A general framework for functional regression modelling

Abstract Researchers are increasingly interested in regression models for functional data. This article discusses a comprehensive framework for additive (mixed) models for functional responses and/or functional covariates based on the guiding principle of reframing functional regression in terms of...

Full description

Saved in:
Bibliographic Details
Published inStatistical modelling Vol. 17; no. 1-2; pp. 1 - 35
Main Authors Greven, Sonja, Scheipl, Fabian
Format Journal Article
LanguageEnglish
Published New Delhi, India SAGE Publications 01.02.2017
Subjects
Online AccessGet full text
ISSN1471-082X
1477-0342
DOI10.1177/1471082X16681317

Cover

Loading…
Abstract Abstract Researchers are increasingly interested in regression models for functional data. This article discusses a comprehensive framework for additive (mixed) models for functional responses and/or functional covariates based on the guiding principle of reframing functional regression in terms of corresponding models for scalar data, allowing the adaptation of a large body of existing methods for these novel tasks. The framework encompasses many existing as well as new models. It includes regression for ‘generalized’ functional data, mean regression, quantile regression as well as generalized additive models for location, shape and scale (GAMLSS) for functional data. It admits many flexible linear, smooth or interaction terms of scalar and functional covariates as well as (functional) random effects and allows flexible choices of bases—particularly splines and functional principal components—and corresponding penalties for each term. It covers functional data observed on common (dense) or curve-specific (sparse) grids. Penalized-likelihood-based and gradient-boosting-based inference for these models are implemented in R packages refund and FDboost, respectively. We also discuss identifiability and computational complexity for the functional regression models covered. A running example on a longitudinal multiple sclerosis imaging study serves to illustrate the flexibility and utility of the proposed model class. Reproducible code for this case study is made available online.
AbstractList Researchers are increasingly interested in regression models for functional data. This article discusses a comprehensive framework for additive (mixed) models for functional responses and/or functional covariates based on the guiding principle of reframing functional regression in terms of corresponding models for scalar data, allowing the adaptation of a large body of existing methods for these novel tasks. The framework encompasses many existing as well as new models. It includes regression for ‘generalized’ functional data, mean regression, quantile regression as well as generalized additive models for location, shape and scale (GAMLSS) for functional data. It admits many flexible linear, smooth or interaction terms of scalar and functional covariates as well as (functional) random effects and allows flexible choices of bases—particularly splines and functional principal components—and corresponding penalties for each term. It covers functional data observed on common (dense) or curve-specific (sparse) grids. Penalized-likelihood-based and gradient-boosting-based inference for these models are implemented in R packages refund and FDboost , respectively. We also discuss identifiability and computational complexity for the functional regression models covered. A running example on a longitudinal multiple sclerosis imaging study serves to illustrate the flexibility and utility of the proposed model class. Reproducible code for this case study is made available online.
Abstract Researchers are increasingly interested in regression models for functional data. This article discusses a comprehensive framework for additive (mixed) models for functional responses and/or functional covariates based on the guiding principle of reframing functional regression in terms of corresponding models for scalar data, allowing the adaptation of a large body of existing methods for these novel tasks. The framework encompasses many existing as well as new models. It includes regression for ‘generalized’ functional data, mean regression, quantile regression as well as generalized additive models for location, shape and scale (GAMLSS) for functional data. It admits many flexible linear, smooth or interaction terms of scalar and functional covariates as well as (functional) random effects and allows flexible choices of bases—particularly splines and functional principal components—and corresponding penalties for each term. It covers functional data observed on common (dense) or curve-specific (sparse) grids. Penalized-likelihood-based and gradient-boosting-based inference for these models are implemented in R packages refund and FDboost, respectively. We also discuss identifiability and computational complexity for the functional regression models covered. A running example on a longitudinal multiple sclerosis imaging study serves to illustrate the flexibility and utility of the proposed model class. Reproducible code for this case study is made available online.
Author Scheipl, Fabian
Greven, Sonja
Author_xml – sequence: 1
  givenname: Sonja
  surname: Greven
  fullname: Greven, Sonja
  email: sonja.greven@stat.uni-muenchen.de
– sequence: 2
  givenname: Fabian
  surname: Scheipl
  fullname: Scheipl, Fabian
BookMark eNp9j01LxDAQhoOs4O7q3WP_QDWTpElzXBa_YMGLgreSppPStU0k6SL-e1vX04Ke5uOdZ-BZkYUPHgm5BnoDoNQtCAW0ZG8gZQkc1BlZTiuVUy7Y4qeHfM4vyCqlPaUMlNRLojZZix6j6TMXzYCfIb5nLsTMHbwdu-CnIGIbMaVpyIbQYN93vr0k5870Ca9-65q83t-9bB_z3fPD03azyy0rYcyZptoIVnA0XKMSNaNgndBYG1lr4FyKhrlGK0sbRxXShildFMaCdsIVgq8JPf61MaQU0VUfsRtM_KqAVrN4dSo-IfIEsd1oZpcxmq7_D8yPYDItVvtwiJN9-vv-G9ryatQ
