Suppressing charge recombination in a methylammonium-free wide-bandgap perovskite film for high-performance and stable perovskite solar cells
Wide-bandgap (WBG) formamidinium-cesium (FA-Cs) hybrid lead iodide-bromide mixed perovskites (∼1.7 eV) have gained great attention with the potential of enabling highly efficient tandem photovoltaics when integrated with crystalline silicon and other low-bandgap solar cells. However, their power con...
Saved in:
Published in | Energy & environmental science Vol. 17; no. 16; pp. 5866 - 5875 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
13.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Wide-bandgap (WBG) formamidinium-cesium (FA-Cs) hybrid lead iodide-bromide mixed perovskites (∼1.7 eV) have gained great attention with the potential of enabling highly efficient tandem photovoltaics when integrated with crystalline silicon and other low-bandgap solar cells. However, their power conversion efficiencies (PCEs) are still insufficient compared to their methylammonium (MA) counterparts, mainly owing to the high open-circuit voltage (
V
OC
) deficits (>0.43 V). Here, by incorporating rubidium iodide (RbI) in the FA
0.8
Cs
0.2
Pb(I
0.75
Br
0.25
)
3
perovskite precursor, the film crystallinity and bulk defects are significantly optimized. In addition, we propose an all-around interface engineering strategy sequentially constructing a surface heterojunction and using trioctylphosphine oxide (TOPO), which can significantly passivate grain boundaries and undercoordinated defects, as well as optimize the energy band. As a result, the target MA-free WBG n-i-p solar cells at 1.685 eV have achieved a record efficiency of 23.35% and a high
V
OC
of 1.30 V (with a record voltage deficit of 0.385 V). Most importantly, the unencapsulated solar cells also display impressive air storage stability, operating stability and thermal stability. Moreover, a PCE of 19.54% on a 1 cm
2
WBG solar cell and a PCE of 21.31% on a 0.04 cm
2
p-i-n inverted WBG solar cell are also demonstrated.
We employed RbI additive, constructed heterojunction, and used TOPO post-treatment for suppressing non-radiative recombination of MA-free WBG perovskite. The device showed a record PCE of 23.35%, a high
V
OC
of 1.3 V and the impressive stability. |
---|---|
AbstractList | Wide-bandgap (WBG) formamidinium–cesium (FA–Cs) hybrid lead iodide–bromide mixed perovskites (∼1.7 eV) have gained great attention with the potential of enabling highly efficient tandem photovoltaics when integrated with crystalline silicon and other low-bandgap solar cells. However, their power conversion efficiencies (PCEs) are still insufficient compared to their methylammonium (MA) counterparts, mainly owing to the high open-circuit voltage (
V
OC
) deficits (>0.43 V). Here, by incorporating rubidium iodide (RbI) in the FA
0.8
Cs
0.2
Pb(I
0.75
Br
0.25
)
3
perovskite precursor, the film crystallinity and bulk defects are significantly optimized. In addition, we propose an all-around interface engineering strategy sequentially constructing a surface heterojunction and using trioctylphosphine oxide (TOPO), which can significantly passivate grain boundaries and undercoordinated defects, as well as optimize the energy band. As a result, the target MA-free WBG n–i–p solar cells at 1.685 eV have achieved a record efficiency of 23.35% and a high
V
OC
of 1.30 V (with a record voltage deficit of 0.385 V). Most importantly, the unencapsulated solar cells also display impressive air storage stability, operating stability and thermal stability. Moreover, a PCE of 19.54% on a 1 cm
