A general framework for functional regression modelling
Abstract Researchers are increasingly interested in regression models for functional data. This article discusses a comprehensive framework for additive (mixed) models for functional responses and/or functional covariates based on the guiding principle of reframing functional regression in terms of...
Saved in:
Published in | Statistical modelling Vol. 17; no. 1-2; pp. 1 - 35 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New Delhi, India
SAGE Publications
01.02.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1471-082X 1477-0342 |
DOI | 10.1177/1471082X16681317 |
Cover
Loading…
Abstract | Abstract
Researchers are increasingly interested in regression models for functional data. This article discusses a comprehensive framework for additive (mixed) models for functional responses and/or functional covariates based on the guiding principle of reframing functional regression in terms of corresponding models for scalar data, allowing the adaptation of a large body of existing methods for these novel tasks. The framework encompasses many existing as well as new models. It includes regression for ‘generalized’ functional data, mean regression, quantile regression as well as generalized additive models for location, shape and scale (GAMLSS) for functional data. It admits many flexible linear, smooth or interaction terms of scalar and functional covariates as well as (functional) random effects and allows flexible choices of bases—particularly splines and functional principal components—and corresponding penalties for each term. It covers functional data observed on common (dense) or curve-specific (sparse) grids. Penalized-likelihood-based and gradient-boosting-based inference for these models are implemented in R packages refund and FDboost, respectively. We also discuss identifiability and computational complexity for the functional regression models covered. A running example on a longitudinal multiple sclerosis imaging study serves to illustrate the flexibility and utility of the proposed model class. Reproducible code for this case study is made available online. |
---|---|
AbstractList | Researchers are increasingly interested in regression models for functional data. This article discusses a comprehensive framework for additive (mixed) models for functional responses and/or functional covariates based on the guiding principle of reframing functional regression in terms of corresponding models for scalar data, allowing the adaptation of a large body of existing methods for these novel tasks. The framework encompasses many existing as well as new models. It includes regression for ‘generalized’ functional data, mean regression, quantile regression as well as generalized additive models for location, shape and scale (GAMLSS) for functional data. It admits many flexible linear, smooth or interaction terms of scalar and functional covariates as well as (functional) random effects and allows flexible choices of bases—particularly splines and functional principal components—and corresponding penalties for each term. It covers functional data observed on common (dense) or curve-specific (sparse) grids. Penalized-likelihood-based and gradient-boosting-based inference for these models are implemented in R packages refund and FDboost , respectively. We also discuss identifiability and computational complexity for the functional regression models covered. A running example on a longitudinal multiple sclerosis imaging study serves to illustrate the flexibility and utility of the proposed model class. Reproducible code for this case study is made available online. Abstract Researchers are increasingly interested in regression models for functional data. This article discusses a comprehensive framework for additive (mixed) models for functional responses and/or functional covariates based on the guiding principle of reframing functional regression in terms of corresponding models for scalar data, allowing the adaptation of a large body of existing methods for these novel tasks. The framework encompasses many existing as well as new models. It includes regression for ‘generalized’ functional data, mean regression, quantile regression as well as generalized additive models for location, shape and scale (GAMLSS) for functional data. It admits many flexible linear, smooth or interaction terms of scalar and functional covariates as well as (functional) random effects and allows flexible choices of bases—particularly splines and functional principal components—and corresponding penalties for each term. It covers functional data observed on common (dense) or curve-specific (sparse) grids. Penalized-likelihood-based and gradient-boosting-based inference for these models are implemented in R packages refund and FDboost, respectively. We also discuss identifiability and computational complexity for the functional regression models covered. A running example on a longitudinal multiple sclerosis imaging study serves to illustrate the flexibility and utility of the proposed model class. Reproducible code for this case study is made available online. |
Author | Scheipl, Fabian Greven, Sonja |
Author_xml | – sequence: 1 givenname: Sonja surname: Greven fullname: Greven, Sonja email: sonja.greven@stat.uni-muenchen.de – sequence: 2 givenname: Fabian surname: Scheipl fullname: Scheipl, Fabian |
