The regulator of G-protein signalling protein mediates D-glucose-induced stomatal closure via triggering hydrogen peroxide and nitric oxide production in Arabidopsis
2-Deoxy-D-glucose, 3-O-methyl-D-glucose and D-mannose are all non-metabolisable D-glucose analogues. Among these, 2-deoxy-D-glucose and D-mannose are substrates for hexokinase (HXK). D-sorbitol and D-mannitol are reduced forms of D-glucose and are typically used as comparable osmotic solutes. Simila...
Saved in:
Published in | Functional plant biology : FPB Vol. 45; no. 5; p. 509 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Australia
01.01.2018
|
Online Access | Get full text |
Cover
Loading…
Abstract | 2-Deoxy-D-glucose, 3-O-methyl-D-glucose and D-mannose are all non-metabolisable D-glucose analogues. Among these, 2-deoxy-D-glucose and D-mannose are substrates for hexokinase (HXK). D-sorbitol and D-mannitol are reduced forms of D-glucose and are typically used as comparable osmotic solutes. Similar to 2-deoxy-D-glucose and D-mannose, D-glucose induced stomatal closure in Arabidopsis, whereas 3-O-methyl-D-glucose, D-sorbitol and D-mannitol did not. The data show that the effect of D-glucose on stomata is metabolism-independent, HXK-dependent and irrelevant to osmotic stress. Additionally, the D-glucose induced closure of stomata in wild-type Arabidopsis, but did not in rgs1-1 and rgs1-2 or gpa1-3 and gpa1-4 mutants, indicating that the regulator of G-protein signalling protein (RGS1) and heterotrimeric guanine nucleotide-binding proteins (G proteins)-α subunit (Gα) also mediate the stomatal closure triggered by D-glucose. Furthermore, the effects of D-glucose on hydrogen peroxide (H2O2) or nitric oxide (NO) production and stomatal closure were more significant in AtrbohD or Nia2-1 mutants than in AtrbohF and AtrbohD/F or Nia1-2 and Nia2-5/Nia1-2. The data indicate that H2O2 sourced from AtrbohF and NO generated by Nia1 are essential for D-glucose-mediated stomatal closure. D-glucose-induced H2O2 and NO production in guard cells were completely abolished in rgs1-1 and rgs1-2, which suggests that RGS1 stimulates H2O2 and NO production in D-glucose-induced stomatal closure. Collectively, our data reveal that both HXK and RGS1 are required for D-glucose-mediated stomatal closure. In this context, D-glucose can be sensed by its receptor RGS1, thereby inducing AtrbohF-dependent H2O2 production and Nia1-catalysed NO accumulation, which in turn stimulates stomatal closure. |
---|---|
AbstractList | 2-Deoxy-D-glucose, 3-O-methyl-D-glucose and D-mannose are all non-metabolisable D-glucose analogues. Among these, 2-deoxy-D-glucose and D-mannose are substrates for hexokinase (HXK). D-sorbitol and D-mannitol are reduced forms of D-glucose and are typically used as comparable osmotic solutes. Similar to 2-deoxy-D-glucose and D-mannose, D-glucose induced stomatal closure in Arabidopsis, whereas 3-O-methyl-D-glucose, D-sorbitol and D-mannitol did not. The data show that the effect of D-glucose on stomata is metabolism-independent, HXK-dependent and irrelevant to osmotic stress. Additionally, the D-glucose induced closure of stomata in wild-type Arabidopsis, but did not in rgs1-1 and rgs1-2 or gpa1-3 and gpa1-4 mutants, indicating that the regulator of G-protein signalling