Enhanced proton conduction of crystalline organic salt hybrid membranes and the performance of fuel cells

Among the components of a proton exchange membrane fuel cell (PEMFC), the proton exchange membrane (PEM) is an essential constituent part of the fuel cell. Here, a crystalline organic salt ( HCOS-1 ) with amino and sulfonate groups has been synthesized. HCOS-1 exhibited a high proton conductivity of...

Full description

Saved in:
Bibliographic Details
Published inMaterials chemistry frontiers Vol. 6; no. 22; pp. 342 - 348
Main Authors Yang, Yan, Chen, Xu-Yong, Li, Xin-Mei, Zhao, Fang, Bai, Xiang-Tian, Cao, Li-Hui
Format Journal Article
LanguageEnglish
Published London Royal Society of Chemistry 07.11.2022
Subjects
Online AccessGet full text
ISSN2052-1537
2052-1537
DOI10.1039/d2qm00656a

Cover

Loading…
Abstract Among the components of a proton exchange membrane fuel cell (PEMFC), the proton exchange membrane (PEM) is an essential constituent part of the fuel cell. Here, a crystalline organic salt ( HCOS-1 ) with amino and sulfonate groups has been synthesized. HCOS-1 exhibited a high proton conductivity of 3.23 × 10 −3 S cm −1 at 100 °C and 93% relative humidity (RH). In order to improve its proton conductivity, HCOS-1 was blended with Nafion to prepare a composite membrane. At 100 °C and 98% RH, the composite membrane containing 6 wt% HCOS-1 exhibits a higher proton conductivity of 7.24 × 10 −3 S cm −1 , which is more than twice compared with 3.35 × 10 −3 S cm −1 of the recast Nafion membrane. Compared with the recast Nafion membrane, the maximum power density of the hydrogen-oxygen fuel cell using the 6 wt% HCOS-1 composite membrane at 80 °C and 100% RH has increased by 9.95%, from 815 mW cm −2 to 896 mW cm −2 . The hybrid Nafion membranes of a hydrogen-bonded crystalline organic salt material are used for proton conduction and proton exchange membrane fuel cell applications.
AbstractList Among the components of a proton exchange membrane fuel cell (PEMFC), the proton exchange membrane (PEM) is an essential constituent part of the fuel cell. Here, a crystalline organic salt ( HCOS-1 ) with amino and sulfonate groups has been synthesized. HCOS-1 exhibited a high proton conductivity of 3.23 × 10 −3 S cm −1 at 100 °C and 93% relative humidity (RH). In order to improve its proton conductivity, HCOS-1 was blended with Nafion to prepare a composite membrane. At 100 °C and 98% RH, the composite membrane containing 6 wt% HCOS-1 exhibits a higher proton conductivity of 7.24 × 10 −3 S cm −1 , which is more than twice compared with 3.35 × 10 −3 S cm −1 of the recast Nafion membrane. Compared with the recast Nafion membrane, the maximum power density of the hydrogen-oxygen fuel cell using the 6 wt% HCOS-1 composite membrane at 80 °C and 100% RH has increased by 9.95%, from 815 mW cm −2 to 896 mW cm −2 . The hybrid Nafion membranes of a hydrogen-bonded crystalline organic salt material are used for proton conduction and proton exchange membrane fuel cell applications.
Among the components of a proton exchange membrane fuel cell (PEMFC), the proton exchange membrane (PEM) is an essential constituent part of the fuel cell. Here, a crystalline organic salt (HCOS-1) with amino and sulfonate groups has been synthesized. HCOS-1 exhibited a high proton conductivity of 3.23 × 10−3 S cm−1 at 100 °C and 93% relative humidity (RH). In order to improve its proton conductivity, HCOS-1 was blended with Nafion to prepare a composite membrane. At 100 °C and 98% RH, the composite membrane containing 6 wt% HCOS-1 exhibits a higher proton conductivity of 7.24 × 10−3 S cm−1, which is more than twice compared with 3.35 × 10−3 S cm−1 of the recast Nafion membrane. Compared with the recast Nafion membrane, the maximum power density of the hydrogen–oxygen fuel cell using the 6 wt% HCOS-1 composite membrane at 80 °C and 100% RH has increased by 9.95%, from 815 mW cm−2 to 896 mW cm−2.