2
WBG solar cell and a PCE of 21.31% on a 0.04 cm
2
p–i–n inverted WBG solar cell are also demonstrated. Wide-bandgap (WBG) formamidinium-cesium (FA-Cs) hybrid lead iodide-bromide mixed perovskites (∼1.7 eV) have gained great attention with the potential of enabling highly efficient tandem photovoltaics when integrated with crystalline silicon and other low-bandgap solar cells. However, their power conversion efficiencies (PCEs) are still insufficient compared to their methylammonium (MA) counterparts, mainly owing to the high open-circuit voltage ( V OC ) deficits (>0.43 V). Here, by incorporating rubidium iodide (RbI) in the FA 0.8 Cs 0.2 Pb(I 0.75 Br 0.25 ) 3 perovskite precursor, the film crystallinity and bulk defects are significantly optimized. In addition, we propose an all-around interface engineering strategy sequentially constructing a surface heterojunction and using trioctylphosphine oxide (TOPO), which can significantly passivate grain boundaries and undercoordinated defects, as well as optimize the energy band. As a result, the target MA-free WBG n-i-p solar cells at 1.685 eV have achieved a record efficiency of 23.35% and a high V OC of 1.30 V (with a record voltage deficit of 0.385 V). Most importantly, the unencapsulated solar cells also display impressive air storage stability, operating stability and thermal stability. Moreover, a PCE of 19.54% on a 1 cm 2 WBG solar cell and a PCE of 21.31% on a 0.04 cm 2 p-i-n inverted WBG solar cell are also demonstrated. We employed RbI additive, constructed heterojunction, and used TOPO post-treatment for suppressing non-radiative recombination of MA-free WBG perovskite. The device showed a record PCE of 23.35%, a high V OC of 1.3 V and the impressive stability. Wide-bandgap (WBG) formamidinium–cesium (FA–Cs) hybrid lead iodide–bromide mixed perovskites (∼1.7 eV) have gained great attention with the potential of enabling highly efficient tandem photovoltaics when integrated with crystalline silicon and other low-bandgap solar cells. However, their power conversion efficiencies (PCEs) are still insufficient compared to their methylammonium (MA) counterparts, mainly owing to the high open-circuit voltage (VOC) deficits (>0.43 V). Here, by incorporating rubidium iodide (RbI) in the FA0.8Cs0.2Pb(I0.75Br0.25)3 perovskite precursor, the film crystallinity and bulk defects are significantly optimized. In addition, we propose an all-around interface engineering strategy sequentially constructing a surface heterojunction and using trioctylphosphine oxide (TOPO), which can significantly passivate grain boundaries and undercoordinated defects, as well as optimize the energy band. As a result, the target MA-free WBG n–i–p solar cells at 1.685 eV have achieved a record efficiency of 23.35% and a high VOC of 1.30 V (with a record voltage deficit of 0.385 V). Most importantly, the unencapsulated solar cells also display impressive air storage stability, operating stability and thermal stability. Moreover, a PCE of 19.54% on a 1 cm2 WBG solar cell and a PCE of 21.31% on a 0.04 cm2 p–i–n inverted WBG solar cell are also demonstrated. |
Author | Zhang, Hengkang Yu, Boyang Dou, Weidong Wei, Xieli Cai, Ziyu Fang, Zebo Yao, Bo Ye, Feng Hu, Wenzheng Zhu, Junchi Dong, Tao Liu, Zhun Chen, Feiyang Li, Tie Ye, Qiufeng |
AuthorAffiliation | Chinese Academy of Sciences Shangyu Coll Science and Technology on Microsystem Laboratory Shanghai Institute of Microsystem and Information Technology Department of Physics and Zhejiang Engineering Research Center of MEMS Shaoxing University |
