Spin-gapless semiconducting Cl-intercalated phosphorene bilayer: a perfect candidate material to identify its ferroelectric states by spin-Seebeck currents
Two-dimensional multiferroic materials, combining the ferroelectric (FE) state with the ferromagnetic (FM) state, have long been regarded as one of the core topics in materials science. However, realizing a low-energy-dissipation approach to read the FE states is still a hard task. Here, we propose...
Saved in:
Published in | Journal of materials chemistry. C, Materials for optical and electronic devices Vol. 1; no. 8; pp. 3188 - 3195 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
24.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Two-dimensional multiferroic materials, combining the ferroelectric (FE) state with the ferromagnetic (FM) state, have long been regarded as one of the core topics in materials science. However, realizing a low-energy-dissipation approach to read the FE states is still a hard task. Here, we propose a bilayer phosphorene halogenated by chlorine (Cl) adatoms to induce the layer-dependent single-atom FE states with vertical electric polarization and construct the related spin caloritronic devices. Our theoretical studies uncover several interesting findings: (i) the halogenated monolayer phosphorene produces single-atom FE states and two nearly symmetrical spin-splitting states around the Fermi level, providing two spin-dependent transport channels for the generation of a well-defined spin-Seebeck effect (SSE); (ii) a pure thermal spin current can be obtained by adjusting the Cl-adatom concentration or by using an in-plane strain engineering technique; (iii) the spin-Seebeck current is tightly associated with the layer-dependent FE state, and they both can be switched simultaneously to the other layer by an external electric field. Our theoretical results not only propose a low-energy-dissipation approach to realize the readout of single-atom FE states, but also develop further the new interdisciplinary subject,
i.e.
, the spin-ferroelectro-caloritronics.
Two-dimensional multiferroic materials, combining the ferroelectric (FE) state with the ferromagnetic (FM) state, have long been regarded as one of the core topics in materials science. |
---|---|
AbstractList | Two-dimensional multiferroic materials, combining the ferroelectric (FE) state with the ferromagnetic (FM) state, have long been regarded as one of the core topics in materials science. However, realizing a low-energy-dissipation approach to read the FE states is still a hard task. Here, we propose a bilayer phosphorene halogenated by chlorine (Cl) adatoms to induce the layer-dependent single-atom FE states with vertical electric polarization and construct the related spin caloritronic devices. Our theoretical studies uncover several interesting findings: (i) the halogenated monolayer phosphorene produces single-atom FE states and two nearly symmetrical spin-splitting states around the Fermi level, providing two spin-dependent transport channels for the generation of a well-defined spin-Seebeck effect (SSE); (ii) a pure thermal spin current can be obtained by adjusting the Cl-adatom concentration or by using an in-plane strain engineering technique; (iii) the spin-Seebeck current is tightly associated with the