BookMark | eNp9j01LxDAQhoOs4O7q3WP_QDWTpElzXBa_YMGLgreSppPStU0k6SL-e1vX04Ke5uOdZ-BZkYUPHgm5BnoDoNQtCAW0ZG8gZQkc1BlZTiuVUy7Y4qeHfM4vyCqlPaUMlNRLojZZix6j6TMXzYCfIb5nLsTMHbwdu-CnIGIbMaVpyIbQYN93vr0k5870Ca9-65q83t-9bB_z3fPD03azyy0rYcyZptoIVnA0XKMSNaNgndBYG1lr4FyKhrlGK0sbRxXShildFMaCdsIVgq8JPf61MaQU0VUfsRtM_KqAVrN4dSo-IfIEsd1oZpcxmq7_D8yPYDItVvtwiJN9-vv-G9ryatQ |
CitedBy_id | crossref_primary_10_1016_j_jmva_2021_104861 crossref_primary_10_1360_SSI_2021_0259 crossref_primary_10_1007_s13580_023_00579_y crossref_primary_10_3390_app10062094 crossref_primary_10_1155_2017_6083072 crossref_primary_10_1007_s11749_020_00714_2 crossref_primary_10_1080_10485252_2019_1583338 crossref_primary_10_1515_ijb_2023_0029 crossref_primary_10_1080_01621459_2018_1476242 crossref_primary_10_1007_s00362_023_01420_5 crossref_primary_10_3390_w13091241 crossref_primary_10_1094_PHYTO_11_17_0386_R crossref_primary_10_1016_j_spl_2018_07_007 crossref_primary_10_1080_10485252_2019_1567726 crossref_primary_10_1214_24_EJS2333 crossref_primary_10_1007_s00180_024_01573_3 crossref_primary_10_1016_j_jkss_2018_05_002 crossref_primary_10_1093_molbev_msaa194 crossref_primary_10_1177_1471082X20917586 crossref_primary_10_1080_02664763_2023_2202464 crossref_primary_10_1016_j_strueco_2019_05_007 crossref_primary_10_1093_biostatistics_kxaf008 crossref_primary_10_1111_biom_13706 crossref_primary_10_1111_sjos_12691 crossref_primary_10_1080_24725854_2023_2222162 crossref_primary_10_1177_1471082X17748034 crossref_primary_10_1111_poms_13892 crossref_primary_10_1016_j_csda_2018_08_001 crossref_primary_10_1080_01621459_2020_1844211 crossref_primary_10_1002_sta4_286 crossref_primary_10_1016_j_eswa_2023_120711 crossref_primary_10_1007_s13163_022_00436_z crossref_primary_10_1080_10618600_2024_2414113 crossref_primary_10_1109_ACCESS_2025_3544244 crossref_primary_10_1016_j_csda_2022_107421 crossref_primary_10_1515_dema_2025_0108 crossref_primary_10_1007_s11222_018_9818_2 crossref_primary_10_1093_biostatistics_kxaa023 crossref_primary_10_1016_j_csda_2018_07_006 crossref_primary_10_1007_s00180_023_01364_2 crossref_primary_10_1016_j_scienta_2022_111414 crossref_primary_10_1093_jrsssc_qlad015 crossref_primary_10_1080_03610918_2024_2407880 crossref_primary_10_1080_10618600_2023_2175687 crossref_primary_10_1016_j_wocn_2022_101191 crossref_primary_10_1007_s10462_023_10698_8 crossref_primary_10_1007_s13253_024_00601_5 crossref_primary_10_1080_00949655_2024_2309951 crossref_primary_10_15672_hujms_1294382 crossref_primary_10_1016_j_jmva_2018_11_007 crossref_primary_10_1007_s13253_021_00477_9 crossref_primary_10_1080_10618600_2020_1853550 crossref_primary_10_3390_f14020304 crossref_primary_10_1016_j_spl_2018_02_032 crossref_primary_10_1093_biomet_asae052 crossref_primary_10_1080_10485252_2018_1546386 crossref_primary_10_1111_rssb_12544 crossref_primary_10_7717_peerj_6876 crossref_primary_10_1038_s41598_022_06935_9 crossref_primary_10_1177_1471082X231198907 crossref_primary_10_1371_journal_pone_0213172 crossref_primary_10_1002_wics_1627 crossref_primary_10_1002_cjs_11747 crossref_primary_10_1038_s41467_023_43165_7 crossref_primary_10_1093_jrsssc_qlae016 crossref_primary_10_2139_ssrn_4170114 crossref_primary_10_1111_jpn_12964 crossref_primary_10_1080_00401706_2021_2008502 crossref_primary_10_1002_bimj_202300363 crossref_primary_10_1080_01621459_2020_1870984 crossref_primary_10_1080_00401706_2021_2024453 crossref_primary_10_1214_20_AOAS1425 crossref_primary_10_1007_s00180_022_01240_5 crossref_primary_10_1016_j_csda_2020_106912 crossref_primary_10_1371_journal_pone_0310991 crossref_primary_10_1016_j_csda_2021_107303 crossref_primary_10_1080_02664763_2018_1544231 crossref_primary_10_1080_10618600_2024_2374576 crossref_primary_10_1137_23M1590287 |
Cites_doi | 10.1111/j.1467-842X.2008.00507.x 10.1093/biomet/asv069 10.1111/j.1467-9469.2011.00760.x 10.1007/s10182-009-0113-6 10.1017/CBO9780511754098 10.1198/016214506000000465 10.1198/016214504000001745 10.1080/10618600.2012.729985 10.1080/01621459.2016.1195744 10.1111/j.1467-9868.2006.00539.x 10.1214/10-AOAS407 10.1111/rssc.12077 10.1016/S0167-7152(99)00036-X 10.1198/jcgs.2011.09220 10.1007/978-1-4612-6333-3 10.1198/016214507000000527 10.2307/3316063 10.1214/07-STS242 10.1111/j.1467-9868.2010.00740.x 10.2202/1557-4679.1246 10.1093/biomet/asu054 10.1214/009053605000000660 10.1111/j.2517-6161.1993.tb01939.x 10.1198/jasa.2011.ap09272 10.1214/14-EJS901 10.1214/16-EJS1145 10.1111/j.1467-9876.2005.00510.x 10.1080/01621459.2015.1006729 10.1198/jcgs.2009.08011 10.1007/s11222-014-9473-1 10.1111/j.1541-0420.2012.01808.x 10.1093/biostatistics/kxs051 10.1080/00401706.1999.10485591 10.1198/1061860043010 10.1007/b98888 10.1198/016214504000001556 10.1201/b11038 10.1214/14-AOAS748 10.1080/00401706.2013.863163 10.1214/11-EJS619 10.1214/009053604000001156 10.1002/bimj.201300072 10.1214/10-EJS575 10.1111/rssb.12017 10.1111/j.1541-0420.2006.00574.x 10.1080/10618600.2014.901914 10.1016/j.csda.2015.08.020 10.1111/j.1467-9868.2011.01034.x 10.1177/1471082X15617594 10.1214/08-AOAS206 10.1146/annurev-statistics-041715-033624 10.1214/ss/1177013525 10.1080/01621459.1998.10473801 10.1198/106186008X386599 10.1111/j.1541-0420.2008.01112.x 10.1098/rsta.1909.0016 10.1201/9781420010404 