AuthorAffiliation_xml | – sequence: 0 name: Science and Technology on Microsystem Laboratory – sequence: 0 name: Department of Physics and Zhejiang Engineering Research Center of MEMS – sequence: 0 name: Shanghai Institute of Microsystem and Information Technology – sequence: 0 name: Chinese Academy of Sciences – sequence: 0 name: Shaoxing University – sequence: 0 name: Shangyu Coll |
Author_xml | – sequence: 1 givenname: Qiufeng surname: Ye fullname: Ye, Qiufeng – sequence: 2 givenname: Wenzheng surname: Hu fullname: Hu, Wenzheng – sequence: 3 givenname: Junchi surname: Zhu fullname: Zhu, Junchi – sequence: 4 givenname: Ziyu surname: Cai fullname: Cai, Ziyu – sequence: 5 givenname: Hengkang surname: Zhang fullname: Zhang, Hengkang – sequence: 6 givenname: Tao surname: Dong fullname: Dong, Tao – sequence: 7 givenname: Boyang surname: Yu fullname: Yu, Boyang – sequence: 8 givenname: Feiyang surname: Chen fullname: Chen, Feiyang – sequence: 9 givenname: Xieli surname: Wei fullname: Wei, Xieli – sequence: 10 givenname: Bo surname: Yao fullname: Yao, Bo – sequence: 11 givenname: Weidong surname: Dou fullname: Dou, Weidong – sequence: 12 givenname: Zebo surname: Fang fullname: Fang, Zebo – sequence: 13 givenname: Feng surname: Ye fullname: Ye, Feng – sequence: 14 givenname: Zhun surname: Liu fullname: Liu, Zhun – sequence: 15 givenname: Tie surname: Li fullname: Li, Tie |
BookMark | eNptkV9LwzAUxYNMcJu--C4EfBOqSdOmzaPMTYWBD-pzSdObLbNNatIp-xB-Z-vmP8Sne-D-zrlw7ggNrLOA0DEl55QwcVElAIRwzvUeGtIsTaI0I3zwpbmID9AohFXPxCQTQ_R2v25bDyEYu8BqKf0CsAflmtJY2RlnsbFY4ga65aaWTeOsWTeR9gD41VQQldJWC9niFrx7CU-mA6xN3WDtPF6axTLqF71upFWAexaHTpY1_OaDq6XHCuo6HKJ9LesAR59zjB5n04fJTTS_u76dXM4jFee0i6hUOdVCC5KLrCJ5GStgqSohrVicEa2zhGuuKC3znEnJuGAp1SAAEs1oJdkYne5yW--e1xC6YuXW3vYnC0ZETEXMOO2psx2lvAvBgy5abxrpNwUlxUfdxVUynW7rnvUw-QMr020b7Lw09f-Wk53FB_Ud_fNB9g4jT5HF |
CitedBy_id | crossref_primary_10_1016_j_heliyon_2025_e41886 crossref_primary_10_1016_j_mseb_2025_118061 crossref_primary_10_1016_j_cej_2024_156798 crossref_primary_10_1002_anie_202421547 crossref_primary_10_1021_acsami_4c13467 crossref_primary_10_1002_ange_202421547 crossref_primary_10_1039_D5EE00073D crossref_primary_10_1039_D4SC08145E crossref_primary_10_1016_j_mtcomm_2025_112294 |
Cites_doi | 10.1126/science.abd4016 10.1126/science.adj8858 10.1002/aenm.202003386 10.1063/1.4961210 10.1021/acsenergylett.0c02105 10.1021/acsenergylett.8b01906 10.1016/j.nanoen.2023.108765 10.1039/D1EE02650J 10.1038/nenergy.2016.177 10.1002/aenm.202201509 10.1021/acs.jpclett.2c03876 10.1038/s41586-022-05268-x 10.1002/aenm.202203911 10.1038/s41467-018-05531-8 10.1039/D3EE04022D 10.1021/ja809598r 10.1038/s41566-019-0398-2 10.1016/j.nanoen.2021.106608 10.1038/s41586-023-05992-y 10.1103/PRXEnergy.2.033006 10.1021/acsami.7b13947 10.1038/nature23877 10.1038/nature12509 10.1002/adma.201905143 10.1002/adfm.201605988 10.1002/aenm.202204339 10.1038/nnano.2015.230 10.1126/science.adf0194 10.1002/solr.202000082 10.1002/aenm.201701048 10.1002/smll.202005246 10.1038/s41560-022-01059-w 10.1126/science.aat5055 10.1002/adma.201901152 10.1039/C6EE01047D 10.1039/C8EE02852D 10.1038/s41560-023-01220-z 10.1126/science.abp8873 10.1002/pip.2637 10.1021/acsenergylett.0c01350 10.1002/adma.201906115 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2024 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2024 |
DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K FR3 L7M SOI |
DOI | 10.1039/d4ee00666f |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1754-5706 |
EndPage | 5875 |
