Suppressing charge recombination in a methylammonium-free wide-bandgap perovskite film for high-performance and stable perovskite solar cells

Wide-bandgap (WBG) formamidinium-cesium (FA-Cs) hybrid lead iodide-bromide mixed perovskites (∼1.7 eV) have gained great attention with the potential of enabling highly efficient tandem photovoltaics when integrated with crystalline silicon and other low-bandgap solar cells. However, their power con...

Full description

Saved in:
Bibliographic Details
Published inEnergy & environmental science Vol. 17; no. 16; pp. 5866 - 5875
Main Authors Ye, Qiufeng, Hu, Wenzheng, Zhu, Junchi, Cai, Ziyu, Zhang, Hengkang, Dong, Tao, Yu, Boyang, Chen, Feiyang, Wei, Xieli, Yao, Bo, Dou, Weidong, Fang, Zebo, Ye, Feng, Liu, Zhun, Li, Tie
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 13.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Wide-bandgap (WBG) formamidinium-cesium (FA-Cs) hybrid lead iodide-bromide mixed perovskites (∼1.7 eV) have gained great attention with the potential of enabling highly efficient tandem photovoltaics when integrated with crystalline silicon and other low-bandgap solar cells. However, their power conversion efficiencies (PCEs) are still insufficient compared to their methylammonium (MA) counterparts, mainly owing to the high open-circuit voltage ( V OC ) deficits (>0.43 V). Here, by incorporating rubidium iodide (RbI) in the FA 0.8 Cs 0.2 Pb(I 0.75 Br 0.25 ) 3 perovskite precursor, the film crystallinity and bulk defects are significantly optimized. In addition, we propose an all-around interface engineering strategy sequentially constructing a surface heterojunction and using trioctylphosphine oxide (TOPO), which can significantly passivate grain boundaries and undercoordinated defects, as well as optimize the energy band. As a result, the target MA-free WBG n-i-p solar cells at 1.685 eV have achieved a record efficiency of 23.35% and a high V OC of 1.30 V (with a record voltage deficit of 0.385 V). Most importantly, the unencapsulated solar cells also display impressive air storage stability, operating stability and thermal stability. Moreover, a PCE of 19.54% on a 1 cm 2 WBG solar cell and a PCE of 21.31% on a 0.04 cm 2 p-i-n inverted WBG solar cell are also demonstrated. We employed RbI additive, constructed heterojunction, and used TOPO post-treatment for suppressing non-radiative recombination of MA-free WBG perovskite. The device showed a record PCE of 23.35%, a high V OC of 1.3 V and the impressive stability.
AbstractList Wide-bandgap (WBG) formamidinium–cesium (FA–Cs) hybrid lead iodide–bromide mixed perovskites (∼1.7 eV) have gained great attention with the potential of enabling highly efficient tandem photovoltaics when integrated with crystalline silicon and other low-bandgap solar cells. However, their power conversion efficiencies (PCEs) are still insufficient compared to their methylammonium (MA) counterparts, mainly owing to the high open-circuit voltage ( V OC ) deficits (>0.43 V). Here, by incorporating rubidium iodide (RbI) in the FA 0.8 Cs 0.2 Pb(I 0.75 Br 0.25 ) 3 perovskite precursor, the film crystallinity and bulk defects are significantly optimized. In addition, we propose an all-around interface engineering strategy sequentially constructing a surface heterojunction and using trioctylphosphine oxide (TOPO), which can significantly passivate grain boundaries and undercoordinated defects, as well as optimize the energy band. As a result, the target MA-free WBG n–i–p solar cells at 1.685 eV have achieved a record efficiency of 23.35% and a high V OC of 1.30 V (with a record voltage deficit of 0.385 V). Most importantly, the unencapsulated solar cells also display impressive air storage stability, operating stability and thermal stability. Moreover, a PCE of 19.54% on a 1 cm 2 WBG solar cell and a PCE of 21.31% on a 0.04 cm 2 p–i–n inverted WBG solar cell are also demonstrated.