CitedBy_id crossref_primary_10_1016_j_jmva_2021_104861
crossref_primary_10_1360_SSI_2021_0259
crossref_primary_10_1007_s13580_023_00579_y
crossref_primary_10_3390_app10062094
crossref_primary_10_1155_2017_6083072
crossref_primary_10_1007_s11749_020_00714_2
crossref_primary_10_1080_10485252_2019_1583338
crossref_primary_10_1515_ijb_2023_0029
crossref_primary_10_1080_01621459_2018_1476242
crossref_primary_10_1007_s00362_023_01420_5
crossref_primary_10_3390_w13091241
crossref_primary_10_1094_PHYTO_11_17_0386_R
crossref_primary_10_1016_j_spl_2018_07_007
crossref_primary_10_1080_10485252_2019_1567726
crossref_primary_10_1214_24_EJS2333
crossref_primary_10_1007_s00180_024_01573_3
crossref_primary_10_1016_j_jkss_2018_05_002
crossref_primary_10_1093_molbev_msaa194
crossref_primary_10_1177_1471082X20917586
crossref_primary_10_1080_02664763_2023_2202464
crossref_primary_10_1016_j_strueco_2019_05_007
crossref_primary_10_1093_biostatistics_kxaf008
crossref_primary_10_1111_biom_13706
crossref_primary_10_1111_sjos_12691
crossref_primary_10_1080_24725854_2023_2222162
crossref_primary_10_1177_1471082X17748034
crossref_primary_10_1111_poms_13892
crossref_primary_10_1016_j_csda_2018_08_001
crossref_primary_10_1080_01621459_2020_1844211
crossref_primary_10_1002_sta4_286
crossref_primary_10_1016_j_eswa_2023_120711
crossref_primary_10_1007_s13163_022_00436_z
crossref_primary_10_1080_10618600_2024_2414113
crossref_primary_10_1109_ACCESS_2025_3544244
crossref_primary_10_1016_j_csda_2022_107421
crossref_primary_10_1515_dema_2025_0108
crossref_primary_10_1007_s11222_018_9818_2
crossref_primary_10_1093_biostatistics_kxaa023
crossref_primary_10_1016_j_csda_2018_07_006
crossref_primary_10_1007_s00180_023_01364_2
crossref_primary_10_1016_j_scienta_2022_111414
crossref_primary_10_1093_jrsssc_qlad015
crossref_primary_10_1080_03610918_2024_2407880
crossref_primary_10_1080_10618600_2023_2175687
crossref_primary_10_1016_j_wocn_2022_101191
crossref_primary_10_1007_s10462_023_10698_8
crossref_primary_10_1007_s13253_024_00601_5
crossref_primary_10_1080_00949655_2024_2309951
crossref_primary_10_15672_hujms_1294382
crossref_primary_10_1016_j_jmva_2018_11_007
crossref_primary_10_1007_s13253_021_00477_9
crossref_primary_10_1080_10618600_2020_1853550
crossref_primary_10_3390_f14020304
crossref_primary_10_1016_j_spl_2018_02_032
crossref_primary_10_1093_biomet_asae052
crossref_primary_10_1080_10485252_2018_1546386
crossref_primary_10_1111_rssb_12544
crossref_primary_10_7717_peerj_6876
crossref_primary_10_1038_s41598_022_06935_9
crossref_primary_10_1177_1471082X231198907
crossref_primary_10_1371_journal_pone_0213172
crossref_primary_10_1002_wics_1627
crossref_primary_10_1002_cjs_11747
crossref_primary_10_1038_s41467_023_43165_7
crossref_primary_10_1093_jrsssc_qlae016
crossref_primary_10_2139_ssrn_4170114
crossref_primary_10_1111_jpn_12964
crossref_primary_10_1080_00401706_2021_2008502
crossref_primary_10_1002_bimj_202300363
crossref_primary_10_1080_01621459_2020_1870984
crossref_primary_10_1080_00401706_2021_2024453
crossref_primary_10_1214_20_AOAS1425
crossref_primary_10_1007_s00180_022_01240_5
crossref_primary_10_1016_j_csda_2020_106912
crossref_primary_10_1371_journal_pone_0310991
crossref_primary_10_1016_j_csda_2021_107303
crossref_primary_10_1080_02664763_2018_1544231
crossref_primary_10_1080_10618600_2024_2374576
crossref_primary_10_1137_23M1590287
Cites_doi 10.1111/j.1467-842X.2008.00507.x
10.1093/biomet/asv069
10.1111/j.1467-9469.2011.00760.x
10.1007/s10182-009-0113-6
10.1017/CBO9780511754098
10.1198/016214506000000465
10.1198/016214504000001745
10.1080/10618600.2012.729985
10.1080/01621459.2016.1195744
10.1111/j.1467-9868.2006.00539.x
10.1214/10-AOAS407
10.1111/rssc.12077
10.1016/S0167-7152(99)00036-X
10.1198/jcgs.2011.09220
10.1007/978-1-4612-6333-3
10.1198/016214507000000527
10.2307/3316063
10.1214/07-STS242
10.1111/j.1467-9868.2010.00740.x
10.2202/1557-4679.1246
10.1093/biomet/asu054
10.1214/009053605000000660
10.1111/j.2517-6161.1993.tb01939.x
10.1198/jasa.2011.ap09272
10.1214/14-EJS901
10.1214/16-EJS1145
10.1111/j.1467-9876.2005.00510.x
10.1080/01621459.2015.1006729
10.1198/jcgs.2009.08011
10.1007/s11222-014-9473-1
10.1111/j.1541-0420.2012.01808.x
10.1093/biostatistics/kxs051
10.1080/00401706.1999.10485591
10.1198/1061860043010
10.1007/b98888
10.1198/016214504000001556
10.1201/b11038
10.1214/14-AOAS748
10.1080/00401706.2013.863163
10.1214/11-EJS619
10.1214/009053604000001156
10.1002/bimj.201300072
10.1214/10-EJS575
10.1111/rssb.12017
10.1111/j.1541-0420.2006.00574.x
10.1080/10618600.2014.901914
10.1016/j.csda.2015.08.020
10.1111/j.1467-9868.2011.01034.x
10.1177/1471082X15617594
10.1214/08-AOAS206
10.1146/annurev-statistics-041715-033624
10.1214/ss/1177013525
10.1080/01621459.1998.10473801
10.1198/106186008X386599
10.1111/j.1541-0420.2008.01112.x
10.1098/rsta.1909.0016
10.1201/9781420010404
10.1111/j.2517-6161.1991.tb01844.x
10.1177/1471082X14566913
10.1007/s00180-014-0548-4
10.1007/978-0-387-98185-7
10.1002/sim.3940
10.1007/s11222-016-9662-1
10.1002/sta4.20
10.1111/biom.12236
10.1007/978-1-4614-3655-3
10.1002/bimj.201300220
10.1111/biom.12299
10.1080/01621459.2015.1016224
10.1111/sjos.12075
10.1111/j.1467-9868.2006.00543.x
10.1214/ss/1038425655
10.1111/j.1467-9868.2010.00749.x
10.1093/biomet/87.3.587
10.1111/j.1467-9876.2011.01033.x
10.1017/CBO9780511755453
10.1198/106186002844
10.1198/jcgs.2011.10122
10.18637/jss.v051.i04
10.1198/004017004000000626
10.1093/biomet/ast038
10.1080/01621459.2014.889021
10.1080/01621459.2016.1180986
10.1146/annurev-statistics-010814-020413
10.1016/j.csda.2008.09.009
10.1214/16-EJS1123
10.1111/j.1541-0420.2007.00758.x
10.1198/jcgs.2010.10007
10.1111/biom.12278
10.1111/insr.12163
10.1016/j.csda.2007.10.022
10.1214/009053607000000217
10.1111/rssb.12125
