Development and study of a bifunctional photocatalyst based on SAPO-34 molecular sieve
A new bifunctional photocatalyst was constructed from a modified SAPO-34 molecular sieve successfully connected with BiVO 4 crystals through O bridges. The new as-fabricated catalyst not only had enriched active sites of B-acid and L-acid on the surface of the molecular sieve but also enriched activ...
Saved in:
Published in | New journal of chemistry Vol. 47; no. 14; pp. 6563 - 6576 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
03.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A new bifunctional photocatalyst was constructed from a modified SAPO-34 molecular sieve successfully connected with BiVO
4
crystals through O bridges. The new as-fabricated catalyst not only had enriched active sites of B-acid and L-acid on the surface of the molecular sieve but also enriched active sites of L-acid on the surface of the molecular sieve. The electron-transfer ability between the SAPO-34 molecular sieve and BiVO
4
crystals was improved, and the recombination of electrons and holes in BiVO
4
crystals was inhibited. With the synergistic action of the B-acid and L-acid, the molecular zeolite showed very high activity for the photocatalytic degradation of formaldehyde aqueous solution with a photoreaction rate constant of 0.291 min
−1
and degradation rate of 84.34%. Compared with the BiVO
4
crystal, the performance improved 10 times. Based on the calculation of the band structure and state density of the BiVO
4
crystal and the HOMO and LUMO energy levels of the SAPO-34 molecular sieve, a mechanism for the photocatalytic degradation of formaldehyde is proposed and the energy levels of the intermediate products were calculated. This study provides a method for the preparation of composite molecular sieve photocatalysts and a new idea for the construction of bifunctional photocatalysts.
A new bifunctional photocatalyst was constructed from a modified SAPO-34 molecular sieve successfully connected with BiVO
4
crystals through O bridges. |
---|---|
AbstractList | A new bifunctional photocatalyst was constructed from a modified SAPO-34 molecular sieve successfully connected with BiVO
4
crystals through O bridges. The new as-fabricated catalyst not only had enriched active sites of B-acid and L-acid on the surface of the molecular sieve but also enriched active sites of L-acid on the surface of the molecular sieve. The electron-transfer ability between the SAPO-34 molecular sieve and BiVO
4
crystals was improved, and the recombination of electrons and holes in BiVO
4
crystals was inhibited. With the synergistic action of the B-acid and L-acid, the molecular zeolite showed very high activity for the photocatalytic degradation of formaldehyde aqueous solution with a photoreaction rate constant of 0.291 min
−1
and degradation rate of 84.34%. Compared with the BiVO
4
crystal, the performance improved 10 times. Based on the calculation of the band structure and state density of the BiVO
4
crystal and the HOMO and LUMO energy levels of the SAPO-34 molecular sieve, a mechanism for the photocatalytic degradation of formaldehyde is proposed and the energy levels of the intermediate products were calculated. This study provides a method for the preparation of composite molecular sieve photocatalysts and a new idea for the construction of bifunctional photocatalysts.