ExternalDocumentID | 10_1039_D4EE00666F d4ee00666f |
GroupedDBID | -JG 0-7 0R~ 29G 4.4 5GY 705 70~ 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFVBQ AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 EBS ECGLT EE0 EF- GGIMP GNO H13 HZ~ H~N J3I M4U N9A O-G O9- P2P RAOCF RCNCU RPMJG RRC RSCEA RVUXY SKA SLH TOV UCJ AAYXX AFRZK AKMSF CITATION 7SP 7ST 7TB 8FD C1K FR3 L7M SOI |
ID | FETCH-LOGICAL-c281t-1ac81f9f90897d08b2ce35cbe5d3270ff746f6c11b883aa369351fe9ee4f31da3 |
ISSN | 1754-5692 |
IngestDate | Mon Jun 30 11:55:32 EDT 2025 Thu Apr 24 23:06:18 EDT 2025 Tue Jul 01 01:45:59 EDT 2025 Tue Dec 17 20:57:42 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c281t-1ac81f9f90897d08b2ce35cbe5d3270ff746f6c11b883aa369351fe9ee4f31da3 |
Notes | Electronic supplementary information (ESI) available. See DOI https://doi.org/10.1039/d4ee00666f ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0008-7800-7911 0000-0003-2200-2739 0000-0001-9907-0188 |
PQID | 3092192361 |
PQPubID | 2047494 |
PageCount | 1 |
ParticipantIDs | proquest_journals_3092192361 crossref_primary_10_1039_D4EE00666F rsc_primary_d4ee00666f crossref_citationtrail_10_1039_D4EE00666F |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-13 |
PublicationDateYYYYMMDD | 2024-08-13 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Energy & environmental science |
PublicationYear | 2024 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Liu (D4EE00666F/cit16/1) 2019; 4 Yu (D4EE00666F/cit20/1) 2022; 12 Jiang (D4EE00666F/cit4/1) 2019; 13 Jiang (D4EE00666F/cit30/1) 2022; 378 Park (D4EE00666F/cit31/1) 2017; 9 Han (D4EE00666F/cit9/1) 2018; 361 Chen (D4EE00666F/cit29/1) 2021; 90 Gao (D4EE00666F/cit24/1) 2023; 116 Jiang (D4EE00666F/cit39/1) 2017; 2 Wang (D4EE00666F/cit19/1) 2024; 17 Zhao (D4EE00666F/cit5/1) 2022; 377 Wang (D4EE00666F/cit26/1) 2019; 12 Chen (D4EE00666F/cit40/1) 2020; 5 Ye (D4EE00666F/cit34/1) 2020; 16 Liu (D4EE00666F/cit1/1) 2013; 501 Green (D4EE00666F/cit11/1) 2015; 23 Tian (D4EE00666F/cit42/1) 2019; 31 Wang (D4EE00666F/cit13/1) 2020; 32 Chu (D4EE00666F/cit38/1) 2023; 8 Zhou (D4EE00666F/cit15/1) 2017; 7 Xu (D4EE00666F/cit17/1) 2023; 13 Ravishankar (D4EE00666F/cit41/1) 2023; 2 Jiang (D4EE00666F/cit37/1) 2022; 611 You (D4EE00666F/cit35/1) 2016; 11 Abdollahi Nejand (D4EE00666F/cit8/1) 2022; 7 Yu (D4EE00666F/cit6/1) 2023; 382 Oliver (D4EE00666F/cit25/1) 2022; 15 Yang (D4EE00666F/cit32/1) 2023 Ye (D4EE00666F/cit36/1) 2023; 14 Tan (D4EE00666F/cit10/1) 2018; 9 Ye (D4EE00666F/cit22/1) 2020; 4 Al-Ashouri (D4EE00666F/cit7/1) 2020; 370 Tong (D4EE00666F/cit12/1) 2021; 6 Habisreutinger (D4EE00666F/cit27/1) 2016; 4 Ye (D4EE00666F/cit14/1) 2019; 31 Nenon (D4EE00666F/cit28/1) 2016; 9 Liu (D4EE00666F/cit18/1) 2023 Park (D4EE00666F/cit33/1) 2017; 27 He (D4EE00666F/cit43/1) 2023; 618 Kojima (D4EE00666F/cit3/1) 2009; 131 Liu (D4EE00666F/cit21/1) 2021; 11 Qiao (D4EE00666F/cit23/1) 2023 Chen (D4EE00666F/cit2/1) 2017; 550 |
References_xml | – volume: 370 start-page: 1300 year: 2020 ident: D4EE00666F/cit7/1 publication-title: Science doi: 10.1126/science.abd4016 – volume: 382 start-page: 1399 year: 2023 ident: D4EE00666F/cit6/1 publication-title: Science doi: 10.1126/science.adj8858 – volume: 11 start-page: 2003386 year: 2021 ident: D4EE00666F/cit21/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202003386 – volume: 4 start-page: 091503 year: 2016 ident: D4EE00666F/cit27/1 publication-title: APL Mater. doi: 10.1063/1.4961210 – volume: 6 start-page: 232 year: 2021 ident: D4EE00666F/cit12/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c02105 – volume: 