Spin-gapless semiconducting Cl-intercalated phosphorene bilayer: a perfect candidate material to identify its ferroelectric states by spin-Seebeck currents

Two-dimensional multiferroic materials, combining the ferroelectric (FE) state with the ferromagnetic (FM) state, have long been regarded as one of the core topics in materials science. However, realizing a low-energy-dissipation approach to read the FE states is still a hard task. Here, we propose...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. C, Materials for optical and electronic devices Vol. 1; no. 8; pp. 3188 - 3195
Main Authors Wu, Dan-Dan, Ji, Yu-Tian, Du, Gui-Fang, Yue, Xiao-Yu, Wang, Yi-Yan, Li, Qiu-Ju, Sun, Xue-Feng, Fu, Hua-Hua
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 24.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Two-dimensional multiferroic materials, combining the ferroelectric (FE) state with the ferromagnetic (FM) state, have long been regarded as one of the core topics in materials science. However, realizing a low-energy-dissipation approach to read the FE states is still a hard task. Here, we propose a bilayer phosphorene halogenated by chlorine (Cl) adatoms to induce the layer-dependent single-atom FE states with vertical electric polarization and construct the related spin caloritronic devices. Our theoretical studies uncover several interesting findings: (i) the halogenated monolayer phosphorene produces single-atom FE states and two nearly symmetrical spin-splitting states around the Fermi level, providing two spin-dependent transport channels for the generation of a well-defined spin-Seebeck effect (SSE); (ii) a pure thermal spin current can be obtained by adjusting the Cl-adatom concentration or by using an in-plane strain engineering technique; (iii) the spin-Seebeck current is tightly associated with the layer-dependent FE state, and they both can be switched simultaneously to the other layer by an external electric field. Our theoretical results not only propose a low-energy-dissipation approach to realize the readout of single-atom FE states, but also develop further the new interdisciplinary subject, i.e. , the spin-ferroelectro-caloritronics. Two-dimensional multiferroic materials, combining the ferroelectric (FE) state with the ferromagnetic (FM) state, have long been regarded as one of the core topics in materials science.
AbstractList Two-dimensional multiferroic materials, combining the ferroelectric (FE) state with the ferromagnetic (FM) state, have long been regarded as one of the core topics in materials science. However, realizing a low-energy-dissipation approach to read the FE states is still a hard task. Here, we propose a bilayer phosphorene halogenated by chlorine (Cl) adatoms to induce the layer-dependent single-atom FE states with vertical electric polarization and construct the related spin caloritronic devices. Our theoretical studies uncover several interesting findings: (i) the halogenated monolayer phosphorene produces single-atom FE states and two nearly symmetrical spin-splitting states around the Fermi level, providing two spin-dependent transport channels for the generation of a well-defined spin-Seebeck effect (SSE); (ii) a pure thermal spin current can be obtained by adjusting the Cl-adatom concentration or by using an in-plane strain engineering technique; (iii) the spin-Seebeck current is tightly associated with the layer-dependent FE state, and they both can be switched simultaneously to the other layer by an external electric field. Our theoretical results not only propose a low-energy-dissipation approach to realize the readout of single-atom FE states, but also develop further the new interdisciplinary subject, i.e., the spin-ferroelectro-caloritronics.
Two-dimensional multiferroic materials, combining the ferroelectric (FE) state with the ferromagnetic (FM) state, have long been regarded as one of the core topics in materials science. However, realizing a low-energy-dissipation approach to read the FE states is still a hard task. Here, we propose a bilayer phosphorene halogenated by chlorine (Cl) adatoms to induce the layer-dependent single-atom FE states with vertical electric polarization and construct the related spin caloritronic devices. Our theoretical studies uncover several interesting findings: (i) the halogenated monolayer phosphorene produces single-atom FE states and two nearly symmetrical spin-splitting states around the Fermi level, providing two spin-dependent transport channels for the generation of a well-defined spin-Seebeck effect (SSE); (ii) a pure thermal spin current can be obtained by adjusting the Cl-adatom concentration or by using an in-plane strain engineering technique; (iii) the spin-Seebeck current is tightly associated with the layer-dependent FE state, and they both can be switched simultaneously to the other layer by an external electric field. Our theoretical results not only propose a low-energy-dissipation approach to realize the readout of single-atom FE states, but also develop further the new interdisciplinary subject, i.e. , the spin-ferroelectro-caloritronics.
Two-dimensional multiferroic materials, combining the ferroelectric (FE) state with the ferromagnetic (FM) state, have long been regarded as one of the core topics in materials science. However, realizing a low-energy-dissipation approach to read the FE states is still a hard task. Here, we propose a bilayer phosphorene halogenated by chlorine (Cl) adatoms to induce the layer-dependent single-atom FE states with vertical electric polarization and construct the related spin caloritronic devices. Our theoretical studies uncover several interesting findings: (i) the halogenated monolayer phosphorene produces single-atom FE states and two nearly symmetrical spin-splitting states around the Fermi level, providing two spin-dependent transport channels for the generation of a well-defined spin-Seebeck effect (SSE); (ii) a pure thermal spin current can be obtained by adjusting the Cl-adatom concentration or by using an in-plane strain engineering technique; (iii) the spin-Seebeck current is tightly associated with the layer-dependent FE state, and they both can be switched simultaneously to the other layer by an external electric field. Our theoretical results not only propose a low-energy-dissipation approach to realize the readout of single-atom FE states, but also develop further the new interdisciplinary subject, i.e. , the spin-ferroelectro-caloritronics. Two-dimensional multiferroic materials, combining the ferroelectric (FE) state with the ferromagnetic (FM) state, have long been regarded as one of the core topics in materials science.
Author Wu, Dan-Dan
Wang, Yi-Yan
Ji, Yu-Tian
Yue, Xiao-Yu
Du, Gui-Fang
Li, Qiu-Ju
Sun, Xue-Feng
Fu, Hua-Hua
AuthorAffiliation Institutes of Physical Science and Information Technology
and Key Laboratory of Strongly-Coupled Quantum Matter Physics (CAS)
University of Science and Technology of China
Anhui University
School of Physical and Materials Science
School of Physics and Wuhan National High Magnetic Field Center
Huazhong University of Science and Technology
Hefei National Laboratory for Physical Sciences at Microscale
Department of Physics
AuthorAffiliation_xml – name: University of Science and Technology of China
– name: School of Physical and Materials Science
– name: and Key Laboratory of Strongly-Coupled Quantum Matter Physics (CAS)
– name: Institutes of Physical Science and Information Technology
– name: Anhui University
– name: School of Physics and Wuhan National High Magnetic Field Center
– name: Huazhong University of Science and Technology
– name: Department of Physics
– name: Hefei National Laboratory for Physical Sciences at Microscale
Author_xml – sequence: 1
  givenname: Dan-Dan
  surname: Wu
  fullname: Wu, Dan-Dan
– sequence: 2
  givenname: Yu-Tian
  surname: Ji
  fullname: Ji, Yu-Tian
– sequence: 3
  givenname: Gui-Fang
  surname: Du
  fullname: Du, Gui-Fang
– sequence: 4
  givenname: Xiao-Yu
  surname: Yue
  fullname: Yue, Xiao-Yu
– sequence: 5
  givenname: Yi-Yan
  surname: Wang
