue: 13
  year: 2012
  ident: D3EN00124E/cit13/1
  publication-title: Water Res.
  doi: 10.1016/j.watres.2012.05.005
  contributor:
    fullname: Guo
– volume: 47
  start-page: 13039
  issue: 22
  year: 2013
  ident: D3EN00124E/cit22/1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es4034414
  contributor:
    fullname: Lin
– volume: 37
  start-page: 2291
  issue: 10
  year: 2003
  ident: D3EN00124E/cit20/1
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(03)00009-5
  contributor:
    fullname: Drees
– volume: 55
  start-page: 8045
  issue: 12
  year: 2021
  ident: D3EN00124E/cit80/1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c01255
  contributor:
    fullname: Zhang
– volume: 13
  start-page: 947
  issue: 5
  year: 2023
  ident: D3EN00124E/cit36/1
  publication-title: Nanomaterials
  doi: 10.3390/nano13050947
  contributor:
    fullname: Tesfahunegn
– volume: 6
  start-page: 79706
  issue: 83
  year: 2016
  ident: D3EN00124E/cit52/1
  publication-title: RSC Adv.
  doi: 10.1039/C6RA14507H
  contributor:
    fullname: Xu
– volume: 53
  start-page: 3238
  issue: 6
  year: 2019
  ident: D3EN00124E/cit61/1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b07297
  contributor:
    fullname: Liu
– volume: 208
  start-page: 159
  year: 2018
  ident: D3EN00124E/cit67/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.05.026
  contributor:
    fullname: Trellu
– volume: 15
  start-page: 7899
  issue: 6
  year: 2023
  ident: D3EN00124E/cit49/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c17106
  contributor:
    fullname: Misra
– volume: 13
  start-page: 545
  issue: 5
  year: 1993
  ident: D3EN00124E/cit3/1
  publication-title: Risk Anal.
  doi: 10.1111/j.1539-6924.1993.tb00013.x
  contributor:
    fullname: Haas
– ident: D3EN00124E/cit1/1
– volume: 46
  start-page: 1556
  issue: 3
  year: 2012
  ident: D3EN00124E/cit39/1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es203607d
  contributor:
    fullname: Vecitis
– volume: 55
  start-page: 6890
  issue: 48
  year: 2019
  ident: D3EN00124E/cit33/1
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC02415H
  contributor:
    fullname: Gupta
– volume: 44
  start-page: 228
  issue: 3–4
  year: 2000
  ident: D3EN00124E/cit50/1
  publication-title: Mater. Lett.
  doi: 10.1016/S0167-577X(00)00033-1
  contributor:
    fullname: Gao
– volume: 36
  start-page: 65
  issue: 1
  year: 2002
  ident: D3EN00124E/cit8/1
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(01)00187-7
  contributor:
    fullname: Gallard
– volume: 2
  start-page: 84
  issue: 1
  year: 2012
  ident: D3EN00124E/cit70/1
  publication-title: Curr. Opin. Virol.
  doi: 10.1016/j.coviro.2011.11.003
  contributor:
    fullname: Wigginton
– volume: 45
  start-page: 3672
  issue: 8
  year: 2011
  ident: D3EN00124E/cit41/1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es2000062
  contributor:
    fullname: Vecitis
– volume: 116
  start-page: 374
  issue: 1
  year: 2012
  ident: D3EN00124E/cit68/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp209390b
  contributor:
    fullname: Liu
– volume: 229
  start-page: 63
  year: 2018
  ident: D3EN00124E/cit14/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2018.02.013
  contributor:
    fullname: Cotillas
– volume: 92
  start-page: 164
  year: 2016
  ident: D3EN00124E/cit16/1
  publication-title: Water Res.