protein (RGS1) and heterotrimeric guanine nucleotide-binding proteins (G proteins)-α subunit (Gα) also mediate the stomatal closure triggered by D-glucose. Furthermore, the effects of D-glucose on hydrogen peroxide (H2O2) or nitric oxide (NO) production and stomatal closure were more significant in AtrbohD or Nia2-1 mutants than in AtrbohF and AtrbohD/F or Nia1-2 and Nia2-5/Nia1-2. The data indicate that H2O2 sourced from AtrbohF and NO generated by Nia1 are essential for D-glucose-mediated stomatal closure. D-glucose-induced H2O2 and NO production in guard cells were completely abolished in rgs1-1 and rgs1-2, which suggests that RGS1 stimulates H2O2 and NO production in D-glucose-induced stomatal closure. Collectively, our data reveal that both HXK and RGS1 are required for D-glucose-mediated stomatal closure. In this context, D-glucose can be sensed by its receptor RGS1, thereby inducing AtrbohF-dependent H2O2 production and Nia1-catalysed NO accumulation, which in turn stimulates stomatal closure. 2-Deoxy-D-glucose, 3-O-methyl-D-glucose and D-mannose are all non-metabolisable D-glucose analogues. Among these, 2-deoxy-D-glucose and D-mannose are substrates for hexokinase (HXK). D-sorbitol and D-mannitol are reduced forms of D-glucose and are typically used as comparable osmotic solutes. Similar to 2-deoxy-D-glucose and D-mannose, D-glucose induced stomatal closure in Arabidopsis, whereas 3-O-methyl-D-glucose, D-sorbitol and D-mannitol did not. The data show that the effect of D-glucose on stomata is metabolism-independent, HXK-dependent and irrelevant to osmotic stress. Additionally, the D-glucose induced closure of stomata in wild-type Arabidopsis, but did not in rgs1-1 and rgs1-2 or gpa1-3 and gpa1-4 mutants, indicating that the regulator of G-protein signalling protein (RGS1) and heterotrimeric guanine nucleotide-binding proteins (G proteins)-α subunit (Gα) also mediate the stomatal closure triggered by D-glucose. Furthermore, the effects of D-glucose on hydrogen peroxide (H2O2) or nitric oxide (NO) production and stomatal closure were more significant in AtrbohD or Nia2-1 mutants than in AtrbohF and AtrbohD/F or Nia1-2 and Nia2-5/Nia1-2. The data indicate that H2O2 sourced from AtrbohF and NO generated by Nia1 are essential for D-glucose-mediated stomatal closure. D-glucose-induced H2O2 and NO production in guard cells were completely abolished in rgs1-1 and rgs1-2, which suggests that RGS1 stimulates H2O2 and NO production in D-glucose-induced stomatal closure. Collectively, our data reveal that both HXK and RGS1 are required for D-glucose-mediated stomatal closure. In this context, D-glucose can be sensed by its receptor RGS1, thereby inducing AtrbohF-dependent H2O2 production and Nia1-catalysed NO accumulation, which in turn stimulates stomatal closure.2-Deoxy-D-glucose, 3-O-methyl-D-glucose and D-mannose are all non-metabolisable D-glucose analogues. Among these, 2-deoxy-D-glucose and D-mannose are substrates for hexokinase (HXK). D-sorbitol and D-mannitol are reduced forms of D-glucose and are typically used as comparable osmotic solutes. Similar to 2-deoxy-D-glucose and D-mannose, D-glucose induced stomatal closure in Arabidopsis, whereas 3-O-methyl-D-glucose, D-sorbitol and D-mannitol did not. The data show that