  fullname: Wang, Yi-Yan
– sequence: 6
  givenname: Qiu-Ju
  surname: Li
  fullname: Li, Qiu-Ju
– sequence: 7
  givenname: Xue-Feng
  surname: Sun
  fullname: Sun, Xue-Feng
– sequence: 8
  givenname: Hua-Hua
  surname: Fu
  fullname: Fu, Hua-Hua
BookMark eNptkUtrGzEQgEVJoYnrS-4FQW-BTfWw1ru9Fad1AoEc7JwXPWZdJWtpO5IP_i39s5Hj4ELJiHkcvnlo5oKchRiAkEvOrjmT7TfHs2WqlWLzgZwLplg1V3J2dopF_YlMU3piRRpeN3V7Tv6uRh-qjR4HSIkm2Hobg9vZ7MOGLobKhwxo9aAzODr-jqkoQgBq_KD3gN-ppiNgDzZTq4PzrpB0Wwx6PdAcqXcQsu_31OdEe0CMMBQavaUpFy5Rs6fpMMUKwIB9pnaHpUVOn8nHXg8Jpm9-Qh5__Vwvbqv7h-Xd4sd9ZUXDc8XNXBkuZ7XUspW9cI1TIIyUbatNz1V5RggFurXaqlljjJkJYxg3jZu3jZYT8vVYd8T4Zwcpd09xh6G07EQthZBC8aZQV0fKYkwJoe9G9FuN-46z7rD_7oavF6_7XxaY_QdbXz7rY8io_fB-ypdjCiZ7Kv3vpPIFL7mXUQ
CitedBy_id crossref_primary_10_1039_D2CP02658A
crossref_primary_10_1039_D3CP01840G
crossref_primary_10_1039_D2CP03615K
crossref_primary_10_1088_1361_6463_ace7d9
Cites_doi 10.1017/CBO9780511805776
10.1002/jcc.20495
10.1016/0927-0256(96)00008-0
10.1002/smll.201905155
10.1103/PhysRevB.103.115415
10.1021/jacs.7b04422
10.1038/nmat4452
10.1038/nnano.2014.207
10.1080/00018730902920554
10.1103/PhysRevLett.77.3865
10.1038/nature02572
10.1038/ncomms5201
10.1103/PhysRevLett.111.066602
10.1021/acs.nanolett.8b05050
10.1038/35071024
10.1103/PhysRevB.65.165401
10.1103/PhysRevB.84.113412
10.1038/natrevmats.2016.52
10.1039/C4TC01275E
10.1063/1.2987719
10.1021/nl2000049
10.1038/nnano.2013.277
10.1021/jp800554a
10.1038/asiamat.2010.7
10.1002/adma.201003636
10.1038/nmat1860
10.1126/science.1129564
10.1021/nn501226z
10.1021/acs.jpclett.6b02271
10.1038/nature08731
10.1021/nn204667z
10.1103/PhysRevLett.120.147601
10.1103/PhysRevLett.117.097601
10.1103/PhysRevB.92.045418
10.1103/PhysRevResearch.2.043406
10.1103/PhysRevB.84.041412
10.1038/506019a
10.1093/nsr/nww069
10.1021/acs.nanolett.6b04309
10.1038/nature02018
10.1039/C8TC03560A
10.1002/advs.201801572
10.1038/ncomms10450
10.1021/acs.nanolett.6b00726
10.1103/PhysRevLett.125.017601
10.1002/anie.201304337
10.1063/1.2839274
10.1103/PhysRevB.47.16631
10.1103/PhysRevB.63.245407
10.1103/PhysRevB.54.11169
10.1103/PhysRevLett.105.136805
10.1103/PhysRevB.90.085402
10.1103/PhysRevApplied.14.064025
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2022
Copyright_xml – notice: Copyright Royal Society of Chemistry 2022
DBID AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1039/d1tc05932g
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 2050-7534
EndPage 3195
ExternalDocumentID 10_1039_D1TC05932G
d1tc05932g
GroupedDBID 0-7
0R
4.4
705
AAEMU
AAGNR
AAIWI
AANOJ
ABASK
ABDVN
ABGFH
ABRYZ
ACGFS
ACLDK
ADMRA
ADSRN
AENEX
AFVBQ
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CKLOX
EBS
ECGLT
EE0
EF-
GNO
HZ
H~N
J3I
JG
O-G
O9-
R7C
RCNCU
RIG
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
0R~
AAJAE
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKMSF
ALUYA
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c281t-1b75b13463a393f2d8d5e2b3399abf15151b225ea9cac548bbb42bb01b8d798a3
ISSN 2050-7526