layer-dependent FE state, and they both can be switched simultaneously to the other layer by an external electric field. Our theoretical results not only propose a low-energy-dissipation approach to realize the readout of single-atom FE states, but also develop further the new interdisciplinary subject, i.e., the spin-ferroelectro-caloritronics. Two-dimensional multiferroic materials, combining the ferroelectric (FE) state with the ferromagnetic (FM) state, have long been regarded as one of the core topics in materials science. However, realizing a low-energy-dissipation approach to read the FE states is still a hard task. Here, we propose a bilayer phosphorene halogenated by chlorine (Cl) adatoms to induce the layer-dependent single-atom FE states with vertical electric polarization and construct the related spin caloritronic devices. Our theoretical studies uncover several interesting findings: (i) the halogenated monolayer phosphorene produces single-atom FE states and two nearly symmetrical spin-splitting states around the Fermi level, providing two spin-dependent transport channels for the generation of a well-defined spin-Seebeck effect (SSE); (ii) a pure thermal spin current can be obtained by adjusting the Cl-adatom concentration or by using an in-plane strain engineering technique; (iii) the spin-Seebeck current is tightly associated with the layer-dependent FE state, and they both can be switched simultaneously to the other layer by an external electric field. Our theoretical results not only propose a low-energy-dissipation approach to realize the readout of single-atom FE states, but also develop further the new interdisciplinary subject, i.e. , the spin-ferroelectro-caloritronics. Two-dimensional multiferroic materials, combining the ferroelectric (FE) state with the ferromagnetic (FM) state, have long been regarded as one of the core topics in materials science. However, realizing a low-energy-dissipation approach to read the FE states is still a hard task. Here, we propose a bilayer phosphorene halogenated by chlorine (Cl) adatoms to induce the layer-dependent single-atom FE states with vertical electric polarization and construct the related spin caloritronic devices. Our theoretical studies uncover several interesting findings: (i) the halogenated monolayer phosphorene produces single-atom FE states and two nearly symmetrical spin-splitting states around the Fermi level, providing two spin-dependent transport channels for the generation of a well-defined spin-Seebeck effect (SSE); (ii) a pure thermal spin current can be obtained by adjusting the Cl-adatom concentration or by using an in-plane strain engineering technique; (iii) the spin-Seebeck current is tightly associated with the layer-dependent FE state, and they both can be switched simultaneously to the other layer by an external electric field. Our theoretical results not only propose a low-energy-dissipation approach to realize the readout of single-atom FE states, but also develop further the new interdisciplinary subject, i.e. , the spin-ferroelectro-caloritronics. Two-dimensional multiferroic materials, combining the ferroelectric (FE) state with the ferromagnetic (FM) state, have long been regarded as one of the core topics in materials science. |