the effect of D-glucose on stomata is metabolism-independent, HXK-dependent and irrelevant to osmotic stress. Additionally, the D-glucose induced closure of stomata in wild-type Arabidopsis, but did not in rgs1-1 and rgs1-2 or gpa1-3 and gpa1-4 mutants, indicating that the regulator of G-protein signalling protein (RGS1) and heterotrimeric guanine nucleotide-binding proteins (G proteins)-α subunit (Gα) also mediate the stomatal closure triggered by D-glucose. Furthermore, the effects of D-glucose on hydrogen peroxide (H2O2) or nitric oxide (NO) production and stomatal closure were more significant in AtrbohD or Nia2-1 mutants than in AtrbohF and AtrbohD/F or Nia1-2 and Nia2-5/Nia1-2. The data indicate that H2O2 sourced from AtrbohF and NO generated by Nia1 are essential for D-glucose-mediated stomatal closure. D-glucose-induced H2O2 and NO production in guard cells were completely abolished in rgs1-1 and rgs1-2, which suggests that RGS1 stimulates H2O2 and NO production in D-glucose-induced stomatal closure. Collectively, our data reveal that both HXK and RGS1 are required for D-glucose-mediated stomatal closure. In this context, D-glucose can be sensed by its receptor RGS1, thereby inducing AtrbohF-dependent H2O2 production and Nia1-catalysed NO accumulation, which in turn stimulates stomatal closure. |
Author | Hei, Shumei Liu, Zhifeng Huang, Aixia She, Xiaoping |
Author_xml | – sequence: 1 givenname: Shumei surname: Hei fullname: Hei, Shumei – sequence: 2 givenname: Zhifeng surname: Liu fullname: Liu, Zhifeng – sequence: 3 givenname: Aixia surname: Huang fullname: Huang, Aixia – sequence: 4 givenname: Xiaoping surname: She fullname: She, Xiaoping |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32290990$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkctuGzEMRYXAQV4t-geFds1mEmkelrQ03CYtECBZJOsBLXEmKmTJlTRB80H9z8iw3YVXJIiDS_LeSzLzwSMhXzi74Uzw27snLrhkJ-SCt21XtS2fz_73TJ6Ty5R-M8a7phZn5Lypa8WUYhfk3_Mr0ojj5CCHSMNA76tNDBmtp8mOHpyzfqSH0RqNhYyJfq9GN-mQsLLeTBoNTTmsIYOj2oU0RaRvFmiOdhwxbiVe300MI3q6wRj-WoMUvKHeFkTT3aBsKVrZBk_LrkWElTVhk2z6RE4HcAk_7-sVebn78bz8WT083v9aLh4qXUueq0ZJpaBlZs47A1qusDG6lUzVDRMwtHMmUImhE0KJWpraSD5gI0THBAOU2FyR651uueTPhCn3a5s0Ogcew5T6ulHFw3mxuqBf9-i0Kq70m2jXEN_7g7UFqHaAjiGliEOvbYbtczmCdT1n_Ta6fh9d4b8d8QfJY_IDa4uamw |
CitedBy_id | crossref_primary_10_1016_j_tplants_2019_02_009 crossref_primary_10_1111_nph_17301 crossref_primary_10_1134_S1021443721050095 crossref_primary_10_3390_plants8120613 crossref_primary_10_1111_nph_17427 crossref_primary_10_1146_annurev_arplant_050718_100251 crossref_primary_10_3389_fpls_2019_01499 crossref_primary_10_1093_plphys_kiac269 crossref_primary_10_1093_plphys_kiae136 crossref_primary_10_1371_journal_pone_0205359 crossref_primary_10_1093_plcell_koae252 |
Cites_doi | 10.1111/tpj.12258 10.1098/rsob.120186 10.1016/S0092-8674(00)80204-4 10.1038/nature01843 10.1093/jexbot/53.372.1237 10.1016/j.febslet.2008.08.038 10.1016/S1360-1385(97)89545-3 10.1105/tpc.010455 10.1104/pp.111.4.1051 10.1146/annurev.neuro.20.1.399 10.1104/pp.86.3.700 10.1038/35021067 10.1093/emboj/cdg277 10.1021/ac9801723 10.1104/pp.102.4.1163 10.1111/tpj.12815 10.1073/pnas.252461999 10.1074/jbc.273.26.16265 10.1104/pp.126.4.1716 10.1126/science.1080585 10.1126/science.1087790 10.1093/jxb/erj167 10.1046/j.1365-3040.2000.00539.x 