10.1111/j.2517-6161.1991.tb01844.x 10.1177/1471082X14566913 10.1007/s00180-014-0548-4 10.1007/978-0-387-98185-7 10.1002/sim.3940 10.1007/s11222-016-9662-1 10.1002/sta4.20 10.1111/biom.12236 10.1007/978-1-4614-3655-3 10.1002/bimj.201300220 10.1111/biom.12299 10.1080/01621459.2015.1016224 10.1111/sjos.12075 10.1111/j.1467-9868.2006.00543.x 10.1214/ss/1038425655 10.1111/j.1467-9868.2010.00749.x 10.1093/biomet/87.3.587 10.1111/j.1467-9876.2011.01033.x 10.1017/CBO9780511755453 10.1198/106186002844 10.1198/jcgs.2011.10122 10.18637/jss.v051.i04 10.1198/004017004000000626 10.1093/biomet/ast038 10.1080/01621459.2014.889021 10.1080/01621459.2016.1180986 10.1146/annurev-statistics-010814-020413 10.1016/j.csda.2008.09.009 10.1214/16-EJS1123 10.1111/j.1541-0420.2007.00758.x 10.1198/jcgs.2010.10007 10.1111/biom.12278 10.1111/insr.12163 10.1016/j.csda.2007.10.022 10.1214/009053607000000217 10.1111/rssb.12125 10.1016/S0169-7439(03)00029-7 10.1016/j.csda.2014.07.001 10.1080/10618600.2012.743437 |
ContentType | Journal Article |
Copyright | 2017 SAGE Publications |
Copyright_xml | – notice: 2017 SAGE Publications |
DBID | AAYXX CITATION |
DOI | 10.1177/1471082X16681317 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1477-0342 |
EndPage | 35 |
ExternalDocumentID | 10_1177_1471082X16681317 10.1177_1471082X16681317 |
GroupedDBID | -TM .2L 01A 0R~ 123 1~K 29Q 31W 31X 4.4 54M 56W 5VS 7WY 88I 8FE 8FG 8FL 8R4 8R5 8V8 AADIR AADUE AAGLT AAJPV AAQDB AAQXI AARIX AATAA ABAWP ABCCA ABCJG ABEIX ABFXH ABHQH ABIDT ABJCF ABKRH ABPNF ABQPY ABQXT ABRHV ABTDE ABUJY ABUWG ACDXX ACFUR ACFZE ACGFS ACGOD ACIWK ACJER ACLZU ACOFE ACOXC ACROE ACRPL ACSIQ ACUIR ADDLC ADEBD ADNMO ADNON ADRRZ ADTOS ADYCS AEDXQ AEMOZ AENEX AEOBU AESZF AEUHG AEVPJ AEWDL AEWHI AEXNY AFEET AFKRA AFKRG AFMOU AFQAA AFUIA AFWMB AGDVU AGKLV AGNHF AGNWV AGQPQ AGWNL AHDMH AHHFK AHWHD AJUZI ALFTD ALMA_UNASSIGNED_HOLDINGS AMVHM ANDLU ARAPS ARTOV ASPBG AUTPY AUVAJ AVWKF AYPQM AZFZN AZQEC B8T B8Z BDZRT BENPR BEZIV BGLVJ BMVBW BPACV BPHCQ CAG CCPQU CEADM COF CS3 DG~ DOPDO DV7 DV8 DWQXO EBS EJD EMI EST F5P FEDTE FHBDP FRNLG GNUQQ GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION H13 HCIFZ HF~ HVGLF HZ~ J8X J9A K1G K60 K6V K6~ K7- L6V M0C M2P M7S N9A O9- P.B P2P P62 PHGZM PHGZT PQBIZ PQBZA PQQKQ PROAC PTHSS Q2X Q7P ROL S01 SASJQ SAUOL SCNPE SFC SFK SFT SGU SGV SHB SPJ SSDHQ TH9 TN5 ZPLXX ZPPRI ~32 AAYXX ACCVC AJGYC AMNSR CITATION |
ID | FETCH-LOGICAL-c281t-2909a4253ea39e74b201cf49eba6b913364d2fd97c0df07e0d27955ac19f4f543 |
ISSN | 1471-082X |
IngestDate | Tue Jul 01 05:24:15 EDT 2025 Thu Apr 24 23:07:04 EDT 2025 Tue Jun 17 22:48:49 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Keywords | functional additive mixed model GAMLSS functional principal components gradient boosting Functional data penalized splines |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c281t-2909a4253ea39e74b201cf49eba6b913364d2fd97c0df07e0d27955ac19f4f543 |
PageCount | 35 |
ParticipantIDs | crossref_primary_10_1177_1471082X16681317 crossref_citationtrail_10_1177_1471082X16681317 sage_journals_10_1177_1471082X16681317 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20170200 2017-02-00 |
PublicationDateYYYYMMDD | 2017-02-01 |
PublicationDate_xml | – month: 2 year: 2017 text: 20170200 |
PublicationDecade | 2010 |
PublicationPlace | New Delhi, India |
PublicationPlace_xml | – name: New Delhi, India |
PublicationTitle | Statistical modelling |
PublicationYear | 2017 |
Publisher | SAGE Publications |
Publisher_xml | – name: SAGE Publications |
References | Marx, Eilers 1999; 41 Usset, Staicu, Maity 2016; 94 Scheipl, Staicu, Greven 2015; 24 Swihart, Goldsmith, Crainiceanu 2014; 56 Ramsay, Dalzell 1991; 33 Currie, Durban, Eilers 2006 Goldsmith, Huang, Crainiceanu 2014; 23 Malfait, Ramsay 2003; 31 Goldsmith, Bobb, Crainiceanu, Caffo, Reich 2012; 20 Mercer 1909; 209 Gertheiss, Maity, Staicu 2013; 2 Hofner, Mayr, Fenske, Schmid 2016 Fenske, Kneib, Hothorn 2011; 106 Lang, Brezger 2004; 13 Marron, Ramsay, Sangalli, Srivastava 2014; 8 Herrick 2015 Marra, Wood 2012; 39 Goldsmith, Greven, Crainiceanu 2013; 69 Rigby, Stasinopoulos 2005; 54 Gervini 2015; 102 Van der Linde 2009; 93 Goldsmith, Zipunnikov, Schrack 2015; 71 O'Sullivan 1986; 1 Wang, Chiou, Mueller 2016; 3 Greven, Crainiceanu, Küchenhoff, Peters 2008; 17 Wood 2013; 100 Reiss, Ogden 2007; 102 McLean, Hooker, Ruppert 2015; 25 Di, Crainiceanu, Caffo, Punjabi 2009; 3 Dryden 2014; 56 Wood 2011; 73 Hadjipantelis, Aston, Müller, Evans 2015; 110 Müller, Stadtmüller 2005; 33 Shi, Wang, Murray-Smith, Titterington 2007; 63 Wang, Marron 2007; 35 Yao, Müller, Wang 2005; 100 Marron, Alonso 2014; 56 Meinshausen, Bühlmann 2010; 72 Scheipl, Greven 2016; 10 Huang, Scheipl, Goldsmith, Gellar, Harezlak, McLean, Swihart, Xiao, Crainiceanu, Reiss 2016 Kneib, Hothorn, Tutz 2009; 65 Eilers, Marx 1996; 11 Shou, Zipunnikov, Crainiceanu, Greven 2015; 71 Fuchs, Scheipl, Greven 2015; 81 Reiss, Huang, Mennes 2010; 6 Zipunnikov, Greven, Shou, Caffo, Reich, Crainiceanu 2014; 8 Eilers, Marx 2002; 11 Morris, Carroll 2006; 68 Gertheiss, Goldsmith, Crainiceanu, Greven 2013; 14 Wood, Pya, Säfken 2016 Reimherr, Nicolae 2016; 111 Gasparrini, Armstrong, Kenward 2010; 29 Marx, Eilers 2005; 47 Yao, Müller, Wang 2005; 33 Hofner, Hothorn, Kneib, Schmid 2012; 20 Wang, Shi 2014; 109 Hastie, Mallows 1993; 35 Morris 2015; 2 