  doi: 10.1016/j.watres.2016.01.040
  contributor:
    fullname: Huang
– volume: 28
  start-page: 353
  issue: 1
  year: 2022
  ident: D3EN00124E/cit56/1
  publication-title: Ionics
  doi: 10.1007/s11581-021-04301-9
  contributor:
    fullname: Yang
– start-page: 14
  year: 2021
  ident: D3EN00124E/cit83/1
  publication-title: Research Square
  contributor:
    fullname: Wang
– volume: 115
  start-page: 13051
  issue: 24
  year: 2015
  ident: D3EN00124E/cit82/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr500310b
  contributor:
    fullname: Gligorovski
– volume: 140
  start-page: 105813
  year: 2020
  ident: D3EN00124E/cit66/1
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2020.105813
  contributor:
    fullname: Chen
– volume: 146
  start-page: 479
  issue: 3
  year: 2007
  ident: D3EN00124E/cit4/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2007.04.050
  contributor:
    fullname: Mamane
– volume: 156
  start-page: 891
  year: 2015
  ident: D3EN00124E/cit88/1
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2015.09.059
  contributor:
    fullname: Ganiyu
– volume: 571
  start-page: 739479
  year: 2023
  ident: D3EN00124E/cit29/1
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2023.739479
  contributor:
    fullname: Zhang
– volume: 121
  start-page: 47
  year: 2015
  ident: D3EN00124E/cit19/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2014.10.075
  contributor:
    fullname: Rajab
– volume: 43
  start-page: 815
  issue: 3
  year: 2009
  ident: D3EN00124E/cit12/1
  publication-title: Water Res.
  doi: 10.1016/j.watres.2008.11.028
  contributor:
    fullname: Guo
– volume: 4
  start-page: 2910
  issue: 5
  year: 2010
  ident: D3EN00124E/cit23/1
  publication-title: ACS Nano
  doi: 10.1021/nn100145x
  contributor:
    fullname: Choi
– volume: 33
  start-page: 480
  issue: 8
  year: 2015
  ident: D3EN00124E/cit84/1
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2015.06.002
  contributor:
    fullname: Kotnik
– volume: 7
  start-page: 5112
  issue: 6
  year: 2022
  ident: D3EN00124E/cit31/1
  publication-title: ACS Omega
  doi: 10.1021/acsomega.1c06093
  contributor:
    fullname: Dixit
– volume: 135
  start-page: 2800
  issue: 7
  year: 2013
  ident: D3EN00124E/cit90/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja312199h
  contributor:
    fullname: Mase
– volume: 501
  start-page: 69
  year: 2009
  ident: D3EN00124E/cit47/1
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-60327-164-6_7
  contributor:
    fullname: Kropinski
– volume: 307
  start-page: 135878
  year: 2022
  ident: D3EN00124E/cit38/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2022.135878
  contributor:
    fullname: Kumar
– volume: 435
  start-page: 134967
  year: 2022
  ident: D3EN00124E/cit62/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.134967
  contributor:
    fullname: Pi
– volume: 163
  start-page: 516
  year: 2016
  ident: D3EN00124E/cit18/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.08.042
  contributor:
    fullname: Bruguera-Casamada
– volume: 7
  start-page: 397
  issue: 2
  year: 2020
  ident: D3EN00124E/cit64/1
  publication-title: Environ. Sci.: Nano
  contributor:
    fullname: Zhou
– volume: 3
  start-page: 337
  issue: 4
  year: 2013
  ident: D3EN00124E/cit11/1
  publication-title: J. Water Reuse Desalin.
  doi: 10.2166/wrd.2013.007
  contributor:
    fullname: Lazarova
– volume: 14
  start-page: 52448
  year: 2022
  ident: D3EN00124E/cit37/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c10348
  contributor:
    fullname: Kumar
– volume: 9
  start-page: 5868
  issue: 6
  year: 2015
  ident: D3EN00124E/cit35/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b00436
  contributor:
    fullname: Peng
– volume: 23
  start-page: 5335
  issue: 10
  year: 2022
  ident: D3EN00124E/cit45/1
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms23105335
  contributor:
    fullname: Serrano-Aroca
– volume: 15
  volume-title: Enteric Viruses in Water
  year: 1984
  ident: D3EN00124E/cit6/1
  contributor:
    fullname: Schiff
– volume: 4
  start-page: e193
  issue: 7
  year: 2006
  ident: D3EN00124E/cit75/1
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0040193
  contributor:
    fullname: de Paepe
– volume: 79
  start-page: 3455
  issue: 11
  year: 2013
  ident: D3EN00124E/cit69/1
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00663-13
  contributor:
    fullname: Sigstam
– volume: 43
  start-page: 895
  issue: 4
  year: 2009
  ident: D3EN00124E/cit58/1
  publication-title: Water Res.