4 start-page: 110 year: 2019 ident: D4EE00666F/cit16/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b01906 – volume: 116 start-page: 108765 year: 2023 ident: D4EE00666F/cit24/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2023.108765 – volume: 15 start-page: 714 year: 2022 ident: D4EE00666F/cit25/1 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE02650J – volume: 2 start-page: 16177 year: 2017 ident: D4EE00666F/cit39/1 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.177 – volume: 12 start-page: 2201509 year: 2022 ident: D4EE00666F/cit20/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202201509 – volume: 14 start-page: 1140 year: 2023 ident: D4EE00666F/cit36/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.2c03876 – volume: 611 start-page: 278 year: 2022 ident: D4EE00666F/cit37/1 publication-title: Nature doi: 10.1038/s41586-022-05268-x – volume: 13 start-page: 2203911 year: 2023 ident: D4EE00666F/cit17/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202203911 – start-page: 2302983 year: 2023 ident: D4EE00666F/cit23/1 publication-title: Adv. Energy Mater. – volume: 9 start-page: 3100 year: 2018 ident: D4EE00666F/cit10/1 publication-title: Nat. Commun. doi: 10.1038/s41467-018-05531-8 – volume: 17 start-page: 1637 year: 2024 ident: D4EE00666F/cit19/1 publication-title: Energy Environ. Sci. doi: 10.1039/D3EE04022D – volume: 131 start-page: 6050 year: 2009 ident: D4EE00666F/cit3/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja809598r – volume: 13 start-page: 460 year: 2019 ident: D4EE00666F/cit4/1 publication-title: Nat. Photonics doi: 10.1038/s41566-019-0398-2 – volume: 90 start-page: 106608 year: 2021 ident: D4EE00666F/cit29/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106608 – volume: 618 start-page: 80 year: 2023 ident: D4EE00666F/cit43/1 publication-title: Nature doi: 10.1038/s41586-023-05992-y – volume: 2 start-page: 033006 year: 2023 ident: D4EE00666F/cit41/1 publication-title: PRX Energy doi: 10.1103/PRXEnergy.2.033006 – volume: 9 start-page: 41898 year: 2017 ident: D4EE00666F/cit31/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b13947 – volume: 550 start-page: 92 year: 2017 ident: D4EE00666F/cit2/1 publication-title: Nature doi: 10.1038/nature23877 – volume: 501 start-page: 395 year: 2013 ident: D4EE00666F/cit1/1 publication-title: Nature doi: 10.1038/nature12509 – volume: 31 start-page: e1905143 year: 2019 ident: D4EE00666F/cit14/1 publication-title: Adv. Mater. doi: 10.1002/adma.201905143 – volume: 27 start-page: 1605988 year: 2017 ident: D4EE00666F/cit33/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201605988 – start-page: 2204339 year: 2023 ident: D4EE00666F/cit32/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202204339 – volume: 11 start-page: 75 year: 2016 ident: D4EE00666F/cit35/1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.230 – start-page: e202317972 year: 2023 ident: D4EE00666F/cit18/1 publication-title: Angew. Chem., Int. Ed. – volume: 378 start-page: 1295 year: 2022 ident: D4EE00666F/cit30/1 publication-title: Science doi: 10.1126/science.adf0194 – volume: 4 start-page: 2000082 year: 2020 ident: D4EE00666F/cit22/1 publication-title: Sol. RRL doi: 10.1002/solr.202000082 – volume: 7 start-page: 1701048 year: 2017 ident: D4EE00666F/cit15/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701048 – volume: 16 start-page: e2005246 year: 2020 ident: D4EE00666F/cit34/1 publication-title: Small doi: 10.1002/smll.202005246 – volume: 7 start-page: 620 year: 2022 ident: D4EE00666F/cit8/1 publication-title: Nat. Energy