Wide-bandgap (WBG) formamidinium-cesium (FA-Cs) hybrid lead iodide-bromide mixed perovskites (∼1.7 eV) have gained great attention with the potential of enabling highly efficient tandem photovoltaics when integrated with crystalline silicon and other low-bandgap solar cells. However, their power conversion efficiencies (PCEs) are still insufficient compared to their methylammonium (MA) counterparts, mainly owing to the high open-circuit voltage ( V OC ) deficits (>0.43 V). Here, by incorporating rubidium iodide (RbI) in the FA 0.8 Cs 0.2 Pb(I 0.75 Br 0.25 ) 3 perovskite precursor, the film crystallinity and bulk defects are significantly optimized. In addition, we propose an all-around interface engineering strategy sequentially constructing a surface heterojunction and using trioctylphosphine oxide (TOPO), which can significantly passivate grain boundaries and undercoordinated defects, as well as optimize the energy band. As a result, the target MA-free WBG n-i-p solar cells at 1.685 eV have achieved a record efficiency of 23.35% and a high V OC of 1.30 V (with a record voltage deficit of 0.385 V). Most importantly, the unencapsulated solar cells also display impressive air storage stability, operating stability and thermal stability. Moreover, a PCE of 19.54% on a 1 cm 2 WBG solar cell and a PCE of 21.31% on a 0.04 cm 2 p-i-n inverted WBG solar cell are also demonstrated. We employed RbI additive, constructed heterojunction, and used TOPO post-treatment for suppressing non-radiative recombination of MA-free WBG perovskite. The device showed a record PCE of 23.35%, a high V OC of 1.3 V and the impressive stability.
Wide-bandgap (WBG) formamidinium–cesium (FA–Cs) hybrid lead iodide–bromide mixed perovskites (∼1.7 eV) have gained great attention with the potential of enabling highly efficient tandem photovoltaics when integrated with crystalline silicon and other low-bandgap solar cells. However, their power conversion efficiencies (PCEs) are still insufficient compared to their methylammonium (MA) counterparts, mainly owing to the high open-circuit voltage (VOC) deficits (>0.43 V). Here, by incorporating rubidium iodide (RbI) in the FA0.8Cs0.2Pb(I0.75Br0.25)3 perovskite precursor, the film crystallinity and bulk defects are significantly optimized. In addition, we propose an all-around interface engineering strategy sequentially constructing a surface heterojunction and using trioctylphosphine oxide (TOPO), which can significantly passivate grain boundaries and undercoordinated defects, as well as optimize the energy band. As a result, the target MA-free WBG n–i–p solar cells at 1.685 eV have achieved a record efficiency of 23.35% and a high VOC of 1.30 V (with a record voltage deficit of 0.385 V). Most importantly, the unencapsulated solar cells also display impressive air storage stability, operating stability and thermal stability. Moreover, a PCE of 19.54% on a 1 cm2 WBG solar cell and a PCE of 21.31% on a 0.04 cm2 p–i–n inverted WBG solar cell are also demonstrated.
Author Zhang, Hengkang
Yu, Boyang
Dou, Weidong
Wei, Xieli
Cai, Ziyu
Fang, Zebo
Yao, Bo
Ye, Feng
Hu, Wenzheng
Zhu, Junchi
Dong, Tao
Liu, Zhun
Chen, Feiyang
Li, Tie
Ye, Qiufeng
AuthorAffiliation Chinese Academy of Sciences
Shangyu Coll
Science and Technology on Microsystem Laboratory
Shanghai Institute of Microsystem and Information Technology
Department of Physics and Zhejiang Engineering Research Center of MEMS
Shaoxing University
AuthorAffiliation_xml – sequence: 0