Zipunnikov, Caffo, Yousem, Davatzikos, Schwartz, Crainiceanu 2011; 20 Eilers, Marx 2003; 66 Meyer, Coull, Versace, Cinciripini, Morris 2015; 71 Mayr, Fenske, Hofner, Kneib, Schmid 2012; 61 Scheipl, Greven, Küchenhoff 2008; 52 Febrero-Bande, Oviedo de la Fuente 2012; 51 Morris, Baladandayuthapani, Herrick, Sanna, Gutstein 2011; 5 Cardot, Ferraty, Sarda 1999; 45 Morris, Arroyo, Coull, Ryan, Herrick, Gortmaker 2006; 101 Shah, Samworth 2013; 75 Peng, Paul 2012; 18 Goldsmith, Wand, Crainiceanu 2011; 5 Loève 1945; 220 Wood 2006; 62 Ettinger, Perotto, Sangalli 2016; 103 Staicu, Li, Crainiceanu, Ruppert 2014; 41 Greven, Crainiceanu, Caffo, Reich 2010; 4 Schmid, Hothorn 2008; 53 Bühlmann, Hothorn 2007; 22 Staniswalis, Lee 1998; 93 Karhunen 1947; 37 Wand, Ormerod 2008; 50 Brockhaus, Scheipl, Hothorn, Greven 2015; 15 James, Hastie, Sugar 2000; 87 McLean, Hooker, Staicu, Scheipl, Ruppert 2014; 23 James, Silverman 2005; 100 Hastie, Tibshirani 1993; 55 Cederbaum, Pouplier, Hoole, Greven 2016; 16 Ivanescu, Staicu, Scheipl, Greven 2015; 30 Hall, Hooker 2016; 78 Obermeier, Scheipl, Heumann, Wassermann, Küchenhoff 2015; 64 Hothorn, Kneib, Bühlmann 2014; 76 Scheipl, Gertheiss, Greven 2016; 10 bibr17-1471082X16681317 bibr100-1471082X16681317 bibr33-1471082X16681317 bibr76-1471082X16681317 bibr4-1471082X16681317 Brockhaus S (bibr1-1471082X16681317) 2015; 1 bibr109-1471082X16681317 bibr86-1471082X16681317 bibr25-1471082X16681317 bibr68-1471082X16681317 bibr94-1471082X16681317 bibr6-1471082X16681317 bibr61-1471082X16681317 bibr58-1471082X16681317 bibr74-1471082X16681317 bibr45-1471082X16681317 bibr82-1471082X16681317 Karhunen K (bibr47-1471082X16681317) 1947; 37 bibr92-1471082X16681317 bibr48-1471082X16681317 bibr27-1471082X16681317 bibr84-1471082X16681317 bibr71-1471082X16681317 bibr53-1471082X16681317 bibr66-1471082X16681317 bibr80-1471082X16681317 bibr55-1471082X16681317 bibr98-1471082X16681317 bibr72-1471082X16681317 bibr13-1471082X16681317 bibr63-1471082X16681317 bibr56-1471082X16681317 bibr112-1471082X16681317 bibr89-1471082X16681317 bibr103-1471082X16681317 bibr30-1471082X16681317 bibr104-1471082X16681317 bibr7-1471082X16681317 Ferraty F (bibr19-1471082X16681317) 2006 bibr21-1471082X16681317 bibr64-1471082X16681317 bibr28-1471082X16681317 bibr10-1471082X16681317 bibr107-1471082X16681317 bibr115-1471082X16681317 Hofner B (bibr39-1471082X16681317) 2016 bibr44-1471082X16681317 bibr52-1471082X16681317 bibr91-1471082X16681317 bibr67-1471082X16681317 bibr78-1471082X16681317 bibr41-1471082X16681317 Hastie T (bibr35-1471082X16681317) 1993; 55 bibr75-1471082X16681317 bibr83-1471082X16681317 bibr42-1471082X16681317 bibr85-1471082X16681317 bibr69-1471082X16681317 bibr26-1471082X16681317 bibr50-1471082X16681317 bibr93-1471082X16681317 bibr60-1471082X16681317 bibr16-1471082X16681317 bibr59-1471082X16681317 bibr77-1471082X16681317 bibr108-1471082X16681317 Herrick R (bibr37-1471082X16681317) 2015 bibr3-1471082X16681317 Hastie TJ (bibr36-1471082X16681317) 2011 bibr79-1471082X16681317 bibr87-1471082X16681317 bibr95-1471082X16681317 bibr111-1471082X16681317 bibr24-1471082X16681317 bibr22-1471082X16681317 bibr114-1471082X16681317 bibr11-1471082X16681317 bibr97-1471082X16681317 bibr106-1471082X16681317 bibr14-1471082X16681317 bibr101-1471082X16681317 bibr32-1471082X16681317 bibr40-1471082X16681317 bibr113-1471082X16681317 bibr9-1471082X16681317 bibr8-1471082X16681317 bibr20-1471082X16681317 bibr105-1471082X16681317 Huang L (bibr43-1471082X16681317) 2016 bibr73-1471082X16681317 bibr99-1471082X16681317 bibr29-1471082X16681317 bibr46-1471082X16681317 bibr90-1471082X16681317 bibr12-1471082X16681317 bibr81-1471082X16681317 bibr38-1471082X16681317 bibr31-1471082X16681317 bibr15-1471082X16681317 bibr102-1471082X16681317 Loève M (bibr51-1471082X16681317) 1945; 220 bibr2-1471082X16681317 bibr65-1471082X16681317 bibr5-1471082X16681317 bibr54-1471082X16681317 Hastie T (bibr34-1471082X16681317) 1993; 35 bibr18-1471082X16681317 bibr70-1471082X16681317 bibr88-1471082X16681317 bibr57-1471082X16681317 bibr110-1471082X16681317 bibr49-1471082X16681317 bibr62-1471082X16681317 bibr96-1471082X16681317 bibr23-1471082X16681317 |
References_xml | – year: 2016 – volume: 65 start-page: 626 year: 2009 end-page: 34 article-title: Variable selection and model choice in geoadditive regression models – volume: 35 start-page: 1849 year: 2007 end-page: 73 article-title: Object-oriented data analysis: Sets of trees – volume: 15 start-page: 279 year: 2015 end-page: 300 article-title: The functional linear array model – volume: 45 start-page: 11 year: 1999 end-page: 22 article-title: Functional linear model – volume: 5 start-page: 894 year: 2011 end-page: 923 article-title: Automated analysis of quantitative image data using isomorphic functional mixed models, with application to proteomics data – volume: 100 start-page: 565 year: 2005 end-page: 76 article-title: Functional adaptive model estimation – volume: 10 start-page: 495 year: 2016 end-page: 526 article-title: Identifiability in penalized function-on-function regression models – volume: 29 start-page: 2224 year: 2010 end-page: 34 article-title: Distributed lag non-linear models – volume: 2 start-page: 321 year: 2015 end-page: 59 article-title: Functional regression – start-page: 259 year: 2006 end-page: 80 publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) – volume: 