Author | Wu, Dan-Dan Wang, Yi-Yan Ji, Yu-Tian Yue, Xiao-Yu Du, Gui-Fang Li, Qiu-Ju Sun, Xue-Feng Fu, Hua-Hua |
AuthorAffiliation | Institutes of Physical Science and Information Technology and Key Laboratory of Strongly-Coupled Quantum Matter Physics (CAS) University of Science and Technology of China Anhui University School of Physical and Materials Science School of Physics and Wuhan National High Magnetic Field Center Huazhong University of Science and Technology Hefei National Laboratory for Physical Sciences at Microscale Department of Physics |
AuthorAffiliation_xml | – name: University of Science and Technology of China – name: School of Physical and Materials Science – name: and Key Laboratory of Strongly-Coupled Quantum Matter Physics (CAS) – name: Institutes of Physical Science and Information Technology – name: Anhui University – name: School of Physics and Wuhan National High Magnetic Field Center – name: Huazhong University of Science and Technology – name: Department of Physics – name: Hefei National Laboratory for Physical Sciences at Microscale |
Author_xml | – sequence: 1 givenname: Dan-Dan surname: Wu fullname: Wu, Dan-Dan – sequence: 2 givenname: Yu-Tian surname: Ji fullname: Ji, Yu-Tian – sequence: 3 givenname: Gui-Fang surname: Du fullname: Du, Gui-Fang – sequence: 4 givenname: Xiao-Yu surname: Yue fullname: Yue, Xiao-Yu – sequence: 5 givenname: Yi-Yan surname: Wang fullname: Wang, Yi-Yan – sequence: 6 givenname: Qiu-Ju surname: Li fullname: Li, Qiu-Ju – sequence: 7 givenname: Xue-Feng surname: Sun fullname: Sun, Xue-Feng – sequence: 8 givenname: Hua-Hua surname: Fu fullname: Fu, Hua-Hua |
BookMark | eNptkUtrGzEQgEVJoYnrS-4FQW-BTfWw1ru9Fad1AoEc7JwXPWZdJWtpO5IP_i39s5Hj4ELJiHkcvnlo5oKchRiAkEvOrjmT7TfHs2WqlWLzgZwLplg1V3J2dopF_YlMU3piRRpeN3V7Tv6uRh-qjR4HSIkm2Hobg9vZ7MOGLobKhwxo9aAzODr-jqkoQgBq_KD3gN-ppiNgDzZTq4PzrpB0Wwx6PdAcqXcQsu_31OdEe0CMMBQavaUpFy5Rs6fpMMUKwIB9pnaHpUVOn8nHXg8Jpm9-Qh5__Vwvbqv7h-Xd4sd9ZUXDc8XNXBkuZ7XUspW9cI1TIIyUbatNz1V5RggFurXaqlljjJkJYxg3jZu3jZYT8vVYd8T4Zwcpd09xh6G07EQthZBC8aZQV0fKYkwJoe9G9FuN-46z7rD_7oavF6_7XxaY_QdbXz7rY8io_fB-ypdjCiZ7Kv3vpPIFL7mXUQ |
CitedBy_id | crossref_primary_10_1039_D2CP02658A crossref_primary_10_1039_D3CP01840G crossref_primary_10_1039_D2CP03615K crossref_primary_10_1088_1361_6463_ace7d9 |
Cites_doi | 10.1017/CBO9780511805776 10.1002/jcc.20495 10.1016/0927-0256(96)00008-0 10.1002/smll.201905155 10.1103/PhysRevB.103.115415 10.1021/jacs.7b04422 10.1038/nmat4452 10.1038/nnano.2014.207 10.1080/00018730902920554 10.1103/PhysRevLett.77.3865 10.1038/nature02572 10.1038/ncomms5201 10.1103/PhysRevLett.111.066602 10.1021/acs.nanolett.8b05050 10.1038/35071024 10.1103/PhysRevB.65.165401 10.1103/PhysRevB.84.113412 10.1038/natrevmats.2016.52 10.1039/C4TC01275E 10.1063/1.2987719 10.1021/nl2000049 10.1038/nnano.2013.277 10.1021/jp800554a 10.1038/asiamat.2010.7 10.1002/adma.201003636 10.1038/nmat1860 10.1126/science.1129564 10.1021/nn501226z 10.1021/acs.jpclett.6b02271 10.1038/nature08731 10.1021/nn204667z 10.1103/PhysRevLett.120.147601 10.1103/PhysRevLett.117.097601 10.1103/PhysRevB.92.045418 10.1103/PhysRevResearch.2.043406 10.1103/PhysRevB.84.041412 10.1038/506019a 10.1093/nsr/nww069 10.1021/acs.nanolett.6b04309 10.1038/nature02018 10.1039/C8TC03560A 10.1002/advs.201801572 10.1038/ncomms10450 10.1021/acs.nanolett.6b00726 10.1103/PhysRevLett.125.017601 10.1002/anie.201304337 10.1063/1.2839274 10.1103/PhysRevB.47.16631 10.1103/PhysRevB.63.245407 10.1103/PhysRevB.54.11169 10.1103/PhysRevLett.105.136805 10.1103/PhysRevB.90.085402 10.1103/PhysRevApplied.14.064025 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2022 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2022 |