  name: Science and Technology on Microsystem Laboratory
– sequence: 0
  name: Department of Physics and Zhejiang Engineering Research Center of MEMS
– sequence: 0
  name: Shanghai Institute of Microsystem and Information Technology
– sequence: 0
  name: Chinese Academy of Sciences
– sequence: 0
  name: Shaoxing University
– sequence: 0
  name: Shangyu Coll
Author_xml – sequence: 1
  givenname: Qiufeng
  surname: Ye
  fullname: Ye, Qiufeng
– sequence: 2
  givenname: Wenzheng
  surname: Hu
  fullname: Hu, Wenzheng
– sequence: 3
  givenname: Junchi
  surname: Zhu
  fullname: Zhu, Junchi
– sequence: 4
  givenname: Ziyu
  surname: Cai
  fullname: Cai, Ziyu
– sequence: 5
  givenname: Hengkang
  surname: Zhang
  fullname: Zhang, Hengkang
– sequence: 6
  givenname: Tao
  surname: Dong
  fullname: Dong, Tao
– sequence: 7
  givenname: Boyang
  surname: Yu
  fullname: Yu, Boyang
– sequence: 8
  givenname: Feiyang
  surname: Chen
  fullname: Chen, Feiyang
– sequence: 9
  givenname: Xieli
  surname: Wei
  fullname: Wei, Xieli
– sequence: 10
  givenname: Bo
  surname: Yao
  fullname: Yao, Bo
– sequence: 11
  givenname: Weidong
  surname: Dou
  fullname: Dou, Weidong
– sequence: 12
  givenname: Zebo
  surname: Fang
  fullname: Fang, Zebo
– sequence: 13
  givenname: Feng
  surname: Ye
  fullname: Ye, Feng
– sequence: 14
  givenname: Zhun
  surname: Liu
  fullname: Liu, Zhun
– sequence: 15
  givenname: Tie
  surname: Li
  fullname: Li, Tie
BookMark eNptkV9LwzAUxYNMcJu--C4EfBOqSdOmzaPMTYWBD-pzSdObLbNNatIp-xB-Z-vmP8Sne-D-zrlw7ggNrLOA0DEl55QwcVElAIRwzvUeGtIsTaI0I3zwpbmID9AohFXPxCQTQ_R2v25bDyEYu8BqKf0CsAflmtJY2RlnsbFY4ga65aaWTeOsWTeR9gD41VQQldJWC9niFrx7CU-mA6xN3WDtPF6axTLqF71upFWAexaHTpY1_OaDq6XHCuo6HKJ9LesAR59zjB5n04fJTTS_u76dXM4jFee0i6hUOdVCC5KLrCJ5GStgqSohrVicEa2zhGuuKC3znEnJuGAp1SAAEs1oJdkYne5yW--e1xC6YuXW3vYnC0ZETEXMOO2psx2lvAvBgy5abxrpNwUlxUfdxVUynW7rnvUw-QMr020b7Lw09f-Wk53FB_Ud_fNB9g4jT5HF
CitedBy_id crossref_primary_10_1016_j_heliyon_2025_e41886
crossref_primary_10_1016_j_mseb_2025_118061
crossref_primary_10_1016_j_cej_2024_156798
crossref_primary_10_1002_anie_202421547
crossref_primary_10_1021_acsami_4c13467
crossref_primary_10_1002_ange_202421547
crossref_primary_10_1039_D5EE00073D
crossref_primary_10_1039_D4SC08145E
crossref_primary_10_1016_j_mtcomm_2025_112294
Cites_doi 10.1126/science.abd4016
10.1126/science.adj8858
10.1002/aenm.202003386
10.1063/1.4961210
10.1021/acsenergylett.0c02105
10.1021/acsenergylett.8b01906
10.1016/j.nanoen.2023.108765
10.1039/D1EE02650J
10.1038/nenergy.2016.177
10.1002/aenm.202201509
10.1021/acs.jpclett.2c03876
10.1038/s41586-022-05268-x
10.1002/aenm.202203911
10.1038/s41467-018-05531-8
10.1039/D3EE04022D
10.1021/ja809598r
10.1038/s41566-019-0398-2
10.1016/j.nanoen.2021.106608
10.1038/s41586-023-05992-y
10.1103/PRXEnergy.2.033006
10.1021/acsami.7b13947
10.1038/nature23877
10.1038/nature12509
10.1002/adma.201905143
10.1002/adfm.201605988
10.1002/aenm.202204339
10.1038/nnano.2015.230
10.1126/science.adf0194
10.1002/solr.202000082
10.1002/aenm.201701048
10.1002/smll.202005246
10.1038/s41560-022-01059-w
10.1126/science.aat5055
10.1002/adma.201901152
10.1039/C6EE01047D
10.1039/C8EE02852D
10.1038/s41560-023-01220-z
10.1126/science.abp8873
10.1002/pip.2637
10.1021/acsenergylett.0c01350
10.1002/adma.201906115
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2024
Copyright_xml – notice: Copyright Royal Society of Chemistry 2024
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
DOI 10.1039/d4ee00666f
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1754-5706
EndPage 5875
ExternalDocumentID 10_1039_D4EE00666F
d4ee00666f
GroupedDBID -JG
0-7
0R~
29G
4.4
5GY
705
70~
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
EBS
ECGLT
EE0
EF-
GGIMP
GNO
H13
HZ~
H~N
J3I
M4U
N9A
O-G
O9-
P2P
RAOCF
RCNCU
RPMJG
RRC
RSCEA
RVUXY
SKA
SLH
TOV
UCJ
AAYXX
AFRZK
AKMSF
CITATION
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
ID FETCH-LOGICAL-c281t-1ac81f9f90897d08b2ce35cbe5d3270ff746f6c11b883aa369351fe9ee4f31da3
ISSN 1754-5692
IngestDate Mon Jun 30 11:55:32 EDT 2025
Thu Apr 24 23:06:18 EDT 2025
Tue Jul 01 01:45:59 EDT 2025
Tue Dec 17 20:57:42 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c281t-1ac81f9f90897d08b2ce35cbe5d3270ff746f6c11b883aa369351fe9ee4f31da3
Notes Electronic supplementary information (ESI) available. See DOI
https://doi.org/10.1039/d4ee00666f
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0008-7800-7911
0000-0003-2200-2739
0000-0001-9907-0188
PQID 3092192361
PQPubID 2047494
PageCount 1
ParticipantIDs proquest_journals_3092192361
crossref_primary_10_1039_D4EE00666F
rsc_primary_d4ee00666f
crossref_citationtrail_10_1039_D4EE00666F
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-13
PublicationDateYYYYMMDD 2024-08-13
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-13
  day: 13
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Energy & environmental science
PublicationYear 2024
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Liu (D4EE00666F/cit16/1) 2019; 4
Yu (D4EE00666F/cit20/1) 2022; 12
Jiang (D4EE00666F/cit4/1) 2019; 13
Jiang (D4EE00666F/cit30/1) 2022; 378
Park (D4EE00666F/cit31/1) 2017; 9
Han (D4EE00666F/cit9/1) 2018; 361
Chen (D4EE00666F/cit29/1) 2021; 90
Gao (D4EE00666F/cit24/1) 2023; 116
Jiang (D4EE00666F/cit39/1) 2017; 2
Wang (D4EE00666F/cit19/1) 2024; 17
Zhao (D4EE00666F/cit5/1) 2022; 377
Wang (D4EE00666F/cit26/1) 2019; 12
Chen (D4EE00666F/cit40/1) 2020; 5
Ye (D4EE00666F/cit34/1) 2020; 16
Liu (D4EE00666F/cit1/1) 2013; 501
Green (D4EE00666F/cit11/1) 2015; 23
Tian (D4EE00666F/cit42/1) 2019; 31
Wang (D4EE00666F/cit13/1) 2020; 32
Chu (D4EE00666F/cit38/1) 2023; 8
Zhou (D4EE00666F/cit15/1) 2017; 7
Xu (D4EE00666F/cit17/1) 2023; 13
Ravishankar (D4EE00666F/cit41/1) 2023; 2
Jiang (D4EE00666F/cit37/1) 2022; 611
You (D4EE00666F/cit35/1) 2016; 11
Abdollahi Nejand (D4EE00666F/cit8/1) 2022; 7
Yu (D4EE00666F/cit6/1) 2023; 382
Oliver (D4EE00666F/cit25/1) 2022; 15
Yang (D4EE00666F/cit32/1) 2023
Ye (D4EE00666F/cit36/1) 2023; 14
Tan (D4EE00666F/cit10/1) 2018; 9
Ye (D4EE00666F/cit22/1) 2020; 4
Al-Ashouri (D4EE00666F/cit7/1) 2020; 370
Tong (D4EE00666F/cit12/1) 2021; 6
Habisreutinger (D4EE00666F/cit27/1) 2016; 4
Ye (D4EE00666F/cit14/1) 2019; 31
Nenon (D4EE00666F/cit28/1) 2016; 9
Liu (D4EE00666F/cit18/1) 2023
Park (D4EE00666F/cit33/1) 2017; 27
He (D4EE00666F/cit43/1) 2023; 618
Kojima (D4EE00666F/cit3/1) 2009; 131
Liu (D4EE00666F/cit21/1) 2021; 11
Qiao (D4EE00666F/cit23/1) 2023
Chen (D4EE00666F/cit2/1) 2017; 550
References_xml – volume: 370
  start-page: 1300
  year: 2020
  ident: D4EE00666F/cit7/1
  publication-title: Science
  doi: 10.1126/science.abd4016
– volume: 382
  start-page: 1399
  year: 2023
  ident: D4EE00666F/cit6/1
  publication-title: Science
  doi: 10.1126/science.adj8858
– volume: 11
  start-page: 2003386
  year: 2021
  ident: D4EE00666F/cit21/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202003386
– volume: 4
  start-page: 091503
  year: 2016
  ident: D4EE00666F/cit27/1
  publication-title: APL Mater.