Among the components of a proton exchange membrane fuel cell (PEMFC), the proton exchange membrane (PEM) is an essential constituent part of the fuel cell. Here, a crystalline organic salt (HCOS-1) with amino and sulfonate groups has been synthesized. HCOS-1 exhibited a high proton conductivity of 3.23 × 10 −3 S cm −1 at 100 °C and 93% relative humidity (RH). In order to improve its proton conductivity, HCOS-1 was blended with Nafion to prepare a composite membrane. At 100 °C and 98% RH, the composite membrane containing 6 wt% HCOS-1 exhibits a higher proton conductivity of 7.24 × 10 −3 S cm −1 , which is more than twice compared with 3.35 × 10 −3 S cm −1 of the recast Nafion membrane. Compared with the recast Nafion membrane, the maximum power density of the hydrogen–oxygen fuel cell using the 6 wt% HCOS-1 composite membrane at 80 °C and 100% RH has increased by 9.95%, from 815 mW cm −2 to 896 mW cm −2 .
Author Yang, Yan
Bai, Xiang-Tian
Li, Xin-Mei
Cao, Li-Hui
Chen, Xu-Yong
Zhao, Fang
AuthorAffiliation Shaanxi Key Laboratory of Chemical Additives for Industry
Shaanxi University of Science and Technology
College of Chemistry and Chemical Engineering
AuthorAffiliation_xml – name: College of Chemistry and Chemical Engineering
– name: Shaanxi University of Science and Technology
– name: Shaanxi Key Laboratory of Chemical Additives for Industry
Author_xml – sequence: 1
  givenname: Yan
  surname: Yang
  fullname: Yang, Yan
– sequence: 2
  givenname: Xu-Yong
  surname: Chen
  fullname: Chen, Xu-Yong
– sequence: 3
  givenname: Xin-Mei
  surname: Li
  fullname: Li, Xin-Mei
– sequence: 4
  givenname: Fang
  surname: Zhao
  fullname: Zhao, Fang
– sequence: 5
  givenname: Xiang-Tian
  surname: Bai
  fullname: Bai, Xiang-Tian
– sequence: 6
  givenname: Li-Hui
  surname: Cao
  fullname: Cao, Li-Hui
BookMark eNptkUtLAzEUhYNUsNZu3AsBd8JoHp3XstT6gIoIuh4ydxKbkknaJLPov3fGioq4umdx7nc5556ikXVWInROyTUlvLxp2K4lJEszcYTGjKQsoSnPR7_0CZqGsCGE0DxnnNAx0ku7FhZkg7feRWcxONt0EHUvncLg9yEKY7SV2Pl3YTXgIEzE633tdYNb2dZeWBmwsA2Oa4m30ivn24E5AFQnDQZpTDhDx0qYIKdfc4Le7pavi4dk9Xz_uJivEmAFjQmjisNsVhYlywRQWtS0VFDLhoOCrChzqiSpRZHXfQglU0glzRtCWcFUrTLOJ-jywO0D7ToZYrVxnbf9yYrlnM1Kmmdl77o6uMC7ELxU1dbrVvh9RUk1tFndspenzzbnvZn8MYOOYugoeqHN_ysXhxUf4Bv98yD-AWNphCc
CitedBy_id crossref_primary_10_1021_acs_cgd_2c01306
crossref_primary_10_1021_acs_chemmater_2c03817
crossref_primary_10_3390_molecules30051004
crossref_primary_10_1039_D3TC03123C
Cites_doi 10.1002/chem.201805177
10.1021/acs.cgd.1c00949
10.1021/jacs.8b02598
10.1016/j.jmat.2019.01.006
10.1039/D0TA04488A
10.1021/jacs.0c06473
10.1016/j.ijhydene.2021.06.032
10.1021/acsmaterialslett.0c00358
10.3389/fchem.2020.00694
10.1002/anie.201604534
10.1021/jacs.7b05182
10.1039/D0SE01373K
10.1016/j.cej.2020.127329
10.1002/anie.201800423
10.1093/nsr/nwx012
10.1021/jacs.6b03625
10.1016/j.apsusc.2019.144484
10.1002/anie.201913802
10.1093/nsr/nwx032
10.1002/adma.202006292
10.1021/acsenergylett.1c02045
10.1016/j.rser.2018.04.105
10.1016/j.rser.2021.110771
10.1021/acs.cgd.0c00235
10.1039/C8CS00155C
10.1039/C5TA10521H
10.1021/acsami.1c15748
10.1039/D0QM00276C
10.1016/S1872-2067(14)60272-2
10.1021/acsami.8b12846
10.1016/j.rser.2018.11.010
10.1016/j.memsci.2019.117277
10.1016/j.memsci.2018.09.050
10.1016/j.ijhydene.2020.01.212
10.1039/C9CC06739F
10.1038/s41586-021-03482-7
10.1021/acsmaterialslett.1c00628
10.1016/j.jpowsour.2021.230371
10.1039/C7SE00142H
10.1039/D1QM01161H
10.1021/acsami.0c08103
10.1002/anie.202112922
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2022