106 start-page: 494 year: 2011 end-page: 510 article-title: Identifying risk factors for severe childhood malnutrition by boosting additive quantile regression – volume: 71 start-page: 344 year: 2015 end-page: 53 article-title: Generalized multilevel function-on-scalar regression and principal component analysis – volume: 22 start-page: 477 year: 2007 end-page: 505 article-title: Boosting algo- rithms: Regularization, prediction and model fitting – volume: 54 start-page: 507 year: 2005 end-page: 54 article-title: Generalized additive models for location, scale and shape – volume: 63 start-page: 714 year: 2007 end-page: 23 article-title: Gaussian process functional regression modeling for batch data – volume: 11 start-page: 89 year: 1996 end-page: 121 article-title: Flexible smoothing with B-splines and penalties – volume: 71 start-page: 247 year: 2015 end-page: 57 article-title: Structured functional principal component analysis – volume: 33 start-page: 2873 year: 2005 end-page: 903 article-title: Functional linear regression analysis for longitudinal data – volume: 31 start-page: 115 year: 2003 end-page: 28 article-title: The historical functional linear model publication-title: Canadian Journal of Statistics – volume: 1 start-page: 502 year: 1986 end-page: 18 article-title: A statistical perspective on ill-posed inverse problems – volume: 102 start-page: 984 year: 2007 end-page: 96 article-title: Functional principal component regression and functional partial least squares – volume: 17 start-page: 870 year: 2008 end-page: 91 article-title: Restricted likelihood ratio testing for zero variance components in linear mixed models – volume: 23 start-page: 249 year: 2014 end-page: 69 article-title: Functional generalized additive models – volume: 64 start-page: 395 year: 2015 end-page: 412 article-title: Flexible dis- tributed lags for modelling earthquake data – volume: 72 start-page: 417 year: 2010 end-page: 73 article-title: Stability selection – volume: 111 start-page: 407 year: 2016 end-page: 22 article-title: Estimating variance components in functional linear models with applications to genetic heritability – volume: 51 start-page: 1 year: 2012 end-page: 28 article-title: Statistical computing in functional data analysis: The R package – volume: 41 start-page: 1 year: 1999 end-page: 13 article-title: Generalized linear regression on sampled signals and curves: A P-spline approach – volume: 35 start-page: 140 year: 1993 end-page: 43 article-title: Discussion of ‘A statistical view of some chemometrics reg- ression tools,’ by I. E. Frank and J. H. Friedman – year: 2016 article-title: Smoothing parameter and model selection for general smooth models – volume: 8 start-page: 1697 year: 2014 end-page: 702 article-title: Statistics of time warpings and phase variations – volume: 62 start-page: 1025 year: 2006 end-page: 36 article-title: Low-rank scale-invariant tensor product smooths for generalized additive mixed models – volume: 53 start-page: 298 year: 2008 end-page: 311 article-title: Boosting additive models using component-wise P-splines – volume: 93 start-page: 1403 year: 1998 end-page: 04 article-title: Nonparametric regression analysis of longitudinal data – volume: 2 start-page: 86 year: 2013 end-page: 101 article-title: Variable selection in generalized functional linear models – volume: 75 start-page: 55 year: 2013 end-page: 80 article-title: Variable selection with error control: another look at stability selection – volume: 209 start-page: 415 year: 1909 end-page: 46 article-title: Functions of positive and negative type, and their connection with the theory of integral equations – volume: 37 start-page: 1 year: 1947 end-page: 79 – volume: 20 start-page: 956 year: 2012 end-page: 71 article-title: A framework for unbiased model selection based on boosting – volume: 56 start-page: 483 year: 2014 end-page: 93 article-title: Restricted likelihood ratio tests for functional effects in the functional linear model – volume: 33 start-page: 539 year: 1991 end-page: 72 article-title: Some tools for functional data analysis – volume: 102 start-page: 1 year: 2015 end-page: 14 article-title: Warped functional regression – volume: 24 start-page: 477 year: 2015 end-page: 501 article-title: Functional additive mixed models – volume: 94 start-page: 317 year: 2016 end-page: 30 article-title: Interaction models for functional regression – volume: 10 start-page: 1455 year: 2016 end-page: 92 article-title: Generalized functional additive mixed models – volume: 109 start-page: 1123 year: 2014 end-page: 33 article-title: Generalized Gaussian process regression model for non-Gaussian functional data – volume: 16 start-page: 67 year: 2016 end-page: 88 article-title: Functional linear mixed models for irregularly or sparsely sampled data – volume: 5 start-page: 572 year: 2011 end-page: 602 article-title: Functional regression via variational Bayes – volume: 73 start-page: 3 year: 2011 end-page: 36 article-title: Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models – volume: 110 start-page: 545 year: 2015 end-page: 59 article-title: Unifying amplitude and phase analysis: A compositional data approach to functional multivariate mixed- effects modeling of mandarin Chinese – year: 2016 – volume: 33 start-page: 774 