doi: 10.1038/s41560-022-01059-w – volume: 361 start-page: 904 year: 2018 ident: D4EE00666F/cit9/1 publication-title: Science doi: 10.1126/science.aat5055 – volume: 31 start-page: e1901152 year: 2019 ident: D4EE00666F/cit42/1 publication-title: Adv. Mater. doi: 10.1002/adma.201901152 – volume: 9 start-page: 2072 year: 2016 ident: D4EE00666F/cit28/1 publication-title: Energy Environ. Sci. doi: 10.1039/C6EE01047D – volume: 12 start-page: 865 year: 2019 ident: D4EE00666F/cit26/1 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE02852D – volume: 8 start-page: 372 year: 2023 ident: D4EE00666F/cit38/1 publication-title: Nat. Energy doi: 10.1038/s41560-023-01220-z – volume: 377 start-page: 531 year: 2022 ident: D4EE00666F/cit5/1 publication-title: Science doi: 10.1126/science.abp8873 – volume: 23 start-page: 805 year: 2015 ident: D4EE00666F/cit11/1 publication-title: Prog. Photovoltaics doi: 10.1002/pip.2637 – volume: 5 start-page: 2560 year: 2020 ident: D4EE00666F/cit40/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c01350 – volume: 32 start-page: e1906115 year: 2020 ident: D4EE00666F/cit13/1 publication-title: Adv. Mater. doi: 10.1002/adma.201906115 |
SSID | ssj0062079 |
Score | 2.5341892 |
Snippet | Wide-bandgap (WBG) formamidinium-cesium (FA-Cs) hybrid lead iodide-bromide mixed perovskites (∼1.7 eV) have gained great attention with the potential of... Wide-bandgap (WBG) formamidinium–cesium (FA–Cs) hybrid lead iodide–bromide mixed perovskites (∼1.7 eV) have gained great attention with the potential of... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5866 |
SubjectTerms | Cesium Crystal defects Energy bands Energy conversion efficiency Energy gap Grain boundaries Heterojunctions Iodides Open circuit voltage Perovskites Photovoltaic cells Photovoltaics Rubidium Solar cells Storage stability Thermal stability Trioctylphosphine oxide Voltage |
Title | Suppressing charge recombination in a methylammonium-free wide-bandgap perovskite film for high-performance and stable perovskite solar cells |
URI | https://www.proquest.com/docview/3092192361 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLa67QYuEH8ThYEswQ2aMuI4dpLLAS0TjCGkVpTdRI5j00gsq9pm0_YOPA7vx7GTNO6oEHATVdZJGuX7cnzOyflB6IWk8BqBneyBsQoOiggiT-Sh9AR4G9InmSCRqR3-eMKPxuH7CZv0ej-drKVqmR3I6411Jf-DKqwBrqZK9h-QXV0UFuA34AtHQBiOf4WxGclp81hN4axpeWRmoMAfgbcr2iTGekj0FQAPt1VUZ56eK7V_WeTKy0SZfxMz07r4_GJhwrimTdOZzTw0bYy92Y2qArAkTaGVI78wnvG-if4v1mL8dUWhoZVTSdfWX3Zk-mrDqZ-LSqtmB7UMs4l_qryeOqun06quIinltOi-nNhkhNPiqnLDF0Fo4rF19WmT92SCJG2Gqs1AaebcOUo5YqHHeD0z70A5a5HP1zR55DLW1css5tzZ41lcj2v5bf_wqWm_modKGVuM626XbDMDTj6lw_HxcToaTEZbaCcA7wTU687hh9fvvrQmAA982-RxdeNtX1yavOquvW4Jde7N1rydPWNtnNFddKdxTvBhzbR7qKfK--i207LyAfrhcA7XnMNrnMNFiQXewDnscg53HMKGcxh4hm9yDoMsrjnnylvOYcu5h2g8HIzeHHnNSA9PBjFZekTImOhEm6_NUe7HWSAVZTJTLKdB5GsdhVxzSUgWx1QIyhPKiFaJUqGmJBd0F22X56V6hHCcaKZj5StJQbkolggdE18GTGmVZ1z20cv28aay6Xdvxq58T23eBU3St-FgYKEY9tHzleys7vKyUWqvRSlttMAipX4SGC-Jkz7aBeRW53dAP_7zeU_Qre7F2EPby3mlnoKlu8yeNbz6BT2vs_U |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Suppressing+charge+recombination+in+a+methylammonium-free+wide-bandgap+perovskite+film+for+high-performance+and+stable+perovskite+solar+cells&rft.jtitle=Energy+%26+environmental+science&rft.au=Ye%2C+Qiufeng&rft.au=Hu%2C+Wenzheng&rft.au=Zhu%2C+Junchi&rft.au=Cai%2C+Ziyu&rft.date=2024-08-13&rft.pub=Royal+Society+of+Chemistry&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=17&rft.issue=16&rft.spage=5866&rft.epage=5875&rft_id=info:doi/10.1039%2Fd4ee00666f&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon |