Enhanced proton conduction of crystalline organic salt hybrid membranes and the performance of fuel cells
Among the components of a proton exchange membrane fuel cell (PEMFC), the proton exchange membrane (PEM) is an essential constituent part of the fuel cell. Here, a crystalline organic salt ( HCOS-1 ) with amino and sulfonate groups has been synthesized. HCOS-1 exhibited a high proton conductivity of...
Saved in:
Published in | Materials chemistry frontiers Vol. 6; no. 22; pp. 342 - 348 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Royal Society of Chemistry
07.11.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2052-1537 2052-1537 |
DOI | 10.1039/d2qm00656a |
Cover
Loading…
Abstract | Among the components of a proton exchange membrane fuel cell (PEMFC), the proton exchange membrane (PEM) is an essential constituent part of the fuel cell. Here, a crystalline organic salt (
HCOS-1
) with amino and sulfonate groups has been synthesized.
HCOS-1
exhibited a high proton conductivity of 3.23 × 10
−3
S cm
−1
at 100 °C and 93% relative humidity (RH). In order to improve its proton conductivity,
HCOS-1
was blended with Nafion to prepare a composite membrane. At 100 °C and 98% RH, the composite membrane containing 6 wt%
HCOS-1
exhibits a higher proton conductivity of 7.24 × 10
−3
S cm
−1
, which is more than twice compared with 3.35 × 10
−3
S cm
−1
of the recast Nafion membrane. Compared with the recast Nafion membrane, the maximum power density of the hydrogen-oxygen fuel cell using the 6 wt%
HCOS-1
composite membrane at 80 °C and 100% RH has increased by 9.95%, from 815 mW cm
−2
to 896 mW cm
−2
.
The hybrid Nafion membranes of a hydrogen-bonded crystalline organic salt material are used for proton conduction and proton exchange membrane fuel cell applications. |
---|---|
AbstractList | Among the components of a proton exchange membrane fuel cell (PEMFC), the proton exchange membrane (PEM) is an essential constituent part of the fuel cell. Here, a crystalline organic salt (
HCOS-1
) with amino and sulfonate groups has been synthesized.
HCOS-1
exhibited a high proton conductivity of 3.23 × 10
−3
S cm
−1
at 100 °C and 93% relative humidity (RH). In order to improve its proton conductivity,
HCOS-1
was blended with Nafion to prepare a composite membrane. At 100 °C and 98% RH, the composite membrane containing 6 wt%
HCOS-1
exhibits a higher proton conductivity of 7.24 × 10
−3
S cm
−1
, which is more than twice compared with 3.35 × 10
−3
S cm
−1
of the recast Nafion membrane. Compared with the recast Nafion membrane, the maximum power density of the hydrogen-oxygen fuel cell using the 6 wt%
HCOS-1
composite membrane at 80 °C and 100% RH has increased by 9.95%, from 815 mW cm
−2
to 896 mW cm
−2
.
The hybrid Nafion membranes of a hydrogen-bonded crystalline organic salt material are used for proton conduction and proton exchange membrane fuel cell applications. Among the components of a proton exchange membrane fuel cell (PEMFC), the proton exchange membrane (PEM) is an essential constituent part of the fuel cell. Here, a crystalline organic salt (HCOS-1) with amino and sulfonate groups has been synthesized. HCOS-1 exhibited a high proton conductivity of 3.23 × 10−3 S cm−1 at 100 °C and 93% relative humidity (RH). In order to improve its proton conductivity, HCOS-1 was blended with Nafion to prepare a composite membrane. At 100 °C and 98% RH, the composite membrane containing 6 wt% HCOS-1 exhibits a higher proton conductivity of 7.24 × 10−3 S cm−1, which is more than twice compared with 3.35 × 10−3 S cm−1 of the recast Nafion membrane. Compared with the recast