Lignin as a green and multifunctional alternative to phenol for resin synthesis
Phenolic resins (PRs) are being widely used in many fields such as molding plastics, foams, coatings, and semiconductor packaging owing to their good properties including corrosion resistance, heat resistance, flame resistance, and electrical insulation properties. However, the traditional phenolic...
Saved in:
Published in | Green chemistry : an international journal and green chemistry resource : GC Vol. 25; no. 6; pp. 2241 - 2261 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
20.03.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1463-9262 1463-9270 |
DOI | 10.1039/d2gc04319j |
Cover
Loading…
Abstract | Phenolic resins (PRs) are being widely used in many fields such as molding plastics, foams, coatings, and semiconductor packaging owing to their good properties including corrosion resistance, heat resistance, flame resistance, and electrical insulation properties. However, the traditional phenolic resins industry depends very heavily on petroleum as a source of phenol raw material, which is under the influence of petroleum reserves. In recent years, many studies have been conducted to develop cheap, abundant, renewable, and high-performance alternatives to phenol for the production of PR. Lignin, as the most abundant natural polyphenol, has similar chemical structures to that of phenol. Lignin has received increasing attention as a potential feedstock for renewable fuels and chemical production. The substitution of lignin for phenol can not only reduce the costs of PRs but also increase their performance, such as low-toxicity residues and environmental friendliness. This paper reviews the recent progress in lignin activation and modification for lignin-based phenolic resin (LPR) synthesis, highlights the different lignin modification methods, compares the performance of different LPR products, and summarizes their applications in adhesives, foams, molding powders, micro/nano-spheres, and other advanced materials. Finally, this review puts forward the current challenges and potential future prospects for LPR materials.
The substitution of phenol by lignin not only reduces the feedstock cost of resin synthesis but also improves the resin's physicochemical properties and endues the resin with new functions. |
---|---|
AbstractList | Phenolic resins (PRs) are being widely used in many fields such as molding plastics, foams, coatings, and semiconductor packaging owing to their good properties including corrosion resistance, heat resistance, flame resistance, and electrical insulation properties. However, the traditional phenolic resins industry depends very heavily on petroleum as a source of phenol raw material, which is under the influence of petroleum reserves. In recent years, many studies have been conducted to develop cheap, abundant, renewable, and high-performance alternatives to phenol for the production of PR. Lignin, as the most abundant natural polyphenol, has similar chemical structures to that of phenol. Lignin has received increasing attention as a potential feedstock for renewable fuels and chemical production. The substitution of lignin for phenol can not only reduce the costs of PRs but also increase their performance, such as low-toxicity residues and environmental friendliness. This paper reviews the recent progress in lignin activation and modification for lignin-based phenolic resin (LPR) synthesis, highlights the different lignin modification methods, compares the performance of different LPR products, and summarizes their applications in adhesives, foams, molding powders, micro/nano-spheres, and other advanced materials. Finally, this review puts forward the current challenges and potential future prospects for LPR materials. Phenolic resins (PRs) are being widely used in many fields such as molding plastics, foams, coatings, and semiconductor packaging owing to their good properties including corrosion resistance, heat resistance, flame resistance, and electrical insulation properties. However, the traditional phenolic resins industry depends very heavily on petroleum as a source of phenol raw material, which is under the influence of petroleum reserves. In recent years, many studies have been conducted to develop cheap, abundant, renewable, and high-performance alternatives to phenol for the production of PR. Lignin, as the most abundant natural polyphenol, has similar chemical structures to that of phenol. Lignin has received increasing attention as a potential feedstock for renewable fuels and chemical production. The substitution of lignin for phenol can not only reduce the costs of PRs but also increase their performance, such as low-toxicity residues and environmental friendliness. This paper reviews the recent progress in lignin activation and modification for lignin-based phenolic resin (LPR) synthesis, highlights the different lignin modification methods, compares the performance of different LPR products, and summarizes their applications in adhesives, foams, molding powders, micro/nano-spheres, and other advanced materials. Finally, this review puts forward the current challenges and potential future prospects for LPR materials. The substitution of phenol by lignin not only reduces the feedstock cost of resin synthesis but also improves the resin's physicochemical properties and endues the resin with new functions. |
Author | Li, Wei Si, Chuanling Sui, Wenjie Dai, Lin Sun, Hao Wang, Guanhua |
AuthorAffiliation | State Key Laboratory of Biobased Fiber Manufacturing Technology National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass Tianjin Key Laboratory of Pulp and Paper Nanjing Forestry University Shandong Shengquan New Materials Co China Light Industry Key Laboratory of Papermaking and Biorefinery, College of Light Industry Science and Engineering Tianjin University of Science & Technology State Key Laboratory of Food Nutrition and Safety College of Food Science and Engineering Tianjin University of Science and Technology Ltd |
AuthorAffiliation_xml | – sequence: 0 name: College of Food Science and Engineering – sequence: 0 name: State Key Laboratory of Biobased Fiber Manufacturing Technology – sequence: 0 name: Tianjin Key Laboratory of Pulp and Paper – sequence: 0 name: National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass – sequence: 0 name: China Light Industry Key Laboratory of Papermaking and Biorefinery, College of Light Industry Science and Engineering – sequence: 0 name: Tianjin University of Science & Technology – sequence: 0 name: Nanjing Forestry University – sequence: 0 name: Ltd – sequence: 0 name: State Key Laboratory of Food Nutrition and Safety – sequence: 0 name: Shandong Shengquan New Materials Co – sequence: 0 name: Tianjin University of Science and Technology |
Author_xml | – sequence: 1 givenname: Wei surname: Li fullname: Li, Wei – sequence: 2 givenname: Hao surname: Sun fullname: Sun, Hao – sequence: 3 givenname: Guanhua surname: Wang fullname: Wang, Guanhua – sequence: 4 givenname: Wenjie surname: Sui fullname: Sui, Wenjie – sequence: 5 givenname: Lin surname: Dai fullname: Dai, Lin – sequence: 6 givenname: Chuanling surname: Si fullname: Si, Chuanling |
BookMark | eNptkU1LAzEQhoNUsK1evAsBb8JqPra7m6NUrUqhFz0v03S2TdkmNckK_femViqIp3lneN5hPgakZ51FQi45u-VMqruFWGqWS67WJ6TP80JmSpSsd9SFOCODENaMcV4WeZ_MpmZpjaUQKNClR0zSLuima6NpOqujcRZaCm1EbyGaT6TR0e0KrWtp4zz1GJI97GxcJRXOyWkDbcCLnzgk70-Pb-PnbDqbvIzvp5kWFY-Z0IqjKCsODaCalzgHMQKmclaUijejUhYIqZjPoWgqnvKqVFqCELpQTKMckutD3613Hx2GWK9dlyZsQ53aVjIXI8UTxQ6U9i4Ej02tTYT9TtGDaWvO6v3Z6gcxGX-f7TVZbv5Ytt5swO_-h68OsA_6yP3-QH4BCxV5gw |