10.1105/tpc.9.9.1559 10.1071/FP06207 10.1104/pp.88.3.887 10.1104/pp.114.1.109 10.1038/ncb2568 10.1111/ppl.12353 10.1104/pp.105.069872 10.1111/j.1365-313X.2006.02842.x 10.1126/science.280.5367.1271 10.1007/s00425-006-0450-6 10.1016/S1369-5266(99)00014-X 10.1146/annurev-arplant-043014-114707 10.1146/annurev-arplant-042809-112226 10.1016/S1369-5266(00)00168-0 10.1073/pnas.0704751104 10.1016/j.tplants.2012.01.009 10.1146/annurev.arplant.47.1.509 10.1111/j.1365-3040.2007.01635.x 10.1016/0014-5793(95)00239-6 10.1016/j.phytochem.2008.08.026 10.1104/pp.103.032250 10.1016/S0969-2126(98)00117-8 10.1111/j.1399-3054.2007.00887.x 10.1146/annurev.arplant.51.1.49 10.1046/j.1469-8137.2003.00804.x 10.1104/pp.98.4.1460 10.1073/pnas.0902279106 10.1016/S1369-5266(02)00282-0 10.1007/BF00281630 10.1016/S0076-6879(04)89020-7 10.1074/jbc.271.44.27209 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1071/FP17180 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1445-4416 |
ExternalDocumentID | 32290990 10_1071_FP17180 |
Genre | Journal Article |
GroupedDBID | 0R~ 0VX 29H 4.4 53G 5GY AAHBH AAYXX ABDBF ACUHS AEIBA AENEX AEUYM AI. ALMA_UNASSIGNED_HOLDINGS CAG CITATION COF CS3 DU5 EJD F5P MV1 NGGKN RCO TN5 VH1 Y6R ~KM NPM 7X8 |
ID | FETCH-LOGICAL-c281t-39899a40d615dac8be3dc48092307af4607e97f5779728d2d81fe3775070ae8e3 |
ISSN | 1445-4408 1445-4416 |
IngestDate | Fri Jul 11 00:15:44 EDT 2025 Wed Feb 19 02:31:15 EST 2025 Thu Apr 24 22:54:41 EDT 2025 Tue Jul 01 03:15:00 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c281t-39899a40d615dac8be3dc48092307af4607e97f5779728d2d81fe3775070ae8e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 32290990 |
PQID | 2390156718 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2390156718 pubmed_primary_32290990 crossref_citationtrail_10_1071_FP17180 crossref_primary_10_1071_FP17180 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-01 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Australia |
PublicationPlace_xml | – name: Australia |
PublicationTitle | Functional plant biology : FPB |
PublicationTitleAlternate | Funct Plant Biol |
PublicationYear | 2018 |
References | Lloyd (FP17180R31) 1908; 82 Wilkinson (FP17180R58) 1993; 239 Li (FP17180R30) 2016; 156 Lu (FP17180R34) 1997; 114 Talbott (FP17180R51) 1993; 102 Liu (FP17180R32) 2005; 50 Granot (FP17180R14) 2007; 34 Kolla (FP17180R26) 2007; 130 Coruzzi (FP17180R7) 2001; 4 Jang (FP17180R19) 1997; 2 Tallman (FP17180R53) 1988; 88 Chen (FP17180R4) 2003; 301 Tesmer (FP17180R54) 1997; 89 Li (FP17180R29) 1998; 273 Pei (FP17180R41) 2000; 406 Urano (FP17180R56) 2013; 3 Poffenroth (FP17180R42) 1992; 98 Roelfsema (FP17180R44) 2012; 17 Chen (FP17180R5) 2006; 57 Ewert (FP17180R11) 2000; 23 Berman (FP17180R2) 1996; 271 Urano (FP17180R55) 2012; 14 Murata (FP17180R36) 2015; 66 Suhita (FP17180R50) 2004; 134 Talbott (FP17180R52) 1996; 111 Kang (FP17180R21) 2007; 30 Allan (FP17180R1) 1997; 9 Outlaw (FP17180R40) 2001; 126 Hetherington (FP17180R18) 2003; 424 Rennie (FP17180R43) 2009; 106 Grigston (FP17180R16) 2008; 582 Kojima (FP17180R25) 1998; 70 Neill (FP17180R38) 2002; 5 Neill (FP17180R37) 2002; 53 Ford (FP17180R12) 1998; 280 Kelly (FP17180R22) 2013; 75 Shi (FP17180R48) 2015; 82 Wall (FP17180R57) 1998; 6 Johnston (FP17180R20) 2007; 104 Gudermann (FP17180R17) 1997; 20 Koch (FP17180R24) 1996; 47 Granot (FP17180R15) 2008; 69 Kim (FP17180R23) 2010; 61 Chen (FP17180R3) 2004; 389 Smeekens (FP17180R49) 2000; 51 Desikan (FP17180R9) 2002; 99 Sheen (FP17180R47) 1999; 2 Kolla (FP17180R27) 2007; 225 Lu (FP17180R33) 1995; 362 Moore (FP17180R35) 2003; 300 Gotow (FP17180R13) 1988; 86 FP17180R45 Chen (FP17180R6) 2006; 140 Neill (FP17180R39) 2003; 159 Kwak (FP17180R28) 2003; 22 Desikan (FP17180R10) 2006; 47 She (FP17180R46) 2004; 46 |
