Development and study of a bifunctional photocatalyst based on SAPO-34 molecular sieve

A new bifunctional photocatalyst was constructed from a modified SAPO-34 molecular sieve successfully connected with BiVO 4 crystals through O bridges. The new as-fabricated catalyst not only had enriched active sites of B-acid and L-acid on the surface of the molecular sieve but also enriched activ...

Full description

Saved in:
Bibliographic Details
Published inNew journal of chemistry Vol. 47; no. 14; pp. 6563 - 6576
Main Authors Wang, Run-quan, Chen, Wan-ping, Zhang, Yue-rong, Song, Kai, Tian, Yuan, Li, Jia-xian, Shi, Gao-feng, Wang, Guo-ying
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 03.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A new bifunctional photocatalyst was constructed from a modified SAPO-34 molecular sieve successfully connected with BiVO 4 crystals through O bridges. The new as-fabricated catalyst not only had enriched active sites of B-acid and L-acid on the surface of the molecular sieve but also enriched active sites of L-acid on the surface of the molecular sieve. The electron-transfer ability between the SAPO-34 molecular sieve and BiVO 4 crystals was improved, and the recombination of electrons and holes in BiVO 4 crystals was inhibited. With the synergistic action of the B-acid and L-acid, the molecular zeolite showed very high activity for the photocatalytic degradation of formaldehyde aqueous solution with a photoreaction rate constant of 0.291 min −1 and degradation rate of 84.34%. Compared with the BiVO 4 crystal, the performance improved 10 times. Based on the calculation of the band structure and state density of the BiVO 4 crystal and the HOMO and LUMO energy levels of the SAPO-34 molecular sieve, a mechanism for the photocatalytic degradation of formaldehyde is proposed and the energy levels of the intermediate products were calculated. This study provides a method for the preparation of composite molecular sieve photocatalysts and a new idea for the construction of bifunctional photocatalysts. A new bifunctional photocatalyst was constructed from a modified SAPO-34 molecular sieve successfully connected with BiVO 4 crystals through O bridges.
AbstractList A new bifunctional photocatalyst was constructed from a modified SAPO-34 molecular sieve successfully connected with BiVO 4 crystals through O bridges. The new as-fabricated catalyst not only had enriched active sites of B-acid and L-acid on the surface of the molecular sieve but also enriched active sites of L-acid on the surface of the molecular sieve. The electron-transfer ability between the SAPO-34 molecular sieve and BiVO 4 crystals was improved, and the recombination of electrons and holes in BiVO 4 crystals was inhibited. With the synergistic action of the B-acid and L-acid, the molecular zeolite showed very high activity for the photocatalytic degradation of formaldehyde aqueous solution with a photoreaction rate constant of 0.291 min −1 and degradation rate of 84.34%. Compared with the BiVO 4 crystal, the performance improved 10 times. Based on the calculation of the band structure and state density of the BiVO 4 crystal and the HOMO and LUMO energy levels of the SAPO-34 molecular sieve, a mechanism for the photocatalytic degradation of formaldehyde is proposed and the energy levels of the intermediate products were calculated. This study provides a method for the preparation of composite molecular sieve photocatalysts and a new idea for the construction of bifunctional photocatalysts. A new bifunctional photocatalyst was constructed from a modified SAPO-34 molecular sieve successfully connected with BiVO 4 crystals through O bridges.
A new bifunctional photocatalyst was constructed from a modified SAPO-34 molecular sieve successfully connected with BiVO4 crystals through O bridges. The new as-fabricated catalyst not only had enriched active sites of B-acid and L-acid on the surface of the molecular sieve but also enriched active sites of L-acid on the surface of the molecular sieve. The electron-transfer ability between the SAPO-34 molecular sieve and BiVO4 crystals was improved, and the recombination of electrons and holes in BiVO4 crystals was inhibited. With the synergistic action of the B-acid and L-acid, the molecular zeolite showed very high activity for the photocatalytic degradation of formaldehyde aqueous solution with a photoreaction rate constant of 0.291 min−1 and degradation rate of 84.34%. Compared with the BiVO4 crystal, the performance improved 10 times. Based on the calculation of the band structure and state density of the BiVO4 crystal and the HOMO and LUMO energy levels of the SAPO-34 molecular sieve, a mechanism for the photocatalytic degradation of formaldehyde is proposed and the energy levels of the intermediate products were calculated. This study provides a method for the preparation of composite molecular sieve photocatalysts and a new idea for the construction of bifunctional photocatalysts.