CitedBy_id | crossref_primary_10_1016_j_ijbiomac_2025_140070 crossref_primary_10_1002_cey2_708 crossref_primary_10_1016_j_indcrop_2023_117174 crossref_primary_10_1016_j_mtchem_2024_102342 crossref_primary_10_1039_D4GC05352D crossref_primary_10_3389_fpls_2023_1277510 crossref_primary_10_1039_D3GC04669A crossref_primary_10_1016_j_cej_2025_159872 crossref_primary_10_1016_j_indcrop_2024_120304 crossref_primary_10_1016_j_ijbiomac_2024_130020 crossref_primary_10_3390_polym15153237 crossref_primary_10_1002_marc_202300663 crossref_primary_10_1007_s42114_024_01132_w crossref_primary_10_1002_cjoc_202401107 crossref_primary_10_1016_j_ijbiomac_2025_141553 crossref_primary_10_1016_j_indcrop_2024_118148 crossref_primary_10_1002_pc_28742 crossref_primary_10_1007_s42114_024_00871_0 crossref_primary_10_1002_chem_202304181 crossref_primary_10_1007_s42114_024_00961_z crossref_primary_10_1016_j_ijbiomac_2025_142005 crossref_primary_10_1007_s42114_023_00797_z crossref_primary_10_1016_j_ijbiomac_2024_130509 crossref_primary_10_1016_j_ijbiomac_2023_124773 crossref_primary_10_1007_s10924_024_03338_x crossref_primary_10_1016_j_cej_2024_154829 crossref_primary_10_1039_D3SU00117B crossref_primary_10_1039_D4SU00767K crossref_primary_10_1016_j_ccr_2024_216426 crossref_primary_10_1002_aenm_202403593 crossref_primary_10_1002_sus2_255 crossref_primary_10_1002_agt2_428 crossref_primary_10_1007_s11705_024_2478_1 crossref_primary_10_1021_acs_joc_4c02311 crossref_primary_10_1016_j_polymer_2024_127366 crossref_primary_10_1016_j_indcrop_2024_120397 crossref_primary_10_1021_acsmacrolett_3c00186 crossref_primary_10_1016_j_cej_2024_158655 crossref_primary_10_1016_j_indcrop_2023_117926 crossref_primary_10_1016_j_jcis_2023_12_162 crossref_primary_10_1021_acssuschemeng_4c00303 crossref_primary_10_1016_j_ijbiomac_2024_136959 crossref_primary_10_1021_acsnano_4c11945 crossref_primary_10_1016_j_indcrop_2023_117562 crossref_primary_10_1016_j_ijbiomac_2024_130619 crossref_primary_10_1016_j_compscitech_2024_110894 crossref_primary_10_1016_j_ijbiomac_2023_128963 crossref_primary_10_1016_j_cej_2024_151407 crossref_primary_10_1021_acs_biomac_3c00606 crossref_primary_10_1016_j_ijbiomac_2023_125975 crossref_primary_10_1016_j_jallcom_2024_176093 crossref_primary_10_1016_j_carbpol_2024_122109 crossref_primary_10_1021_acs_est_4c03842 crossref_primary_10_1016_j_memsci_2023_122269 crossref_primary_10_1007_s13399_024_05793_x crossref_primary_10_1016_j_cej_2024_155333 crossref_primary_10_1016_j_jhazmat_2024_136308 crossref_primary_10_1016_j_renene_2024_119954 crossref_primary_10_1016_j_carbpol_2024_122908 crossref_primary_10_1007_s42114_024_00849_y crossref_primary_10_1016_j_cej_2024_157318 crossref_primary_10_1016_j_clema_2024_100253 crossref_primary_10_1021_acssuschemeng_5c00100 crossref_primary_10_1021_acssuschemeng_4c10667 crossref_primary_10_1002_adma_202415761 crossref_primary_10_1016_j_apcatb_2023_123175 crossref_primary_10_1016_j_indcrop_2023_117276 crossref_primary_10_1039_D4GC02944E crossref_primary_10_1016_j_cis_2024_103176 crossref_primary_10_1016_j_indcrop_2024_118326 crossref_primary_10_1007_s42114_024_00873_y crossref_primary_10_1016_j_ijbiomac_2024_129327 crossref_primary_10_1016_j_indcrop_2024_118099 crossref_primary_10_1016_j_ijbiomac_2024_130475 crossref_primary_10_1039_D3GC03154C crossref_primary_10_1016_j_ijbiomac_2024_138240 crossref_primary_10_1016_j_pmatsci_2025_101452 crossref_primary_10_1016_j_indcrop_2024_118091 crossref_primary_10_1039_D3GC03542E crossref_primary_10_1016_j_carbpol_2023_120851 crossref_primary_10_3390_f14101947 crossref_primary_10_1680_jgrma_23_00135 crossref_primary_10_1021_acsapm_4c00671 crossref_primary_10_1016_j_ijbiomac_2024_135170 crossref_primary_10_1016_j_indcrop_2023_117342 crossref_primary_10_1007_s42114_024_01031_0 |
Cites_doi | 10.1016/j.indcrop.2017.10.005 10.1016/j.indcrop.2021.113442 10.1016/j.progpolymsci.2021.101388 10.1016/S0960-8524(97)00030-8 10.1039/C9GC04311J 10.1016/j.indcrop.2022.115123 10.1021/acs.energyfuels.1c01894 10.1016/j.indcrop.2004.04.016 10.15376/biores.11.3.6727-6741 10.1016/j.indcrop.2021.114391 10.1016/j.est.2021.102794 10.1016/j.colsurfa.2011.01.006 10.1016/j.carbpol.2022.120062 10.1007/s13399-019-00407-3 10.3390/polym9090428 10.1016/j.indcrop.2022.115253 10.1016/j.ijadhadh.2004.01.003 10.1039/D1GC00249J 10.1016/j.porgcoat.2019.105291 10.1002/app.26941 10.1007/s13399-020-00897-6 10.3390/molecules26226762 10.1021/acssuschemeng.0c06561 10.1016/j.mtcomm.2020.101879 10.1016/j.biortech.2022.126696 10.1108/PRT-03-2021-0039 10.1016/j.ensm.2020.12.011 10.1021/acssuschemeng.7b00050 10.1039/c3ra47032f 10.1016/j.renene.2021.03.050 10.1002/app.10018 10.1016/j.biortech.2006.05.042 10.1002/app.38703 10.1002/app.20374 10.1038/micronano.2017.32 10.1007/s10934-021-01176-z 10.1016/j.compositesb.2020.108530 10.1016/j.eurpolymj.2009.10.003 10.1021/sc5003424 10.1081/PPT-120023098 10.1016/j.indcrop.2018.09.037 10.1007/s42114-022-00427-0 10.1002/cssc.202002553 10.1002/aic.14716 10.1016/j.jclepro.2022.130769 10.1016/S0014-3057(97)00118-3 10.1002/app.21243 10.1016/j.indcrop.2021.113425 10.1016/j.indcrop.2012.10.033 10.1104/pp.110.155119 10.1021/acssuschemeng.0c07227 10.1039/D2NR00468B 10.1016/j.fuel.2021.122432 10.1016/j.biortech.2014.08.121 10.1016/j.indcrop.2018.04.027 10.1002/app.25098 10.1016/j.cej.2022.137571 10.1007/s11274-013-1398-x 10.1039/C9RA06487G 10.1016/j.eurpolymj.2018.12.011 10.1016/j.indcrop.2020.112638 10.1590/1980-5373-mr-2019-0686 10.1002/macp.202100434 10.1016/j.polymdegradstab.2014.06.006 10.1021/acssuschemeng.0c00125 10.1021/acs.accounts.9b00573 10.1016/j.compositesb.2015.05.043 10.1016/j.enzmictec.2015.04.001 10.1016/S1872-5805(17)60109-4 10.1016/j.biortech.2015.01.127 10.1016/j.apenergy.2019.05.033 10.1002/app.35539 10.1007/s11771-006-0106-5 10.1016/S0960-8524(00)00180-2 10.1007/s10853-018-2362-9 10.1039/C7NR00130D 10.1016/j.carbpol.2019.03.100 10.1016/j.indcrop.2020.112144 10.1016/j.biortech.2014.07.064 10.1016/j.reactfunctpolym.2019.104442 10.1016/j.biortech.2009.09.085 10.1021/acs.chemmater.0c01198 10.1016/S0143-7496(02)00058-1 10.1039/C4RA09595B 10.1021/acs.iecr.0c01753 10.1002/cssc.202000485 10.1039/D1GC04783C 10.1002/masy.201800156 10.1039/C9GC01975H 10.1002/app.2119 10.1007/s10853-021-06854-6 10.1016/j.pmatsci.2021.100915 10.1039/D0NR04795C 10.1007/s42114-023-00633-4 10.1016/j.heliyon.2020.e03170 10.1016/j.supflu.2019.104745 10.1039/D1GC02841C 10.1016/j.apcatb.2021.120189 10.1021/acs.energyfuels.1c03177 10.1021/acssuschemeng.2c07058 10.15376/biores.3.1.13-20 10.1016/j.compscitech.2012.01.013 10.1016/j.indcrop.2012.07.037 10.1080/01932691.2019.1578662 10.1016/j.pecs.2019.01.002 10.1016/j.indcrop.2012.12.051 10.1021/acs.chemrev.0c00798 10.1007/s40820-020-0383-9 10.1016/j.compscitech.2008.02.034 10.1007/BF00355851 10.1016/j.tibtech.2022.09.014 10.1007/s40820-022-00849-x 10.1016/j.reactfunctpolym.2014.09.017 10.15376/biores.4.2.789-804 10.1021/acssuschemeng.9b00209 10.1016/S0165-2370(99)00082-0 10.4028/www.scientific.net/AMR.236-238.1014 10.1016/j.indcrop.2005.04.004 10.1016/j.ijadhadh.2019.102408 10.1016/j.progpolymsci.2013.11.004 10.1016/j.jclepro.2021.127834 10.1016/j.indcrop.2016.12.063 10.1002/anie.201807804 10.1021/acsapm.1c01679 10.1016/j.jpowsour.2016.03.088 10.1016/j.jcis.2020.10.105 10.1002/app.36476 10.1016/j.rser.2021.110706 10.1002/adfm.202113082 10.1016/j.cogsc.2022.100738 10.1002/adma.201100984 10.1002/pc.26824 10.1039/c001389g 10.1126/science.1246843 10.15376/biores.7.1.554-564 10.1002/app.22995 10.1016/j.carbpol.2020.117010 10.1016/j.carbpol.2021.118372 10.1177/00219983211065549 10.1016/j.carbpol.2019.115116 10.1016/j.indcrop.2023.116343 10.1021/acs.chemrev.5b00155 10.1021/acs.iecr.6b00594 10.1007/s42114-022-00425-2 10.1016/j.jpowsour.2020.228976 10.1002/advs.201902913 10.3390/polym10101162 10.1016/j.indcrop.2018.10.056 10.1016/j.fuel.2020.117428 10.1039/D2GC01637K 10.3390/polym8060209 10.15376/biores.6.3.Hu 10.1016/j.cej.2021.130817 10.1002/app.47712 10.1016/j.rser.2020.110688 10.1007/BF00365615 10.1021/acscatal.8b03430 10.1016/S1359-835X(03)00136-2 10.1002/adma.202101368 10.1007/s40820-020-0407-5 10.1039/D0CS00134A 10.1007/s42114-021-00232-1 10.1002/cssc.202001491 10.1016/j.biortech.2021.126251 10.1016/j.ijbiomac.2021.07.054 10.1016/j.carbpol.2021.117740 10.1039/C6RA05392K 10.3390/molecules26133993 10.13031/trans.13798 10.1021/acs.biomac.1c00805 10.1080/15583724.2021.2007121 10.1126/science.1221748 10.1002/cssc.202001401 10.1080/02773819909349617 10.1016/j.jclepro.2023.136215 10.1021/sc500087z 10.1021/acssuschemeng.0c05408 10.1166/jnn.2016.13170 10.1016/j.ijbiomac.2021.07.125 10.1021/acscatal.5b02062 10.1108/03699421111130432 10.1002/cctc.202200297 10.1081/MA-120004509 10.1126/science.1114736 10.1016/j.indcrop.2015.10.048 10.1016/j.cej.2021.129560 10.1016/j.carbpol.2021.118107 10.1002/cssc.202000783 10.1002/cssc.202002008 10.1021/acssuschemeng.7b00748 10.1016/j.jcis.2021.06.033 10.1016/j.carbpol.2020.116233 10.3390/polym11111771 10.1039/D0EE02870C 10.1016/j.jclepro.2022.135582 10.1016/j.indcrop.2013.12.020 10.15376/biores.11.3.5797-5815 10.1515/hfsg.1990.44.2.133 10.1016/j.scp.2021.100376 10.1007/s00107-022-01845-z 10.1680/jgrma.17.00038 10.1002/app.52019 10.1016/j.matlet.2022.132626 10.1016/j.indcrop.2022.114604 10.1016/j.matlet.2014.11.068 10.1002/fam.2501 10.1016/j.indcrop.2020.112164 10.1016/j.molcatb.2010.11.002 10.1002/app.53080 10.1016/j.fuel.2021.122935 10.1016/0032-3861(94)90024-8 10.1007/s00226-022-01408-8 10.1016/j.biortech.2020.124631 10.1002/macp.202200159 10.1016/j.rser.2020.110359 10.1016/j.copbio.2019.02.019 10.1007/s42114-021-00312-2 10.1016/j.biortech.2020.122784 10.1163/1568561054352577 10.1016/j.rser.2021.111822 10.1016/j.indcrop.2021.113350 10.1016/S0960-8524(02)00230-4 10.1016/S0143-7496(02)00059-3 10.1016/j.jhazmat.2009.09.144 10.1016/j.nantod.2021.101119 10.1016/j.carbon.2022.05.053 10.1016/j.diamond.2022.109000 10.1016/j.biortech.2022.127880 10.1016/j.carbpol.2021.118220 10.3390/polym13091417 10.1515/HF.2008.047 10.1016/j.indcrop.2018.07.080 10.1021/acssuschemeng.1c01916 10.1016/S0960-8524(98)00076-5 10.1016/j.compositesb.2016.10.094 10.1016/j.micromeso.2018.02.024 10.1016/j.rser.2021.111986 10.1016/j.biombioe.2020.105479 10.1039/C6RA11966B 10.1016/j.biortech.2018.09.072 10.1021/acssuschemeng.0c02967 10.1016/j.rser.2019.03.008 10.1016/j.progpolymsci.2020.101344 10.1016/j.ijadhadh.2020.102556 10.1002/cssc.202000753 10.1007/s41061-019-0251-6 10.1016/j.ensm.2022.03.013 10.3390/catal11040467 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2023 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 |
DBID | AAYXX CITATION 7SR 7ST 7U6 8BQ 8FD C1K JG9 |
DOI | 10.1039/d2gc04319j |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts Sustainability Science Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Sustainability Science Abstracts Environment Abstracts METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
EISSN | 1463-9270 |
EndPage | 2261 |
ExternalDocumentID | 10_1039_D2GC04319J d2gc04319j |
GroupedDBID | -JG 0-7 0R~ 29I 4.4 5GY 705 70~ 7~J AAEMU AAHBH AAIWI AAJAE AALRI AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ADMRA ADSRN ADVLN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K COF CS3 D0L DU5 EBS ECGLT EE0 EF- F5P FDB GGIMP GNO H13 HZ~ H~N IDZ J3I M4U N9A O9- OK1 P2P R7B RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SLH VH6 AAYXX AFRZK AKMSF ALUYA CITATION R56 7SR 7ST 7U6 8BQ 8FD C1K JG9 |
ID | FETCH-LOGICAL-c281t-2c91e2781afae9b7eba25a09406791f5736eaeba4ba6f81573879c3a22c690ce3 |
ISSN | 1463-9262 |
IngestDate | Mon Jun 30 12:02:02 EDT 2025 Tue Jul 01 02:24:45 EDT 2025 Thu Apr 24 22:59:24 EDT 2025 Tue Dec 17 20:58:48 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c281t-2c91e2781afae9b7eba25a09406791f5736eaeba4ba6f81573879c3a22c690ce3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5558-0821 0000-0002-2233-1260 0000-0001-9334-8740 |
PQID | 2788342591 |
PQPubID | 2047490 |
PageCount | 21 |
ParticipantIDs | crossref_citationtrail_10_1039_D2GC04319J crossref_primary_10_1039_D2GC04319J rsc_primary_d2gc04319j proquest_journals_2788342591 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-20 |
PublicationDateYYYYMMDD | 2023-03-20 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Green chemistry : an international journal and green chemistry resource : GC |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Liu (D2GC04319J/cit14/1) 2020; 13 Tejado (D2GC04319J/cit94/1) 2007; 98 Hu (D2GC04319J/cit264/1) 2011; 6 Khan (D2GC04319J/cit188/1) 2006; 13 Cuevas-Suárez (D2GC04319J/cit174/1) 2019; 21 Song (D2GC04319J/cit102/1) 2022; 223 Khan (D2GC04319J/cit187/1) 2004; 92 Shu (D2GC04319J/cit52/1) 2021; 22 Ma (D2GC04319J/cit254/1) 2021; 586 Gharehkhani (D2GC04319J/cit34/1) 2019; 72 Abu-Omar (D2GC04319J/cit56/1) 2021; 14 Crane (D2GC04319J/cit250/1) 2017; 3 Wang (D2GC04319J/cit233/1) 2022; 297 Liu (D2GC04319J/cit20/1) 2022; 5 Liu (D2GC04319J/cit71/1) 2021; 23 Paananen (D2GC04319J/cit119/1) 2021; 20 Liu (D2GC04319J/cit147/1) 2022; 363 Cao (D2GC04319J/cit36/1) 2021; 23 Ibrahim (D2GC04319J/cit40/1) 2013; 45 Liu (D2GC04319J/cit30/1) 2022; 5 Alonso (D2GC04319J/cit116/1) 2001; 82 Li (D2GC04319J/cit173/1) 2012; 125 Wang (D2GC04319J/cit98/1) 2019; 271 Arefmanesh (D2GC04319J/cit183/1) 2022; 178 Wang (D2GC04319J/cit243/1) 2019; 127 Lee (D2GC04319J/cit120/1) 2022; 80 Matsushita (D2GC04319J/cit39/1) 2006; 23 Sun (D2GC04319J/cit18/1) 2022; 345 Cheeseman (D2GC04319J/cit229/1) 2020; 7 Kalami (D2GC04319J/cit190/1) 2018; 125 Lu (D2GC04319J/cit23/1) 2019; 215 Xing (D2GC04319J/cit2/1) 2022; 447 Min (D2GC04319J/cit62/1) 2014; 4 Adhikari (D2GC04319J/cit155/1) 2020; 63 Yang (D2GC04319J/cit12/1) 2019; 7 Ouyang (D2GC04319J/cit141/1) 2020; 13 Wang (D2GC04319J/cit24/1) 2020; 239 Jin (D2GC04319J/cit172/1) 1990; 44 Zhao (D2GC04319J/cit61/1) 2014; 108 Sukhbaatar (D2GC04319J/cit153/1) 2009; 4 Nenkova (D2GC04319J/cit163/1) 2011; 46 Hattali (D2GC04319J/cit223/1) 2005; 97 Zhang (D2GC04319J/cit262/1) 2015; 61 Nanayakkara (D2GC04319J/cit143/1) 2014; 2 Hattali (D2GC04319J/cit225/1) 2005; 97 Kuroe (D2GC04319J/cit259/1) 2013; 129 Olivares (D2GC04319J/cit69/1) 1988; 22 Li (D2GC04319J/cit131/1) 2016; 6 Li (D2GC04319J/cit160/1) 2020; 13 Ai (D2GC04319J/cit178/1) 2021; 26 Pang (D2GC04319J/cit77/1) 2021; 165 Bo (D2GC04319J/cit207/1) 2018; 53 Zhai (D2GC04319J/cit244/1) 2011; 23 Sethupathy (D2GC04319J/cit35/1) 2022; 347 Agustiany (D2GC04319J/cit63/1) 2022; 43 Zhu (D2GC04319J/cit162/1) 2022; 29 de Carvalho (D2GC04319J/cit214/1) 2007; 42 Xie (D2GC04319J/cit22/1) 2019; 223 Mansouri (D2GC04319J/cit201/1) 2007; 103 Qu (D2GC04319J/cit124/1) 2017; 32 Lee (D2GC04319J/cit7/1) 2002; 84 Tran (D2GC04319J/cit126/1) 2022; 24 Li (D2GC04319J/cit186/1) 2017; 134 Talabi (D2GC04319J/cit261/1) 2020; 23 Liu (D2GC04319J/cit11/1) 2017; 5 Li (D2GC04319J/cit228/1) 2022; 196 Singh (D2GC04319J/cit8/1) 2006; 100 Liu (D2GC04319J/cit111/1) 2021; 267 Li (D2GC04319J/cit165/1) 2018; 120 Ji (D2GC04319J/cit148/1) 2021; 172 Radhika (D2GC04319J/cit159/1) 2022; 312 Pei (D2GC04319J/cit184/1) 2020; 154 Ma (D2GC04319J/cit101/1) 2011; 377 Liao (D2GC04319J/cit5/1) 2021; 292 Karri (D2GC04319J/cit185/1) 2022; 9 Nishiwaki-Akine (D2GC04319J/cit146/1) 2023; 11 Tejado (D2GC04319J/cit38/1) 2007; 106 Del Saz-Orozco (D2GC04319J/cit212/1) 2015; 80 Zuo (D2GC04319J/cit251/1) 2017; 9 Podschun (D2GC04319J/cit115/1) 2016; 55 Gao (D2GC04319J/cit44/1) 2021; 35 Liu (D2GC04319J/cit237/1) 2021; 165 Xu (D2GC04319J/cit248/1) 2022; 48 Venkatesagowda (D2GC04319J/cit129/1) 2020; 10 Bansode (D2GC04319J/cit182/1) 2021; 9 Çetin (D2GC04319J/cit127/1) 2002; 22 Serrano (D2GC04319J/cit149/1) 2019; 377 Liu (D2GC04319J/cit240/1) 2022; 14 Ghorbani (D2GC04319J/cit189/1) 2016; 11 Tang (D2GC04319J/cit88/1) 2021; 26 Liu (D2GC04319J/cit239/1) 2020; 8 Xu (D2GC04319J/cit32/1) 2020; 13 Zhang (D2GC04319J/cit142/1) 2020; 53 Taverna (D2GC04319J/cit103/1) 2019; 136 Sawamura (D2GC04319J/cit134/1) 2017; 5 Xu (D2GC04319J/cit181/1) 2021; 602 Zhuang (D2GC04319J/cit210/1) 2011; 236–238 Rahim (D2GC04319J/cit4/1) 2019; 58 Si (D2GC04319J/cit21/1) 2008; 62 Barhoum (D2GC04319J/cit51/1) 2020; 12 Lal (D2GC04319J/cit255/1) 2021; 40 Zhao (D2GC04319J/cit97/1) 2020; 13 Li (D2GC04319J/cit27/1) 2020; 158 Li (D2GC04319J/cit132/1) 2017; 9 Jang (D2GC04319J/cit145/1) 2020; 269 Deshpande (D2GC04319J/cit72/1) 2022; 177 Zou (D2GC04319J/cit110/1) 2015; 73–74 Zhu (D2GC04319J/cit137/1) 2022 Vanholme (D2GC04319J/cit99/1) 2010; 153 Ragauskas (D2GC04319J/cit9/1) 2006; 311 Liu (D2GC04319J/cit78/1) 2022; 185 Wang (D2GC04319J/cit104/1) 2014; 53 Yang (D2GC04319J/cit33/1) 2023; 390 Vazquez (D2GC04319J/cit118/1) 1999; 19 Khan (D2GC04319J/cit192/1) 2005; 19 Li (D2GC04319J/cit202/1) 2017; 134 Kumar (D2GC04319J/cit168/1) 2020; 6 Shen (D2GC04319J/cit208/1) 2003; 34 Ang (D2GC04319J/cit125/1) 2019; 95 Li (D2GC04319J/cit217/1) 2019; 111 Xu (D2GC04319J/cit54/1) 2021; 313 Zhang (D2GC04319J/cit13/1) 2021; 4 Zhang (D2GC04319J/cit152/1) 2021; 419 Poveda-Giraldo (D2GC04319J/cit53/1) 2021; 138 Hu (D2GC04319J/cit211/1) 2012; 7 Barde (D2GC04319J/cit154/1) 2018; 6 Cabral Almada (D2GC04319J/cit166/1) 2022; 12 Zakzeski (D2GC04319J/cit70/1) 2010; 12 Ferhan (D2GC04319J/cit109/1) 2013; 29 Li (D2GC04319J/cit204/1) 2016; 6 Aliakbari (D2GC04319J/cit177/1) 2019; 136 Li (D2GC04319J/cit135/1) 2022; 139 Amen-Chen (D2GC04319J/cit150/1) 2001; 79 Sha (D2GC04319J/cit85/1) 2022; 324 Floudas (D2GC04319J/cit170/1) 2012; 336 Khan (D2GC04319J/cit200/1) 2004; 92 Paysepar (D2GC04319J/cit203/1) 2020; 146 He (D2GC04319J/cit257/1) 2021; 4 Yan (D2GC04319J/cit6/1) 2017; 112 Adler (D2GC04319J/cit58/1) 1977; 11 Del Saz-Orozco (D2GC04319J/cit218/1) 2012; 72 Sun (D2GC04319J/cit263/1) 2021; 186 Meng (D2GC04319J/cit74/1) 2020; 146 Tang (D2GC04319J/cit86/1) 2022; 139 Yang (D2GC04319J/cit158/1) 2019; 250 Arefmanesh (D2GC04319J/cit191/1) 2022; 178 Lu (D2GC04319J/cit234/1) 2020; 250 Nam (D2GC04319J/cit176/1) 2021; 121 Wang (D2GC04319J/cit232/1) 2021; 266 Liu (D2GC04319J/cit31/1) 2022; 62 Chio (D2GC04319J/cit59/1) 2019; 107 Zhao (D2GC04319J/cit249/1) 2023; 194 Hidalgo (D2GC04319J/cit206/1) 2018; 42 Zheng (D2GC04319J/cit25/1) 2023; 6 Liu (D2GC04319J/cit16/1) 2021; 259 Zhang (D2GC04319J/cit138/1) 2021; 35 Xu (D2GC04319J/cit227/1) 2018; 265 Henn (D2GC04319J/cit43/1) 2022; 24 Li (D2GC04319J/cit55/1) 2015; 115 Kruger (D2GC04319J/cit144/1) 2016; 6 Kharade (D2GC04319J/cit224/1) 1998; 34 Dai (D2GC04319J/cit37/1) 2019; 21 Chakar (D2GC04319J/cit123/1) 2004; 20 Huang (D2GC04319J/cit140/1) 2018; 8 Nile (D2GC04319J/cit235/1) 2020; 12 Cheng (D2GC04319J/cit42/1) 2013; 44 Wang (D2GC04319J/cit220/1) 2018; 124 Zhou (D2GC04319J/cit221/1) 2020; 59 Huang (D2GC04319J/cit68/1) 2022; 154 Gong (D2GC04319J/cit46/1) 2022; 223 Liu (D2GC04319J/cit121/1) 2022; 56 Dai (D2GC04319J/cit26/1) 2020; 32 Liu (D2GC04319J/cit246/1) 2021; 426 Du (D2GC04319J/cit28/1) 2021; 270 Ren (D2GC04319J/cit3/1) 2022; 125 Kim (D2GC04319J/cit87/1) 2015; 178 Jin (D2GC04319J/cit196/1) 2010; 101 Pang (D2GC04319J/cit67/1) 2020; 8 Wang (D2GC04319J/cit199/1) 2020; 8 Zhang (D2GC04319J/cit209/1) 2019; 41 Wang (D2GC04319J/cit136/1) 2019; 11 Gao (D2GC04319J/cit161/1) 2021; 205 Siriruk (D2GC04319J/cit205/1) 2009; 69 Zhang (D2GC04319J/cit253/1) 2023; 305 Wang (D2GC04319J/cit215/1) 2018; 124 Xu (D2GC04319J/cit247/1) 2021; 33 Song (D2GC04319J/cit106/1) 2016; 8 Wu (D2GC04319J/cit133/1) 2001; 35 Yang (D2GC04319J/cit139/1) 2022; 14 Çetin (D2GC04319J/cit128/1) 2002; 22 Peng (D2GC04319J/cit122/1) 1994; 35 Shen (D2GC04319J/cit157/1) 2020; 134 Liu (D2GC04319J/cit29/1) 2022; 32 Xu (D2GC04319J/cit15/1) 2020; 13 Patil (D2GC04319J/cit151/1) 2020; 133 Abbas (D2GC04319J/cit245/1) 2016; 318 Benar (D2GC04319J/cit93/1) 1999; 68 Cabral Almada (D2GC04319J/cit167/1) 2021; 11 Delfi (D2GC04319J/cit236/1) 2021; 38 Wong (D2GC04319J/cit83/1) 2020; 49 Ren (D2GC04319J/cit89/1) 2021; 26 Jian (D2GC04319J/cit231/1) 2020; 12 Jędrzejczak (D2GC04319J/cit65/1) 2021; 187 Balakshin (D2GC04319J/cit64/1) 2021; 14 Sheng (D2GC04319J/cit66/1) 2021; 324 Shibayama (D2GC04319J/cit1/1) 2019; 385 Wang (D2GC04319J/cit95/1) 2009; 45 Liu (D2GC04319J/cit180/1) 2020; 98 Khan (D2GC04319J/cit194/1) 2004; 24 Wang (D2GC04319J/cit60/1) 2015; 182 Abdelwahab (D2GC04319J/cit195/1) 2011; 40 Zhang (D2GC04319J/cit113/1) 2013; 43 Guo (D2GC04319J/cit222/1) 2010; 175 Chen (D2GC04319J/cit226/1) 2020; 22 Zhang (D2GC04319J/cit100/1) 2016; 79 Ragauskas (D2GC04319J/cit108/1) 2014; 344 Vázquez (D2GC04319J/cit219/1) 1997; 60 Hamad (D2GC04319J/cit260/1) 2022; 56 Lu (D2GC04319J/cit91/1) 2021; 13 Guo (D2GC04319J/cit41/1) 2015; 142 Ma (D2GC04319J/cit169/1) 2018; 13 Carvalho (D2GC04319J/cit213/1) 2002; 39 Zhai (D2GC04319J/cit256/1) 2021; 481 Solt (D2GC04319J/cit164/1) 2018; 10 Cui (D2GC04319J/cit175/1) 2021; 116 Zhang (D2GC04319J/cit45/1) 2015; 65 Wei (D2GC04319J/cit17/1) 2022; 125 Mousavi (D2GC04319J/cit92/1) 2022; 57 Lee (D2GC04319J/cit114/1) 2012; 124 Liu (D2GC04319J/cit238/1) 2020; 8 Zhao (D2GC04319J/cit156/1) 2021; 139 Chen (D2GC04319J/cit242/1) 2020; 145 Xu (D2GC04319J/cit179/1) 2019; 9 Yang (D2GC04319J/cit198/1) 2014; 4 Ghorbani (D2GC04319J/cit197/1) 2016; 11 Yoo (D2GC04319J/cit57/1) 2020; 301 Lawoko (D2GC04319J/cit75/1) 2023; 40 Ralph (D2GC04319J/cit50/1) 2019; 56 Li (D2GC04319J/cit241/1) 2022; 310 Liu (D2GC04319J/cit10/1) 2023; 384 Vázquez (D2GC04319J/cit193/1) 2003; 87 Wang (D2GC04319J/cit105/1) 2006; 13 Sternberg (D2GC04319J/cit82/1) 2021; 113 Yu (D2GC04319J/cit112/1) 2022; 339 González-Rodríguez (D2GC04319J/cit130/1) 2022; 186 Thakur (D2GC04319J/cit48/1) 2014; 2 Liu (D2GC04319J/cit76/1) 2022; 40 Dorrestijn (D2GC04319J/cit49/1) 2000; 54 Tachon (D2GC04319J/cit96/1) 2016; 11 Lee (D2GC04319J/cit252/1) 2016; 16 Laurichesse (D2GC04319J/cit107/1) 2014; 39 Liu (D2GC04319J/cit19/1) 2022; 14 Van Nieuwenhove (D2GC04319J/cit47/1) 2020; 8 Liu (D2GC04319J/cit80/1) 2018; 111 Malutan (D2GC04319J/cit117/1) 2008; 3 Hao (D2GC04319J/cit90/1) 2022; 4 Li (D2GC04319J/cit216/1) 2017; 97 Zhou (D2GC04319J/cit79/1) 2022; 156 Duval (D2GC04319J/cit84/1) 2014; 85 Gao (D2GC04319J/cit258/1) 2021; 51 Xu (D2GC04319J/cit81/1) 2021; 164 Dwivedi (D2GC04319J/cit171/1) 2011; 68 Kabir (D2GC04319J/cit73/1) 2015; 178 Xie (D2GC04319J/cit230/1) 2021; 36 |
References_xml | – volume: 111 start-page: 201 year: 2018 ident: D2GC04319J/cit80/1 publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2017.10.005 – volume: 165 start-page: 113442 year: 2021 ident: D2GC04319J/cit77/1 publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2021.113442 – volume: 116 start-page: 101388 year: 2021 ident: D2GC04319J/cit175/1 publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2021.101388 – volume: 60 start-page: 191 year: 1997 ident: D2GC04319J/cit219/1 publication-title: Bioresour. Technol. doi: 10.1016/S0960-8524(97)00030-8 – volume: 22 start-page: 2879 year: 2020 ident: D2GC04319J/cit226/1 publication-title: Green Chem. doi: 10.1039/C9GC04311J – volume: 185 start-page: 115123 year: 2022 ident: D2GC04319J/cit78/1 publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2022.115123 – volume: 35 start-page: 17138 year: 2021 ident: D2GC04319J/cit138/1 publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.1c01894 – volume: 20 start-page: 131 year: 2004 ident: D2GC04319J/cit123/1 publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2004.04.016 – volume: 11 start-page: 6727 year: 2016 ident: D2GC04319J/cit197/1 publication-title: BioResources doi: 10.15376/biores.11.3.6727-6741 – volume: 177 start-page: 114391 year: 2022 ident: D2GC04319J/cit72/1 publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2021.114391 – volume: 40 start-page: 102794 year: 2021 ident: D2GC04319J/cit255/1 publication-title: J. Energy Storage doi: 10.1016/j.est.2021.102794 – volume: 377 start-page: 284 year: 2011 ident: D2GC04319J/cit101/1 publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2011.01.006 – volume: 297 start-page: 120062 year: 2022 ident: D2GC04319J/cit233/1 publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2022.120062 – volume: 10 start-page: 203 year: 2020 ident: D2GC04319J/cit129/1 publication-title: Biomass Convers. Biorefin. doi: 10.1007/s13399-019-00407-3 – volume: 9 start-page: 428 year: 2017 ident: D2GC04319J/cit132/1 publication-title: Polymers doi: 10.3390/polym9090428 – volume: 186 start-page: 115253 year: 2022 ident: D2GC04319J/cit130/1 publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2022.115253 – volume: 9 start-page: 100299 year: 2022 ident: D2GC04319J/cit185/1 publication-title: Composites, Part C – volume: 24 start-page: 485 year: 2004 ident: D2GC04319J/cit194/1 publication-title: Int. J. Adhes. Adhes. doi: 10.1016/j.ijadhadh.2004.01.003 – volume: 23 start-page: 2329 year: 2021 ident: D2GC04319J/cit36/1 publication-title: Green Chem. doi: 10.1039/D1GC00249J – volume: 136 start-page: 105291 year: 2019 ident: D2GC04319J/cit177/1 publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2019.105291 – volume: 106 start-page: 2313 year: 2007 ident: D2GC04319J/cit38/1 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.26941 – volume: 12 start-page: 3795 year: 2022 ident: D2GC04319J/cit166/1 publication-title: Biomass Convers. Biorefin. doi: 10.1007/s13399-020-00897-6 – volume: 26 start-page: 6762 year: 2021 ident: D2GC04319J/cit178/1 publication-title: Molecules doi: 10.3390/molecules26226762 – volume: 8 start-page: 16691 year: 2020 ident: D2GC04319J/cit238/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.0c06561 – volume: 26 start-page: 101879 year: 2021 ident: D2GC04319J/cit88/1 publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2020.101879 – volume: 347 start-page: 126696 year: 2022 ident: D2GC04319J/cit35/1 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2022.126696 – volume: 51 start-page: 441 year: 2021 ident: D2GC04319J/cit258/1 publication-title: Pigm. Resin Technol. doi: 10.1108/PRT-03-2021-0039 – volume: 36 start-page: 56 year: 2021 ident: D2GC04319J/cit230/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.12.011 – volume: 5 start-page: 4690 year: 2017 ident: D2GC04319J/cit11/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.7b00050 – volume: 13 start-page: 347 year: 2006 ident: D2GC04319J/cit188/1 publication-title: Indian J. Chem. Technol. – volume: 4 start-page: 10845 year: 2014 ident: D2GC04319J/cit62/1 publication-title: RSC Adv. doi: 10.1039/c3ra47032f – volume: 172 start-page: 304 year: 2021 ident: D2GC04319J/cit148/1 publication-title: Renewable Energy doi: 10.1016/j.renene.2021.03.050 – volume: 84 start-page: 468 year: 2002 ident: D2GC04319J/cit7/1 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.10018 – volume: 98 start-page: 1655 year: 2007 ident: D2GC04319J/cit94/1 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2006.05.042 – volume: 129 start-page: 310 year: 2013 ident: D2GC04319J/cit259/1 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.38703 – volume: 92 start-page: 3514 year: 2004 ident: D2GC04319J/cit187/1 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.20374 – volume: 3 start-page: 17032 year: 2017 ident: D2GC04319J/cit250/1 publication-title: Microsyst. Nanoeng. doi: 10.1038/micronano.2017.32 – volume: 21 start-page: 7 year: 2019 ident: D2GC04319J/cit174/1 publication-title: J. Adhes. Dent. – volume: 29 start-page: 445 year: 2022 ident: D2GC04319J/cit162/1 publication-title: J. Porous Mater. doi: 10.1007/s10934-021-01176-z – volume: 205 start-page: 108530 year: 2021 ident: D2GC04319J/cit161/1 publication-title: Composites, Part B doi: 10.1016/j.compositesb.2020.108530 – volume: 45 start-page: 3380 year: 2009 ident: D2GC04319J/cit95/1 publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2009.10.003 – volume: 2 start-page: 2159 year: 2014 ident: D2GC04319J/cit143/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/sc5003424 – volume: 42 start-page: 605 year: 2007 ident: D2GC04319J/cit214/1 publication-title: Polym.-Plast. Technol. Eng. doi: 10.1081/PPT-120023098 – volume: 125 start-page: 520 year: 2018 ident: D2GC04319J/cit190/1 publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2018.09.037 – volume: 5 start-page: 1168 year: 2022 ident: D2GC04319J/cit30/1 publication-title: Adv. Compos. Hybrid Mater. doi: 10.1007/s42114-022-00427-0 – volume: 14 start-page: 1016 year: 2021 ident: D2GC04319J/cit64/1 publication-title: ChemSusChem doi: 10.1002/cssc.202002553 – volume: 61 start-page: 1275 year: 2015 ident: D2GC04319J/cit262/1 publication-title: AIChE J. doi: 10.1002/aic.14716 – volume: 339 start-page: 130769 year: 2022 ident: D2GC04319J/cit112/1 publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2022.130769 – volume: 34 start-page: 201 year: 1998 ident: D2GC04319J/cit224/1 publication-title: Eur. Polym. J. doi: 10.1016/S0014-3057(97)00118-3 – volume: 97 start-page: 1065 year: 2005 ident: D2GC04319J/cit223/1 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.21243 – volume: 165 start-page: 113425 year: 2021 ident: D2GC04319J/cit237/1 publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2021.113425 – volume: 44 start-page: 315 year: 2013 ident: D2GC04319J/cit42/1 publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2012.10.033 – volume: 153 start-page: 895 year: 2010 ident: D2GC04319J/cit99/1 publication-title: Plant Physiol. doi: 10.1104/pp.110.155119 – volume: 8 start-page: 18789 year: 2020 ident: D2GC04319J/cit47/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.0c07227 – volume: 14 start-page: 14902 year: 2022 ident: D2GC04319J/cit19/1 publication-title: Nanoscale doi: 10.1039/D2NR00468B – volume: 310 start-page: 122432 year: 2022 ident: D2GC04319J/cit241/1 publication-title: Fuel doi: 10.1016/j.fuel.2021.122432 – volume: 178 start-page: 90 year: 2015 ident: D2GC04319J/cit87/1 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.08.121 – volume: 120 start-page: 25 year: 2018 ident: D2GC04319J/cit165/1 publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2018.04.027 – volume: 103 start-page: 1690 year: 2007 ident: D2GC04319J/cit201/1 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.25098 – volume: 447 start-page: 137571 year: 2022 ident: D2GC04319J/cit2/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.137571 – volume: 29 start-page: 2437 year: 2013 ident: D2GC04319J/cit109/1 publication-title: World J. Microbiol. Biotechnol. doi: 10.1007/s11274-013-1398-x – volume: 9 start-page: 28924 year: 2019 ident: D2GC04319J/cit179/1 publication-title: RSC Adv. doi: 10.1039/C9RA06487G – volume: 111 start-page: 1 year: 2019 ident: D2GC04319J/cit217/1 publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2018.12.011 – volume: 154 start-page: 112638 year: 2020 ident: D2GC04319J/cit184/1 publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2020.112638 – volume: 305 start-page: 136215 year: 2023 ident: D2GC04319J/cit253/1 publication-title: Carbohydr. Polym. – volume: 23 start-page: e20190686 year: 2020 ident: D2GC04319J/cit261/1 publication-title: Mater. Res. doi: 10.1590/1980-5373-mr-2019-0686 – volume: 223 start-page: 2100434 year: 2022 ident: D2GC04319J/cit46/1 publication-title: Macromol. Chem. Phys. doi: 10.1002/macp.202100434 – volume: 108 start-page: 133 year: 2014 ident: D2GC04319J/cit61/1 publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2014.06.006 – volume: 8 start-page: 7536 year: 2020 ident: D2GC04319J/cit239/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.0c00125 – volume: 53 start-page: 470 year: 2020 ident: D2GC04319J/cit142/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00573 – volume: 80 start-page: 154 year: 2015 ident: D2GC04319J/cit212/1 publication-title: Composites, Part B doi: 10.1016/j.compositesb.2015.05.043 – volume: 73–74 start-page: 44 year: 2015 ident: D2GC04319J/cit110/1 publication-title: Enzyme Microb. Technol. doi: 10.1016/j.enzmictec.2015.04.001 – volume: 32 start-page: 86 year: 2017 ident: D2GC04319J/cit124/1 publication-title: New Carbon Mater. doi: 10.1016/S1872-5805(17)60109-4 – volume: 182 start-page: 120 year: 2015 ident: D2GC04319J/cit60/1 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.01.127 – volume: 250 start-page: 926 year: 2019 ident: D2GC04319J/cit158/1 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.05.033 – volume: 124 start-page: 4782 year: 2012 ident: D2GC04319J/cit114/1 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.35539 – volume: 13 start-page: 53 year: 2006 ident: D2GC04319J/cit105/1 publication-title: J. Cent. South Univ. Technol. doi: 10.1007/s11771-006-0106-5 – volume: 79 start-page: 277 year: 2001 ident: D2GC04319J/cit150/1 publication-title: Bioresour. Technol. doi: 10.1016/S0960-8524(00)00180-2 – volume: 53 start-page: 10784 year: 2018 ident: D2GC04319J/cit207/1 publication-title: J. Mater. Sci. doi: 10.1007/s10853-018-2362-9 – volume: 9 start-page: 4445 year: 2017 ident: D2GC04319J/cit251/1 publication-title: Nanoscale doi: 10.1039/C7NR00130D – volume: 215 start-page: 289 year: 2019 ident: D2GC04319J/cit23/1 publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2019.03.100 – volume: 146 start-page: 112144 year: 2020 ident: D2GC04319J/cit74/1 publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2020.112144 – volume: 13 start-page: 1223 year: 2018 ident: D2GC04319J/cit169/1 publication-title: BioResources – volume: 178 start-page: 201 year: 2015 ident: D2GC04319J/cit73/1 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.07.064 – volume: 146 start-page: 104442 year: 2020 ident: D2GC04319J/cit203/1 publication-title: React. Funct. Polym. doi: 10.1016/j.reactfunctpolym.2019.104442 – volume: 101 start-page: 2046 year: 2010 ident: D2GC04319J/cit196/1 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2009.09.085 – volume: 32 start-page: 4324 year: 2020 ident: D2GC04319J/cit26/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.0c01198 – volume: 22 start-page: 477 year: 2002 ident: D2GC04319J/cit128/1 publication-title: Int. J. Adhes. Adhes. doi: 10.1016/S0143-7496(02)00058-1 – volume: 4 start-page: 57996 year: 2014 ident: D2GC04319J/cit198/1 publication-title: RSC Adv. doi: 10.1039/C4RA09595B – volume: 59 start-page: 14296 year: 2020 ident: D2GC04319J/cit221/1 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.0c01753 – volume: 13 start-page: 1705 year: 2020 ident: D2GC04319J/cit141/1 publication-title: ChemSusChem doi: 10.1002/cssc.202000485 – volume: 24 start-page: 2051 year: 2022 ident: D2GC04319J/cit126/1 