A new bifunctional photocatalyst was constructed from a modified SAPO-34 molecular sieve successfully connected with BiVO
4
crystals through O bridges. A new bifunctional photocatalyst was constructed from a modified SAPO-34 molecular sieve successfully connected with BiVO4 crystals through O bridges. The new as-fabricated catalyst not only had enriched active sites of B-acid and L-acid on the surface of the molecular sieve but also enriched active sites of L-acid on the surface of the molecular sieve. The electron-transfer ability between the SAPO-34 molecular sieve and BiVO4 crystals was improved, and the recombination of electrons and holes in BiVO4 crystals was inhibited. With the synergistic action of the B-acid and L-acid, the molecular zeolite showed very high activity for the photocatalytic degradation of formaldehyde aqueous solution with a photoreaction rate constant of 0.291 min−1 and degradation rate of 84.34%. Compared with the BiVO4 crystal, the performance improved 10 times. Based on the calculation of the band structure and state density of the BiVO4 crystal and the HOMO and LUMO energy levels of the SAPO-34 molecular sieve, a mechanism for the photocatalytic degradation of formaldehyde is proposed and the energy levels of the intermediate products were calculated. This study provides a method for the preparation of composite molecular sieve photocatalysts and a new idea for the construction of bifunctional photocatalysts. A new bifunctional photocatalyst was constructed from a modified SAPO-34 molecular sieve successfully connected with BiVO 4 crystals through O bridges. The new as-fabricated catalyst not only had enriched active sites of B-acid and L-acid on the surface of the molecular sieve but also enriched active sites of L-acid on the surface of the molecular sieve. The electron-transfer ability between the SAPO-34 molecular sieve and BiVO 4 crystals was improved, and the recombination of electrons and holes in BiVO 4 crystals was inhibited. With the synergistic action of the B-acid and L-acid, the molecular zeolite showed very high activity for the photocatalytic degradation of formaldehyde aqueous solution with a photoreaction rate constant of 0.291 min −1 and degradation rate of 84.34%. Compared with the BiVO 4 crystal, the performance improved 10 times. Based on the calculation of the band structure and state density of the BiVO 4 crystal and the HOMO and LUMO energy levels of the SAPO-34 molecular sieve, a mechanism for the photocatalytic degradation of formaldehyde is proposed and the energy levels of the intermediate products were calculated. This study provides a method for the preparation of composite molecular sieve photocatalysts and a new idea for the construction of bifunctional photocatalysts. |
Author | Wang, Run-quan Tian, Yuan Song, Kai Chen, Wan-ping Wang, Guo-ying Zhang, Yue-rong Shi, Gao-feng Li, Jia-xian |
AuthorAffiliation | Lan gong ping Road 287 Lanzhou University of Technology Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province School of Petrochemical Technology |
AuthorAffiliation_xml | – sequence: 0 name: Lanzhou University of Technology – sequence: 0 name: Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province – sequence: 0 name: Lan gong ping Road 287 – sequence: 0 name: School of Petrochemical Technology |