A new bifunctional photocatalyst was constructed from a modified SAPO-34 molecular sieve successfully connected with BiVO 4 crystals through O bridges. The new as-fabricated catalyst not only had enriched active sites of B-acid and L-acid on the surface of the molecular sieve but also enriched active sites of L-acid on the surface of the molecular sieve. The electron-transfer ability between the SAPO-34 molecular sieve and BiVO 4 crystals was improved, and the recombination of electrons and holes in BiVO 4 crystals was inhibited. With the synergistic action of the B-acid and L-acid, the molecular zeolite showed very high activity for the photocatalytic degradation of formaldehyde aqueous solution with a photoreaction rate constant of 0.291 min −1 and degradation rate of 84.34%. Compared with the BiVO 4 crystal, the performance improved 10 times. Based on the calculation of the band structure and state density of the BiVO 4 crystal and the HOMO and LUMO energy levels of the SAPO-34 molecular sieve, a mechanism for the photocatalytic degradation of formaldehyde is proposed and the energy levels of the intermediate products were calculated. This study provides a method for the preparation of composite molecular sieve photocatalysts and a new idea for the construction of bifunctional photocatalysts.
Author Wang, Run-quan
Tian, Yuan
Song, Kai
Chen, Wan-ping
Wang, Guo-ying
Zhang, Yue-rong
Shi, Gao-feng
Li, Jia-xian
AuthorAffiliation Lan gong ping Road 287
Lanzhou University of Technology
Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province
School of Petrochemical Technology
AuthorAffiliation_xml – sequence: 0
  name: Lanzhou University of Technology
– sequence: 0
  name: Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province
– sequence: 0
  name: Lan gong ping Road 287
– sequence: 0
  name: School of Petrochemical Technology
Author_xml – sequence: 1
  givenname: Run-quan
  surname: Wang
  fullname: Wang, Run-quan
– sequence: 2
  givenname: Wan-ping
  surname: Chen
  fullname: Chen, Wan-ping
– sequence: 3
  givenname: Yue-rong
  surname: Zhang
  fullname: Zhang, Yue-rong
– sequence: 4
  givenname: Kai
  surname: Song
  fullname: Song, Kai
– sequence: 5
  givenname: Yuan
  surname: Tian
  fullname: Tian, Yuan
– sequence: 6
  givenname: Jia-xian
  surname: Li
  fullname: Li, Jia-xian
– sequence: 7
  givenname: Gao-feng
  surname: Shi
  fullname: Shi, Gao-feng
– sequence: 8
  givenname: Guo-ying
  surname: Wang
  fullname: Wang, Guo-ying
BookMark eNptkc1LAzEQxYMo2FYv3oWAN2E12WSzm2NptSrFCn5cl9lsolu2m5pkhf73plYUxNM8ht88Zt4M0X5nO43QCSUXlDB5WbNuSQgp8tc9NKBMyESmgu5HTTlPSMbFIRp6HxlKc0EH6GWqP3Rr1yvdBQxdjX3o6w22BgOuGtN3KjS2gxav32ywCgK0Gx9wBV7X2Hb4cfywSBjHK9tq1bfgsG-i4xE6MNB6ffxdR-j5-uppcpPMF7PbyXieqLSgIUkB6iqjWgrJZFpokTGVg6FS1VXOChCZgNg32hioCa85TQ1XPJVZWkXN2Qid7XzXzr732odyaXsX9_VlmkuexSMFidT5jlLOeu-0KdeuWYHblJSU29zKKbu_-8ptFmHyB1ZNgG0KwUHT_j9yuhtxXv1Y_76CfQLaSHsg
CitedBy_id crossref_primary_10_1016_j_eti_2024_103700
Cites_doi 10.1016/j.jhazmat.2021.125186
10.1016/j.jcis.2022.08.136
10.1016/j.cej.2022.140943
10.1016/j.cej.2022.136398
10.1002/solr.202000805
10.1016/j.seppur.2022.121477