year: 2005 end-page: 805 article-title: Genera- lized functional linear models – volume: 20 start-page: 852 year: 2011 end-page: 73 article-title: Multilevel functional principal component analysis for high-dimensional data – volume: 76 start-page: 3 year: 2014 end-page: 27 article-title: Conditional transformation models – volume: 61 start-page: 403 year: 2012 end-page: 27 article-title: Generalized additive models for location, scale and shape for high dimensional data—A flexible approach based on boosting – volume: 50 start-page: 179 year: 2008 end-page: 98 article-title: On semiparametric regression with O'Sullivan penalized splines – volume: 81 start-page: 38 year: 2015 end-page: 51 article-title: Penalized scalar-on-functions regression with interaction term – volume: 69 start-page: 41 year: 2013 end-page: 51 article-title: Corrected confidence bands for functional data using principal components – volume: 11 start-page: 758 year: 2002 end-page: 83 article-title: Generalized linear additive smooth structures – volume: 8 start-page: 2175 year: 2014 end-page: 202 article-title: Longitudinal high-dimensional principal components analysis with application to diffusion tensor imaging of multiple sclerosis – volume: 25 start-page: 997 year: 2015 end-page: 1008 article-title: Restricted likelihood ratio tests for linearity in scalar-on-function regression – volume: 87 start-page: 587 year: 2000 end-page: 602 article-title: Principal component models for sparse functional data – volume: 3 start-page: 257 year: 2016 end-page: 95 article-title: Review of functional data analysis – volume: 68 start-page: 179 year: 2006 end-page: 99 article-title: Wavelet-based functional mixed models – volume: 18 start-page: 995 year: 2012 end-page: 1015 article-title: A geometric approach to maximum likelihood estimation of the functional principal components from sparse longitudinal data – volume: 55 start-page: 757 year: 1993 end-page: 96 article-title: Varying-coefficient models – year: 2015 – volume: 220 start-page: 469 year: 1945 article-title: Fonctions aléatoires de second ordre – volume: 56 start-page: 732 year: 2014 end-page: 53 article-title: Overview of object oriented data analysis – volume: 93 start-page: 307 year: 2009 end-page: 33 article-title: Bayesian functional principal components analysis for binary and count data – volume: 6 start-page: 1557 year: 2010 end-page: 4679 article-title: Fast function-on-scalar regression with penalized basis expansions – volume: 71 start-page: 563 year: 2015 end-page: 74 article-title: Bayesian function-on- function regression for multilevel functional data – volume: 4 start-page: 1022 year: 2010 end-page: 54 article-title: Longitudinal functional principal component analysis – volume: 78 start-page: 637 year: 2016 end-page: 53 article-title: Truncated linear models for functional data – volume: 66 start-page: 159 year: 2003 end-page: 74 article-title: Multivariate calibration with temperature interaction using two-dimensional penalized signal regression – volume: 23 start-page: 46 year: 2014 end-page: 64 article-title: Smooth scalar-on-image regression via spatial Bayesian variable selection – volume: 100 start-page: 577 year: 2005 end-page: 90 article-title: Functional data analysis for sparse longitudinal data – volume: 39 start-page: 53 year: 2012 end-page: 74 article-title: Coverage proper- ties of confidence intervals for generalized additive model components – volume: 13 start-page: 183 year: 2004 end-page: 212 article-title: Bayesian P-splines – volume: 47 start-page: 13 year: 2005 end-page: 22 article-title: Multidimensional penalized signal regression – volume: 56 start-page: 758 year: 2014 end-page: 60 article-title: Shape and object data analysis – volume: 102 start-page: 984 year: 2007 end-page: 96 article-title: Functional prin- cipal component regression and functional partial least squares – volume: 103 start-page: 71 year: 2016 end-page: 88 article-title: Spatial regression models over two-dimensional manifolds – volume: 100 start-page: 1005 year: 2013 end-page: 10 article-title: A simple test for random effects in regression models – volume: 30 start-page: 539 year: 2015 end-page: 68 article-title: Penalized function-on-function regression – volume: 101 start-page: 1352 year: 2006 end-page: 64 article-title: Using wavelet-based functional mixed models to characterize population heterogeneity in accelerometer profiles: A case study – volume: 41 start-page: 932 year: 2014 end-page: 49 article-title: Likelihood ratio tests for dependent data with applications to longitudinal and functional data analysis – volume: 20 start-page: 830 year: 2012 end-page: 51 article-title: Penalized functional regression – volume: 14 start-page: 447 year: 2013 end-page: 61 article-title: Longitudinal scalar-on- functions regression with application to tractography data – volume: 52 start-page: 3283 year: 2008 end-page: 99 article-title: Size and power of tests for a zero random effect variance or polynomial regression in additive and linear mixed models – volume: 3 start-page: 458 year: 2009 end-page: 88 article-title: Multilevel functional principal component analysis – ident: bibr100-1471082X16681317 doi: 10.1111/j.1467-842X.2008.00507.x – ident: bibr16-1471082X16681317 doi: 10.1093/biomet/asv069 – year: 