10.1016/S0169-7439(03)00029-7
10.1016/j.csda.2014.07.001
10.1080/10618600.2012.743437
ContentType Journal Article
Copyright 2017 SAGE Publications
Copyright_xml – notice: 2017 SAGE Publications
DBID AAYXX
CITATION
DOI 10.1177/1471082X16681317
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1477-0342
EndPage 35
ExternalDocumentID 10_1177_1471082X16681317
10.1177_1471082X16681317
GroupedDBID -TM
.2L
01A
0R~
123
1~K
29Q
31W
31X
4.4
54M
56W
5VS
7WY
88I
8FE
8FG
8FL
8R4
8R5
8V8
AADIR
AADUE
AAGLT
AAJPV
AAQDB
AAQXI
AARIX
AATAA
ABAWP
ABCCA
ABCJG
ABEIX
ABFXH
ABHQH
ABIDT
ABJCF
ABKRH
ABPNF
ABQPY
ABQXT
ABRHV
ABTDE
ABUJY
ABUWG
ACDXX
ACFUR
ACFZE
ACGFS
ACGOD
ACIWK
ACJER
ACLZU
ACOFE
ACOXC
ACROE
ACRPL
ACSIQ
ACUIR
ADDLC
ADEBD
ADNMO
ADNON
ADRRZ
ADTOS
ADYCS
AEDXQ
AEMOZ
AENEX
AEOBU
AESZF
AEUHG
AEVPJ
AEWDL
AEWHI
AEXNY
AFEET
AFKRA
AFKRG
AFMOU
AFQAA
AFUIA
AFWMB
AGDVU
AGKLV
AGNHF
AGNWV
AGQPQ
AGWNL
AHDMH
AHHFK
AHWHD
AJUZI
ALFTD
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ANDLU
ARAPS
ARTOV
ASPBG
AUTPY
AUVAJ
AVWKF
AYPQM
AZFZN
AZQEC
B8T
B8Z
BDZRT
BENPR
BEZIV
BGLVJ
BMVBW
BPACV
BPHCQ
CAG
CCPQU
CEADM
COF
CS3
DG~
DOPDO
DV7
DV8
DWQXO
EBS
EJD
EMI
EST
F5P
FEDTE
FHBDP
FRNLG
GNUQQ
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
H13
HCIFZ
HF~
HVGLF
HZ~
J8X
J9A
K1G
K60
K6V
K6~
K7-
L6V
M0C
M2P
M7S
N9A
O9-
P.B
P2P
P62
PHGZM
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PTHSS
Q2X
Q7P
ROL
S01
SASJQ
SAUOL
SCNPE
SFC
SFK
SFT
SGU
SGV
SHB
SPJ
SSDHQ
TH9
TN5
ZPLXX
ZPPRI
~32
AAYXX
ACCVC
AJGYC
AMNSR
CITATION
ID FETCH-LOGICAL-c281t-2909a4253ea39e74b201cf49eba6b913364d2fd97c0df07e0d27955ac19f4f543
ISSN 1471-082X
IngestDate Tue Jul 01 05:24:15 EDT 2025
Thu Apr 24 23:07:04 EDT 2025
Tue Jun 17 22:48:49 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords functional additive mixed model
GAMLSS
functional principal components
gradient boosting
Functional data
penalized splines
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c281t-2909a4253ea39e74b201cf49eba6b913364d2fd97c0df07e0d27955ac19f4f543
PageCount 35
ParticipantIDs crossref_primary_10_1177_1471082X16681317
crossref_citationtrail_10_1177_1471082X16681317
sage_journals_10_1177_1471082X16681317
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20170200
2017-02-00
PublicationDateYYYYMMDD 2017-02-01
PublicationDate_xml – month: 2
  year: 2017
  text: 20170200
PublicationDecade 2010
PublicationPlace New Delhi, India
PublicationPlace_xml – name: New Delhi, India
PublicationTitle Statistical modelling
PublicationYear 2017
Publisher SAGE Publications
Publisher_xml – name: SAGE Publications
References Marx, Eilers 1999; 41
Usset, Staicu, Maity 2016; 94
Scheipl, Staicu, Greven 2015; 24
Swihart, Goldsmith, Crainiceanu 2014; 56
Ramsay, Dalzell 1991; 33
Currie, Durban, Eilers 2006
Goldsmith, Huang, Crainiceanu 2014; 23
Malfait, Ramsay 2003; 31
Goldsmith, Bobb, Crainiceanu, Caffo, Reich 2012; 20
Mercer 1909; 209
Gertheiss, Maity, Staicu 2013; 2
Hofner, Mayr, Fenske, Schmid 2016
Fenske, Kneib, Hothorn 2011; 106
Lang, Brezger 2004; 13
Marron, Ramsay, Sangalli, Srivastava 2014; 8
Herrick 2015
Marra, Wood 2012; 39
Goldsmith, Greven, Crainiceanu 2013; 69
Rigby, Stasinopoulos 2005; 54
Gervini 2015; 102
Van der Linde 2009; 93
Goldsmith, Zipunnikov, Schrack 2015; 71
O'Sullivan 1986; 1
Wang, Chiou, Mueller 2016; 3
Greven, Crainiceanu, Küchenhoff, Peters 2008; 17
Wood 2013; 100
Reiss, Ogden 2007; 102
McLean, Hooker, Ruppert 2015; 25
Di, Crainiceanu, Caffo, Punjabi 2009; 3
Dryden 2014; 56
Wood 2011; 73
Hadjipantelis, Aston, Müller, Evans 2015; 110
Müller, Stadtmüller 2005; 33
Shi, Wang, Murray-Smith, Titterington 2007; 63
Wang, Marron 2007; 35
Yao, Müller, Wang 2005; 100
Marron, Alonso 2014; 56
Meinshausen, Bühlmann 2010; 72
Scheipl, Greven 2016; 10
Huang, Scheipl, Goldsmith, Gellar, Harezlak, McLean, Swihart, Xiao, Crainiceanu, Reiss 2016
Kneib, Hothorn, Tutz 2009; 65
Eilers, Marx 1996; 11
Shou, Zipunnikov, Crainiceanu, Greven 2015; 71
Fuchs, Scheipl, Greven 2015; 81
Reiss, Huang, Mennes 2010; 6
Zipunnikov, Greven, Shou, Caffo, Reich, Crainiceanu 2014; 8
Eilers, Marx 2002; 11
Morris, Carroll 2006; 68
Gertheiss, Goldsmith, Crainiceanu, Greven 2013; 14
Wood, Pya, Säfken 2016
Reimherr, Nicolae 2016; 111
Gasparrini, Armstrong, Kenward 2010; 29
Marx, Eilers 2005; 47
Yao, Müller, Wang 2005; 33
Hofner, Hothorn, Kneib, Schmid 2012; 20
Wang, Shi 2014; 109
Hastie, Mallows 1993; 35
Morris 2015; 2
Zipunnikov, Caffo, Yousem, Davatzikos, Schwartz, Crainiceanu 2011; 20
Eilers, Marx 2003; 66
Meyer, Coull, Versace, Cinciripini, Morris 2015; 71
Mayr, Fenske, Hofner, Kneib, Schmid 2012; 61
Scheipl, Greven, Küchenhoff 2008; 52
Febrero-Bande, Oviedo de la Fuente 2012; 51
Morris, Baladandayuthapani, Herrick, Sanna, Gutstein 2011; 5
Cardot, Ferraty, Sarda 1999; 45
Morris, Arroyo, Coull, Ryan, Herrick, Gortmaker 2006; 101
Shah, Samworth 2013; 75
Peng, Paul 2012; 18
Goldsmith, Wand, Crainiceanu 2011; 5
Loève 1945; 220
Wood 2006; 62
Ettinger, Perotto, Sangalli 2016; 103
Staicu, Li, Crainiceanu, Ruppert 2014; 41
Greven, Crainiceanu, Caffo, Reich 2010; 4
Schmid, Hothorn 2008; 53
Bühlmann, Hothorn 2007; 22
Staniswalis, Lee 1998; 93
Karhunen 1947; 37
Wand, Ormerod 2008; 50
Brockhaus, Scheipl, Hothorn, Greven 2015; 15
James, Hastie, Sugar 2000; 87
McLean, Hooker, Staicu, Scheipl, Ruppert 2014; 23
James, Silverman 2005; 100
Hastie, Tibshirani 1993; 55
Cederbaum, Pouplier, Hoole, Greven 2016; 16
Ivanescu, Staicu, Scheipl, Greven 2015; 30
Hall, Hooker 2016; 78
Obermeier, Scheipl, Heumann, Wassermann, Küchenhoff 2015; 64
Hothorn, Kneib, Bühlmann 2014; 76
Scheipl, Gertheiss, Greven 2016; 10
bibr17-1471082X16681317
bibr100-1471082X16681317
bibr33-1471082X16681317
bibr76-1471082X16681317
bibr4-1471082X16681317
Brockhaus S (bibr1-1471082X16681317) 2015; 1
bibr109-1471082X16681317
bibr86-1471082X16681317
bibr25-1471082X16681317