10.1016/j.cej.2019.04.184
10.1021/acssuschemeng.8b06463
10.1016/j.mtphys.2022.100729
10.1016/j.seppur.2022.122401
10.1002/anie.202204500
10.1016/j.jhazmat.2021.125829
10.1016/j.apsusc.2016.03.158
10.1016/j.trc.2022.103552
10.1016/j.jclepro.2022.133280
10.1016/j.apcatb.2020.119452
10.1039/D0GC04124F
10.1016/S1872-2067(20)63784-6
10.1016/j.jhazmat.2021.125418
10.1016/j.apcata.2022.118757
10.1038/s41467-020-17355-6
10.1002/adma.202107668
10.1016/j.apcatb.2021.119913
10.1038/s41467-021-27828-x
10.1016/j.jmst.2021.02.054
10.1016/j.cej.2022.137619
10.1002/chem.202102787
10.1039/D2RA01435A
10.1016/j.cej.2021.133914
10.1039/D2NR05341A
10.1016/j.jclepro.2022.133507
10.1016/j.cej.2022.136336
10.1002/anie.201911749
10.1016/j.apsusc.2022.155346
10.1016/j.apmate.2022.100073
10.1002/tcr.202200039
10.1007/s42765-022-00253-5
10.1002/anie.201809984
10.1039/D1TA90006D
10.1016/j.seppur.2022.121892
10.1016/j.mtener.2022.100986
10.1016/j.jcis.2022.01.048
10.1016/j.jhazmat.2021.126847
10.1016/j.jhazmat.2021.128106
10.1016/j.scitotenv.2021.148132
10.1016/j.psep.2022.06.053
10.1002/eem2.12176
10.1016/j.apcatb.2022.121572
10.1021/acssuschemeng.8b02064
10.1016/j.memsci.2021.120177
10.1016/j.chemosphere.2022.134292
10.1002/smll.202200454
10.1016/j.cej.2022.134505
10.1016/j.jcis.2022.06.007
10.1016/j.apcatb.2020.118844
10.1038/s41467-022-29936-8
10.1016/j.cej.2022.135835
10.1016/j.cej.2022.135665
10.1016/S1872-2067(22)64106-8
10.1002/adfm.202100919
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
DBID AAYXX
CITATION
7SR
8BQ
8FD
H9R
JG9
KA0
DOI 10.1039/d3nj00087g
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Illustrata: Natural Sciences
Materials Research Database
ProQuest Illustrata: Technology Collection
DatabaseTitle CrossRef
Materials Research Database
ProQuest Illustrata: Natural Sciences
Engineered Materials Abstracts
ProQuest Illustrata: Technology Collection
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1369-9261
EndPage 6576
ExternalDocumentID 10_1039_D3NJ00087G
d3nj00087g
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
123
29N
4.4
705
70~
7~J
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABCQX
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3I
L7B
M4U
N9A
O9-
OK1
P2P
R7B
R7C
R7D
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SKH
SLH
TN5
TWZ
VH6
YNT
YQT
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
R56
7SR
8BQ
8FD
H9R
JG9
KA0
ID FETCH-LOGICAL-c281t-2aadb51e9693928e653c7af19cdb738a656a928feffad04d412f4c42952b41243
ISSN 1144-0546
IngestDate Mon Jun 30 09:29:35 EDT 2025
Tue Jul 01 02:51:30 EDT 2025
Thu Apr 24 23:04:37 EDT 2025
Tue Dec 17 20:59:05 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c281t-2aadb51e9693928e653c7af19cdb738a656a928feffad04d412f4c42952b41243
Notes https://doi.org/10.1039/d3nj00087g
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5686-644X
0000-0003-2496-6742
PQID 2794517660
PQPubID 2048886
PageCount 14
ParticipantIDs crossref_primary_10_1039_D3NJ00087G
rsc_primary_d3nj00087g
proquest_journals_2794517660
crossref_citationtrail_10_1039_D3NJ00087G
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-03
PublicationDateYYYYMMDD 2023-04-03