Copyright_xml – notice: Copyright Royal Society of Chemistry 2022
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1039/d2qm00656a
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2052-1537
EndPage 348
ExternalDocumentID 10_1039_D2QM00656A
d2qm00656a
GroupedDBID 0R~
AAEMU
AAIWI
AAJAE
AANOJ
ABASK
ABDVN
ABRYZ
AFOGI
AGRSR
ALMA_UNASSIGNED_HOLDINGS
ANUXI
BLAPV
C6K
EBS
ECGLT
O9-
OK1
RCNCU
RRC
RSCEA
RVUXY
SMJ
AARTK
AAXHV
AAYXX
ABJNI
ABPDG
AENGV
AETIL
AFRZK
AGEGJ
AKBGW
AKMSF
APEMP
CITATION
GGIMP
H13
RAOCF
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c281t-21f3c4498926ac118b19fcbed3cfc68971fe0ba87b017fe5c5e17d01282fbf633
ISSN 2052-1537
IngestDate Mon Jun 30 04:03:10 EDT 2025
Thu Apr 24 23:05:16 EDT 2025
Tue Jul 01 02:11:05 EDT 2025
Tue Nov 08 04:10:51 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c281t-21f3c4498926ac118b19fcbed3cfc68971fe0ba87b017fe5c5e17d01282fbf633
Notes For ESI and crystallographic data in CIF or other electronic format see DOI
2165946
https://doi.org/10.1039/d2qm00656a
Electronic supplementary information (ESI) available: The crystal structure, PXRD patterns, TGA curves, stress-strain curves, and proton conductivity for crystals and membranes. CCDC
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3676-0242
PQID 2732491769
PQPubID 2048883
PageCount 7
ParticipantIDs crossref_citationtrail_10_1039_D2QM00656A
proquest_journals_2732491769
crossref_primary_10_1039_D2QM00656A
rsc_primary_d2qm00656a
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-07
PublicationDateYYYYMMDD 2022-11-07
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-07
  day: 07
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Materials chemistry frontiers
PublicationYear 2022
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Prykhodko (D2QM00656A/cit9/1) 2021; 409
Liu (D2QM00656A/cit23/1) 2020; 8
Teixeira (D2QM00656A/cit7/1) 2021; 46
Yang (D2QM00656A/cit25/1) 2020; 59
Wang (D2QM00656A/cit30/1) 2020; 142
Li (D2QM00656A/cit36/1) 2020; 4
Chand (D2QM00656A/cit35/1) 2019; 25
Elwan (D2QM00656A/cit14/1) 2021; 510
Xiao (D2QM00656A/cit6/1) 2021; 33
Karmakar (D2QM00656A/cit33/1) 2016; 55
Guo (D2QM00656A/cit3/1) 2018; 91
Gu (D2QM00656A/cit5/1) 2017; 4
Kirlikovali (D2QM00656A/cit32/1) 2021; 4
Li (D2QM00656A/cit22/1) 2021; 60
Parra (D2QM00656A/cit2/1) 2019; 101
Xing (D2QM00656A/cit37/1) 2018; 57
Dong (D2QM00656A/cit18/1) 2018; 10
Montoro (D2QM00656A/cit26/1) 2017; 139
Huang (D2QM00656A/cit19/1) 2020; 12
Cao (D2QM00656A/cit20/1) 2021; 22
Li (D2QM00656A/cit38/1) 2018; 568
Chen (D2QM00656A/cit27/1) 2020; 8
Pal (D2QM00656A/cit29/1) 2021; 6
Shinde (D2QM00656A/cit28/1) 2016; 4
Inukai (D2QM00656A/cit17/1) 2016; 138
Yu (D2QM00656A/cit4/1) 2017; 4
Hren (D2QM00656A/cit13/1) 2021; 5
Jiao (D2QM00656A/cit8/1) 2021; 595
Cai (D2QM00656A/cit24/1) 2019; 590
Chand (D2QM00656A/cit21/1) 2020; 2
Okonkwo (D2QM00656A/cit11/1) 2021; 46
Authayanun (D2QM00656A/cit12/1) 2015; 36
Cao (D2QM00656A/cit15/1) 2019; 55
Pan (D2QM00656A/cit10/1) 2021; 141
Lin (D2QM00656A/cit31/1) 2019; 48
Yang (D2QM00656A/cit40/1) 2020; 20
Shi (D2QM00656A/cit1/1) 2020; 504
Wei (D2QM00656A/cit39/1) 2019; 5
Xu (D2QM00656A/cit34/1) 2021; 13
Qian (D2QM00656A/cit41/1) 2021; 5
Gui (D2QM00656A/cit16/1) 2018; 140
Bates (D2QM00656A/cit42/1) 2017; 1
References_xml – volume: 25
  start-page: 1691
  year: 2019
  ident: D2QM00656A/cit35/1
  publication-title: Chemistry
  doi: 10.1002/chem.201805177
– volume: 22
  start-page: 37
  year: 2021
  ident: D2QM00656A/cit20/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.1c00949