References_xml | – volume: 75 start-page: 977 year: 2013 ident: FP17180R22 publication-title: The Plant Journal doi: 10.1111/tpj.12258 – volume: 3 start-page: 120186 year: 2013 ident: FP17180R56 publication-title: Open Biology doi: 10.1098/rsob.120186 – volume: 89 start-page: 251 year: 1997 ident: FP17180R54 publication-title: Cell doi: 10.1016/S0092-8674(00)80204-4 – volume: 424 start-page: 901 year: 2003 ident: FP17180R18 publication-title: Nature doi: 10.1038/nature01843 – volume: 53 start-page: 1237 year: 2002 ident: FP17180R37 publication-title: Journal of Experimental Botany doi: 10.1093/jexbot/53.372.1237 – volume: 582 start-page: 3577 year: 2008 ident: FP17180R16 publication-title: FEBS Letters doi: 10.1016/j.febslet.2008.08.038 – volume: 2 start-page: 208 year: 1997 ident: FP17180R19 publication-title: Trends in Plant Science doi: 10.1016/S1360-1385(97)89545-3 – ident: FP17180R45 doi: 10.1105/tpc.010455 – volume: 111 start-page: 1051 year: 1996 ident: FP17180R52 publication-title: Plant Physiology doi: 10.1104/pp.111.4.1051 – volume: 46 start-page: 1292 year: 2004 ident: FP17180R46 publication-title: Acta Botanica Sinica – volume: 20 start-page: 399 year: 1997 ident: FP17180R17 publication-title: Annual Review of Neuroscience doi: 10.1146/annurev.neuro.20.1.399 – volume: 86 start-page: 700 year: 1988 ident: FP17180R13 publication-title: Plant Physiology doi: 10.1104/pp.86.3.700 – volume: 406 start-page: 731 year: 2000 ident: FP17180R41 publication-title: Nature doi: 10.1038/35021067 – volume: 22 start-page: 2623 year: 2003 ident: FP17180R28 publication-title: EMBO Journal doi: 10.1093/emboj/cdg277 – volume: 70 start-page: 2446 year: 1998 ident: FP17180R25 publication-title: Analytical Chemistry doi: 10.1021/ac9801723 – volume: 102 start-page: 1163 year: 1993 ident: FP17180R51 publication-title: Plant Physiology doi: 10.1104/pp.102.4.1163 – volume: 82 start-page: 280 year: 2015 ident: FP17180R48 publication-title: The Plant Journal doi: 10.1111/tpj.12815 – volume: 99 start-page: 16314 year: 2002 ident: FP17180R9 publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.252461999 – volume: 273 start-page: 16265 year: 1998 ident: FP17180R29 publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.273.26.16265 – volume: 126 start-page: 1716 year: 2001 ident: FP17180R40 publication-title: Plant Physiology doi: 10.1104/pp.126.4.1716 – volume: 300 start-page: 332 year: 2003 ident: FP17180R35 publication-title: Science doi: 10.1126/science.1080585 – volume: 301 start-page: 1728 year: 2003 ident: FP17180R4 publication-title: Science doi: 10.1126/science.1087790 – volume: 57 start-page: 2101 year: 2006 ident: FP17180R5 publication-title: Journal of Experimental Botany doi: 10.1093/jxb/erj167 – volume: 23 start-page: 195 year: 2000 ident: FP17180R11 publication-title: Plant, Cell & Environment doi: 10.1046/j.1365-3040.2000.00539.x – volume: 9 start-page: 1559 year: 1997 ident: FP17180R1 publication-title: The Plant Cell doi: 10.1105/tpc.9.9.1559 – volume: 34 start-page: 564 year: 2007 ident: FP17180R14 publication-title: Functional Plant Biology doi: 10.1071/FP06207 – volume: 88 start-page: 887 year: 1988 ident: FP17180R53 publication-title: Plant Physiology doi: 10.1104/pp.88.3.887 – volume: 82 start-page: 1 year: 1908 ident: FP17180R31 publication-title: Carnegie Institution of Washington Yearbook – volume: 114 start-page: 109 year: 1997 ident: FP17180R34 publication-title: Plant Physiology doi: 10.1104/pp.114.1.109 – volume: 14 start-page: 1079 year: 2012 ident: FP17180R55 publication-title: Nature Cell Biology doi: 10.1038/ncb2568 – volume: 156 start-page: 252 year: 2016 ident: FP17180R30 publication-title: Physiologia Plantarum doi: 10.1111/ppl.12353 – volume: 140 start-page: 302 year: 2006 ident: FP17180R6 publication-title: Plant Physiology doi: 10.1104/pp.105.069872 – volume: 47 start-page: 907 year: 2006 ident: FP17180R10 publication-title: The Plant Journal doi: 10.1111/j.1365-313X.2006.02842.x – volume: 280 start-page: 1271 year: 1998 ident: FP17180R12 publication-title: Science doi: 10.1126/science.280.5367.1271 – volume: 225 start-page: 1421 year: 2007 ident: FP17180R27 publication-title: Planta doi: 10.1007/s00425-006-0450-6 – volume: 2 start-page: 410 year: 1999 ident: FP17180R47 publication-title: Current Opinion in Plant Biology doi: 10.1016/S1369-5266(99)00014-X – volume: 66 start-page: 369 year: 2015 ident: FP17180R36 publication-title: Annual Review of Plant Biology doi: 10.1146/annurev-arplant-043014-114707 – volume: 61 start-page: 561 year: 2010 ident: FP17180R23 publication-title: Annual Review of Plant Biology doi: 10.1146/annurev-arplant-042809-112226 – volume: 4 start-page: 247 year: 2001 ident: FP17180R7 publication-title: Current Opinion in Plant Biology doi: 10.1016/S1369-5266(00)00168-0 – volume: 104 start-page: 17317 year: 2007 ident: FP17180R20 publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0704751104 – volume: 50 start-page: 520 year: 2005 ident: FP17180R32 publication-title: Chinese Science Bulletin – volume: 17 start-page: 221 year: 2012 ident: FP17180R44 publication-title: Trends in Plant Science doi: 10.1016/j.tplants.2012.01.009 – volume: 47 start-page: 509 year: 1996 ident: FP17180R24 publication-title: Annual Review of Plant Physiology and Plant Molecular Biology doi: 10.1146/annurev.arplant.47.1.509 – volume: 30 start-page: 551 year: 2007 ident: FP17180R21 publication-title: Plant, Cell & Environment doi: 10.1111/j.1365-3040.2007.01635.x – volume: 362 start-page: 180 year: 1995 ident: FP17180R33 publication-title: FEBS Letters doi: 10.1016/0014-5793(95)00239-6 – volume: 69 start-page: 2649 year: 2008 ident: FP17180R15 publication-title: Phytochemistry doi: 10.1016/j.phytochem.2008.08.026 – volume: 134 start-page: 1536 year: 2004 ident: FP17180R50 publication-title: Plant Physiology doi: 10.1104/pp.103.032250 – volume: 6 start-page: 1169 year: 1998 ident: FP17180R57 publication-title: Structure doi: 10.1016/S0969-2126(98)00117-8 – volume: 130 start-page: 91 year: 2007 ident: FP17180R26 publication-title: Physiologia Plantarum doi: 