Author_xml | – sequence: 1 givenname: Run-quan surname: Wang fullname: Wang, Run-quan – sequence: 2 givenname: Wan-ping surname: Chen fullname: Chen, Wan-ping – sequence: 3 givenname: Yue-rong surname: Zhang fullname: Zhang, Yue-rong – sequence: 4 givenname: Kai surname: Song fullname: Song, Kai – sequence: 5 givenname: Yuan surname: Tian fullname: Tian, Yuan – sequence: 6 givenname: Jia-xian surname: Li fullname: Li, Jia-xian – sequence: 7 givenname: Gao-feng surname: Shi fullname: Shi, Gao-feng – sequence: 8 givenname: Guo-ying surname: Wang fullname: Wang, Guo-ying |
BookMark | eNptkc1LAzEQxYMo2FYv3oWAN2E12WSzm2NptSrFCn5cl9lsolu2m5pkhf73plYUxNM8ht88Zt4M0X5nO43QCSUXlDB5WbNuSQgp8tc9NKBMyESmgu5HTTlPSMbFIRp6HxlKc0EH6GWqP3Rr1yvdBQxdjX3o6w22BgOuGtN3KjS2gxav32ywCgK0Gx9wBV7X2Hb4cfywSBjHK9tq1bfgsG-i4xE6MNB6ffxdR-j5-uppcpPMF7PbyXieqLSgIUkB6iqjWgrJZFpokTGVg6FS1VXOChCZgNg32hioCa85TQ1XPJVZWkXN2Qid7XzXzr732odyaXsX9_VlmkuexSMFidT5jlLOeu-0KdeuWYHblJSU29zKKbu_-8ptFmHyB1ZNgG0KwUHT_j9yuhtxXv1Y_76CfQLaSHsg |
CitedBy_id | crossref_primary_10_1016_j_eti_2024_103700 |
Cites_doi | 10.1016/j.jhazmat.2021.125186 10.1016/j.jcis.2022.08.136 10.1016/j.cej.2022.140943 10.1016/j.cej.2022.136398 10.1002/solr.202000805 10.1016/j.seppur.2022.121477 10.1016/j.cej.2019.04.184 10.1021/acssuschemeng.8b06463 10.1016/j.mtphys.2022.100729 10.1016/j.seppur.2022.122401 10.1002/anie.202204500 10.1016/j.jhazmat.2021.125829 10.1016/j.apsusc.2016.03.158 10.1016/j.trc.2022.103552 10.1016/j.jclepro.2022.133280 10.1016/j.apcatb.2020.119452 10.1039/D0GC04124F 10.1016/S1872-2067(20)63784-6 10.1016/j.jhazmat.2021.125418 10.1016/j.apcata.2022.118757 10.1038/s41467-020-17355-6 10.1002/adma.202107668 10.1016/j.apcatb.2021.119913 10.1038/s41467-021-27828-x 10.1016/j.jmst.2021.02.054 10.1016/j.cej.2022.137619 10.1002/chem.202102787 10.1039/D2RA01435A 10.1016/j.cej.2021.133914 10.1039/D2NR05341A 10.1016/j.jclepro.2022.133507 10.1016/j.cej.2022.136336 10.1002/anie.201911749 10.1016/j.apsusc.2022.155346 10.1016/j.apmate.2022.100073 10.1002/tcr.202200039 10.1007/s42765-022-00253-5 10.1002/anie.201809984 10.1039/D1TA90006D 10.1016/j.seppur.2022.121892 10.1016/j.mtener.2022.100986 10.1016/j.jcis.2022.01.048 10.1016/j.jhazmat.2021.126847 10.1016/j.jhazmat.2021.128106 10.1016/j.scitotenv.2021.148132 10.1016/j.psep.2022.06.053 10.1002/eem2.12176 10.1016/j.apcatb.2022.121572 10.1021/acssuschemeng.8b02064 10.1016/j.memsci.2021.120177 10.1016/j.chemosphere.2022.134292 10.1002/smll.202200454 10.1016/j.cej.2022.134505 10.1016/j.jcis.2022.06.007 10.1016/j.apcatb.2020.118844 10.1038/s41467-022-29936-8 10.1016/j.cej.2022.135835 10.1016/j.cej.2022.135665 10.1016/S1872-2067(22)64106-8 10.1002/adfm.202100919 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2023 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 |
DBID | AAYXX CITATION 7SR 8BQ 8FD H9R JG9 KA0 |
DOI | 10.1039/d3nj00087g |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Illustrata: Natural Sciences Materials Research Database ProQuest Illustrata: Technology Collection |
DatabaseTitle | CrossRef Materials Research Database ProQuest Illustrata: Natural Sciences Engineered Materials Abstracts ProQuest Illustrata: Technology Collection Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1369-9261 |
EndPage | 6576 |
ExternalDocumentID | 10_1039_D3NJ00087G d3nj00087g |