– volume: 140
  start-page: 6146
  year: 2018
  ident: D2QM00656A/cit16/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b02598
– volume: 5
  start-page: 252
  year: 2019
  ident: D2QM00656A/cit39/1
  publication-title: J. Materiomics
  doi: 10.1016/j.jmat.2019.01.006
– volume: 8
  start-page: 13702
  year: 2020
  ident: D2QM00656A/cit27/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA04488A
– volume: 142
  start-page: 14399
  year: 2020
  ident: D2QM00656A/cit30/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c06473
– volume: 46
  start-page: 27956
  year: 2021
  ident: D2QM00656A/cit11/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.06.032
– volume: 2
  start-page: 1343
  year: 2020
  ident: D2QM00656A/cit21/1
  publication-title: ACS Mater. Lett.
  doi: 10.1021/acsmaterialslett.0c00358
– volume: 8
  start-page: 694
  year: 2020
  ident: D2QM00656A/cit23/1
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2020.00694
– volume: 55
  start-page: 10667
  year: 2016
  ident: D2QM00656A/cit33/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201604534
– volume: 139
  start-page: 10079
  year: 2017
  ident: D2QM00656A/cit26/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b05182
– volume: 5
  start-page: 604
  year: 2021
  ident: D2QM00656A/cit13/1
  publication-title: Sustainable Energy Fuels
  doi: 10.1039/D0SE01373K
– volume: 409
  start-page: 127329
  year: 2021
  ident: D2QM00656A/cit9/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.127329
– volume: 57
  start-page: 5345
  year: 2018
  ident: D2QM00656A/cit37/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201800423
– volume: 4
  start-page: 513
  year: 2017
  ident: D2QM00656A/cit4/1
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwx012
– volume: 138
  start-page: 8505
  year: 2016
  ident: D2QM00656A/cit17/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b03625
– volume: 504
  start-page: 144484
  year: 2020
  ident: D2QM00656A/cit1/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.144484
– volume: 59
  start-page: 3678
  year: 2020
  ident: D2QM00656A/cit25/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201913802
– volume: 4
  start-page: 161
  year: 2017
  ident: D2QM00656A/cit5/1
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwx032
– volume: 33
  start-page: e2006292
  year: 2021
  ident: D2QM00656A/cit6/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202006292
– volume: 6
  start-page: 4431
  year: 2021
  ident: D2QM00656A/cit29/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c02045
– volume: 91
  start-page: 1121
  year: 2018
  ident: D2QM00656A/cit3/1
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2018.04.105
– volume: 141
  start-page: 110771
  year: 2021
  ident: D2QM00656A/cit10/1
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2021.110771
– volume: 20
  start-page: 3456
  year: 2020
  ident: D2QM00656A/cit40/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.0c00235
– volume: 48
  start-page: 1362
  year: 2019
  ident: D2QM00656A/cit31/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00155C
– volume: 4
  start-page: 2682
  year: 2016
  ident: D2QM00656A/cit28/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA10521H
– volume: 13
  start-page: 56566
  year: 2021
  ident: D2QM00656A/cit34/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c15748
– volume: 4
  start-page: 2339
  year: 2020
  ident: D2QM00656A/cit36/1
  publication-title: Mater. Chem. Front.