DBID | AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1039/d1tc05932g |
DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 2050-7534 |
EndPage | 3195 |
ExternalDocumentID | 10_1039_D1TC05932G d1tc05932g |
GroupedDBID | 0-7 0R 4.4 705 AAEMU AAGNR AAIWI AANOJ ABASK ABDVN ABGFH ABRYZ ACGFS ACLDK ADMRA ADSRN AENEX AFVBQ AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV BLAPV BSQNT C6K CKLOX EBS ECGLT EE0 EF- GNO HZ H~N J3I JG O-G O9- R7C RCNCU RIG RNS RPMJG RRC RSCEA SKA SKF SLH UCJ 0R~ AAJAE AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKMSF ALUYA APEMP CITATION GGIMP H13 HZ~ RAOCF 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c281t-1b75b13463a393f2d8d5e2b3399abf15151b225ea9cac548bbb42bb01b8d798a3 |
ISSN | 2050-7526 |
IngestDate | Mon Jun 30 05:13:03 EDT 2025 Thu Apr 24 22:51:23 EDT 2025 Tue Jul 01 04:26:37 EDT 2025 Fri Feb 25 11:30:01 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c281t-1b75b13463a393f2d8d5e2b3399abf15151b225ea9cac548bbb42bb01b8d798a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3920-6324 |
PQID | 2632232518 |
PQPubID | 2047521 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1039_D1TC05932G rsc_primary_d1tc05932g crossref_citationtrail_10_1039_D1TC05932G proquest_journals_2632232518 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-24 |
PublicationDateYYYYMMDD | 2022-02-24 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. C, Materials for optical and electronic devices |
PublicationYear | 2022 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Hur (D1TC05932G/cit5/1) 2004; 429 Kresse (D1TC05932G/cit35/1) 1996; 54 Fu (D1TC05932G/cit41/1) 2008; 129 Wang (D1TC05932G/cit51/1) 2010; 2 Brandbyge (D1TC05932G/cit40/1) 2001; 65 Fei (D1TC05932G/cit7/1) 2016; 117 Leuenberger (D1TC05932G/cit26/1) 2001; 410 Fu (D1TC05932G/cit43/1) 2008; 128 Miao (D1TC05932G/cit54/1) 2013; 111 Liu (D1TC05932G/cit30/1) 2014; 8 Zhang (D1TC05932G/cit17/1) 2014; 9 Datta (D1TC05932G/cit45/1) 1995 Huang (D1TC05932G/cit8/1) 2018; 120 Taylor (D1TC05932G/cit46/1) 2001; 63 Scott (D1TC05932G/cit23/1) 2007; 315 Padilha (D1TC05932G/cit44/1) 2011; 84 Allec (D1TC05932G/cit39/1) 2016; 7 Wang (D1TC05932G/cit4/1) 2009; 58 Hicks (D1TC05932G/cit48/1) 1993; 47 Fu (D1TC05932G/cit25/1) 2020; 2 Andrew (D1TC05932G/cit38/1) 2017; 29 Fiori (D1TC05932G/cit11/1) 2014; 9 Mak (D1TC05932G/cit13/1) 2010; 105 Wu (D1TC05932G/cit15/1) 2018; 6 Zeng (D1TC05932G/cit47/1) 2011; 11 Gajek (D1TC05932G/cit2/1) 2007; 6 Guo (D1TC05932G/cit27/1) 2014; 2 Allain (D1TC05932G/cit12/1) 2015; 14 Ma (D1TC05932G/cit18/1) 2012; 6 Saha (D1TC05932G/cit49/1) 2011; 84 Ma (D1TC05932G/cit1/1) 2011; 23 Kimura (D1TC05932G/cit22/1) 2003; 426 Pei (D1TC05932G/cit33/1) 2016; 7 Wang (D1TC05932G/cit50/1) 2008; 100 Kresse (D1TC05932G/cit34/1) 1996; 6 Horiuchi (D1TC05932G/cit28/1) 2010; 463 Wu (D1TC05932G/cit6/1) 2016; 16 Chhowalla (D1TC05932G/cit10/1) 2016; 1 Yagmur (D1TC05932G/cit55/1) 2020; 14 Zhang (D1TC05932G/cit21/1) 2019; 19 Tan (D1TC05932G/cit16/1) 2021; 103 Yang (D1TC05932G/cit29/1) 2017; 139 Zhao (D1TC05932G/cit3/1) 2014; 5 Peng (D1TC05932G/cit31/1) 2014; 90 Zhang (D1TC05932G/cit9/1) 2020; 125 Wu (D1TC05932G/cit20/1) 2016; 16 Yang (D1TC05932G/cit24/1) 2019; 6 Reich (D1TC05932G/cit32/1) 2014; 506 Perdew (D1TC05932G/cit37/1) 1996; 77 Fu (D1TC05932G/cit42/1) 2008; 112 Yue (D1TC05932G/cit53/1) 2020; 16 Xu (D1TC05932G/cit19/1) 2013; 52 Grimme (D1TC05932G/cit36/1) 2006; 27 Wang (D1TC05932G/cit52/1) 2017; 4 Fu (D1TC05932G/cit14/1) 2015; 92 |