  doi: 10.1063/1.4961210
– volume: 6
  start-page: 232
  year: 2021
  ident: D4EE00666F/cit12/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c02105
– volume: 4
  start-page: 110
  year: 2019
  ident: D4EE00666F/cit16/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b01906
– volume: 116
  start-page: 108765
  year: 2023
  ident: D4EE00666F/cit24/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2023.108765
– volume: 15
  start-page: 714
  year: 2022
  ident: D4EE00666F/cit25/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE02650J
– volume: 2
  start-page: 16177
  year: 2017
  ident: D4EE00666F/cit39/1
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.177
– volume: 12
  start-page: 2201509
  year: 2022
  ident: D4EE00666F/cit20/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202201509
– volume: 14
  start-page: 1140
  year: 2023
  ident: D4EE00666F/cit36/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.2c03876
– volume: 611
  start-page: 278
  year: 2022
  ident: D4EE00666F/cit37/1
  publication-title: Nature
  doi: 10.1038/s41586-022-05268-x
– volume: 13
  start-page: 2203911
  year: 2023
  ident: D4EE00666F/cit17/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202203911
– start-page: 2302983
  year: 2023
  ident: D4EE00666F/cit23/1
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 3100
  year: 2018
  ident: D4EE00666F/cit10/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05531-8
– volume: 17
  start-page: 1637
  year: 2024
  ident: D4EE00666F/cit19/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D3EE04022D
– volume: 131
  start-page: 6050
  year: 2009
  ident: D4EE00666F/cit3/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja809598r
– volume: 13
  start-page: 460
  year: 2019
  ident: D4EE00666F/cit4/1
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-019-0398-2
– volume: 90
  start-page: 106608
  year: 2021
  ident: D4EE00666F/cit29/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106608
– volume: 618
  start-page: 80
  year: 2023
  ident: D4EE00666F/cit43/1
  publication-title: Nature
  doi: 10.1038/s41586-023-05992-y
– volume: 2
  start-page: 033006
  year: 2023
  ident: D4EE00666F/cit41/1
  publication-title: PRX Energy
  doi: 10.1103/PRXEnergy.2.033006
– volume: 9
  start-page: 41898
  year: 2017
  ident: D4EE00666F/cit31/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b13947
– volume: 550
  start-page: 92
  year: 2017
  ident: D4EE00666F/cit2/1
  publication-title: Nature
  doi: 10.1038/nature23877
– volume: 501
  start-page: 395
  year: 2013
  ident: D4EE00666F/cit1/1
  publication-title: Nature
  doi: 10.1038/nature12509
– volume: 31
  start-page: e1905143
  year: 2019
  ident: D4EE00666F/cit14/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201905143
– volume: 27
  start-page: 1605988
  year: 2017
  ident: D4EE00666F/cit33/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201605988
– start-page: 2204339
  year: 2023
  ident: D4EE00666F/cit32/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202204339
– volume: 11
  start-page: 75
  year: 2016
  ident: D4EE00666F/cit35/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.230
– start-page: e202317972
  year: 2023
  ident: D4EE00666F/cit18/1
  publication-title: Angew. Chem., Int. Ed.