Nafion membrane, the maximum power density of the hydrogen–oxygen fuel cell using the 6 wt% HCOS-1 composite membrane at 80 °C and 100% RH has increased by 9.95%, from 815 mW cm−2 to 896 mW cm−2. Among the components of a proton exchange membrane fuel cell (PEMFC), the proton exchange membrane (PEM) is an essential constituent part of the fuel cell. Here, a crystalline organic salt (HCOS-1) with amino and sulfonate groups has been synthesized. HCOS-1 exhibited a high proton conductivity of 3.23 × 10 −3 S cm −1 at 100 °C and 93% relative humidity (RH). In order to improve its proton conductivity, HCOS-1 was blended with Nafion to prepare a composite membrane. At 100 °C and 98% RH, the composite membrane containing 6 wt% HCOS-1 exhibits a higher proton conductivity of 7.24 × 10 −3 S cm −1 , which is more than twice compared with 3.35 × 10 −3 S cm −1 of the recast Nafion membrane. Compared with the recast Nafion membrane, the maximum power density of the hydrogen–oxygen fuel cell using the 6 wt% HCOS-1 composite membrane at 80 °C and 100% RH has increased by 9.95%, from 815 mW cm −2 to 896 mW cm −2 . |
Author | Yang, Yan Bai, Xiang-Tian Li, Xin-Mei Cao, Li-Hui Chen, Xu-Yong Zhao, Fang |
AuthorAffiliation | Shaanxi Key Laboratory of Chemical Additives for Industry Shaanxi University of Science and Technology College of Chemistry and Chemical Engineering |
AuthorAffiliation_xml | – name: College of Chemistry and Chemical Engineering – name: Shaanxi University of Science and Technology – name: Shaanxi Key Laboratory of Chemical Additives for Industry |
Author_xml | – sequence: 1 givenname: Yan surname: Yang fullname: Yang, Yan – sequence: 2 givenname: Xu-Yong surname: Chen fullname: Chen, Xu-Yong – sequence: 3 givenname: Xin-Mei surname: Li fullname: Li, Xin-Mei – sequence: 4 givenname: Fang surname: Zhao fullname: Zhao, Fang – sequence: 5 givenname: Xiang-Tian surname: Bai fullname: Bai, Xiang-Tian – sequence: 6 givenname: Li-Hui surname: Cao fullname: Cao, Li-Hui |
BookMark | eNptkUtLAzEUhYNUsNZu3AsBd8JoHp3XstT6gIoIuh4ydxKbkknaJLPov3fGioq4umdx7nc5556ikXVWInROyTUlvLxp2K4lJEszcYTGjKQsoSnPR7_0CZqGsCGE0DxnnNAx0ku7FhZkg7feRWcxONt0EHUvncLg9yEKY7SV2Pl3YTXgIEzE633tdYNb2dZeWBmwsA2Oa4m30ivn24E5AFQnDQZpTDhDx0qYIKdfc4Le7pavi4dk9Xz_uJivEmAFjQmjisNsVhYlywRQWtS0VFDLhoOCrChzqiSpRZHXfQglU0glzRtCWcFUrTLOJ-jywO0D7ToZYrVxnbf9yYrlnM1Kmmdl77o6uMC7ELxU1dbrVvh9RUk1tFndspenzzbnvZn8MYOOYugoeqHN_ysXhxUf4Bv98yD-AWNphCc |
CitedBy_id | crossref_primary_10_1021_acs_cgd_2c01306 crossref_primary_10_1021_acs_chemmater_2c03817 crossref_primary_10_3390_molecules30051004 crossref_primary_10_1039_D3TC03123C |
Cites_doi | 10.1002/chem.201805177 10.1021/acs.cgd.1c00949 10.1021/jacs.8b02598 10.1016/j.jmat.2019.01.006 10.1039/D0TA04488A 10.1021/jacs.0c06473 10.1016/j.ijhydene.2021.06.032 10.1021/acsmaterialslett.0c00358 10.3389/fchem.2020.00694 10.1002/anie.201604534 10.1021/jacs.7b05182 10.1039/D0SE01373K 10.1016/j.cej.2020.127329 10.1002/anie.201800423 10.1093/nsr/nwx012 10.1021/jacs.6b03625 10.1016/j.apsusc.2019.144484 10.1002/anie.201913802 10.1093/nsr/nwx032 10.1002/adma.202006292 10.1021/acsenergylett.1c02045 10.1016/j.rser.2018.04.105 10.1016/j.rser.2021.110771 10.1021/acs.cgd.0c00235 10.1039/C8CS00155C 10.1039/C5TA10521H 10.1021/acsami.1c15748 10.1039/D0QM00276C 10.1016/S1872-2067(14)60272-2 10.1021/acsami.8b12846 10.1016/j.rser.2018.11.010 10.1016/j.memsci.2019.117277 10.1016/j.memsci.2018.09.050 10.1016/j.ijhydene.2020.01.212 10.1039/C9CC06739F 10.1038/s41586-021-03482-7 10.1021/acsmaterialslett.1c00628 10.1016/j.jpowsour.2021.230371 10.1039/C7SE00142H 10.1039/D1QM01161H 10.1021/acsami.0c08103 10.1002/anie.202112922 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2022 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2022 |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1039/d2qm00656a |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2052-1537 |