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-03
  day: 03
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle New journal of chemistry
PublicationYear 2023
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Ghosh (D3NJ00087G/cit23/1) 2022; 431
Sfeir (D3NJ00087G/cit45/1) 2022; 136
Dou (D3NJ00087G/cit32/1) 2019; 7
Pei (D3NJ00087G/cit19/1) 2021; 790
Ke (D3NJ00087G/cit18/1) 2021; 5
Li (D3NJ00087G/cit14/1) 2022; 61
Li (D3NJ00087G/cit55/1) 2021; 280
Xia (D3NJ00087G/cit56/1) 2022; 443
Hu (D3NJ00087G/cit28/1) 2021; 286
Hao (D3NJ00087G/cit17/1) 2021; 31
Moufawad (D3NJ00087G/cit26/1) 2022; 448
Tian (D3NJ00087G/cit13/1) 2022; 315
Tan (D3NJ00087G/cit43/1) 2022; 370
Xie (D3NJ00087G/cit50/1) 2022; 26
Yang (D3NJ00087G/cit52/1) 2022; 43
Fang (D3NJ00087G/cit15/1) 2021; 416
Wang (D3NJ00087G/cit35/1) 2022; 426
L’hospital (D3NJ00087G/cit6/1) 2022; 643
Usman (D3NJ00087G/cit5/1) 2022; 22
Zhang (D3NJ00087G/cit24/1) 2022; 34
Cui (D3NJ00087G/cit44/1) 2022
Liu (D3NJ00087G/cit25/1) 2022; 422
Li (D3NJ00087G/cit27/1) 2022; 13
Mei (D3NJ00087G/cit42/1) 2019; 372
Buzzetti (D3NJ00087G/cit34/1) 2019; 58
Li (D3NJ00087G/cit30/1) 2022; 433
Li (D3NJ00087G/cit49/1) 2022; 18
Liu (D3NJ00087G/cit33/1) 2021; 23
Peng (D3NJ00087G/cit9/1) 2022; 13
Cai (D3NJ00087G/cit1/1) 2022; 300
Yuan (D3NJ00087G/cit59/1) 2022; 297
Liu (D3NJ00087G/cit20/1) 2022; 613
Cai (D3NJ00087G/cit58/1) 2023; 304
Hu (D3NJ00087G/cit8/1) 2020; 269
Dai (D3NJ00087G/cit21/1) 2018; 6
Li (D3NJ00087G/cit36/1) 2022; 440
Cai (D3NJ00087G/cit51/1) 2023; 629
Guo (D3NJ00087G/cit40/1) 2020; 59
Gao (D3NJ00087G/cit16/1) 2020; 11
Li (D3NJ00087G/cit12/1) 2022; 43
Luo (D3NJ00087G/cit46/1) 2022; 442
Tan (D3NJ00087G/cit29/1) 2022; 369
Wang (D3NJ00087G/cit10/1) 2022; 14
Gao (D3NJ00087G/cit48/1) 2021; 412
Liang (D3NJ00087G/cit57/1) 2021; 9
Yu (D3NJ00087G/cit7/1) 2022; 28
Li (D3NJ00087G/cit11/1) 2023
Wang (D3NJ00087G/cit37/1) 2022; 12
Yuan (D3NJ00087G/cit61/1) 2022; 624
Wang (D3NJ00087G/cit3/1) 2023; 610
Wei (D3NJ00087G/cit53/1) 2022; 298
Wu (D3NJ00087G/cit4/1) 2016; 378
Li (D3NJ00087G/cit47/1) 2022; 26
Wang (D3NJ00087G/cit38/1) 2022; 645
Wang (D3NJ00087G/cit39/1) 2022; 442
Ran (D3NJ00087G/cit31/1) 2021; 5
Li (D3NJ00087G/cit54/1) 2023; 455
Wang (D3NJ00087G/cit2/1) 2021; 414
Ebrahimi (D3NJ00087G/cit41/1) 2022; 165
Li (D3NJ00087G/cit22/1) 2023; 2
Fang (D3NJ00087G/cit60/1) 2021; 91
References_xml – volume: 412
  start-page: 125186
  year: 2021
  ident: D3NJ00087G/cit48/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.125186
– volume: 629
  start-page: 276
  year: 2023
  ident: D3NJ00087G/cit51/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2022.08.136
– volume: 455
  start-page: 140943
  year: 2023
  ident: D3NJ00087G/cit54/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.140943
– volume: 443
  start-page: 136398
  year: 2022
  ident: D3NJ00087G/cit56/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.136398
– volume: 5
  start-page: 2000805
  year: 2021
  ident: D3NJ00087G/cit18/1
  publication-title: Sol. RRL
  doi: 10.1002/solr.202000805
– volume: 297
  start-page: 121477
  year: 2022
  ident: D3NJ00087G/cit59/1