bibr68-1471082X16681317
bibr94-1471082X16681317
bibr6-1471082X16681317
bibr61-1471082X16681317
bibr58-1471082X16681317
bibr74-1471082X16681317
bibr45-1471082X16681317
bibr82-1471082X16681317
Karhunen K (bibr47-1471082X16681317) 1947; 37
bibr92-1471082X16681317
bibr48-1471082X16681317
bibr27-1471082X16681317
bibr84-1471082X16681317
bibr71-1471082X16681317
bibr53-1471082X16681317
bibr66-1471082X16681317
bibr80-1471082X16681317
bibr55-1471082X16681317
bibr98-1471082X16681317
bibr72-1471082X16681317
bibr13-1471082X16681317
bibr63-1471082X16681317
bibr56-1471082X16681317
bibr112-1471082X16681317
bibr89-1471082X16681317
bibr103-1471082X16681317
bibr30-1471082X16681317
bibr104-1471082X16681317
bibr7-1471082X16681317
Ferraty F (bibr19-1471082X16681317) 2006
bibr21-1471082X16681317
bibr64-1471082X16681317
bibr28-1471082X16681317
bibr10-1471082X16681317
bibr107-1471082X16681317
bibr115-1471082X16681317
Hofner B (bibr39-1471082X16681317) 2016
bibr44-1471082X16681317
bibr52-1471082X16681317
bibr91-1471082X16681317
bibr67-1471082X16681317
bibr78-1471082X16681317
bibr41-1471082X16681317
Hastie T (bibr35-1471082X16681317) 1993; 55
bibr75-1471082X16681317
bibr83-1471082X16681317
bibr42-1471082X16681317
bibr85-1471082X16681317
bibr69-1471082X16681317
bibr26-1471082X16681317
bibr50-1471082X16681317
bibr93-1471082X16681317
bibr60-1471082X16681317
bibr16-1471082X16681317
bibr59-1471082X16681317
bibr77-1471082X16681317
bibr108-1471082X16681317
Herrick R (bibr37-1471082X16681317) 2015
bibr3-1471082X16681317
Hastie TJ (bibr36-1471082X16681317) 2011
bibr79-1471082X16681317
bibr87-1471082X16681317
bibr95-1471082X16681317
bibr111-1471082X16681317
bibr24-1471082X16681317
bibr22-1471082X16681317
bibr114-1471082X16681317
bibr11-1471082X16681317
bibr97-1471082X16681317
bibr106-1471082X16681317
bibr14-1471082X16681317
bibr101-1471082X16681317
bibr32-1471082X16681317
bibr40-1471082X16681317
bibr113-1471082X16681317
bibr9-1471082X16681317
bibr8-1471082X16681317
bibr20-1471082X16681317
bibr105-1471082X16681317
Huang L (bibr43-1471082X16681317) 2016
bibr73-1471082X16681317
bibr99-1471082X16681317
bibr29-1471082X16681317
bibr46-1471082X16681317
bibr90-1471082X16681317
bibr12-1471082X16681317
bibr81-1471082X16681317
bibr38-1471082X16681317
bibr31-1471082X16681317
bibr15-1471082X16681317
bibr102-1471082X16681317
Loève M (bibr51-1471082X16681317) 1945; 220
bibr2-1471082X16681317
bibr65-1471082X16681317
bibr5-1471082X16681317
bibr54-1471082X16681317
Hastie T (bibr34-1471082X16681317) 1993; 35
bibr18-1471082X16681317
bibr70-1471082X16681317
bibr88-1471082X16681317
bibr57-1471082X16681317
bibr110-1471082X16681317
bibr49-1471082X16681317
bibr62-1471082X16681317
bibr96-1471082X16681317
bibr23-1471082X16681317
References_xml – year: 2016
– volume: 65
  start-page: 626
  year: 2009
  end-page: 34
  article-title: Variable selection and model choice in geoadditive regression models
– volume: 35
  start-page: 1849
  year: 2007
  end-page: 73
  article-title: Object-oriented data analysis: Sets of trees
– volume: 15
  start-page: 279
  year: 2015
  end-page: 300
  article-title: The functional linear array model
– volume: 45
  start-page: 11
  year: 1999
  end-page: 22
  article-title: Functional linear model
– volume: 5
  start-page: 894
  year: 2011
  end-page: 923
  article-title: Automated analysis of quantitative image data using isomorphic functional mixed models, with application to proteomics data
– volume: 100
  start-page: 565
  year: 2005
  end-page: 76
  article-title: Functional adaptive model estimation
– volume: 10
  start-page: 495
  year: 2016
  end-page: 526
  article-title: Identifiability in penalized function-on-function regression models
– volume: 29
  start-page: 2224
  year: 2010
  end-page: 34
  article-title: Distributed lag non-linear models
– volume: 2
  start-page: 321
  year: 2015
  end-page: 59
  article-title: Functional regression
– start-page: 259
  year: 2006
  end-page: 80
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
– volume: 106
  start-page: 494
  year: 2011
  end-page: 510
  article-title: Identifying risk factors for severe childhood malnutrition by boosting additive quantile regression
– volume: 71
  start-page: 344
  year: 2015
  end-page: 53
  article-title: Generalized multilevel function-on-scalar regression and principal component analysis
– volume: 22
  start-page: 477
  year: 2007
  end-page: 505
  article-title: Boosting algo- rithms: Regularization, prediction and model fitting
– volume: 54
  start-page: 507
  year: 2005
  end-page: 54
  article-title: Generalized additive models for location, scale and shape
– volume: 63
  start-page: 714
  year: 2007
  end-page: 23
  article-title: Gaussian process functional regression modeling for batch data
– volume: 11
  start-page: 89
  year: 1996
  end-page: 121
  article-title: Flexible smoothing with B-splines and penalties
– volume: 71
  start-page: 247
  year: 2015
  end-page: 57
  article-title: Structured functional principal component analysis
– volume: 33
  start-page: 2873
  year: 2005
  end-page: 903
  article-title: Functional linear regression analysis for longitudinal data
– volume: 31
  start-page: 115
  year: 2003
  end-page: 28
  article-title: The historical functional linear model
  publication-title: Canadian Journal of Statistics
– volume: 1
  start-page: 502
  year: 1986
  end-page: 18
  article-title: A statistical perspective on ill-posed inverse problems
– volume: 102
  start-page: 984
  year: 2007
  end-page: 96
  article-title: Functional principal component regression and functional partial least squares
– volume: 17
  start-page: 870
  year: 2008
  end-page: 91
  article-title: Restricted likelihood ratio testing for zero variance components in linear mixed models
– volume: 23
  start-page: 249
  year: 2014
  end-page: 69