EndPage | 348 |
ExternalDocumentID | 10_1039_D2QM00656A d2qm00656a |
GroupedDBID | 0R~ AAEMU AAIWI AAJAE AANOJ ABASK ABDVN ABRYZ AFOGI AGRSR ALMA_UNASSIGNED_HOLDINGS ANUXI BLAPV C6K EBS ECGLT O9- OK1 RCNCU RRC RSCEA RVUXY SMJ AARTK AAXHV AAYXX ABJNI ABPDG AENGV AETIL AFRZK AGEGJ AKBGW AKMSF APEMP CITATION GGIMP H13 RAOCF 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c281t-21f3c4498926ac118b19fcbed3cfc68971fe0ba87b017fe5c5e17d01282fbf633 |
ISSN | 2052-1537 |
IngestDate | Mon Jun 30 04:03:10 EDT 2025 Thu Apr 24 23:05:16 EDT 2025 Tue Jul 01 02:11:05 EDT 2025 Tue Nov 08 04:10:51 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c281t-21f3c4498926ac118b19fcbed3cfc68971fe0ba87b017fe5c5e17d01282fbf633 |
Notes | For ESI and crystallographic data in CIF or other electronic format see DOI 2165946 https://doi.org/10.1039/d2qm00656a Electronic supplementary information (ESI) available: The crystal structure, PXRD patterns, TGA curves, stress-strain curves, and proton conductivity for crystals and membranes. CCDC ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3676-0242 |
PQID | 2732491769 |
PQPubID | 2048883 |
PageCount | 7 |
ParticipantIDs | crossref_citationtrail_10_1039_D2QM00656A proquest_journals_2732491769 crossref_primary_10_1039_D2QM00656A rsc_primary_d2qm00656a |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-07 |
PublicationDateYYYYMMDD | 2022-11-07 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Materials chemistry frontiers |
PublicationYear | 2022 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Prykhodko (D2QM00656A/cit9/1) 2021; 409 Liu (D2QM00656A/cit23/1) 2020; 8 Teixeira (D2QM00656A/cit7/1) 2021; 46 Yang (D2QM00656A/cit25/1) 2020; 59 Wang (D2QM00656A/cit30/1) 2020; 142 Li (D2QM00656A/cit36/1) 2020; 4 Chand (D2QM00656A/cit35/1) 2019; 25 Elwan (D2QM00656A/cit14/1) 2021; 510 Xiao (D2QM00656A/cit6/1) 2021; 33 Karmakar (D2QM00656A/cit33/1) 2016; 55 Guo (D2QM00656A/cit3/1) 2018; 91 Gu (D2QM00656A/cit5/1) 2017; 4 Kirlikovali (D2QM00656A/cit32/1) 2021; 4 Li (D2QM00656A/cit22/1) 2021; 60 Parra (D2QM00656A/cit2/1) 2019; 101 Xing (D2QM00656A/cit37/1) 2018; 57 Dong (D2QM00656A/cit18/1) 2018; 10 Montoro (D2QM00656A/cit26/1) 2017; 139 Huang (D2QM00656A/cit19/1) 2020; 12 Cao (D2QM00656A/cit20/1) 2021; 22 Li (D2QM00656A/cit38/1) 2018; 568 Chen (D2QM00656A/cit27/1) 2020; 8 Pal (D2QM00656A/cit29/1) 2021; 6 Shinde (D2QM00656A/cit28/1) 2016; 4 Inukai (D2QM00656A/cit17/1) 2016; 138 Yu (D2QM00656A/cit4/1) 2017; 4 Hren (D2QM00656A/cit13/1) 2021; 5 Jiao (D2QM00656A/cit8/1) 2021; 595 Cai (D2QM00656A/cit24/1) 2019; 590 Chand (D2QM00656A/cit21/1) 2020; 2 Okonkwo (D2QM00656A/cit11/1) 2021; 46 Authayanun (D2QM00656A/cit12/1) 2015; 36 Cao (D2QM00656A/cit15/1) 2019; 55 Pan (D2QM00656A/cit10/1) 2021; 141 Lin (D2QM00656A/cit31/1) 2019; 48 Yang (D2QM00656A/cit40/1) 2020; 20 Shi (D2QM00656A/cit1/1) 2020; 504 Wei (D2QM00656A/cit39/1) 2019; 5 Xu (D2QM00656A/cit34/1) 2021; 13 Qian (D2QM00656A/cit41/1) 2021; 5 Gui (D2QM00656A/cit16/1) 2018; 140 Bates (D2QM00656A/cit42/1) 2017; 1 |