References_xml | – issn: 1995 publication-title: Electronic Transport in Mesoscopic Systems doi: Datta – volume-title: Electronic Transport in Mesoscopic Systems year: 1995 ident: D1TC05932G/cit45/1 doi: 10.1017/CBO9780511805776 – volume: 27 start-page: 1787 year: 2006 ident: D1TC05932G/cit36/1 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20495 – volume: 6 start-page: 15 year: 1996 ident: D1TC05932G/cit34/1 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 16 start-page: 1905155 year: 2020 ident: D1TC05932G/cit53/1 publication-title: Small doi: 10.1002/smll.201905155 – volume: 103 start-page: 115415 year: 2021 ident: D1TC05932G/cit16/1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.103.115415 – volume: 139 start-page: 11506 year: 2017 ident: D1TC05932G/cit29/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b04422 – volume: 14 start-page: 1195 year: 2015 ident: D1TC05932G/cit12/1 publication-title: Nat. Mater. doi: 10.1038/nmat4452 – volume: 9 start-page: 768 year: 2014 ident: D1TC05932G/cit11/1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.207 – volume: 58 start-page: 321 year: 2009 ident: D1TC05932G/cit4/1 publication-title: Adv. Phys. doi: 10.1080/00018730902920554 – volume: 77 start-page: 3865 year: 1996 ident: D1TC05932G/cit37/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 429 start-page: 392 year: 2004 ident: D1TC05932G/cit5/1 publication-title: Nature doi: 10.1038/nature02572 – volume: 5 start-page: 4201 year: 2014 ident: D1TC05932G/cit3/1 publication-title: Nat. Commun. doi: 10.1038/ncomms5201 – volume: 111 start-page: 066602 year: 2013 ident: D1TC05932G/cit54/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.066602 – volume: 19 start-page: 1366 year: 2019 ident: D1TC05932G/cit21/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b05050 – volume: 410 start-page: 789 year: 2001 ident: D1TC05932G/cit26/1 publication-title: Nature doi: 10.1038/35071024 – volume: 65 start-page: 165401 year: 2001 ident: D1TC05932G/cit40/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.65.165401 – volume: 84 start-page: 113412 year: 2011 ident: D1TC05932G/cit44/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.84.113412 – volume: 1 start-page: 16052 year: 2016 ident: D1TC05932G/cit10/1 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.52 – volume: 2 start-page: 8858 year: 2014 ident: D1TC05932G/cit27/1 publication-title: J. Mater. Chem. C doi: 10.1039/C4TC01275E – volume: 129 start-page: 134706 year: 2008 ident: D1TC05932G/cit41/1 publication-title: J. Chem. Phys. doi: 10.1063/1.2987719 – volume: 11 start-page: 1369 year: 2011 ident: D1TC05932G/cit47/1 publication-title: Nano Lett. doi: 10.1021/nl2000049 – volume: 9 start-page: 111 year: 2014 ident: D1TC05932G/cit17/1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2013.277 – volume: 112 start-page: 