  doi: 10.1016/j.watres.2008.11.033
  contributor:
    fullname: Jeong
– volume: 56
  start-page: 10925
  issue: 15
  year: 2022
  ident: D3EN00124E/cit44/1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.2c01793
  contributor:
    fullname: Huo
– volume: 7
  start-page: 190
  year: 2019
  ident: D3EN00124E/cit21/1
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2019.00190
  contributor:
    fullname: Freitas
– volume: 82
  start-page: 279
  issue: 1
  year: 2016
  ident: D3EN00124E/cit72/1
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02897-15
  contributor:
    fullname: Carratalà
– volume: 41
  start-page: 17
  issue: 1
  year: 2007
  ident: D3EN00124E/cit2/1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es072435t
  contributor:
    fullname: Montgomery
– volume: 25
  start-page: 2258
  issue: 16
  year: 2013
  ident: D3EN00124E/cit24/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201203700
  contributor:
    fullname: Bitounis
– volume: 4
  start-page: 6124
  issue: 6
  year: 2021
  ident: D3EN00124E/cit57/1
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.1c00930
  contributor:
    fullname: Cui
– volume: 446
  start-page: 137327
  year: 2022
  ident: D3EN00124E/cit63/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.137327
  contributor:
    fullname: Yang
– volume: 114
  start-page: E8184
  issue: 39
  year: 2017
  ident: D3EN00124E/cit77/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1708483114
  contributor:
    fullname: Chen
– volume: 4
  start-page: 2010
  issue: 10
  year: 2017
  ident: D3EN00124E/cit65/1
  publication-title: Environ. Sci.: Nano
  contributor:
    fullname: Huo
– volume: 11
  start-page: 10914
  issue: 11
  year: 2019
  ident: D3EN00124E/cit59/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b00510
  contributor:
    fullname: Thakur
– volume: 12
  start-page: 3693
  issue: 1
  year: 2021
  ident: D3EN00124E/cit81/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24028-5
  contributor:
    fullname: Huo
– volume: 31
  start-page: 101753
  year: 2023
  ident: D3EN00124E/cit30/1
  publication-title: Appl. Mater. Today
  doi: 10.1016/j.apmt.2023.101753
  contributor:
    fullname: Beikzadeh
– volume: 139
  start-page: 209
  year: 2014
  ident: D3EN00124E/cit55/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.06.175
  contributor:
    fullname: Zhang
– volume: 323
  start-page: 1682
  issue: 5922
  year: 2009
  ident: D3EN00124E/cit76/1
  publication-title: Science
  doi: 10.1126/science.1170645
  contributor:
    fullname: Gelbart
– volume: 55
  start-page: 3470
  issue: 6
  year: 2021
  ident: D3EN00124E/cit17/1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c06254
  contributor:
    fullname: Hand
– volume: 14
  start-page: 1039
  issue: 6
  year: 2006
  ident: D3EN00124E/cit73/1
  publication-title: Structure
  doi: 10.1016/j.str.2006.03.018
  contributor:
    fullname: Huiskonen
– volume: 86
  start-page: e01482-20
  issue: 17
  year: 2020
  ident: D3EN00124E/cit46/1
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01482-20
  contributor:
    fullname: Whitworth
– volume: 12
  start-page: 289
  issue: 1
  year: 2018
  ident: D3EN00124E/cit32/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b06263
  contributor:
    fullname: Singh
– volume: 1
  start-page: 725
  issue: 4
  year: 2021
  ident: D3EN00124E/cit87/1
  publication-title: ACS ES&T Engg
  doi: 10.1021/acsestengg.1c00015
  contributor:
    fullname: Sun
– volume: 32
  start-page: 249
  issue: 2
  year: 1976
  ident: D3EN00124E/cit74/1
  publication-title: J. Gen. Virol.
  doi: 10.1099/0022-1317-32-2-249
  contributor:
    fullname: Bamford
– volume: 10
  start-page: 133
  issue: 3
  year: 2011
  ident: D3EN00124E/cit78/1
  publication-title: IEEE Trans. NanoBiosci.