References_xml | – volume: 25 start-page: 1691 year: 2019 ident: D2QM00656A/cit35/1 publication-title: Chemistry doi: 10.1002/chem.201805177 – volume: 22 start-page: 37 year: 2021 ident: D2QM00656A/cit20/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.1c00949 – volume: 140 start-page: 6146 year: 2018 ident: D2QM00656A/cit16/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b02598 – volume: 5 start-page: 252 year: 2019 ident: D2QM00656A/cit39/1 publication-title: J. Materiomics doi: 10.1016/j.jmat.2019.01.006 – volume: 8 start-page: 13702 year: 2020 ident: D2QM00656A/cit27/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA04488A – volume: 142 start-page: 14399 year: 2020 ident: D2QM00656A/cit30/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c06473 – volume: 46 start-page: 27956 year: 2021 ident: D2QM00656A/cit11/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2021.06.032 – volume: 2 start-page: 1343 year: 2020 ident: D2QM00656A/cit21/1 publication-title: ACS Mater. Lett. doi: 10.1021/acsmaterialslett.0c00358 – volume: 8 start-page: 694 year: 2020 ident: D2QM00656A/cit23/1 publication-title: Front. Chem. doi: 10.3389/fchem.2020.00694 – volume: 55 start-page: 10667 year: 2016 ident: D2QM00656A/cit33/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201604534 – volume: 139 start-page: 10079 year: 2017 ident: D2QM00656A/cit26/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b05182 – volume: 5 start-page: 604 year: 2021 ident: D2QM00656A/cit13/1 publication-title: Sustainable Energy Fuels doi: 10.1039/D0SE01373K – volume: 409 start-page: 127329 year: 2021 ident: D2QM00656A/cit9/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127329 – volume: 57 start-page: 5345 year: 2018 ident: D2QM00656A/cit37/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201800423 – volume: 4 start-page: 513 year: 2017 ident: D2QM00656A/cit4/1 publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwx012 – volume: 138 start-page: 8505 year: 2016 ident: D2QM00656A/cit17/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b03625 – volume: 504 start-page: 144484 year: 2020 ident: D2QM00656A/cit1/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.144484 – volume: 59 start-page: 3678 year: 2020 ident: D2QM00656A/cit25/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201913802 – volume: 4 start-page: 161 year: 2017 ident: D2QM00656A/cit5/1 publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwx032 – volume: 33 start-page: e2006292 year: 2021 ident: D2QM00656A/cit6/1 publication-title: Adv. Mater. doi: 10.1002/adma.202006292 – volume: 6 start-page: 4431 year: 2021 ident: D2QM00656A/cit29/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c02045 – volume: 91 start-page: 1121 year: 2018 ident: D2QM00656A/cit3/1 publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2018.04.105 – volume: 141 start-page: 110771 year: 2021 ident: D2QM00656A/cit10/1 publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2021.110771 – volume: 20 start-page: 3456 year: 2020 ident: D2QM00656A/cit40/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.0c00235 – volume: 48 start-page: 1362 year: 2019 ident: D2QM00656A/cit31/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00155C – volume: 4 start-page: 2682 year: 2016 ident: D2QM00656A/cit28/1 publication-title: J. Mater. Chem. A doi: 10.1039/C5TA10521H – volume: 13 start-page: 56566 year: 2021 ident: D2QM00656A/cit34/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c15748 – volume: 4 start-page: 2339 year: 2020 ident: D2QM00656A/cit36/1 publication-title: Mater. Chem. Front. doi: 10.1039/D0QM00276C – volume: 36 start-page: 473 year: 2015 ident: D2QM00656A/cit12/1 publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(14)60272-2 – volume: 10 start-page: 38209 year: 2018 ident: D2QM00656A/cit18/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b12846 – volume: 101 start-page: 279 year: 2019 ident: D2QM00656A/cit2/1 publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2018.11.010 – volume: 590 start-page: 117277 year: 2019 ident: D2QM00656A/cit24/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2019.117277 – volume: 568 start-page: 1 year: 2018 ident: D2QM00656A/cit38/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2018.09.050 – volume: 46 start-page: 17562 year: 2021 ident: D2QM00656A/cit7/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.01.212 – volume: 55 start-page: 12671 year: 2019 ident: D2QM00656A/cit15/1 publication-title: Chem. Commun. doi: 10.1039/C9CC06739F – volume: 595 start-page: 361 year: 2021 ident: D2QM00656A/cit8/1 publication-title: Nature doi: 10.1038/s41586-021-03482-7 – volume: 4 start-page: 128 year: 2021 ident: D2QM00656A/cit32/1 publication-title: ACS Mater. Lett. doi: 10.1021/acsmaterialslett.1c00628 – volume: 510 start-page: 230371 year: 2021 ident: D2QM00656A/cit14/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2021.230371 – volume: 1 start-page: 955 year: 2017 ident: D2QM00656A/cit42/1 publication-title: Sustainable Energy Fuels doi: 10.1039/C7SE00142H – volume: 5 start-page: 8171 year: 2021 ident: D2QM00656A/cit41/1 publication-title: Mater. Chem. Front. doi: 10.1039/D1QM01161H – volume: 12 start-page: 28720 year: 2020 ident: D2QM00656A/cit19/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c08103 – volume: 60 start-page: 26577 year: 2021 ident: D2QM00656A/cit22/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202112922 |
SSID | ssj0001772301 |
Score | 2.248722 |
Snippet | Among the components of a proton exchange membrane fuel cell (PEMFC), the proton exchange membrane (PEM) is an essential constituent part of the fuel cell.... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 342 |
SubjectTerms | Fuel cells Hydrogen oxygen fuel cells Maximum power density Organic salts Proton conduction Proton exchange membrane fuel cells Relative humidity |
Title | Enhanced proton conduction of crystalline organic salt hybrid membranes and the performance of fuel cells |
URI | https://www.proquest.com/docview/2732491769 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELbS9sIFgaAiUJAluKDVll3b-zpWJVVBBAkplZLTyuuHGinZlGRzKL-An834sQ8gh8JllYxsS-v5djwzngdC71imK4ACCxPJRAgnngoLksow4oUirJIZsT7d6df0-oZ9nifz0ejnIGpp31Tn4sfBvJL_4SrQgK8mS_YfONstCgT4DfyFJ3AYng_i8aS-dRf4ptrCxgSU19JVg7XR4tt7UP1WVo90zZtEsOOrJri9N2lawVqtwVQGUddFUd4NsghgAb1Xq8B49ndDFXbKG_dugWibxZkklbpZqv5maOHd0IsefJc-D2S-Dxcbf16aSCAbTjBf1uFULQdubOvCveJ-oPdLgElrfK1ZL75IlAAtcSVdztUBmpe_6QBmLkfZC1PKIjI4mOFvflDoR9TUTP1Ivk2NQpV2ZVP7ytp_nHhdHKK9gadF2c89QicEDA4Q8ScXk9mnL72_DqjUdtPuXqKtdkuLD_0Cv-s3vdFytG07yljNZfYEPfYmB75w-HmKRqp-hpYtdrDDDu6xgzcaD7CDPXawwQ522MEddjBgBwN28AA7ZgGDHWyx8xzdXE1ml9ehb7sRCpLHTUhiTQVjRQ4fLRdggFZxoUWlJBVapHmRxVpFFc-zCjZFq0QkKs6kUXSIrnRK6Sk6rje1eoEwlxGRSoFAyCJW8TgXMuYx0ZnKC0k1GaP37WaVwtekN61RVuXfnBmjt93YO1eJ5eCos3bPS_-l7kpQ0Qkr4iwtxugU-NDNl-T72s7jLx-0-iv0qIf6GTputnv1GpTSpnrj8fILB_GOJw |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+proton+conduction+of+crystalline+organic+salt+hybrid+membranes+and+the+performance+of+fuel+cells&rft.jtitle=Materials+chemistry+frontiers&rft.au=Yang%2C+Yan&rft.au=Chen%2C+Xu-Yong&rft.au=Li%2C+Xin-Mei&rft.au=Zhao%2C+Fang&rft.date=2022-11-07&rft.issn=2052-1537&rft.eissn=2052-1537&rft.volume=6&rft.issue=22&rft.spage=3402&rft.epage=3408&rft_id=info:doi/10.1039%2FD2QM00656A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D2QM00656A |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-1537&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-1537&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-1537&client=summon |