publication-title: Green Chem. doi: 10.1039/D1GC04783C – volume: 385 start-page: 1800156 year: 2019 ident: D2GC04319J/cit1/1 publication-title: Macromol. Symp. doi: 10.1002/masy.201800156 – volume: 21 start-page: 5222 year: 2019 ident: D2GC04319J/cit37/1 publication-title: Green Chem. doi: 10.1039/C9GC01975H – volume: 82 start-page: 2661 year: 2001 ident: D2GC04319J/cit116/1 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.2119 – volume: 57 start-page: 3143 year: 2022 ident: D2GC04319J/cit92/1 publication-title: J. Mater. Sci. doi: 10.1007/s10853-021-06854-6 – volume: 125 start-page: 100915 year: 2022 ident: D2GC04319J/cit17/1 publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2021.100915 – volume: 12 start-page: 22845 year: 2020 ident: D2GC04319J/cit51/1 publication-title: Nanoscale doi: 10.1039/D0NR04795C – volume: 6 start-page: 53 year: 2023 ident: D2GC04319J/cit25/1 publication-title: Adv. Compos. Hybrid Mater. doi: 10.1007/s42114-023-00633-4 – volume: 6 start-page: e03170 year: 2020 ident: D2GC04319J/cit168/1 publication-title: Heliyon doi: 10.1016/j.heliyon.2020.e03170 – volume: 158 start-page: 104745 year: 2020 ident: D2GC04319J/cit27/1 publication-title: J. Supercrit. Fluids doi: 10.1016/j.supflu.2019.104745 – volume: 23 start-page: 9723 year: 2021 ident: D2GC04319J/cit71/1 publication-title: Green Chem. doi: 10.1039/D1GC02841C – volume: 292 start-page: 120189 year: 2021 ident: D2GC04319J/cit5/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2021.120189 – volume: 35 start-page: 18385 year: 2021 ident: D2GC04319J/cit44/1 publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.1c03177 – volume: 46 start-page: 109 year: 2011 ident: D2GC04319J/cit163/1 publication-title: J. Univ. Chem. Technol. Metall. – volume: 11 start-page: 2050 year: 2023 ident: D2GC04319J/cit146/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.2c07058 – volume: 3 start-page: 13 year: 2008 ident: D2GC04319J/cit117/1 publication-title: BioResources doi: 10.15376/biores.3.1.13-20 – volume: 72 start-page: 667 year: 2012 ident: D2GC04319J/cit218/1 publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2012.01.013 – volume: 43 start-page: 326 year: 2013 ident: D2GC04319J/cit113/1 publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2012.07.037 – volume: 41 start-page: 348 year: 2019 ident: D2GC04319J/cit209/1 publication-title: J. Dispersion Sci. Technol. doi: 10.1080/01932691.2019.1578662 – volume: 72 start-page: 59 year: 2019 ident: D2GC04319J/cit34/1 publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2019.01.002 – volume: 45 start-page: 343 year: 2013 ident: D2GC04319J/cit40/1 publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2012.12.051 – volume: 121 start-page: 11336 year: 2021 ident: D2GC04319J/cit176/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00798 – volume: 12 start-page: 45 year: 2020 ident: D2GC04319J/cit235/1 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-020-0383-9 – volume: 69 start-page: 814 year: 2009 ident: D2GC04319J/cit205/1 publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2008.02.034 – volume: 22 start-page: 157 year: 1988 ident: D2GC04319J/cit69/1 publication-title: Wood Sci. Technol. doi: 10.1007/BF00355851 – volume: 40 start-page: 1550 year: 2022 ident: D2GC04319J/cit76/1 publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2022.09.014 – volume: 14 start-page: 104 year: 2022 ident: D2GC04319J/cit240/1 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-022-00849-x – volume: 85 start-page: 78 year: 2014 ident: D2GC04319J/cit84/1 publication-title: React. Funct. Polym. doi: 10.1016/j.reactfunctpolym.2014.09.017 – volume: 4 start-page: 789 year: 2009 ident: D2GC04319J/cit153/1 publication-title: BioResources doi: 10.15376/biores.4.2.789-804 – volume: 7 start-page: 7200 year: 2019 ident: D2GC04319J/cit12/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.9b00209 – volume: 54 start-page: 153 year: 2000 ident: D2GC04319J/cit49/1 publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/S0165-2370(99)00082-0 – volume: 236–238 start-page: 1014 year: 2011 ident: D2GC04319J/cit210/1 publication-title: Adv. Mater. Res. doi: 10.4028/www.scientific.net/AMR.236-238.1014 – volume: 23 start-page: 115 year: 2006 ident: D2GC04319J/cit39/1 publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2005.04.004 – volume: 95 start-page: 102408 year: 2019 ident: D2GC04319J/cit125/1 publication-title: Int. J. Adhes. Adhes. doi: 10.1016/j.ijadhadh.2019.102408 – volume: 39 start-page: 1266 year: 2014 ident: D2GC04319J/cit107/1 publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2013.11.004 – volume: 313 start-page: 127834 year: 2021 ident: D2GC04319J/cit54/1 publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2021.127834 – volume: 97 start-page: 409 year: 2017 ident: D2GC04319J/cit216/1 publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2016.12.063 – volume: 58 start-page: 1904 year: 2019 ident: D2GC04319J/cit4/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201807804 – volume: 4 start-page: 1286 year: 2022 ident: D2GC04319J/cit90/1 publication-title: ACS Appl. Polym. Mater. doi: 10.1021/acsapm.1c01679 – volume: 318 start-page: 235 year: 2016 ident: D2GC04319J/cit245/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.03.088 – volume: 586 start-page: 412 year: 2021 ident: D2GC04319J/cit254/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.10.105 – volume: 125 start-page: 3142 year: 2012 ident: D2GC04319J/cit173/1 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.36476 – volume: 139 start-page: 110706 year: 2021 ident: D2GC04319J/cit156/1 publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2021.110706 – volume: 32 start-page: 2113082 year: 2022 ident: D2GC04319J/cit29/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202113082 – volume: 40 start-page: 100738 year: 2023 ident: D2GC04319J/cit75/1 publication-title: Curr. Opin. Green Sustain. Chem. doi: 10.1016/j.cogsc.2022.100738 – volume: 23 start-page: 4828 year: 2011 ident: D2GC04319J/cit244/1 publication-title: Adv. Mater. doi: 10.1002/adma.201100984 – volume: 43 start-page: 4848 year: 2022 ident: D2GC04319J/cit63/1 publication-title: Polym. Compos. doi: 10.1002/pc.26824 – volume: 12 start-page: 1225 year: 2010 ident: D2GC04319J/cit70/1 publication-title: Green Chem. doi: 10.1039/c001389g – volume: 344 start-page: 1246843 year: 2014 ident: D2GC04319J/cit108/1 publication-title: Science doi: 10.1126/science.1246843 – volume: 7 start-page: 554 year: 2012 ident: D2GC04319J/cit211/1 publication-title: BioResources doi: 10.15376/biores.7.1.554-564 – volume: 100 start-page: 2323 year: 2006 ident: D2GC04319J/cit8/1 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.22995 – volume: 250 start-page: 117010 year: 2020 ident: D2GC04319J/cit234/1 publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2020.117010 – volume: 270 start-page: 118372 year: 2021 ident: D2GC04319J/cit28/1 publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2021.118372 – volume: 56 start-page: 889 year: 2022 ident: D2GC04319J/cit260/1 publication-title: J. Compos. Mater. doi: 10.1177/00219983211065549 – volume: 35 start-page: 253 year: 2001 ident: D2GC04319J/cit133/1 publication-title: Cellul. Chem. Technol. – volume: 223 start-page: 115116 year: 2019 ident: D2GC04319J/cit22/1 publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2019.115116 – volume: 194 start-page: 116343 year: 2023 ident: D2GC04319J/cit249/1 publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2023.116343 – volume: 115 start-page: 11559 year: 2015 ident: D2GC04319J/cit55/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00155 – volume: 55 start-page: 5231 year: 2016 ident: D2GC04319J/cit115/1 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.6b00594 – volume: 5 start-page: 1078 year: 2022 ident: D2GC04319J/cit20/1 publication-title: Adv. Compos. Hybrid Mater. doi: 10.1007/s42114-022-00425-2 – volume: 481 start-page: 228976 year: 2021 ident: D2GC04319J/cit256/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.228976 – volume: 7 start-page: 1902913 year: 2020 ident: D2GC04319J/cit229/1 publication-title: Adv. Sci. doi: 10.1002/advs.201902913 – volume: 10 start-page: 1162 year: 2018 ident: D2GC04319J/cit164/1 publication-title: Polymers doi: 10.3390/polym10101162 – volume: 127 start-page: 110 year: 2019 ident: D2GC04319J/cit243/1 publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2018.10.056 – volume: 269 start-page: 117428 year: 2020 ident: D2GC04319J/cit145/1 publication-title: Fuel doi: 10.1016/j.fuel.2020.117428 – volume: 24 start-page: 6487 year: 2022 ident: D2GC04319J/cit43/1 publication-title: Green Chem. doi: 10.1039/D2GC01637K – volume: 8 start-page: 209 year: 2016 ident: D2GC04319J/cit106/1 publication-title: Polymers doi: 10.3390/polym8060209 – volume: 6 start-page: 3515 year: 2011 ident: D2GC04319J/cit264/1 publication-title: BioResources doi: 10.15376/biores.6.3.Hu – volume: 426 start-page: 130817 year: 2021 ident: D2GC04319J/cit246/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.130817 – volume: 134 start-page: 10 year: 2017 ident: D2GC04319J/cit202/1 publication-title: J. Appl. Polym. Sci. – volume: 136 start-page: 47712 year: 2019 ident: D2GC04319J/cit103/1 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.47712 – volume: 138 start-page: 110688 year: 2021 ident: D2GC04319J/cit53/1 publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2020.110688 – volume: 11 start-page: 169 year: 1977 ident: D2GC04319J/cit58/1 publication-title: Wood Sci. Technol. doi: 10.1007/BF00365615 – volume: 8 start-page: 11184 year: 2018 ident: D2GC04319J/cit140/1 publication-title: ACS Catal. doi: 10.1021/acscatal.8b03430 – volume: 34 start-page: 899 year: 2003 ident: D2GC04319J/cit208/1 publication-title: Composites, Part A doi: 10.1016/S1359-835X(03)00136-2 – volume: 33 start-page: 2101368 year: 2021 ident: D2GC04319J/cit247/1 publication-title: Adv. Mater. doi: 10.1002/adma.202101368 – volume: 12 start-page: 71 year: 2020 ident: D2GC04319J/cit231/1 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-020-0407-5 – volume: 49 start-page: 5510 year: 2020 ident: D2GC04319J/cit83/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00134A – volume: 4 start-page: 317 year: 2021 ident: D2GC04319J/cit257/1 publication-title: Adv. Compos. Hybrid Mater. doi: 10.1007/s42114-021-00232-1 – volume: 13 start-page: 4284 year: 2020 ident: D2GC04319J/cit15/1 publication-title: ChemSusChem doi: 10.1002/cssc.202001491 – volume: 345 start-page: 126251 year: 2022 ident: D2GC04319J/cit18/1 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.126251 – volume: 186 start-page: 341 year: 2021 ident: D2GC04319J/cit263/1 publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2021.07.054 – volume: 259 start-page: 117740 year: 2021 ident: D2GC04319J/cit16/1 publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2021.117740 – volume: 6 start-page: 40975 year: 2016 ident: D2GC04319J/cit204/1 publication-title: RSC Adv. doi: 10.1039/C6RA05392K – volume: 26 start-page: 3993 year: 2021 ident: D2GC04319J/cit89/1 publication-title: Molecules doi: 10.3390/molecules26133993 – volume: 63 start-page: 901 year: 2020 ident: D2GC04319J/cit155/1 publication-title: Trans. ASABE doi: 10.13031/trans.13798 – volume: 22 start-page: 4905 year: 2021 ident: D2GC04319J/cit52/1 publication-title: Biomacromolecules doi: 10.1021/acs.biomac.1c00805 – volume: 62 start-page: 585 year: 2022 ident: D2GC04319J/cit31/1 publication-title: Polym. Rev. doi: 10.1080/15583724.2021.2007121 – volume: 336 start-page: 1715 year: 2012 ident: D2GC04319J/cit170/1 publication-title: Science doi: 10.1126/science.1221748 – volume: 13 start-page: 5423 year: 2020 ident: D2GC04319J/cit97/1 publication-title: ChemSusChem doi: 10.1002/cssc.202001401 – volume: 19 start-page: 357 year: 1999 ident: D2GC04319J/cit118/1 publication-title: J. Wood Chem. Technol. doi: 10.1080/02773819909349617 – volume: 390 start-page: 136215 year: 2023 ident: D2GC04319J/cit33/1 publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2023.136215 – volume: 2 start-page: 1072 year: 2014 ident: D2GC04319J/cit48/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/sc500087z – volume: 8 start-page: 13517 year: 2020 ident: D2GC04319J/cit199/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.0c05408 – volume: 92 start-page: 3514 year: 2004 ident: D2GC04319J/cit200/1 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.20374 – volume: 16 start-page: 10413 year: 2016 ident: D2GC04319J/cit252/1 publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2016.13170 – volume: 187 start-page: 624 year: 2021 ident: D2GC04319J/cit65/1 publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2021.07.125 – volume: 6 start-page: 1316 year: 2016 ident: D2GC04319J/cit144/1 publication-title: ACS Catal. doi: 10.1021/acscatal.5b02062 – volume: 65 start-page: 43 year: 2015 ident: D2GC04319J/cit45/1 publication-title: For. Prod. J. – volume: 40 start-page: 169 year: 2011 ident: D2GC04319J/cit195/1 publication-title: Pigm. Resin Technol. doi: 10.1108/03699421111130432 – volume: 14 start-page: e202200297 year: 2022 ident: D2GC04319J/cit139/1 publication-title: ChemCatChem doi: 10.1002/cctc.202200297 – volume: 39 start-page: 643 year: 2002 ident: D2GC04319J/cit213/1 publication-title: J. Macromol. Sci., Part A: Pure Appl.Chem. doi: 10.1081/MA-120004509 – volume: 311 start-page: 484 year: 2006 ident: D2GC04319J/cit9/1 publication-title: Science doi: 10.1126/science.1114736 – volume: 79 start-page: 84 year: 2016 ident: D2GC04319J/cit100/1 publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2015.10.048 – volume: 419 start-page: 129560 year: 2021 ident: D2GC04319J/cit152/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.129560 – volume: 266 start-page: 118107 year: 2021 ident: D2GC04319J/cit232/1 publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2021.118107 – volume: 13 start-page: 4266 year: 2020 ident: D2GC04319J/cit14/1 publication-title: ChemSusChem doi: 10.1002/cssc.202000783 – volume: 13 start-page: 6461 year: 2020 ident: D2GC04319J/cit32/1 publication-title: ChemSusChem doi: 10.1002/cssc.202002008 – volume: 134 start-page: 10 year: 2017 ident: D2GC04319J/cit186/1 publication-title: J. Appl. Polym. Sci. – volume: 5 start-page: 5424 year: 2017 ident: D2GC04319J/cit134/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.7b00748 – volume: 602 start-page: 394 year: 2021 ident: D2GC04319J/cit181/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.06.033 – volume: 239 start-page: 116233 year: 2020 ident: D2GC04319J/cit24/1 publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2020.116233 – volume: 11 start-page: 1771 year: 2019 ident: D2GC04319J/cit136/1 publication-title: Polymers doi: 10.3390/polym11111771 – volume: 14 start-page: 262 year: 2021 ident: D2GC04319J/cit56/1 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE02870C – volume: 384 start-page: 135582 year: 2023 ident: D2GC04319J/cit10/1 publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2022.135582 – volume: 53 start-page: 93 year: 2014 ident: D2GC04319J/cit104/1 publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2013.12.020 – volume: 97 start-page: 1065 year: 2005 ident: D2GC04319J/cit225/1 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.21243 – volume: 11 start-page: 5797 year: 2016 ident: D2GC04319J/cit96/1 publication-title: BioResources doi: 10.15376/biores.11.3.5797-5815 – volume: 44 start-page: 133 year: 1990 ident: D2GC04319J/cit172/1 publication-title: Holzforschung doi: 10.1515/hfsg.1990.44.2.133 – volume: 20 start-page: 100376 year: 2021 ident: D2GC04319J/cit119/1 publication-title: Sustainable Chem. Pharm. doi: 10.1016/j.scp.2021.100376 – volume: 80 start-page: 1225 year: 2022 ident: D2GC04319J/cit120/1 publication-title: Eur. J. Wood Wood Prod. doi: 10.1007/s00107-022-01845-z – volume: 6 start-page: 76 year: 2018 ident: D2GC04319J/cit154/1 publication-title: Green Mater. doi: 10.1680/jgrma.17.00038 – volume: 139 start-page: 52019 year: 2022 ident: D2GC04319J/cit135/1 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.52019 – volume: 324 start-page: 132626 year: 2022 ident: D2GC04319J/cit85/1 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2022.132626 – volume: 178 start-page: 114604 year: 2022 ident: D2GC04319J/cit191/1 publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2022.114604 – volume: 142 start-page: 49 year: 2015 ident: D2GC04319J/cit41/1 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2014.11.068 – volume: 42 start-page: 358 year: 2018 ident: D2GC04319J/cit206/1 publication-title: Fire Mater. doi: 10.1002/fam.2501 – volume: 145 start-page: 112164 year: 2020 ident: D2GC04319J/cit242/1 publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2020.112164 – volume: 68 start-page: 117 year: 2011 ident: D2GC04319J/cit171/1 publication-title: J. Mol. Catal. B: Enzym. doi: 10.1016/j.molcatb.2010.11.002 – start-page: 1 year: 2022 ident: D2GC04319J/cit137/1 publication-title: Biomass Convers. Biorefin. – volume: 139 start-page: e53080 year: 2022 ident: D2GC04319J/cit86/1 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.53080 – volume: 312 start-page: 122935 year: 2022 ident: D2GC04319J/cit159/1 publication-title: Fuel doi: 10.1016/j.fuel.2021.122935 – volume: 35 start-page: 1280 year: 1994 ident: D2GC04319J/cit122/1 publication-title: Polymer doi: 10.1016/0032-3861(94)90024-8 – volume: 56 start-page: 1527 year: 2022 ident: D2GC04319J/cit121/1 publication-title: Wood Sci. Technol. doi: 10.1007/s00226-022-01408-8 – volume: 324 start-page: 124631 year: 2021 ident: D2GC04319J/cit66/1 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2020.124631 – volume: 223 start-page: 2200159 year: 2022 ident: D2GC04319J/cit102/1 publication-title: Macromol. Chem. Phys. doi: 10.1002/macp.202200159 – volume: 133 start-page: 110359 year: 2020 ident: D2GC04319J/cit151/1 publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2020.110359 – volume: 56 start-page: 240 year: 2019 ident: D2GC04319J/cit50/1 publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2019.02.019 – volume: 4 start-page: 865 year: 2021 ident: D2GC04319J/cit13/1 publication-title: Adv. Compos. Hybrid Mater. doi: 10.1007/s42114-021-00312-2 – volume: 301 start-page: 122784 year: 2020 ident: D2GC04319J/cit57/1 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2020.122784 – volume: 19 start-page: 493 year: 2005 ident: D2GC04319J/cit192/1 publication-title: J. Adhes. Sci. Technol. doi: 10.1163/1568561054352577 – volume: 154 start-page: 111822 year: 2022 ident: D2GC04319J/cit68/1 publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2021.111822 – volume: 164 start-page: 113350 year: 2021 ident: D2GC04319J/cit81/1 publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2021.113350 – volume: 87 start-page: 349 year: 2003 ident: D2GC04319J/cit193/1 publication-title: Bioresour. Technol. doi: 10.1016/S0960-8524(02)00230-4 – volume: 22 start-page: 481 year: 2002 ident: D2GC04319J/cit127/1 publication-title: Int. J. Adhes. Adhes. doi: 10.1016/S0143-7496(02)00059-3 – volume: 175 start-page: 165 year: 2010 ident: D2GC04319J/cit222/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2009.09.144 – volume: 38 start-page: 101119 year: 2021 ident: D2GC04319J/cit236/1 publication-title: Nano Today doi: 10.1016/j.nantod.2021.101119 – volume: 196 start-page: 819 year: 2022 ident: D2GC04319J/cit228/1 publication-title: Carbon doi: 10.1016/j.carbon.2022.05.053 – volume: 125 start-page: 109000 year: 2022 ident: D2GC04319J/cit3/1 publication-title: Diamond Relat. Mater. doi: 10.1016/j.diamond.2022.109000 – volume: 363 start-page: 127880 year: 2022 ident: D2GC04319J/cit147/1 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2022.127880 – volume: 267 start-page: 118220 year: 2021 ident: D2GC04319J/cit111/1 publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2021.118220 – volume: 13 start-page: 1417 year: 2021 ident: D2GC04319J/cit91/1 publication-title: Polymers doi: 10.3390/polym13091417 – volume: 178 start-page: 114604 year: 2022 ident: D2GC04319J/cit183/1 publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2022.114604 – volume: 62 start-page: 197 year: 2008 ident: D2GC04319J/cit21/1 publication-title: Holzforschung doi: 10.1515/HF.2008.047 – volume: 124 start-page: 216 year: 2018 ident: D2GC04319J/cit215/1 publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2018.07.080 – volume: 9 start-page: 10990 year: 2021 ident: D2GC04319J/cit182/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.1c01916 – volume: 68 start-page: 11 year: 1999 ident: D2GC04319J/cit93/1 publication-title: Bioresour. Technol. doi: 10.1016/S0960-8524(98)00076-5 – volume: 124 start-page: 216 year: 2018 ident: D2GC04319J/cit220/1 publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2018.07.080 – volume: 112 start-page: 8 year: 2017 ident: D2GC04319J/cit6/1 publication-title: Composites, Part B doi: 10.1016/j.compositesb.2016.10.094 – volume: 265 start-page: 258 year: 2018 ident: D2GC04319J/cit227/1 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2018.02.024 – volume: 156 start-page: 111986 year: 2022 ident: D2GC04319J/cit79/1 publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2021.111986 – volume: 134 start-page: 105479 year: 2020 ident: D2GC04319J/cit157/1 publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2020.105479 – volume: 6 start-page: 67435 year: 2016 ident: D2GC04319J/cit131/1 publication-title: RSC Adv. doi: 10.1039/C6RA11966B – volume: 11 start-page: 6727 year: 2016 ident: D2GC04319J/cit189/1 publication-title: BioResources doi: 10.15376/biores.11.3.6727-6741 – volume: 271 start-page: 449 year: 2019 ident: D2GC04319J/cit98/1 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.09.072 – volume: 8 start-page: 9174 year: 2020 ident: D2GC04319J/cit67/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.0c02967 – volume: 107 start-page: 232 year: 2019 ident: D2GC04319J/cit59/1 publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2019.03.008 – volume: 113 start-page: 101344 year: 2021 ident: D2GC04319J/cit82/1 publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2020.101344 – volume: 98 start-page: 102556 year: 2020 ident: D2GC04319J/cit180/1 publication-title: Int. J. Adhes. Adhes. doi: 10.1016/j.ijadhadh.2020.102556 – volume: 13 start-page: 4487 year: 2020 ident: D2GC04319J/cit160/1 publication-title: ChemSusChem doi: 10.1002/cssc.202000753 – volume: 377 start-page: 26 year: 2019 ident: D2GC04319J/cit149/1 publication-title: Top. Curr. Chem. doi: 10.1007/s41061-019-0251-6 – volume: 48 start-page: 244 year: 2022 ident: D2GC04319J/cit248/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.03.013 – volume: 11 start-page: 467 year: 2021 ident: D2GC04319J/cit167/1 publication-title: Catalysts doi: 10.3390/catal11040467 |
SSID | ssj0011764 |
Score | 2.6582358 |
SecondaryResourceType | review_article |
Snippet | Phenolic resins (PRs) are being widely used in many fields such as molding plastics, foams, coatings, and semiconductor packaging owing to their good... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2241 |
SubjectTerms | Corrosion resistance Electrical insulation Fire resistance Foams Green chemistry Heat resistance Lignin Petroleum Petroleum industry Phenolic compounds Phenolic resins Phenols Plastic foam Raw materials Renewable fuels Resins Synthesis Thermal resistance Toxicity |
Title | Lignin as a green and multifunctional alternative to phenol for resin synthesis |
URI | https://www.proquest.com/docview/2788342591 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe67gF4QFCo6BjIErygKpDY-XycRrdqK5uEWq1vkeM4pRNKpyZ9gD-Hv5TzR-JsqhDwErWWL0l9v_rOvvPvEHrvF1meE487rs9kmDGgDvMD4YAphfVzEohQFYP5chVOF_7FMlj2er86WUu7OvvIf-49V_I_WoU20Ks8JfsPmm1vCg3wGfQLV9AwXP9Kx7P1SnKjsmrMxiuZQKNCASpHUNors82nAuKlJvgGT1MmdW3UqcUxLLVBvPpRghdYrauuo6rycca8KQendg5Yqdgl7AZiQzshn7p6ILA1cQEleW4JHlX2wI1Y22iUmvembGP39vX8A-gtv-2Y7WhEy9u16G5WECqztYjbwktviTT5qCrfxLxVZwr2Q-pIFkNtobptusRIM2_rA9MGn_cmYaK5tIxBBwfT22ssXCq5VnOy4pJhKLm1JrFJA7i6Ts8Ws1k6nyznB-iQwFKE9NHhyeXXm8s2VuVFiqSsfe-GBJcmn-y977s9di1zsG0KzSiHZv4MPTUrEXyiYfUc9UQ5QI_aoRqgJx2uygEaTuyRSBAzNqF6ga41CjGrMMMKBRjwgB-gEHdQiOsN1ijEgEKsUIhbFL5Ei7PJ_HTqmDIdDiexVzuEJ54gUeyxgokki0TGSMAkL2MYJV4RRDQUDBr9jIVF7MH3OEo4ZYTwMHG5oEPULzeleIWwyGjA8ihnjOS-gHVfVuRhweLQLUTO_XiEPjSjmHLDYS9LqXxPVS4FTdLP5PxUjfjFCL1r-95p5pa9vY4bZaTmT1Ol8GNiCsYs8UZoCApq5a0-j_4s9xo9tvA_Rv16uxNvwHuts7cGPr8Bi4ufpg |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lignin+as+a+green+and+multifunctional+alternative+to+phenol+for+resin+synthesis&rft.jtitle=Green+chemistry+%3A+an+international+journal+and+green+chemistry+resource+%3A+GC&rft.au=Li%2C+Wei&rft.au=Sun%2C+Hao&rft.au=Wang%2C+Guanhua&rft.au=Sui%2C+Wenjie&rft.date=2023-03-20&rft.pub=Royal+Society+of+Chemistry&rft.issn=1463-9262&rft.eissn=1463-9270&rft.volume=25&rft.issue=6&rft.spage=2241&rft.epage=2261&rft_id=info:doi/10.1039%2Fd2gc04319j&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9262&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9262&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9262&client=summon |