6205 year: 2008 ident: D1TC05932G/cit42/1 publication-title: J. Phys. Chem. A doi: 10.1021/jp800554a – volume: 2 start-page: 31 year: 2010 ident: D1TC05932G/cit51/1 publication-title: NPG Asia Mater. doi: 10.1038/asiamat.2010.7 – volume: 23 start-page: 1062 year: 2011 ident: D1TC05932G/cit1/1 publication-title: Adv. Mater. doi: 10.1002/adma.201003636 – volume: 6 start-page: 296 year: 2007 ident: D1TC05932G/cit2/1 publication-title: Nat. Mater. doi: 10.1038/nmat1860 – volume: 315 start-page: 954 year: 2007 ident: D1TC05932G/cit23/1 publication-title: Science doi: 10.1126/science.1129564 – volume: 8 start-page: 4033 year: 2014 ident: D1TC05932G/cit30/1 publication-title: ACS Nano doi: 10.1021/nn501226z – volume: 7 start-page: 4340 year: 2016 ident: D1TC05932G/cit39/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b02271 – volume: 463 start-page: 789 year: 2010 ident: D1TC05932G/cit28/1 publication-title: Nature doi: 10.1038/nature08731 – volume: 6 start-page: 1695 year: 2012 ident: D1TC05932G/cit18/1 publication-title: ACS Nano doi: 10.1021/nn204667z – volume: 120 start-page: 147601 year: 2018 ident: D1TC05932G/cit8/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.147601 – volume: 29 start-page: 283001 year: 2017 ident: D1TC05932G/cit38/1 publication-title: J. Phys.: Condens. Matter – volume: 117 start-page: 097601 year: 2016 ident: D1TC05932G/cit7/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.097601 – volume: 92 start-page: 045418 year: 2015 ident: D1TC05932G/cit14/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.92.045418 – volume: 2 start-page: 043406 year: 2020 ident: D1TC05932G/cit25/1 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.2.043406 – volume: 84 start-page: 041412(R) year: 2011 ident: D1TC05932G/cit49/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.84.041412 – volume: 506 start-page: 19 year: 2014 ident: D1TC05932G/cit32/1 publication-title: Nature doi: 10.1038/506019a – volume: 4 start-page: 252 year: 2017 ident: D1TC05932G/cit52/1 publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nww069 – volume: 16 start-page: 7309 year: 2016 ident: D1TC05932G/cit20/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04309 – volume: 426 start-page: 55 year: 2003 ident: D1TC05932G/cit22/1 publication-title: Nature doi: 10.1038/nature02018 – volume: 6 start-page: 10603 year: 2018 ident: D1TC05932G/cit15/1 publication-title: J. Mater. Chem. C doi: 10.1039/C8TC03560A – volume: 100 start-page: 15640 year: 2008 ident: D1TC05932G/cit50/1 publication-title: Phys. Rev. Lett. – volume: 6 start-page: 1801572 year: 2019 ident: D1TC05932G/cit24/1 publication-title: Adv. Sci. doi: 10.1002/advs.201801572 – volume: 7 start-page: 10450 year: 2016 ident: D1TC05932G/cit33/1 publication-title: Nat. Commun. doi: 10.1038/ncomms10450 – volume: 16 start-page: 3236 year: 2016 ident: D1TC05932G/cit6/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b00726 – volume: 125 start-page: 017601 year: 2020 ident: D1TC05932G/cit9/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.017601 – volume: 52 start-page: 10477 year: 2013 ident: D1TC05932G/cit19/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201304337 – volume: 128 start-page: 114705 year: 2008 ident: D1TC05932G/cit43/1 publication-title: J. Chem. Phys. doi: 10.1063/1.2839274 – volume: 47 