GroupedDBID | --- -DZ -JG -~X 0-7 0R~ 123 29N 4.4 705 70~ 7~J AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABCQX ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 D0L DU5 EBS ECGLT EE0 EF- F5P GGIMP GNO H13 HZ~ H~N IDZ J3I L7B M4U N9A O9- OK1 P2P R7B R7C R7D RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SKF SKH SLH TN5 TWZ VH6 YNT YQT AAYXX AFRZK AKMSF ALUYA CITATION R56 7SR 8BQ 8FD H9R JG9 KA0 |
ID | FETCH-LOGICAL-c281t-2aadb51e9693928e653c7af19cdb738a656a928feffad04d412f4c42952b41243 |
ISSN | 1144-0546 |
IngestDate | Mon Jun 30 09:29:35 EDT 2025 Tue Jul 01 02:51:30 EDT 2025 Thu Apr 24 23:04:37 EDT 2025 Tue Dec 17 20:59:05 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c281t-2aadb51e9693928e653c7af19cdb738a656a928feffad04d412f4c42952b41243 |
Notes | https://doi.org/10.1039/d3nj00087g Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5686-644X 0000-0003-2496-6742 |
PQID | 2794517660 |
PQPubID | 2048886 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1039_D3NJ00087G rsc_primary_d3nj00087g proquest_journals_2794517660 crossref_citationtrail_10_1039_D3NJ00087G |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-03 |
PublicationDateYYYYMMDD | 2023-04-03 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | New journal of chemistry |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Ghosh (D3NJ00087G/cit23/1) 2022; 431 Sfeir (D3NJ00087G/cit45/1) 2022; 136 Dou (D3NJ00087G/cit32/1) 2019; 7 Pei (D3NJ00087G/cit19/1) 2021; 790 Ke (D3NJ00087G/cit18/1) 2021; 5 Li (D3NJ00087G/cit14/1) 2022; 61 Li (D3NJ00087G/cit55/1) 2021; 280 Xia (D3NJ00087G/cit56/1) 2022; 443 Hu (D3NJ00087G/cit28/1) 2021; 286 Hao (D3NJ00087G/cit17/1) 2021; 31 Moufawad (D3NJ00087G/cit26/1) 2022; 448 Tian (D3NJ00087G/cit13/1) 2022; 315 Tan (D3NJ00087G/cit43/1) 2022; 370 Xie (D3NJ00087G/cit50/1) 2022; 26 Yang (D3NJ00087G/cit52/1) 2022; 43 Fang (D3NJ00087G/cit15/1) 2021; 416 Wang (D3NJ00087G/cit35/1) 2022; 426 L’hospital (D3NJ00087G/cit6/1) 2022; 643 Usman (D3NJ00087G/cit5/1) 2022; 22 Zhang (D3NJ00087G/cit24/1) 2022; 34 Cui (D3NJ00087G/cit44/1) 2022 Liu (D3NJ00087G/cit25/1) 2022; 422 Li (D3NJ00087G/cit27/1) 2022; 13 Mei (D3NJ00087G/cit42/1) 2019; 372 Buzzetti (D3NJ00087G/cit34/1) 2019; 58 Li (D3NJ00087G/cit30/1) 2022; 433 Li (D3NJ00087G/cit49/1) 2022; 18 Liu (D3NJ00087G/cit33/1) 2021; 23 Peng (D3NJ00087G/cit9/1) 2022; 13 Cai (D3NJ00087G/cit1/1) 2022; 300 Yuan (D3NJ00087G/cit59/1) 2022; 297 Liu (D3NJ00087G/cit20/1) 2022; 613 Cai (D3NJ00087G/cit58/1) 2023; 304 Hu (D3NJ00087G/cit8/1) 2020; 269 Dai (D3NJ00087G/cit21/1) 2018; 6 Li (D3NJ00087G/cit36/1) 2022; 440 Cai (D3NJ00087G/cit51/1) 2023; 629 Guo (D3NJ00087G/cit40/1) 2020; 59 Gao (D3NJ00087G/cit16/1) 2020; 11 Li (D3NJ00087G/cit12/1) 2022; 43 Luo (D3NJ00087G/cit46/1) 2022; 442 Tan (D3NJ00087G/cit29/1) 2022; 369 Wang (D3NJ00087G/cit10/1) 2022; 14 Gao (D3NJ00087G/cit48/1) 2021; 412 Liang (D3NJ00087G/cit57/1) 2021; 9 Yu (D3NJ00087G/cit7/1) 2022; 28 Li (D3NJ00087G/cit11/1) 2023 Wang (D3NJ00087G/cit37/1) 2022; 12 Yuan (D3NJ00087G/cit61/1) 2022; 624 Wang (D3NJ00087G/cit3/1) 2023; 610 Wei (D3NJ00087G/cit53/1) 2022; 298 Wu (D3NJ00087G/cit4/1) 2016; 378 Li (D3NJ00087G/cit47/1) 2022; 26 Wang (D3NJ00087G/cit38/1) 2022; 645 Wang (D3NJ00087G/cit39/1) 2022; 442 Ran (D3NJ00087G/cit31/1) 2021; 5 Li (D3NJ00087G/cit54/1) 2023; 455 Wang (D3NJ00087G/cit2/1) 2021; 414 Ebrahimi (D3NJ00087G/cit41/1) 2022; 165 Li (D3NJ00087G/cit22/1) 2023; 2 Fang (D3NJ00087G/cit60/1) 2021; 91 |