IngestDate Mon Jun 30 05:13:03 EDT 2025
Thu Apr 24 22:51:23 EDT 2025
Tue Jul 01 04:26:37 EDT 2025
Fri Feb 25 11:30:01 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c281t-1b75b13463a393f2d8d5e2b3399abf15151b225ea9cac548bbb42bb01b8d798a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3920-6324
PQID 2632232518
PQPubID 2047521
PageCount 8
ParticipantIDs crossref_primary_10_1039_D1TC05932G
rsc_primary_d1tc05932g
crossref_citationtrail_10_1039_D1TC05932G
proquest_journals_2632232518
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-24
PublicationDateYYYYMMDD 2022-02-24
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-24
  day: 24
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. C, Materials for optical and electronic devices
PublicationYear 2022
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Hur (D1TC05932G/cit5/1) 2004; 429
Kresse (D1TC05932G/cit35/1) 1996; 54
Fu (D1TC05932G/cit41/1) 2008; 129
Wang (D1TC05932G/cit51/1) 2010; 2
Brandbyge (D1TC05932G/cit40/1) 2001; 65
Fei (D1TC05932G/cit7/1) 2016; 117
Leuenberger (D1TC05932G/cit26/1) 2001; 410
Fu (D1TC05932G/cit43/1) 2008; 128
Miao (D1TC05932G/cit54/1) 2013; 111
Liu (D1TC05932G/cit30/1) 2014; 8
Zhang (D1TC05932G/cit17/1) 2014; 9
Datta (D1TC05932G/cit45/1) 1995
Huang (D1TC05932G/cit8/1) 2018; 120
Taylor (D1TC05932G/cit46/1) 2001; 63
Scott (D1TC05932G/cit23/1) 2007; 315
Padilha (D1TC05932G/cit44/1) 2011; 84
Allec (D1TC05932G/cit39/1) 2016; 7
Wang (D1TC05932G/cit4/1) 2009; 58
Hicks (D1TC05932G/cit48/1) 1993; 47
Fu (D1TC05932G/cit25/1) 2020; 2
Andrew (D1TC05932G/cit38/1) 2017; 29
Fiori (D1TC05932G/cit11/1) 2014; 9
Mak (D1TC05932G/cit13/1) 2010; 105
Wu (D1TC05932G/cit15/1) 2018; 6
Zeng (D1TC05932G/cit47/1) 2011; 11
Gajek (D1TC05932G/cit2/1) 2007; 6
Guo (D1TC05932G/cit27/1) 2014; 2
Allain (D1TC05932G/cit12/1) 2015; 14
Ma (D1TC05932G/cit18/1) 2012; 6
Saha (D1TC05932G/cit49/1) 2011; 84
Ma (D1TC05932G/cit1/1) 2011; 23
Kimura (D1TC05932G/cit22/1) 2003; 426
Pei (D1TC05932G/cit33/1) 2016; 7
Wang (D1TC05932G/cit50/1) 2008; 100
Kresse (D1TC05932G/cit34/1) 1996; 6
Horiuchi (D1TC05932G/cit28/1) 2010; 463
Wu (D1TC05932G/cit6/1) 2016; 16
Chhowalla (D1TC05932G/cit10/1) 2016; 1
Yagmur (D1TC05932G/cit55/1) 2020; 14
Zhang (D1TC05932G/cit21/1) 2019; 19
Tan (D1TC05932G/cit16/1) 2021; 103
Yang (D1TC05932G/cit29/1) 2017; 139
Zhao (D1TC05932G/cit3/1) 2014; 5
Peng (D1TC05932G/cit31/1) 2014; 90
Zhang (D1TC05932G/cit9/1) 2020; 125
Wu (D1TC05932G/cit20/1) 2016; 16
Yang (D1TC05932G/cit24/1) 2019; 6
Reich (D1TC05932G/cit32/1) 2014; 506
Perdew (D1TC05932G/cit37/1) 1996; 77
Fu (D1TC05932G/cit42/1) 2008; 112
Yue (D1TC05932G/cit53/1) 2020; 16
Xu (D1TC05932G/cit19/1) 2013; 52
Grimme (D1TC05932G/cit36/1) 2006; 27
Wang (D1TC05932G/cit52/1) 2017; 4
Fu (D1TC05932G/cit14/1) 2015; 92
References_xml – issn: 1995
  publication-title: Electronic Transport in Mesoscopic Systems
  doi: Datta
– volume-title: Electronic Transport in Mesoscopic Systems
  year: 1995
  ident: D1TC05932G/cit45/1
  doi: 10.1017/CBO9780511805776
– volume: 27
  start-page: 1787
  year: 2006
  ident: D1TC05932G/cit36/1
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20495
– volume: 6
  start-page: 15
  year: 1996
  ident: D1TC05932G/cit34/1
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 16
  start-page: 1905155
  year: 2020
  ident: D1TC05932G/cit53/1
  publication-title: Small
  doi: 10.1002/smll.201905155
– volume: 103
  start-page: 115415
  year: 2021
  ident: D1TC05932G/cit16/1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.103.115415
– volume: 139
  start-page: 11506
  year: 2017
  ident: D1TC05932G/cit29/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b04422
– volume: 14
  start-page: 1195
  year: 2015
  ident: D1TC05932G/cit12/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4452
– volume: 9
  start-page: 768
  year: 2014
  ident: D1TC05932G/cit11/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.207
– volume: 58
  start-page: 321
  year: 2009
  ident: D1TC05932G/cit4/1
  publication-title: Adv. Phys.
  doi: 10.1080/00018730902920554
– volume: 77
  start-page: 3865
  year: 1996
  ident: D1TC05932G/cit37/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 429
  start-page: 392
  year: 2004
  ident: D1TC05932G/cit5/1
  publication-title: Nature
  doi: 10.1038/nature02572
– volume: 5
  start-page: 4201
  year: 2014
  ident: D1TC05932G/cit3/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5201
– volume: 111
  start-page: 066602
  year: 2013
  ident: D1TC05932G/cit54/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.066602
– volume: 19
  start-page: 1366
  year: 2019
  ident: D1TC05932G/cit21/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b05050
– volume: 410
  start-page: 789
  year: 2001
  ident: D1TC05932G/cit26/1
  publication-title: Nature
  doi: 10.1038/35071024
– volume: 65
  start-page: 165401
  year: 2001
  ident: D1TC05932G/cit40/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.65.165401
– volume: 84
  start-page: 113412
  year: 2011
  ident: D1TC05932G/cit44/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.84.113412
– volume: 1
  start-page: 16052
  year: 2016
  ident: D1TC05932G/cit10/1
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.52
– volume: 2
  start-page: 8858
  year: 2014
  ident: D1TC05932G/cit27/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C4TC01275E
– volume: 129
  start-page: 134706
  year: 2008
  ident: D1TC05932G/cit41/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2987719
– volume: 11
  start-page: 1369
  year: 2011
  ident: D1TC05932G/cit47/1
  publication-title: Nano Lett.
  doi: 10.1021/nl2000049
– volume: 9
  start-page: 111
  year: 2014
  ident: D1TC05932G/cit17/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2013.277
– volume: 112
  start-page: 6205
  year: 2008
  ident: D1TC05932G/cit42/1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp800554a
– volume: 2
  start-page: 31
  year: 2010
  ident: D1TC05932G/cit51/1
  publication-title: NPG Asia Mater.
  doi: 10.1038/asiamat.2010.7
– volume: 23
  start-page: 1062
  year: 2011
  ident: D1TC05932G/cit1/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201003636
– volume: 6
  start-page: 296
  year: 2007
  ident: D1TC05932G/cit2/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1860
– volume: 315
  start-page: 954
  year: 2007
  ident: D1TC05932G/cit23/1
  publication-title: Science
  doi: 10.1126/science.1129564
– volume: 8
  start-page: 4033
  year: 2014
  ident: D1TC05932G/cit30/1
  publication-title: ACS Nano
  doi: 10.1021/nn501226z
– volume: 7
  start-page: 4340
  year: 2016
  ident: D1TC05932G/cit39/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b02271
– volume: 463
  start-page: 789
  year: 2010
  ident: D1TC05932G/cit28/1
  publication-title: Nature
  doi: 10.1038/nature08731
– volume: 6
  start-page: 1695
  year: 2012
  ident: D1TC05932G/cit18/1
  publication-title: ACS Nano
  doi: 10.1021/nn204667z
– volume: 120
  start-page: 147601
  year: 2018
  ident: D1TC05932G/cit8/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.147601
– volume: 29
  start-page: 283001
  year: 2017
  ident: D1TC05932G/cit38/1
  publication-title: J. Phys.: Condens. Matter
– volume: 117
  start-page: 097601
  year: 2016
  ident: D1TC05932G/cit7/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.097601
– volume: 92
  start-page: 045418
  year: 2015
  ident: D1TC05932G/cit14/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.92.045418
– volume: 2
  start-page: 043406
  year: 2020
  ident: D1TC05932G/cit25/1
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.2.043406
– volume: 84
  start-page: 041412(R)
  year: 2011
  ident: D1TC05932G/cit49/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.84.041412
– volume: 506
  start-page: 19
  year: 2014
  ident: D1TC05932G/cit32/1
  publication-title: Nature
  doi: 10.1038/506019a
– volume: 4
  start-page: 252
  year: 2017
  ident: D1TC05932G/cit52/1
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nww069
– volume: 16
  start-page: 7309
  year: 2016
  ident: D1TC05932G/cit20/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b04309
– volume: 426
  start-page: 55
  year: 2003
  ident: D1TC05932G/cit22/1
  publication-title: Nature
  doi: 10.1038/nature02018
– volume: 6
  start-page: 10603
  year: 2018
  ident: D1TC05932G/cit15/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC03560A
– volume: 100
  start-page: 15640
  year: 2008
  ident: D1TC05932G/cit50/1
  publication-title: Phys. Rev. Lett.
– volume: 6
  start-page: 1801572
  year: 2019
  ident: D1TC05932G/cit24/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201801572
– volume: 7
  start-page: 10450
  year: 2016
  ident: D1TC05932G/cit33/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10450
– volume: 16
  start-page: 3236
  year: 2016
  ident: D1TC05932G/cit6/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b00726
– volume: 125
  start-page: 017601
  year: 2020
  ident: D1TC05932G/cit9/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.017601
– volume: 52
  start-page: 10477
  year: 2013
  ident: D1TC05932G/cit19/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201304337
– volume: 128
  start-page: 114705
  year: 2008
  ident: D1TC05932G/cit43/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2839274
– volume: 47
  start-page: 16631(R)
  year: 1993
  ident: D1TC05932G/cit48/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.47.16631
– volume: 63
  start-page: 245407
  year: 2001
  ident: D1TC05932G/cit46/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.63.245407
– volume: 54
  start-page: 11169
  year: 1996
  ident: D1TC05932G/cit35/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.54.11169
– volume: 105
  start-page: 136805
  year: 2010
  ident: D1TC05932G/cit13/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.136805
– volume: 90
  start-page: 085402
  year: 2014
  ident: D1TC05932G/cit31/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.90.085402
– volume: 14
  start-page: 064025
  year: 2020
  ident: D1TC05932G/cit55/1
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.14.064025
SSID ssj0000816869
Score 2.3383262
Snippet Two-dimensional multiferroic materials, combining the ferroelectric (FE) state with the ferromagnetic (FM) state, have long been regarded as one of the core...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3188
SubjectTerms Adatoms
Bilayers
Chlorine
Electric fields
Electric polarization
Energy dissipation
Ferroelectric materials
Ferroelectricity
Ferromagnetic materials
Interdisciplinary subjects
Materials science
Materials selection
Multiferroic materials
Phosphorene
Plane strain
Seebeck effect
Spintronics
Vertical polarization
Title Spin-gapless semiconducting Cl-intercalated phosphorene bilayer: a perfect candidate material to identify its ferroelectric states by spin-Seebeck currents
URI https://www.proquest.com/docview/2632232518
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELe6TkjwgGAwrTCQJXhBkUf-tg5vU9cypmo8LBXlKbJdZ0RUTdUkD-Or8C35BJydOElRQcBDospJLCv36_nucvc7hF5ToXikJCU-TyTx_UASxkKfDBPwRihnjs10guz18HLuXy2CRa_3o5O1VBb8THzbW1fyP1KFMZCrqpL9B8k2k8IA_Ab5whkkDOe_kvHNJl2TW7ZZKXWVqzT3bK34W_W3_BVRVBBbkAFTVuXmS5bDoRgsLZ6uGJjaVaHzRm41gbFQBS7K_7fAiNWrV3Zpqgt5kzv9gSGR221WNc5JhaVrkXJlv-ZqHTdSSeqrJSrGp_w3Zq-ZPLeE6TV3Zo2rsiFzRaU-ZpuiITLo9OpZSq3a2gD7msBhfSob9VWSKK2iuldpk11UpmTK4K1cNPctUpaRz6XegkrZDX6A36yKydvgZxViMfmtOn-lXnmrRl07sMkocGvC7e5YHUY1-4DdwTvtKHVQe7RjIIDSCvZuPranuFuXTiFUn0T3tt1iTVrB9cd4Op_N4miyiA7QoQuujdtHh-eT6MOsiQzqVii6F2OzdMOr64Vv2-l3LanWPTrYmt412kaKHqGHtZTxeYXUx6gn10foQYfy8gjd0ynHIn-CvnfRi3fRi39BL-6gF9fofYcZrrGLG-xiAy9cZNhgFwN28Q52cYVdzO9wF7vYYPcpmk8n0fiS1K1CiHCpUxCHjwLueP7QY17oJe6SLgPpcg_Mb8YTZbQ7HHYuyULBhFJCnPsu57bD6XIUUuYdo_46W8sThEdhwmUYjsSQJn5AQ_CollIkvqCBrdgOB-iNee2xqHn0VTuXVazzObwwvnCisRbR-wF61dy7qdhj9t51aqQX19olj1UfBfB2AocO0DFItHm-BcCzPz_3HN1v_zKnqF9sS_kCLOiCv6wh9xNzydH-
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spin-gapless+semiconducting+Cl-intercalated+phosphorene+bilayer%3A+a+perfect+candidate+material+to+identify+its+ferroelectric+states+by+spin-Seebeck+currents&rft.jtitle=Journal+of+materials+chemistry.+C%2C+Materials+for+optical+and+electronic+devices&rft.au=Dan-Dan+Wu&rft.au=Yu-Tian%2C+Ji&rft.au=Gui-Fang+Du&rft.au=Xiao-Yu%2C+Yue&rft.date=2022-02-24&rft.pub=Royal+Society+of+Chemistry&rft.issn=2050-7526&rft.eissn=2050-7534&rft.volume=10&rft.issue=8&rft.spage=3188&rft.epage=3195&rft_id=info:doi/10.1039%2Fd1tc05932g&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7526&client=summon