start-page: 16631(R) year: 1993 ident: D1TC05932G/cit48/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.47.16631 – volume: 63 start-page: 245407 year: 2001 ident: D1TC05932G/cit46/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.63.245407 – volume: 54 start-page: 11169 year: 1996 ident: D1TC05932G/cit35/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.54.11169 – volume: 105 start-page: 136805 year: 2010 ident: D1TC05932G/cit13/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.136805 – volume: 90 start-page: 085402 year: 2014 ident: D1TC05932G/cit31/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.90.085402 – volume: 14 start-page: 064025 year: 2020 ident: D1TC05932G/cit55/1 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.14.064025 |
SSID | ssj0000816869 |
Score | 2.3383262 |
Snippet | Two-dimensional multiferroic materials, combining the ferroelectric (FE) state with the ferromagnetic (FM) state, have long been regarded as one of the core... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3188 |
SubjectTerms | Adatoms Bilayers Chlorine Electric fields Electric polarization Energy dissipation Ferroelectric materials Ferroelectricity Ferromagnetic materials Interdisciplinary subjects Materials science Materials selection Multiferroic materials Phosphorene Plane strain Seebeck effect Spintronics Vertical polarization |
Title | Spin-gapless semiconducting Cl-intercalated phosphorene bilayer: a perfect candidate material to identify its ferroelectric states by spin-Seebeck currents |
URI | https://www.proquest.com/docview/2632232518 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELe6TkjwgGAwrTCQJXhBkUf-tg5vU9cypmo8LBXlKbJdZ0RUTdUkD-Or8C35BJydOElRQcBDospJLCv36_nucvc7hF5ToXikJCU-TyTx_UASxkKfDBPwRihnjs10guz18HLuXy2CRa_3o5O1VBb8THzbW1fyP1KFMZCrqpL9B8k2k8IA_Ab5whkkDOe_kvHNJl2TW7ZZKXWVqzT3bK34W_W3_BVRVBBbkAFTVuXmS5bDoRgsLZ6uGJjaVaHzRm41gbFQBS7K_7fAiNWrV3Zpqgt5kzv9gSGR221WNc5JhaVrkXJlv-ZqHTdSSeqrJSrGp_w3Zq-ZPLeE6TV3Zo2rsiFzRaU-ZpuiITLo9OpZSq3a2gD7msBhfSob9VWSKK2iuldpk11UpmTK4K1cNPctUpaRz6XegkrZDX6A36yKydvgZxViMfmtOn-lXnmrRl07sMkocGvC7e5YHUY1-4DdwTvtKHVQe7RjIIDSCvZuPranuFuXTiFUn0T3tt1iTVrB9cd4Op_N4miyiA7QoQuujdtHh-eT6MOsiQzqVii6F2OzdMOr64Vv2-l3LanWPTrYmt412kaKHqGHtZTxeYXUx6gn10foQYfy8gjd0ynHIn-CvnfRi3fRi39BL-6gF9fofYcZrrGLG-xiAy9cZNhgFwN28Q52cYVdzO9wF7vYYPcpmk8n0fiS1K1CiHCpUxCHjwLueP7QY17oJe6SLgPpcg_Mb8YTZbQ7HHYuyULBhFJCnPsu57bD6XIUUuYdo_46W8sThEdhwmUYjsSQJn5AQ_CollIkvqCBrdgOB-iNee2xqHn0VTuXVazzObwwvnCisRbR-wF61dy7qdhj9t51aqQX19olj1UfBfB2AocO0DFItHm-BcCzPz_3HN1v_zKnqF9sS_kCLOiCv6wh9xNzydH- |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spin-gapless+semiconducting+Cl-intercalated+phosphorene+bilayer%3A+a+perfect+candidate+material+to+identify+its+ferroelectric+states+by+spin-Seebeck+currents&rft.jtitle=Journal+of+materials+chemistry.+C%2C+Materials+for+optical+and+electronic+devices&rft.au=Dan-Dan+Wu&rft.au=Yu-Tian%2C+Ji&rft.au=Gui-Fang+Du&rft.au=Xiao-Yu%2C+Yue&rft.date=2022-02-24&rft.pub=Royal+Society+of+Chemistry&rft.issn=2050-7526&rft.eissn=2050-7534&rft.volume=10&rft.issue=8&rft.spage=3188&rft.epage=3195&rft_id=info:doi/10.1039%2Fd1tc05932g&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7526&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7526&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7526&client=summon |