  article-title: Functional generalized additive models
– volume: 64
  start-page: 395
  year: 2015
  end-page: 412
  article-title: Flexible dis- tributed lags for modelling earthquake data
– volume: 72
  start-page: 417
  year: 2010
  end-page: 73
  article-title: Stability selection
– volume: 111
  start-page: 407
  year: 2016
  end-page: 22
  article-title: Estimating variance components in functional linear models with applications to genetic heritability
– volume: 51
  start-page: 1
  year: 2012
  end-page: 28
  article-title: Statistical computing in functional data analysis: The R package
– volume: 41
  start-page: 1
  year: 1999
  end-page: 13
  article-title: Generalized linear regression on sampled signals and curves: A P-spline approach
– volume: 35
  start-page: 140
  year: 1993
  end-page: 43
  article-title: Discussion of ‘A statistical view of some chemometrics reg- ression tools,’ by I. E. Frank and J. H. Friedman
– year: 2016
  article-title: Smoothing parameter and model selection for general smooth models
– volume: 8
  start-page: 1697
  year: 2014
  end-page: 702
  article-title: Statistics of time warpings and phase variations
– volume: 62
  start-page: 1025
  year: 2006
  end-page: 36
  article-title: Low-rank scale-invariant tensor product smooths for generalized additive mixed models
– volume: 53
  start-page: 298
  year: 2008
  end-page: 311
  article-title: Boosting additive models using component-wise P-splines
– volume: 93
  start-page: 1403
  year: 1998
  end-page: 04
  article-title: Nonparametric regression analysis of longitudinal data
– volume: 2
  start-page: 86
  year: 2013
  end-page: 101
  article-title: Variable selection in generalized functional linear models
– volume: 75
  start-page: 55
  year: 2013
  end-page: 80
  article-title: Variable selection with error control: another look at stability selection
– volume: 209
  start-page: 415
  year: 1909
  end-page: 46
  article-title: Functions of positive and negative type, and their connection with the theory of integral equations
– volume: 37
  start-page: 1
  year: 1947
  end-page: 79
– volume: 20
  start-page: 956
  year: 2012
  end-page: 71
  article-title: A framework for unbiased model selection based on boosting
– volume: 56
  start-page: 483
  year: 2014
  end-page: 93
  article-title: Restricted likelihood ratio tests for functional effects in the functional linear model
– volume: 33
  start-page: 539
  year: 1991
  end-page: 72
  article-title: Some tools for functional data analysis
– volume: 102
  start-page: 1
  year: 2015
  end-page: 14
  article-title: Warped functional regression
– volume: 24
  start-page: 477
  year: 2015
  end-page: 501
  article-title: Functional additive mixed models
– volume: 94
  start-page: 317
  year: 2016
  end-page: 30
  article-title: Interaction models for functional regression
– volume: 10
  start-page: 1455
  year: 2016
  end-page: 92
  article-title: Generalized functional additive mixed models
– volume: 109
  start-page: 1123
  year: 2014
  end-page: 33
  article-title: Generalized Gaussian process regression model for non-Gaussian functional data
– volume: 16
  start-page: 67
  year: 2016
  end-page: 88
  article-title: Functional linear mixed models for irregularly or sparsely sampled data
– volume: 5
  start-page: 572
  year: 2011
  end-page: 602
  article-title: Functional regression via variational Bayes
– volume: 73
  start-page: 3
  year: 2011
  end-page: 36
  article-title: Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models
– volume: 110
  start-page: 545
  year: 2015
  end-page: 59
  article-title: Unifying amplitude and phase analysis: A compositional data approach to functional multivariate mixed- effects modeling of mandarin Chinese
– year: 2016
– volume: 33
  start-page: 774
  year: 2005
  end-page: 805
  article-title: Genera- lized functional linear models
– volume: 20
  start-page: 852
  year: 2011
  end-page: 73
  article-title: Multilevel functional principal component analysis for high-dimensional data
– volume: 76
  start-page: 3
  year: 2014
  end-page: 27
  article-title: Conditional transformation models
– volume: 61
  start-page: 403
  year: 2012
  end-page: 27
  article-title: Generalized additive models for location, scale and shape for high dimensional data—A flexible approach based on boosting
– volume: 50
  start-page: 179
  year: 2008
  end-page: 98
  article-title: On semiparametric regression with O'Sullivan penalized splines
– volume: 81
  start-page: 38
  year: 2015
  end-page: 51
  article-title: Penalized scalar-on-functions regression with interaction term
– volume: 69
  start-page: 41
  year: 2013
  end-page: 51
  article-title: Corrected confidence bands for functional data using principal components
– volume: 11
  start-page: 758
  year: 2002
  end-page: 83
  article-title: Generalized linear additive smooth structures
– volume: 8
  start-page: 2175
  year: 2014
  end-page: 202
  article-title: Longitudinal high-dimensional principal components analysis with application to diffusion tensor imaging of multiple sclerosis
– volume: 25
  start-page: 997
  year: 2015
  end-page: 1008
  article-title: Restricted likelihood ratio tests for linearity in scalar-on-function regression
– volume: 87
  start-page: 587
  year: 2000
  end-page: 602
  article-title: Principal component models for sparse functional data
– volume: 3
  start-page: 257
  year: 2016
  end-page: 95
  article-title: Review of functional data analysis
– volume: 68
  start-page: 179
  year: 2006
  end-page: 99
  article-title: Wavelet-based functional mixed models
– volume: 18
  start-page: 995
  year: 2012
  end-page: 1015
  article-title: A geometric approach to maximum likelihood estimation of the functional principal components from sparse longitudinal data