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2022.121477
– volume: 372
  start-page: 673
  year: 2019
  ident: D3NJ00087G/cit42/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.04.184
– volume: 7
  start-page: 4456
  year: 2019
  ident: D3NJ00087G/cit32/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b06463
– volume: 26
  start-page: 100729
  year: 2022
  ident: D3NJ00087G/cit47/1
  publication-title: Mater. Today Phys.
  doi: 10.1016/j.mtphys.2022.100729
– volume: 304
  start-page: 122401
  year: 2023
  ident: D3NJ00087G/cit58/1
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2022.122401
– volume: 61
  start-page: e202204500
  year: 2022
  ident: D3NJ00087G/cit14/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202204500
– volume: 416
  start-page: 125829
  year: 2021
  ident: D3NJ00087G/cit15/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.125829
– volume: 378
  start-page: 552
  year: 2016
  ident: D3NJ00087G/cit4/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.03.158
– volume: 136
  start-page: 103552
  year: 2022
  ident: D3NJ00087G/cit45/1
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2022.103552
– volume: 369
  start-page: 133280
  year: 2022
  ident: D3NJ00087G/cit29/1
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2022.133280
– volume: 280
  start-page: 119452
  year: 2021
  ident: D3NJ00087G/cit55/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2020.119452
– volume: 23
  start-page: 1447
  year: 2021
  ident: D3NJ00087G/cit33/1
  publication-title: Green Chem.
  doi: 10.1039/D0GC04124F
– start-page: 103552
  year: 2022
  ident: D3NJ00087G/cit44/1
  publication-title: IEEE Trans Neural Netw Learn Syst.
– volume: 43
  start-page: 255
  year: 2022
  ident: D3NJ00087G/cit52/1
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(20)63784-6
– volume: 414
  start-page: 125418
  year: 2021
  ident: D3NJ00087G/cit2/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.125418
– volume: 643
  start-page: 118757
  year: 2022
  ident: D3NJ00087G/cit6/1
  publication-title: Appl. Catal., A
  doi: 10.1016/j.apcata.2022.118757
– volume: 11
  start-page: 3641
  year: 2020
  ident: D3NJ00087G/cit16/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17355-6
– volume: 34
  start-page: e2107668
  year: 2022
  ident: D3NJ00087G/cit24/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202107668
– volume: 286
  start-page: 119913
  year: 2021
  ident: D3NJ00087G/cit28/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2021.119913
– volume: 13
  start-page: 295
  year: 2022
  ident: D3NJ00087G/cit9/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27828-x
– volume: 91
  start-page: 5
  year: 2021
  ident: D3NJ00087G/cit60/1
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2021.02.054
– volume: 448
  start-page: 137619
  year: 2022
  ident: D3NJ00087G/cit26/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.137619
– volume: 28
  start-page: e202102787
  year: 2022
  ident: D3NJ00087G/cit7/1
  publication-title: Chemistry
  doi: 10.1002/chem.202102787
– volume: 12
  start-page: 13052
  year: 2022
  ident: D3NJ00087G/cit37/1
  publication-title: RSC Adv.
  doi: 10.1039/D2RA01435A
– volume: 431
  start-page: 133914
  year: 2022
  ident: D3NJ00087G/cit23/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.133914
– volume: 14
  start-page: 18087
  year: 2022
  ident: D3NJ00087G/cit10/1
  publication-title: Nanoscale
  doi: 10.1039/D2NR05341A
– volume: 370
  start-page: 133507
  year: 2022
  ident: D3NJ00087G/cit43/1
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2022.133507
– volume: 442
  start-page: 136336
  year: 2022
  ident: D3NJ00087G/cit39/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.136336
– volume: 59
  start-page: 2606
  year: 2020
  ident: D3NJ00087G/cit40/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201911749
– volume: 610
  start-page: 155346
  year: 2023
  ident: D3NJ00087G/cit3/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2022.155346
– volume: 2
  start-page: 100073
  year: 2023
  ident: D3NJ00087G/cit22/1
  publication-title: Adv. Powder Mater.
  doi: 10.1016/j.apmate.2022.100073
– volume: 22
  start-page: e202200039
  year: 2022
  ident: D3NJ00087G/cit5/1
  publication-title: Chem. Rec.
  doi: 10.1002/tcr.202200039
– year: 2023
  ident: D3NJ00087G/cit11/1
  publication-title: Adv. Fiber Mater.
  doi: 10.1007/s42765-022-00253-5
– volume: 58
  start-page: 3730
  year: 2019
  ident: D3NJ00087G/cit34/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201809984
– volume: 9
  start-page: 1868
  year: 2021
  ident: D3NJ00087G/cit57/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA90006D
– volume: 300
  start-page: 121892
  year: 2022
  ident: D3NJ00087G/cit1/1
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2022.121892
– volume: 26
  start-page: 100986
  year: 2022
  ident: D3NJ00087G/cit50/1
  publication-title: Mater. Today Energy
  doi: 10.1016/j.mtener.2022.100986
– volume: 613
  start-page: 625
  year: 2022
  ident: D3NJ00087G/cit20/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2022.01.048
– volume: 422
  start-page: 126847
  year: 2022
  ident: D3NJ00087G/cit25/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.126847
– volume: 426
  start-page: 128106
  year: 2022
  ident: D3NJ00087G/cit35/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.128106
– volume: 790
  start-page: 148132
  year: 2021
  ident: D3NJ00087G/cit19/1
  publication-title: Sci. Total Environ
  doi: 10.1016/j.scitotenv.2021.148132
– volume: 165
  start-page: 307
  year: 2022
  ident: D3NJ00087G/cit41/1
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2022.06.053
– volume: 5
  start-page: 305
  year: 2021
  ident: D3NJ00087G/cit31/1
  publication-title: Energy Environ. Mater.
  doi: 10.1002/eem2.12176
– volume: 315
  start-page: 121572
  year: 2022
  ident: D3NJ00087G/cit13/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2022.121572
– volume: 6
  start-page: 12817
  year: 2018
  ident: D3NJ00087G/cit21/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b02064
– volume: 645
  start-page: 120177
  year: 2022
  ident: D3NJ00087G/cit38/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2021.120177
– volume: 298
  start-page: 134292
  year: 2022
  ident: D3NJ00087G/cit53/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2022.134292
– volume: 18
  start-page: e2200454
  year: 2022
  ident: D3NJ00087G/cit49/1
  publication-title: Small
  doi: 10.1002/smll.202200454
– volume: 433
  start-page: 134505
  year: 2022
  ident: D3NJ00087G/cit30/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.134505
– volume: 624
  start-page: 713
  year: 2022
  ident: D3NJ00087G/cit61/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2022.06.007
– volume: 269
  start-page: 118844
  year: 2020
  ident: D3NJ00087G/cit8/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2020.118844
– volume: 13
  start-page: 2209
  year: 2022
  ident: D3NJ00087G/cit27/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29936-8
– volume: 442
  start-page: 135835
  year: 2022
  ident: D3NJ00087G/cit46/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.135835
– volume: 440
  start-page: 135665
  year: 2022
  ident: D3NJ00087G/cit36/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.135665
– volume: 43
  start-page: 2652
  year: 2022
  ident: D3NJ00087G/cit12/1
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(22)64106-8
– volume: 31
  start-page: 2100919
  year: 2021
  ident: D3NJ00087G/cit17/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202100919
SSID ssj0011761
Score 2.400751
Snippet A new bifunctional photocatalyst was constructed from a modified SAPO-34 molecular sieve successfully connected with BiVO 4 crystals through O bridges. The new...
A new bifunctional photocatalyst was constructed from a modified SAPO-34 molecular sieve successfully connected with BiVO4 crystals through O bridges. The new...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6563
SubjectTerms Acids
Aqueous solutions
Bismuth oxides
Crystals
Electrons
Energy levels
Formaldehyde
Isotopes
Mathematical analysis
Molecular orbitals
Molecular sieves
Photocatalysis
Photocatalysts
Photodegradation
Vanadates
Title Development and study of a bifunctional photocatalyst based on SAPO-34 molecular sieve
URI https://www.proquest.com/docview/2794517660
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoe4AL4lWxUJAluKCVIfEjTo6rpVAKFES3qJxWtuOUlSBZdrNI8OuZOHGcFUUCLlHkRxR5Ps2Mx-NvEHrMwQinYOiIlkIRzmxBUiskiblUmTZMpy408PYkOTrjx-fiPOTPu9sltX5qfl56r-R_pAptINfmluw_SLb_KDTAO8gXniBheP6VjAcZP-4QYO0ZotVYLxqL1QX6lp-runKBmh_retwYrrw5JDidvH9HGB9_9SVyx-uF_b6VG9SkPw7IJYwvDxfi8K2u-LApybdNQNq0u_QB_WTpreMwPv1pY8mqCh2nXWrwa7UYBiIoc_krbKA7YW9GwAPsmK3bNpZkJKMt37pXuC3FpgcWH6hPcC7ZwBQnoq0N85uaj1jDkpqzsrG3qbwIxqxPMQydO2iPwh4ClODe5HD26k1_yBTLlk7X_7dnr2XZszB7218Jm5Cdla8Q4zyR2Q10vdtC4EmLh5voii1voatTL5rb6OMAFxhwgR0ucFVghYe4wFu4wA4XuCpxhwvc4wI7XNxBZy8OZ9Mj0tXPIIamcU2oUrkWsc2SDLzg1CaCGamKODO5lixVsNoK2gtbFCqPeM5jWnADDoqguilKzvbRblmV9i7CmaTCRNwWllOe21gXUkmaCKNplOjIjNATv0pz05HLNzVOvsxdkgPL5s_ZybFb0Zcj9Kgfu2wpVS4ddeAXe97hfD2nYD1EQ2kajdA-CKCfH-R1708d99G1gNoDtFuvNvYBOJS1ftgB4xe3F3YS
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+and+study+of+a+bifunctional+photocatalyst+based+on+SAPO-34+molecular+sieve&rft.jtitle=New+journal+of+chemistry&rft.au=Wang%2C+Run-quan&rft.au=Chen%2C+Wan-ping&rft.au=Zhang%2C+Yue-rong&rft.au=Song%2C+Kai&rft.date=2023-04-03&rft.issn=1144-0546&rft.eissn=1369-9261&rft.volume=47&rft.issue=14&rft.spage=6563&rft.epage=6576&rft_id=info:doi/10.1039%2Fd3nj00087g&rft.externalDocID=d3nj00087g
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1144-0546&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1144-0546&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1144-0546&client=summon