2015 ident: bibr37-1471082X16681317 publication-title: WFMM – ident: bibr53-1471082X16681317 doi: 10.1111/j.1467-9469.2011.00760.x – ident: bibr2-1471082X16681317 – ident: bibr99-1471082X16681317 doi: 10.1007/s10182-009-0113-6 – ident: bibr49-1471082X16681317 doi: 10.1017/CBO9780511754098 – ident: bibr65-1471082X16681317 doi: 10.1198/016214506000000465 – ident: bibr112-1471082X16681317 doi: 10.1198/016214504000001745 – ident: bibr60-1471082X16681317 doi: 10.1080/10618600.2012.729985 – ident: bibr81-1471082X16681317 – ident: bibr110-1471082X16681317 doi: 10.1080/01621459.2016.1195744 – ident: bibr67-1471082X16681317 doi: 10.1111/j.1467-9868.2006.00539.x – ident: bibr66-1471082X16681317 doi: 10.1214/10-AOAS407 – ident: bibr69-1471082X16681317 doi: 10.1111/rssc.12077 – ident: bibr7-1471082X16681317 doi: 10.1016/S0167-7152(99)00036-X – ident: bibr38-1471082X16681317 doi: 10.1198/jcgs.2011.09220 – ident: bibr10-1471082X16681317 doi: 10.1007/978-1-4612-6333-3 – ident: bibr82-1471082X16681317 doi: 10.1198/016214507000000527 – ident: bibr52-1471082X16681317 doi: 10.2307/3316063 – ident: bibr6-1471082X16681317 doi: 10.1214/07-STS242 – ident: bibr61-1471082X16681317 doi: 10.1111/j.1467-9868.2010.00740.x – ident: bibr80-1471082X16681317 doi: 10.2202/1557-4679.1246 – ident: bibr24-1471082X16681317 doi: 10.1093/biomet/asu054 – ident: bibr113-1471082X16681317 doi: 10.1214/009053605000000660 – ident: bibr72-1471082X16681317 – volume: 55 start-page: 757 year: 1993 ident: bibr35-1471082X16681317 publication-title: Journal of the Royal Statistical Society. Series B doi: 10.1111/j.2517-6161.1993.tb01939.x – ident: bibr91-1471082X16681317 – ident: bibr18-1471082X16681317 doi: 10.1198/jasa.2011.ap09272 – ident: bibr55-1471082X16681317 doi: 10.1214/14-EJS901 – ident: bibr85-1471082X16681317 doi: 10.1214/16-EJS1145 – ident: bibr108-1471082X16681317 – ident: bibr83-1471082X16681317 doi: 10.1111/j.1467-9876.2005.00510.x – ident: bibr4-1471082X16681317 – ident: bibr32-1471082X16681317 doi: 10.1080/01621459.2015.1006729 – ident: bibr71-1471082X16681317 doi: 10.1198/jcgs.2009.08011 – ident: bibr59-1471082X16681317 doi: 10.1007/s11222-014-9473-1 – ident: bibr26-1471082X16681317 doi: 10.1111/j.1541-0420.2012.01808.x – ident: bibr78-1471082X16681317 doi: 10.1198/016214507000000527 – ident: bibr22-1471082X16681317 doi: 10.1093/biostatistics/kxs051 – volume: 1 start-page: 117 volume-title: Proceedings of the 30th International Workshop on Statistical Modelling year: 2015 ident: bibr1-1471082X16681317 – ident: bibr56-1471082X16681317 doi: 10.1080/00401706.1999.10485591 – ident: bibr50-1471082X16681317 doi: 10.1198/1061860043010 – ident: bibr75-1471082X16681317 doi: 10.1007/b98888 – ident: bibr46-1471082X16681317 doi: 10.1198/016214504000001556 – volume: 37 start-page: 1 year: 1947 ident: bibr47-1471082X16681317 publication-title: Über Lineare Methoden in der Wahrscheinlichkeitsrechnung. Annales Academiae Scientiarum Fennicae – year: 2016 ident: bibr39-1471082X16681317 publication-title: gamboostLSS: Boosting Methods for GAMLSS Models – ident: bibr92-1471082X16681317 doi: 10.1201/b11038 – ident: bibr115-1471082X16681317 doi: 10.1214/14-AOAS748 – ident: bibr97-1471082X16681317 doi: 10.1080/00401706.2013.863163 – ident: bibr28-1471082X16681317 doi: 10.1214/11-EJS619 – ident: bibr68-1471082X16681317 doi: 10.1214/009053604000001156 – ident: bibr54-1471082X16681317 doi: 10.1002/bimj.201300072 – ident: bibr30-1471082X16681317 doi: 10.1214/10-EJS575 – ident: bibr42-1471082X16681317 doi: 10.1111/rssb.12017 – ident: bibr105-1471082X16681317 doi: 10.1111/j.1541-0420.2006.00574.x – ident: bibr88-1471082X16681317 doi: 10.1080/10618600.2014.901914 – ident: bibr98-1471082X16681317 doi: 10.1016/j.csda.2015.08.020 – ident: bibr76-1471082X16681317 – ident: bibr90-1471082X16681317 doi: 10.1111/j.1467-9868.2011.01034.x – ident: bibr8-1471082X16681317 doi: 10.1177/1471082X15617594 – year: 2016 ident: bibr43-1471082X16681317 publication-title: refund: Regression with Functional Data – ident: bibr11-1471082X16681317 doi: 10.1214/08-AOAS206 – ident: bibr103-1471082X16681317 doi: 10.1146/annurev-statistics-041715-033624 – ident: bibr70-1471082X16681317 doi: 10.1214/ss/1177013525 – ident: bibr96-1471082X16681317 doi: 10.1080/01621459.1998.10473801 – ident: bibr31-1471082X16681317 doi: 10.1198/106186008X386599 – ident: bibr48-1471082X16681317 doi: 10.1111/j.1541-0420.2008.01112.x – ident: bibr62-1471082X16681317 doi: 10.1098/rsta.1909.0016 – ident: bibr104-1471082X16681317 doi: 10.1201/9781420010404 – ident: bibr73-1471082X16681317 doi: 10.1111/j.2517-6161.1991.tb01844.x – ident: bibr5-1471082X16681317 doi: 10.1177/1471082X14566913 – ident: bibr44-1471082X16681317 doi: 10.1007/s00180-014-0548-4 – volume: 220 start-page: 469 year: 1945 ident: bibr51-1471082X16681317 publication-title: Comptes Rendus Académie des Sciences – ident: bibr74-1471082X16681317 doi: 10.1007/978-0-387-98185-7 – ident: bibr21-1471082X16681317 doi: 10.1002/sim.3940 – volume: 35 start-page: 140 year: 1993 ident: bibr34-1471082X16681317 publication-title: Technometrics – ident: bibr3-1471082X16681317 doi: 10.1007/s11222-016-9662-1 – ident: bibr23-1471082X16681317 doi: 10.1002/sta4.20 – ident: bibr94-1471082X16681317 doi: 10.1111/biom.12236 – ident: bibr40-1471082X16681317 doi: 10.1007/978-1-4614-3655-3 – ident: bibr12-1471082X16681317 doi: 10.1002/bimj.201300220 – ident: bibr63-1471082X16681317 doi: 10.1111/biom.12299 – ident: bibr77-1471082X16681317 doi: 10.1080/01621459.2015.1016224 – ident: bibr95-1471082X16681317 doi: 10.1111/sjos.12075 – ident: bibr9-1471082X16681317 doi: 10.1111/j.1467-9868.2006.00543.x – ident: bibr41-1471082X16681317 – volume-title: Nonparametric Functional Data Analysis: Theory and Practice year: 2006 ident: bibr19-1471082X16681317 – ident: bibr13-1471082X16681317 doi: 10.1214/ss/1038425655 – ident: bibr106-1471082X16681317 doi: 10.1111/j.1467-9868.2010.00749.x – ident: bibr45-1471082X16681317 doi: 10.1093/biomet/87.3.587 – ident: bibr58-1471082X16681317 doi: 10.1111/j.1467-9876.2011.01033.x – ident: bibr84-1471082X16681317 doi: 10.1017/CBO9780511755453 – ident: bibr109-1471082X16681317 – ident: bibr15-1471082X16681317 doi: 10.1198/106186002844 – ident: bibr114-1471082X16681317 doi: 10.1198/jcgs.2011.10122 – ident: bibr17-1471082X16681317 doi: 10.18637/jss.v051.i04 – ident: bibr57-1471082X16681317 doi: 10.1198/004017004000000626 – ident: bibr107-1471082X16681317 doi: 10.1093/biomet/ast038 – ident: bibr101-1471082X16681317 doi: 10.1080/01621459.2014.889021 – ident: bibr111-1471082X16681317 doi: 10.1080/01621459.2016.1180986 – ident: bibr64-1471082X16681317 doi: 10.1146/annurev-statistics-010814-020413 – ident: bibr89-1471082X16681317 doi: 10.1016/j.csda.2008.09.009 – ident: bibr86-1471082X16681317 doi: 10.1214/16-EJS1123 – ident: bibr93-1471082X16681317 doi: 10.1111/j.1541-0420.2007.00758.x – ident: bibr25-1471082X16681317 doi: 10.1198/jcgs.2010.10007 – ident: bibr29-1471082X16681317 doi: 10.1111/biom.12278 – ident: bibr79-1471082X16681317 doi: 10.1111/insr.12163 – ident: bibr87-1471082X16681317 doi: 10.1016/j.csda.2007.10.022 – ident: bibr102-1471082X16681317 doi: 10.1214/009053607000000217 – ident: bibr33-1471082X16681317 doi: 10.1111/rssb.12125 – ident: bibr14-1471082X16681317 doi: 10.1016/S0169-7439(03)00029-7 – ident: bibr20-1471082X16681317 doi: 10.1016/j.csda.2014.07.001 – ident: bibr27-1471082X16681317 doi: 10.1080/10618600.2012.743437 – volume-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction year: 2011 ident: bibr36-1471082X16681317 |
SSID | ssj0021769 |
Score | 2.3996687 |
Snippet | Abstract
Researchers are increasingly interested in regression models for functional data. This article discusses a comprehensive framework for additive... Researchers are increasingly interested in regression models for functional data. This article discusses a comprehensive framework for additive (mixed) models... |
SourceID | crossref sage |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1 |
Title | A general framework for functional regression modelling |
URI | https://journals.sagepub.com/doi/full/10.1177/1471082X16681317 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LS8MwGA-6XfQgPnG-6EEEkWrbpI8ciziGMFG2wTyNNE1FGd3Ypgf_er80afbQifMSSki_kvzS75F8D4TOfewwJiLfFk5CbcIJscEOwTaNMJc3aVHKZDRy8yFodMh91--W1ex1dMkkueafP8aV_AdV6ANcZZTsCsgaotABz4AvtIAwtH_COJYFkOWh0lVW-lgVboNSWOkzvpF4UZ6uuSp60y9FlVZIpbJZ5GqWUSRzA5RTzodiS61B_mYYeAuAfh0WZ8d1lpT7Sx8dgDhyjBuG4nYgmWzQAbpKGJR9MA6TeRYZzm4FHa-oOJ47IzpV4pHvTDlUYf2gzMC33CCIXKwpzuW_XpBLxlvQ1SnJFymso6oHxoFXQdX4-fGpaQxtNyxKGZrpTa-nbxZpzKkjM758hXrR3kZb2i6wYgXyDloT-S7abJqkuuM9FMaWhtsycFsAtzWF25rCbRk091Gnfte-bdi67oXNvcid2B51KANeigXDVIQkAex4RqhIWJBQF-OApF6W0pA7aeaEwkm9kPo-4y7NSOYTfIAq-SAXh8giNBB-lGLAU8jCZBEDBZUxnqR-mgGJGropp9_jOim8rE3S7y1b9Bq6NG8MVUKUX8ZeyBXt6V9mvHTg0QpEj9HGdC-foMpk9C5OQTGcJGd6H3wBB7VaDA |
linkProvider | SAGE Publications |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BOwADb0R5ekBIDC5J7Dw8VoiqQFOB1EqFJXJspwMooDZd-PXYSRpKEQixn63TyfZ3tr_7DuDMJRbnKnCxsmKGqaAU63sIwSwgwvykBZKbauSw53UG9HboDudafZURnDQNrUp7lB_W1e42deL6NNWwNbQ9L7A1-C1DPTDFCDWotx7vH8LqtmX7eT87Y4_NgM8_ym9zfMGkOUJXjjHtDXiaeVdQS56b00w79r4g3Pgv9zdhvcw8UatYKluwpNJtWAsr2dbJDvgtNCpkqFEyI20hndUig37FoyEaq1FBnU1R3kXHlLPvwqB93b_q4LKzAhZOYGfYYRbjercSxQlTPo11GiASylTMvZjpa6tHpZNI5gtLJpavLOn4zHW5sFlCE5eSPailr6naB0SZp9xAEkIdZVpfBVynQJyLWLoy0VM04HIW20iUsuOm-8VLZJdK44shacBFNeKtkNz4xfbcRDqaxf1Hw4O_Gp7CSqcfdqPuTe_uEFYdg-I5SfsIatl4qo51DpLFJ-Vq-wALAM2c |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWglRAc2BFlzQEhcXCbeEniYwVUZWlVJCqVU-R46QEUqja98PXYiVugCIS4jy1nZPvNxG_eAHBGsc-5iilUfsogEYRAk4dgyGIs7EtaLLmtRu50w3af3A7owHFzbC2M8-CkbmlVZkXFZW1P90jqhntjbATmRjXQNQjCMA4MAC6DqsEphCqg2nzqPXTmGVcQFT3trD20Az7eKb_N8QWXPpG6CpxpbZTNVCeFPKGllzzXp7lZ3NuCeOO_P2ETrLsI1GuWW2YLLKlsG6x15vKtkx0QNb1hKUft6Rl5yzPRrWdRsPx56I3VsKTQZl7RTceWte-Cfuv68bINXYcFKFAc5BAxn3FzarHimKmIpCYcEJowlfIwZSZ9DYlEWrJI-FL7kfIlihilXARME00J3gOV7DVT-8AjLFQ0lhgTpGwLrJibUIhzkUoqtZmiBhoz_ybCyY_bLhgvSeAUxxddUgMX8xGjUnrjF9tz6-1k5vsfDQ_-angKVnpXreT-pnt3CFaRBfOCq30EKvl4qo5NKJKnJ27DvQMEYNAR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+general+framework+for+functional+regression+modelling&rft.jtitle=Statistical+modelling&rft.au=Greven%2C+Sonja&rft.au=Scheipl%2C+Fabian&rft.date=2017-02-01&rft.issn=1471-082X&rft.eissn=1477-0342&rft.volume=17&rft.issue=1-2&rft.spage=1&rft.epage=35&rft_id=info:doi/10.1177%2F1471082X16681317&rft.externalDBID=n%2Fa&rft.externalDocID=10_1177_1471082X16681317 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-082X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-082X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-082X&client=summon |