– volume: 55
  start-page: 757
  year: 1993
  end-page: 96
  article-title: Varying-coefficient models
– year: 2015
– volume: 220
  start-page: 469
  year: 1945
  article-title: Fonctions aléatoires de second ordre
– volume: 56
  start-page: 732
  year: 2014
  end-page: 53
  article-title: Overview of object oriented data analysis
– volume: 93
  start-page: 307
  year: 2009
  end-page: 33
  article-title: Bayesian functional principal components analysis for binary and count data
– volume: 6
  start-page: 1557
  year: 2010
  end-page: 4679
  article-title: Fast function-on-scalar regression with penalized basis expansions
– volume: 71
  start-page: 563
  year: 2015
  end-page: 74
  article-title: Bayesian function-on- function regression for multilevel functional data
– volume: 4
  start-page: 1022
  year: 2010
  end-page: 54
  article-title: Longitudinal functional principal component analysis
– volume: 78
  start-page: 637
  year: 2016
  end-page: 53
  article-title: Truncated linear models for functional data
– volume: 66
  start-page: 159
  year: 2003
  end-page: 74
  article-title: Multivariate calibration with temperature interaction using two-dimensional penalized signal regression
– volume: 23
  start-page: 46
  year: 2014
  end-page: 64
  article-title: Smooth scalar-on-image regression via spatial Bayesian variable selection
– volume: 100
  start-page: 577
  year: 2005
  end-page: 90
  article-title: Functional data analysis for sparse longitudinal data
– volume: 39
  start-page: 53
  year: 2012
  end-page: 74
  article-title: Coverage proper- ties of confidence intervals for generalized additive model components
– volume: 13
  start-page: 183
  year: 2004
  end-page: 212
  article-title: Bayesian P-splines
– volume: 47
  start-page: 13
  year: 2005
  end-page: 22
  article-title: Multidimensional penalized signal regression
– volume: 56
  start-page: 758
  year: 2014
  end-page: 60
  article-title: Shape and object data analysis
– volume: 102
  start-page: 984
  year: 2007
  end-page: 96
  article-title: Functional prin- cipal component regression and functional partial least squares
– volume: 103
  start-page: 71
  year: 2016
  end-page: 88
  article-title: Spatial regression models over two-dimensional manifolds
– volume: 100
  start-page: 1005
  year: 2013
  end-page: 10
  article-title: A simple test for random effects in regression models
– volume: 30
  start-page: 539
  year: 2015
  end-page: 68
  article-title: Penalized function-on-function regression
– volume: 101
  start-page: 1352
  year: 2006
  end-page: 64
  article-title: Using wavelet-based functional mixed models to characterize population heterogeneity in accelerometer profiles: A case study
– volume: 41
  start-page: 932
  year: 2014
  end-page: 49
  article-title: Likelihood ratio tests for dependent data with applications to longitudinal and functional data analysis
– volume: 20
  start-page: 830
  year: 2012
  end-page: 51
  article-title: Penalized functional regression
– volume: 14
  start-page: 447
  year: 2013
  end-page: 61
  article-title: Longitudinal scalar-on- functions regression with application to tractography data
– volume: 52
  start-page: 3283
  year: 2008
  end-page: 99
  article-title: Size and power of tests for a zero random effect variance or polynomial regression in additive and linear mixed models
– volume: 3
  start-page: 458
  year: 2009
  end-page: 88
  article-title: Multilevel functional principal component analysis
– ident: bibr100-1471082X16681317
  doi: 10.1111/j.1467-842X.2008.00507.x
– ident: bibr16-1471082X16681317
  doi: 10.1093/biomet/asv069
– year: 2015
  ident: bibr37-1471082X16681317
  publication-title: WFMM
– ident: bibr53-1471082X16681317
  doi: 10.1111/j.1467-9469.2011.00760.x
– ident: bibr2-1471082X16681317
– ident: bibr99-1471082X16681317
  doi: 10.1007/s10182-009-0113-6
– ident: bibr49-1471082X16681317
  doi: 10.1017/CBO9780511754098
– ident: bibr65-1471082X16681317
  doi: 10.1198/016214506000000465
– ident: bibr112-1471082X16681317
  doi: 10.1198/016214504000001745
– ident: bibr60-1471082X16681317
  doi: 10.1080/10618600.2012.729985
– ident: bibr81-1471082X16681317
– ident: bibr110-1471082X16681317
  doi: 10.1080/01621459.2016.1195744
– ident: bibr67-1471082X16681317
  doi: 10.1111/j.1467-9868.2006.00539.x
– ident: bibr66-1471082X16681317
  doi: 10.1214/10-AOAS407
– ident: bibr69-1471082X16681317
  doi: 10.1111/rssc.12077
– ident: bibr7-1471082X16681317
  doi: 10.1016/S0167-7152(99)00036-X
– ident: bibr38-1471082X16681317
  doi: 10.1198/jcgs.2011.09220
– ident: bibr10-1471082X16681317
  doi: 10.1007/978-1-4612-6333-3
– ident: bibr82-1471082X16681317
  doi: 10.1198/016214507000000527
– ident: bibr52-1471082X16681317
  doi: 10.2307/3316063
– ident: bibr6-1471082X16681317
  doi: 10.1214/07-STS242
– ident: bibr61-1471082X16681317
  doi: 10.1111/j.1467-9868.2010.00740.x
– ident: bibr80-1471082X16681317
  doi: 10.2202/1557-4679.1246
– ident: bibr24-1471082X16681317
  doi: 10.1093/biomet/asu054
– ident: bibr113-1471082X16681317
  doi: 10.1214/009053605000000660
– ident: bibr72-1471082X16681317
– volume: 55
  start-page: 757
  year: 1993
  ident: bibr35-1471082X16681317
  publication-title: Journal of the Royal Statistical Society. Series B
  doi: 10.1111/j.2517-6161.1993.tb01939.x
– ident: bibr91-1471082X16681317
– ident: bibr18-1471082X16681317
  doi: 10.1198/jasa.2011.ap09272
– ident: bibr55-1471082X16681317
  doi: 10.1214/14-EJS901
– ident: bibr85-1471082X16681317
  doi: 10.1214/16-EJS1145
– ident: bibr108-1471082X16681317
– ident: bibr83-1471082X16681317
  doi: 10.1111/j.1467-9876.2005.00510.x
– ident: bibr4-1471082X16681317
– ident: bibr32-1471082X16681317
  doi: 10.1080/01621459.2015.1006729
– ident: bibr71-1471082X16681317
  doi: 10.1198/jcgs.2009.08011
– ident: bibr59-1471082X16681317
  doi: 10.1007/s11222-014-9473-1
– ident: bibr26-1471082X16681317
  doi: 10.1111/j.1541-0420.2012.01808.x
– ident: bibr78-1471082X16681317
  doi: 10.1198/016214507000000527
– ident: bibr22-1471082X16681317
  doi: 10.1093/biostatistics/kxs051
– volume: 1
  start-page: 117
  volume-title: Proceedings of the 30th International Workshop on Statistical Modelling
  year: 2015
  ident: bibr1-1471082X16681317
– ident: bibr56-1471082X16681317
  doi: 10.1080/00401706.1999.10485591
– ident: bibr50-1471082X16681317
  doi: 10.1198/1061860043010
– ident: bibr75-1471082X16681317
  doi: 10.1007/b98888
– ident: bibr46-1471082X16681317
  doi: 10.1198/016214504000001556
– volume: 37
  start-page: 1
  year: 1947
  ident: bibr47-1471082X16681317
  publication-title: Über Lineare Methoden in der Wahrscheinlichkeitsrechnung. Annales Academiae Scientiarum Fennicae
– year: 2016
  ident: bibr39-1471082X16681317
  publication-title: gamboostLSS: Boosting Methods for GAMLSS Models
– ident: bibr92-1471082X16681317
  doi: 10.1201/b11038
– ident: bibr115-1471082X16681317
  doi: 10.1214/14-AOAS748
– ident: bibr97-1471082X16681317
  doi: 10.1080/00401706.2013.863163
– ident: bibr28-1471082X16681317
  doi: 10.1214/11-EJS619
– ident: bibr68-1471082X16681317
  doi: 10.1214/009053604000001156
– ident: bibr54-1471082X16681317
  doi: 10.1002/bimj.201300072
– ident: bibr30-1471082X16681317
  doi: 10.1214/10-EJS575
– ident: bibr42-1471082X16681317
  doi: 10.1111/rssb.12017
– ident: bibr105-1471082X16681317
  doi: 10.1111/j.1541-0420.2006.00574.x
– ident: bibr88-1471082X16681317
  doi: 10.1080/10618600.2014.901914
– ident: bibr98-1471082X16681317
  doi: 10.1016/j.csda.2015.08.020
– ident: bibr76-1471082X16681317
– ident: bibr90-1471082X16681317
  doi: 10.1111/j.1467-9868.2011.01034.x
– ident: bibr8-1471082X16681317
  doi: 10.1177/1471082X15617594
– year: 2016
  ident: bibr43-1471082X16681317
  publication-title: refund: Regression with Functional Data
– ident: bibr11-1471082X16681317
  doi: 10.1214/08-AOAS206
– ident: bibr103-1471082X16681317
  doi: 10.1146/annurev-statistics-041715-033624
– ident: bibr70-1471082X16681317
  doi: 10.1214/ss/1177013525
– ident: bibr96-1471082X16681317
  doi: 10.1080/01621459.1998.10473801
– ident: bibr31-1471082X16681317
  doi: 10.1198/106186008X386599
– ident: bibr48-1471082X16681317
  doi: 10.1111/j.1541-0420.2008.01112.x
– ident: bibr62-1471082X16681317
  doi: 10.1098/rsta.1909.0016
– ident: bibr104-1471082X16681317
  doi: 10.1201/9781420010404
– ident: bibr73-1471082X16681317
  doi: 10.1111/j.2517-6161.1991.tb01844.x
– ident: bibr5-1471082X16681317
  doi: 10.1177/1471082X14566913
– ident: bibr44-1471082X16681317
  doi: 10.1007/s00180-014-0548-4
– volume: 220
  start-page: 469
  year: 1945
  ident: bibr51-1471082X16681317
  publication-title: Comptes Rendus Académie des Sciences
– ident: bibr74-1471082X16681317
  doi: 10.1007/978-0-387-98185-7
– ident: bibr21-1471082X16681317
  doi: 10.1002/sim.3940
– volume: 35
  start-page: 140
  year: 1993
  ident: bibr34-1471082X16681317
  publication-title: Technometrics
– ident: bibr3-1471082X16681317
  doi: 10.1007/s11222-016-9662-1
– ident: bibr23-1471082X16681317
  doi: 10.1002/sta4.20
– ident: bibr94-1471082X16681317
  doi: 10.1111/biom.12236
– ident: bibr40-1471082X16681317
  doi: 10.1007/978-1-4614-3655-3
– ident: bibr12-1471082X16681317
  doi: 10.1002/bimj.201300220
– ident: bibr63-1471082X16681317
  doi: 10.1111/biom.12299
– ident: bibr77-1471082X16681317
  doi: 10.1080/01621459.2015.1016224
– ident: bibr95-1471082X16681317
  doi: 10.1111/sjos.12075
– ident: bibr9-1471082X16681317
  doi: 10.1111/j.1467-9868.2006.00543.x
– ident: bibr41-1471082X16681317
– volume-title: Nonparametric Functional Data Analysis: Theory and Practice
  year: 2006
  ident: bibr19-1471082X16681317
– ident: bibr13-1471082X16681317
  doi: 10.1214/ss/1038425655
– ident: bibr106-1471082X16681317
  doi: 10.1111/j.1467-9868.2010.00749.x
– ident: bibr45-1471082X16681317
  doi: 10.1093/biomet/87.3.587
– ident: bibr58-1471082X16681317
  doi: 10.1111/j.1467-9876.2011.01033.x
– ident: bibr84-1471082X16681317
  doi: 10.1017/CBO9780511755453
– ident: bibr109-1471082X16681317
– ident: bibr15-1471082X16681317
  doi: 10.1198/106186002844
– ident: bibr114-1471082X16681317
  doi: 10.1198/jcgs.2011.10122
– ident: bibr17-1471082X16681317
  doi: 10.18637/jss.v051.i04
– ident: bibr57-1471082X16681317
  doi: 10.1198/004017004000000626
– ident: bibr107-1471082X16681317
  doi: 10.1093/biomet/ast038
– ident: bibr101-1471082X16681317
  doi: 10.1080/01621459.2014.889021
– ident: bibr111-1471082X16681317
  doi: 10.1080/01621459.2016.1180986
– ident: bibr64-1471082X16681317
  doi: 10.1146/annurev-statistics-010814-020413
– ident: bibr89-1471082X16681317
  doi: 10.1016/j.csda.2008.09.009
– ident: bibr86-1471082X16681317
  doi: 10.1214/16-EJS1123
– ident: bibr93-1471082X16681317
  doi: 10.1111/j.1541-0420.2007.00758.x
– ident: bibr25-1471082X16681317
  doi: 10.1198/jcgs.2010.10007
– ident: bibr29-1471082X16681317
  doi: 10.1111/biom.12278
– ident: bibr79-1471082X16681317
  doi: 10.1111/insr.12163
– ident: bibr87-1471082X16681317
  doi: 10.1016/j.csda.2007.10.022
– ident: bibr102-1471082X16681317
  doi: 10.1214/009053607000000217
– ident: bibr33-1471082X16681317
  doi: 10.1111/rssb.12125
– ident: bibr14-1471082X16681317
  doi: 10.1016/S0169-7439(03)00029-7
– ident: bibr20-1471082X16681317
  doi: 10.1016/j.csda.2014.07.001
– ident: bibr27-1471082X16681317
  doi: 10.1080/10618600.2012.743437
– volume-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction
  year: 2011
  ident: bibr36-1471082X16681317
SSID ssj0021769
Score 2.3996687
Snippet Abstract Researchers are increasingly interested in regression models for functional data. This article discusses a comprehensive framework for additive...