10.1111/j.1399-3054.2007.00887.x – volume: 51 start-page: 49 year: 2000 ident: FP17180R49 publication-title: Annual Review of Plant Physiology and Plant Molecular Biology doi: 10.1146/annurev.arplant.51.1.49 – volume: 159 start-page: 11 year: 2003 ident: FP17180R39 publication-title: New Phytologist doi: 10.1046/j.1469-8137.2003.00804.x – volume: 98 start-page: 1460 year: 1992 ident: FP17180R42 publication-title: Plant Physiology doi: 10.1104/pp.98.4.1460 – volume: 106 start-page: 14162 year: 2009 ident: FP17180R43 publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0902279106 – volume: 5 start-page: 388 year: 2002 ident: FP17180R38 publication-title: Current Opinion in Plant Biology doi: 10.1016/S1369-5266(02)00282-0 – volume: 239 start-page: 289 year: 1993 ident: FP17180R58 publication-title: Molecular & General Genetics doi: 10.1007/BF00281630 – volume: 389 start-page: 338 year: 2004 ident: FP17180R3 publication-title: Methods in Enzymology doi: 10.1016/S0076-6879(04)89020-7 – volume: 271 start-page: 27209 year: 1996 ident: FP17180R2 publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.271.44.27209 |
SSID | ssj0015327 |
Score | 2.2755325 |
Snippet | 2-Deoxy-D-glucose, 3-O-methyl-D-glucose and D-mannose are all non-metabolisable D-glucose analogues. Among these, 2-deoxy-D-glucose and D-mannose are... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 509 |
Title | The regulator of G-protein signalling protein mediates D-glucose-induced stomatal closure via triggering hydrogen peroxide and nitric oxide production in Arabidopsis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32290990 https://www.proquest.com/docview/2390156718 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ja9tAFB7cpIdeSve4G1MovRi1I2m0He0mqilpGogNvonxaCYecC3jpST9Kz33f_bNIlnFKaS9CPMYj4Xfx9sXhN4yUDoklNQTkhOPiijwWCy4F_mp9EPK46lZ0_nlLB6O6edJNOl0fraqlrab6Xv-48a-kv_hKtCAr7pL9h8421wKBPgM_IUncBiet-bxyi6Tr0y0_5Nn5i6oRU_XZbC56zW3JNMkosOsx3WhugcO-VYXAIAF-M2sEeHzSocMe98V623Acb80kwp7s-tyVV3qci6xqq5UaXMOIA10Hb4lLO3oWFc62V-xqSqr5Vqt2-ZvDlrUBR-Xc-Bpr54BpQMT-XmT_hkKU2RwMQPJqZqaIbU1qZSZksLpW4NHF_HuqyvV6JiLmQnUThQzDWHt2IaftmIbVhxTGnlgsLlh2TfQnAy3IykdVqOWQI7M8IV9RQGWFXA3P_dBN5OdLqzz_2dfi3x8elqMTiajO-gwAB8EhOhhf3A8yJskVRSajcDNC9mebH31B3fxn8bOXzwYY8mMHqD7zgXBfYunh6gjFo_Q3UEFbsL1Y_QLQIUbUOFK4gZUeAcqXJNqUOE9UOEaVNiBCgOo8A5UuAYVrkGFAVTYggpbwg5UGH6rBaonaJyfjD4OPbfLw-NB6m-8MAPHnlFSggVdMp5ORVhympJMNyIwSWOSiCyRUZJkSZCWQZn6UoQJ2LMJYSIV4VN0sKgW4gjhkMOZmHASE0FllDJBYskymfmMcs6jLnpX_-kFd4Pu9b6VeWEKLhK_cNzpItwcXNrZLvtH3tRcK0Du6mQaW4hquy4CEyyM4VAXPbPsbC4J9RIFMPOe3-LbL9C9HfJfooPNaitegZ27mb52ePsNrvGyTA |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+regulator+of+G-protein+signalling+protein+mediates+D-glucose-induced+stomatal+closure+via+triggering+hydrogen+peroxide+and+nitric+oxide+production+in+Arabidopsis&rft.jtitle=Functional+plant+biology+%3A+FPB&rft.au=Hei%2C+Shumei&rft.au=Liu%2C+Zhifeng&rft.au=Huang%2C+Aixia&rft.au=She%2C+Xiaoping&rft.date=2018-01-01&rft.issn=1445-4416&rft.eissn=1445-4416&rft.volume=45&rft.issue=5&rft.spage=509&rft_id=info:doi/10.1071%2FFP17180&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1445-4408&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1445-4408&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1445-4408&client=summon |