  doi: 10.1109/TNB.2011.2163078
  contributor:
    fullname: El-Hag
– volume: 14
  start-page: 1
  issue: 5
  year: 2020
  ident: D3EN00124E/cit85/1
  publication-title: Front. Environ. Sci. Eng.
  doi: 10.1007/s11783-020-1253-x
  contributor:
    fullname: Zhou
– volume: 14
  start-page: 5603
  issue: 10
  year: 2014
  ident: D3EN00124E/cit43/1
  publication-title: Nano Lett.
  doi: 10.1021/nl5020958
  contributor:
    fullname: Liu
SSID ssj0001125367
Score 2.364612
Snippet Pathogenic virus inactivation is crucial to eliminate the substantial risk they cause to human health and to ensure safe drinking water. Conventional water...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Publisher
StartPage 277
SubjectTerms Bacteriophages
Catalytic activity
Deactivation
Disinfection
Doping
Drinking water
Electric fields
Electric filters
Electrochemistry
Electrodes
Electroporation
Fabrication
Filters
Graphene
Inactivation
Lasers
Low voltage
Microorganisms
Ozone
Pathogens
Phages
Regrowth
Titanium oxides
Viruses
Water purification
Water treatment
Title Electrochemical inactivation of enteric viruses MS2, T4, and Phi6 using doped laser-induced graphene electrodes and filters
URI https://www.proquest.com/docview/2848124763/abstract/
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa67YUXBIKJwoYswVuX0tjO7bGCoIHYhNRO2lvlOLYaNtIpaYYGP4K_zLHjxCkXCXiJKqeJIp8v55ZzzofQSxXms1hFvqdUmHjwJgqP00x6ISVcJIIqpXSgeHYenl6w95fB5Wj0fVC11Gyzqfj6276S_5EqrIFcdZfsP0i2vykswG-QLxxBwnD8KxmnLYeN6Jr-i1K3Kdz2XqCet6kr5W-LqqllPTlbECMf1tVsflwX4aQx6YJ8cwO-J_jSsvIgTm90XYCZZg3KcGLJcnLZTnRWhf7GXu9k9V3DXNdmKeRUK-9Nn2_mRcucfbUurrlLw_ZV3vN6XdR9elp_CVk3xR1vjcCnz82166RYwCObhNDiC9c8yBW3jWo2gUGoZwbKOj1HQC94sd_ODJ7K4Vo7p71X1AM8xkOla4lgWvtNWkqiX0zDjOrJqjmVpXbxmHQGsC9LdCf30AGJkgCi-YN5unz3waXtwCGkhpe4f-xu6C1NXrkb7Lo5LnbZqzpiGePALB-g-zbywPMWRg_RSJaP0LefIISHEMIbhS2EsIUQBgid4CU7wYADrOGDDXywgQ_egQ_u4IMdfMxlFj6P0cXbdPn61LN8HJ4gsb_1mC_iOJzlEJKKgBOqmQ4YEwnRY_yZzAnNpZ5oF6qE8Qz-5bNc0oAmnEc-i3J6iPbLTSmfIEziQCWcgsNNdVaEZVkWUyrCiId5AnZhjF5027e6aceurEy5BE1Wb2h6bjY5HaOjbmdX9rWsV0QTRBAGdnOMDmG3--udcJ7-6cQzdM8h9Ajtb6tGHoPTuc2eWyD8AOoug90
link.rule.ids 315,786,790,27957,27958
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrochemical+inactivation+of+enteric+viruses+MS2%2C+T4%2C+and+Phi6+using+doped+laser-induced+graphene+electrodes+and+filters&rft.jtitle=Environmental+science.+Nano&rft.au=Nair%2C+Akhila+M&rft.au=Kumar%2C+Ashish&rft.au=Barbhuiya%2C+Najmul+H&rft.au=Singh%2C+Swatantra+P&rft.date=2023-08-10&rft.issn=2051-8153&rft.eissn=2051-8161&rft.volume=1&rft.issue=8&rft.spage=277&rft.epage=289&rft_id=info:doi/10.1039%2Fd3en00124e&rft.externalDocID=d3en00124e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-8153&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-8153&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-8153&client=summon