Researchers are increasingly interested in regression models for functional data. This article discusses a comprehensive framework for additive (mixed) models...
SourceID crossref
sage
SourceType Enrichment Source
Index Database
Publisher
StartPage 1
Title A general framework for functional regression modelling
URI https://journals.sagepub.com/doi/full/10.1177/1471082X16681317
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LS8MwGA-6XfQgPnG-6EEEkWrbpI8ciziGMFG2wTyNNE1FGd3Ypgf_er80afbQifMSSki_kvzS75F8D4TOfewwJiLfFk5CbcIJscEOwTaNMJc3aVHKZDRy8yFodMh91--W1ex1dMkkueafP8aV_AdV6ANcZZTsCsgaotABz4AvtIAwtH_COJYFkOWh0lVW-lgVboNSWOkzvpF4UZ6uuSp60y9FlVZIpbJZ5GqWUSRzA5RTzodiS61B_mYYeAuAfh0WZ8d1lpT7Sx8dgDhyjBuG4nYgmWzQAbpKGJR9MA6TeRYZzm4FHa-oOJ47IzpV4pHvTDlUYf2gzMC33CCIXKwpzuW_XpBLxlvQ1SnJFymso6oHxoFXQdX4-fGpaQxtNyxKGZrpTa-nbxZpzKkjM758hXrR3kZb2i6wYgXyDloT-S7abJqkuuM9FMaWhtsycFsAtzWF25rCbRk091Gnfte-bdi67oXNvcid2B51KANeigXDVIQkAex4RqhIWJBQF-OApF6W0pA7aeaEwkm9kPo-4y7NSOYTfIAq-SAXh8giNBB-lGLAU8jCZBEDBZUxnqR-mgGJGropp9_jOim8rE3S7y1b9Bq6NG8MVUKUX8ZeyBXt6V9mvHTg0QpEj9HGdC-foMpk9C5OQTGcJGd6H3wBB7VaDA
linkProvider SAGE Publications
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BOwADb0R5ekBIDC5J7Dw8VoiqQFOB1EqFJXJspwMooDZd-PXYSRpKEQixn63TyfZ3tr_7DuDMJRbnKnCxsmKGqaAU63sIwSwgwvykBZKbauSw53UG9HboDudafZURnDQNrUp7lB_W1e42deL6NNWwNbQ9L7A1-C1DPTDFCDWotx7vH8LqtmX7eT87Y4_NgM8_ym9zfMGkOUJXjjHtDXiaeVdQS56b00w79r4g3Pgv9zdhvcw8UatYKluwpNJtWAsr2dbJDvgtNCpkqFEyI20hndUig37FoyEaq1FBnU1R3kXHlLPvwqB93b_q4LKzAhZOYGfYYRbjercSxQlTPo11GiASylTMvZjpa6tHpZNI5gtLJpavLOn4zHW5sFlCE5eSPailr6naB0SZp9xAEkIdZVpfBVynQJyLWLoy0VM04HIW20iUsuOm-8VLZJdK44shacBFNeKtkNz4xfbcRDqaxf1Hw4O_Gp7CSqcfdqPuTe_uEFYdg-I5SfsIatl4qo51DpLFJ-Vq-wALAM2c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWglRAc2BFlzQEhcXCbeEniYwVUZWlVJCqVU-R46QEUqja98PXYiVugCIS4jy1nZPvNxG_eAHBGsc-5iilUfsogEYRAk4dgyGIs7EtaLLmtRu50w3af3A7owHFzbC2M8-CkbmlVZkXFZW1P90jqhntjbATmRjXQNQjCMA4MAC6DqsEphCqg2nzqPXTmGVcQFT3trD20Az7eKb_N8QWXPpG6CpxpbZTNVCeFPKGllzzXp7lZ3NuCeOO_P2ETrLsI1GuWW2YLLKlsG6x15vKtkx0QNb1hKUft6Rl5yzPRrWdRsPx56I3VsKTQZl7RTceWte-Cfuv68bINXYcFKFAc5BAxn3FzarHimKmIpCYcEJowlfIwZSZ9DYlEWrJI-FL7kfIlihilXARME00J3gOV7DVT-8AjLFQ0lhgTpGwLrJibUIhzkUoqtZmiBhoz_ybCyY_bLhgvSeAUxxddUgMX8xGjUnrjF9tz6-1k5vsfDQ_-angKVnpXreT-pnt3CFaRBfOCq30EKvl4qo5NKJKnJ27DvQMEYNAR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+general+framework+for+functional+regression+modelling&rft.jtitle=Statistical+modelling&rft.au=Greven%2C+Sonja&rft.au=Scheipl%2C+Fabian&rft.date=2017-02-01&rft.issn=1471-082X&rft.eissn=1477-0342&rft.volume=17&rft.issue=1-2&rft.spage=1&rft.epage=35&rft_id=info:doi/10.1177%2F1471082X16681317&rft.externalDBID=n%2Fa&rft.externalDocID=10_1177_1471082X16681317
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-082X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-082X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-082X&client=summon