  doi: 10.1039/D0QM00276C
– volume: 36
  start-page: 473
  year: 2015
  ident: D2QM00656A/cit12/1
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(14)60272-2
– volume: 10
  start-page: 38209
  year: 2018
  ident: D2QM00656A/cit18/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b12846
– volume: 101
  start-page: 279
  year: 2019
  ident: D2QM00656A/cit2/1
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2018.11.010
– volume: 590
  start-page: 117277
  year: 2019
  ident: D2QM00656A/cit24/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2019.117277
– volume: 568
  start-page: 1
  year: 2018
  ident: D2QM00656A/cit38/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2018.09.050
– volume: 46
  start-page: 17562
  year: 2021
  ident: D2QM00656A/cit7/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.01.212
– volume: 55
  start-page: 12671
  year: 2019
  ident: D2QM00656A/cit15/1
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC06739F
– volume: 595
  start-page: 361
  year: 2021
  ident: D2QM00656A/cit8/1
  publication-title: Nature
  doi: 10.1038/s41586-021-03482-7
– volume: 4
  start-page: 128
  year: 2021
  ident: D2QM00656A/cit32/1
  publication-title: ACS Mater. Lett.
  doi: 10.1021/acsmaterialslett.1c00628
– volume: 510
  start-page: 230371
  year: 2021
  ident: D2QM00656A/cit14/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2021.230371
– volume: 1
  start-page: 955
  year: 2017
  ident: D2QM00656A/cit42/1
  publication-title: Sustainable Energy Fuels
  doi: 10.1039/C7SE00142H
– volume: 5
  start-page: 8171
  year: 2021
  ident: D2QM00656A/cit41/1
  publication-title: Mater. Chem. Front.
  doi: 10.1039/D1QM01161H
– volume: 12
  start-page: 28720
  year: 2020
  ident: D2QM00656A/cit19/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c08103
– volume: 60
  start-page: 26577
  year: 2021
  ident: D2QM00656A/cit22/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202112922
SSID ssj0001772301
Score 2.248722
Snippet Among the components of a proton exchange membrane fuel cell (PEMFC), the proton exchange membrane (PEM) is an essential constituent part of the fuel cell....
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 342
SubjectTerms Fuel cells
Hydrogen oxygen fuel cells
Maximum power density
Organic salts
Proton conduction
Proton exchange membrane fuel cells
Relative humidity
Title Enhanced proton conduction of crystalline organic salt hybrid membranes and the performance of fuel cells
URI https://www.proquest.com/docview/2732491769
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELbS9sIFgaAiUJAluKDVll3b-zpWJVVBBAkplZLTyuuHGinZlGRzKL-An834sQ8gh8JllYxsS-v5djwzngdC71imK4ACCxPJRAgnngoLksow4oUirJIZsT7d6df0-oZ9nifz0ejnIGpp31Tn4sfBvJL_4SrQgK8mS_YfONstCgT4DfyFJ3AYng_i8aS-dRf4ptrCxgSU19JVg7XR4tt7UP1WVo90zZtEsOOrJri9N2lawVqtwVQGUddFUd4NsghgAb1Xq8B49ndDFXbKG_dugWibxZkklbpZqv5maOHd0IsefJc-D2S-Dxcbf16aSCAbTjBf1uFULQdubOvCveJ-oPdLgElrfK1ZL75IlAAtcSVdztUBmpe_6QBmLkfZC1PKIjI4mOFvflDoR9TUTP1Ivk2NQpV2ZVP7ytp_nHhdHKK9gadF2c89QicEDA4Q8ScXk9mnL72_DqjUdtPuXqKtdkuLD_0Cv-s3vdFytG07yljNZfYEPfYmB75w-HmKRqp-hpYtdrDDDu6xgzcaD7CDPXawwQ522MEddjBgBwN28AA7ZgGDHWyx8xzdXE1ml9ehb7sRCpLHTUhiTQVjRQ4fLRdggFZxoUWlJBVapHmRxVpFFc-zCjZFq0QkKs6kUXSIrnRK6Sk6rje1eoEwlxGRSoFAyCJW8TgXMuYx0ZnKC0k1GaP37WaVwtekN61RVuXfnBmjt93YO1eJ5eCos3bPS_-l7kpQ0Qkr4iwtxugU-NDNl-T72s7jLx-0-iv0qIf6GTputnv1GpTSpnrj8fILB_GOJw
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+proton+conduction+of+crystalline+organic+salt+hybrid+membranes+and+the+performance+of+fuel+cells&rft.jtitle=Materials+chemistry+frontiers&rft.au=Yang%2C+Yan&rft.au=Chen%2C+Xu-Yong&rft.au=Li%2C+Xin-Mei&rft.au=Zhao%2C+Fang&rft.date=2022-11-07&rft.issn=2052-1537&rft.eissn=2052-1537&rft.volume=6&rft.issue=22&rft.spage=3402&rft.epage=3408&rft_id=info:doi/10.1039%2FD2QM00656A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D2QM00656A
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-1537&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-1537&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-1537&client=summon