References_xml | – volume: 412 start-page: 125186 year: 2021 ident: D3NJ00087G/cit48/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.125186 – volume: 629 start-page: 276 year: 2023 ident: D3NJ00087G/cit51/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2022.08.136 – volume: 455 start-page: 140943 year: 2023 ident: D3NJ00087G/cit54/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.140943 – volume: 443 start-page: 136398 year: 2022 ident: D3NJ00087G/cit56/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.136398 – volume: 5 start-page: 2000805 year: 2021 ident: D3NJ00087G/cit18/1 publication-title: Sol. RRL doi: 10.1002/solr.202000805 – volume: 297 start-page: 121477 year: 2022 ident: D3NJ00087G/cit59/1 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2022.121477 – volume: 372 start-page: 673 year: 2019 ident: D3NJ00087G/cit42/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.04.184 – volume: 7 start-page: 4456 year: 2019 ident: D3NJ00087G/cit32/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.8b06463 – volume: 26 start-page: 100729 year: 2022 ident: D3NJ00087G/cit47/1 publication-title: Mater. Today Phys. doi: 10.1016/j.mtphys.2022.100729 – volume: 304 start-page: 122401 year: 2023 ident: D3NJ00087G/cit58/1 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2022.122401 – volume: 61 start-page: e202204500 year: 2022 ident: D3NJ00087G/cit14/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202204500 – volume: 416 start-page: 125829 year: 2021 ident: D3NJ00087G/cit15/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.125829 – volume: 378 start-page: 552 year: 2016 ident: D3NJ00087G/cit4/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.03.158 – volume: 136 start-page: 103552 year: 2022 ident: D3NJ00087G/cit45/1 publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2022.103552 – volume: 369 start-page: 133280 year: 2022 ident: D3NJ00087G/cit29/1 publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2022.133280 – volume: 280 start-page: 119452 year: 2021 ident: D3NJ00087G/cit55/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2020.119452 – volume: 23 start-page: 1447 year: 2021 ident: D3NJ00087G/cit33/1 publication-title: Green Chem. doi: 10.1039/D0GC04124F – start-page: 103552 year: 2022 ident: D3NJ00087G/cit44/1 publication-title: IEEE Trans Neural Netw Learn Syst. – volume: 43 start-page: 255 year: 2022 ident: D3NJ00087G/cit52/1 publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(20)63784-6 – volume: 414 start-page: 125418 year: 2021 ident: D3NJ00087G/cit2/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.125418 – volume: 643 start-page: 118757 year: 2022 ident: D3NJ00087G/cit6/1 publication-title: Appl. Catal., A doi: 10.1016/j.apcata.2022.118757 – volume: 11 start-page: 3641 year: 2020 ident: D3NJ00087G/cit16/1 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17355-6 – volume: 34 start-page: e2107668 year: 2022 ident: D3NJ00087G/cit24/1 publication-title: Adv. Mater. doi: 10.1002/adma.202107668 – volume: 286 start-page: 119913 year: 2021 ident: D3NJ00087G/cit28/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2021.119913 – volume: 13 start-page: 295 year: 2022 ident: D3NJ00087G/cit9/1 publication-title: Nat. Commun. doi: 10.1038/s41467-021-27828-x – volume: 91 start-page: 5 year: 2021 ident: D3NJ00087G/cit60/1 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2021.02.054 – volume: 448 start-page: 137619 year: 2022 ident: D3NJ00087G/cit26/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.137619 – volume: 28 start-page: e202102787 year: 2022 ident: D3NJ00087G/cit7/1 publication-title: Chemistry doi: 10.1002/chem.202102787 – volume: 12 start-page: 13052 year: 2022 ident: D3NJ00087G/cit37/1 publication-title: RSC Adv. doi: 10.1039/D2RA01435A – volume: 431 start-page: 133914 year: 2022 ident: D3NJ00087G/cit23/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.133914 – volume: 14 start-page: 18087 year: 2022 ident: D3NJ00087G/cit10/1 publication-title: Nanoscale doi: 10.1039/D2NR05341A – volume: 370 start-page: 133507 year: 2022 ident: D3NJ00087G/cit43/1 publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2022.133507 – volume: 442 start-page: 136336 year: 2022 ident: D3NJ00087G/cit39/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.136336 – volume: 59 start-page: 2606 year: 2020 ident: D3NJ00087G/cit40/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201911749 – volume: 610 start-page: 155346 year: 2023 ident: D3NJ00087G/cit3/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2022.155346 – volume: 2 start-page: 100073 year: 2023 ident: D3NJ00087G/cit22/1 publication-title: Adv. Powder Mater. doi: 10.1016/j.apmate.2022.100073 – volume: 22 start-page: e202200039 year: 2022 ident: D3NJ00087G/cit5/1 publication-title: Chem. Rec. doi: 10.1002/tcr.202200039 – year: 2023 ident: D3NJ00087G/cit11/1 publication-title: Adv. Fiber Mater. doi: 10.1007/s42765-022-00253-5 – volume: 58 start-page: 3730 year: 2019 ident: D3NJ00087G/cit34/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201809984 – volume: 9 start-page: 1868 year: 2021 ident: D3NJ00087G/cit57/1 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA90006D – volume: 300 start-page: 121892 year: 2022 ident: D3NJ00087G/cit1/1 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2022.121892 – volume: 26 start-page: 100986 year: 2022 ident: D3NJ00087G/cit50/1 publication-title: Mater. Today Energy doi: 10.1016/j.mtener.2022.100986 – volume: 613 start-page: 625 year: 2022 ident: D3NJ00087G/cit20/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2022.01.048 – volume: 422 start-page: 126847 year: 2022 ident: D3NJ00087G/cit25/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.126847 – volume: 426 start-page: 128106 year: 2022 ident: D3NJ00087G/cit35/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.128106 – volume: 790 start-page: 148132 year: 2021 ident: D3NJ00087G/cit19/1 publication-title: Sci. Total Environ doi: 10.1016/j.scitotenv.2021.148132 – volume: 165 start-page: 307 year: 2022 ident: D3NJ00087G/cit41/1 publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2022.06.053 – volume: 5 start-page: 305 year: 2021 ident: D3NJ00087G/cit31/1 publication-title: Energy Environ. Mater. doi: 10.1002/eem2.12176 – volume: 315 start-page: 121572 year: 2022 ident: D3NJ00087G/cit13/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2022.121572 – volume: 6 start-page: 12817 year: 2018 ident: D3NJ00087G/cit21/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.8b02064 – volume: 645 start-page: 120177 year: 2022 ident: D3NJ00087G/cit38/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2021.120177 – volume: 298 start-page: 134292 year: 2022 ident: D3NJ00087G/cit53/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2022.134292 – volume: 18 start-page: e2200454 year: 2022 ident: D3NJ00087G/cit49/1 publication-title: Small doi: 10.1002/smll.202200454 – volume: 433 start-page: 134505 year: 2022 ident: D3NJ00087G/cit30/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.134505 – volume: 624 start-page: 713 year: 2022 ident: D3NJ00087G/cit61/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2022.06.007 – volume: 269 start-page: 118844 year: 2020 ident: D3NJ00087G/cit8/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2020.118844 – volume: 13 start-page: 2209 year: 2022 ident: D3NJ00087G/cit27/1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-29936-8 – volume: 442 start-page: 135835 year: 2022 ident: D3NJ00087G/cit46/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.135835 – volume: 440 start-page: 135665 year: 2022 ident: D3NJ00087G/cit36/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.135665 – volume: 43 start-page: 2652 year: 2022 ident: D3NJ00087G/cit12/1 publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(22)64106-8 – volume: 31 start-page: 2100919 year: 2021 ident: D3NJ00087G/cit17/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202100919 |
SSID | ssj0011761 |
Score | 2.400751 |
Snippet | A new bifunctional photocatalyst was constructed from a modified SAPO-34 molecular sieve successfully connected with BiVO
4
crystals through O bridges. The new... A new bifunctional photocatalyst was constructed from a modified SAPO-34 molecular sieve successfully connected with BiVO4 crystals through O bridges. The new... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6563 |
SubjectTerms | Acids Aqueous solutions Bismuth oxides Crystals Electrons Energy levels Formaldehyde Isotopes Mathematical analysis Molecular orbitals Molecular sieves Photocatalysis Photocatalysts Photodegradation Vanadates |
Title | Development and study of a bifunctional photocatalyst based on SAPO-34 molecular sieve |
URI | https://www.proquest.com/docview/2794517660 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoe4AL4lWxUJAluKCVIfEjTo6rpVAKFES3qJxWtuOUlSBZdrNI8OuZOHGcFUUCLlHkRxR5Ps2Mx-NvEHrMwQinYOiIlkIRzmxBUiskiblUmTZMpy408PYkOTrjx-fiPOTPu9sltX5qfl56r-R_pAptINfmluw_SLb_KDTAO8gXniBheP6VjAcZP-4QYO0ZotVYLxqL1QX6lp-runKBmh_retwYrrw5JDidvH9HGB9_9SVyx-uF_b6VG9SkPw7IJYwvDxfi8K2u-LApybdNQNq0u_QB_WTpreMwPv1pY8mqCh2nXWrwa7UYBiIoc_krbKA7YW9GwAPsmK3bNpZkJKMt37pXuC3FpgcWH6hPcC7ZwBQnoq0N85uaj1jDkpqzsrG3qbwIxqxPMQydO2iPwh4ClODe5HD26k1_yBTLlk7X_7dnr2XZszB7218Jm5Cdla8Q4zyR2Q10vdtC4EmLh5voii1voatTL5rb6OMAFxhwgR0ucFVghYe4wFu4wA4XuCpxhwvc4wI7XNxBZy8OZ9Mj0tXPIIamcU2oUrkWsc2SDLzg1CaCGamKODO5lixVsNoK2gtbFCqPeM5jWnADDoqguilKzvbRblmV9i7CmaTCRNwWllOe21gXUkmaCKNplOjIjNATv0pz05HLNzVOvsxdkgPL5s_ZybFb0Zcj9Kgfu2wpVS4ddeAXe97hfD2nYD1EQ2kajdA-CKCfH-R1708d99G1gNoDtFuvNvYBOJS1ftgB4xe3F3YS |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+and+study+of+a+bifunctional+photocatalyst+based+on+SAPO-34+molecular+sieve&rft.jtitle=New+journal+of+chemistry&rft.au=Wang%2C+Run-quan&rft.au=Chen%2C+Wan-ping&rft.au=Zhang%2C+Yue-rong&rft.au=Song%2C+Kai&rft.date=2023-04-03&rft.issn=1144-0546&rft.eissn=1369-9261&rft.volume=47&rft.issue=14&rft.spage=6563&rft.epage=6576&rft_id=info:doi/10.1039%2Fd3nj00087g&rft.externalDocID=d3nj00087g |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1144-0546&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1144-0546&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1144-0546&client=summon |