– volume: 378
  start-page: 1295
  year: 2022
  ident: D4EE00666F/cit30/1
  publication-title: Science
  doi: 10.1126/science.adf0194
– volume: 4
  start-page: 2000082
  year: 2020
  ident: D4EE00666F/cit22/1
  publication-title: Sol. RRL
  doi: 10.1002/solr.202000082
– volume: 7
  start-page: 1701048
  year: 2017
  ident: D4EE00666F/cit15/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701048
– volume: 16
  start-page: e2005246
  year: 2020
  ident: D4EE00666F/cit34/1
  publication-title: Small
  doi: 10.1002/smll.202005246
– volume: 7
  start-page: 620
  year: 2022
  ident: D4EE00666F/cit8/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-022-01059-w
– volume: 361
  start-page: 904
  year: 2018
  ident: D4EE00666F/cit9/1
  publication-title: Science
  doi: 10.1126/science.aat5055
– volume: 31
  start-page: e1901152
  year: 2019
  ident: D4EE00666F/cit42/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201901152
– volume: 9
  start-page: 2072
  year: 2016
  ident: D4EE00666F/cit28/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE01047D
– volume: 12
  start-page: 865
  year: 2019
  ident: D4EE00666F/cit26/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE02852D
– volume: 8
  start-page: 372
  year: 2023
  ident: D4EE00666F/cit38/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-023-01220-z
– volume: 377
  start-page: 531
  year: 2022
  ident: D4EE00666F/cit5/1
  publication-title: Science
  doi: 10.1126/science.abp8873
– volume: 23
  start-page: 805
  year: 2015
  ident: D4EE00666F/cit11/1
  publication-title: Prog. Photovoltaics
  doi: 10.1002/pip.2637
– volume: 5
  start-page: 2560
  year: 2020
  ident: D4EE00666F/cit40/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c01350
– volume: 32
  start-page: e1906115
  year: 2020
  ident: D4EE00666F/cit13/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201906115
SSID ssj0062079
Score 2.5341892
Snippet Wide-bandgap (WBG) formamidinium-cesium (FA-Cs) hybrid lead iodide-bromide mixed perovskites (∼1.7 eV) have gained great attention with the potential of...
Wide-bandgap (WBG) formamidinium–cesium (FA–Cs) hybrid lead iodide–bromide mixed perovskites (∼1.7 eV) have gained great attention with the potential of...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5866
SubjectTerms Cesium
Crystal defects
Energy bands
Energy conversion efficiency
Energy gap
Grain boundaries
Heterojunctions
Iodides
Open circuit voltage
Perovskites
Photovoltaic cells
Photovoltaics
Rubidium
Solar cells
Storage stability
Thermal stability
Trioctylphosphine oxide
Voltage
Title Suppressing charge recombination in a methylammonium-free wide-bandgap perovskite film for high-performance and stable perovskite solar cells
URI https://www.proquest.com/docview/3092192361
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLa67QYuEH8ThYEswQ2aMuI4dpLLAS0TjCGkVpTdRI5j00gsq9pm0_YOPA7vx7GTNO6oEHATVdZJGuX7cnzOyflB6IWk8BqBneyBsQoOiggiT-Sh9AR4G9InmSCRqR3-eMKPxuH7CZv0ej-drKVqmR3I6411Jf-DKqwBrqZK9h-QXV0UFuA34AtHQBiOf4WxGclp81hN4axpeWRmoMAfgbcr2iTGekj0FQAPt1VUZ56eK7V_WeTKy0SZfxMz07r4_GJhwrimTdOZzTw0bYy92Y2qArAkTaGVI78wnvG-if4v1mL8dUWhoZVTSdfWX3Zk-mrDqZ-LSqtmB7UMs4l_qryeOqun06quIinltOi-nNhkhNPiqnLDF0Fo4rF19WmT92SCJG2Gqs1AaebcOUo5YqHHeD0z70A5a5HP1zR55DLW1css5tzZ41lcj2v5bf_wqWm_modKGVuM626XbDMDTj6lw_HxcToaTEZbaCcA7wTU687hh9fvvrQmAA982-RxdeNtX1yavOquvW4Jde7N1rydPWNtnNFddKdxTvBhzbR7qKfK--i207LyAfrhcA7XnMNrnMNFiQXewDnscg53HMKGcxh4hm9yDoMsrjnnylvOYcu5h2g8HIzeHHnNSA9PBjFZekTImOhEm6_NUe7HWSAVZTJTLKdB5GsdhVxzSUgWx1QIyhPKiFaJUqGmJBd0F22X56V6hHCcaKZj5StJQbkolggdE18GTGmVZ1z20cv28aay6Xdvxq58T23eBU3St-FgYKEY9tHzleys7vKyUWqvRSlttMAipX4SGC-Jkz7aBeRW53dAP_7zeU_Qre7F2EPby3mlnoKlu8yeNbz6BT2vs_U
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Suppressing+charge+recombination+in+a+methylammonium-free+wide-bandgap+perovskite+film+for+high-performance+and+stable+perovskite+solar+cells&rft.jtitle=Energy+%26+environmental+science&rft.au=Ye%2C+Qiufeng&rft.au=Hu%2C+Wenzheng&rft.au=Zhu%2C+Junchi&rft.au=Cai%2C+Ziyu&rft.date=2024-08-13&rft.pub=Royal+Society+of+Chemistry&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=17&rft.issue=16&rft.spage=5866&rft.epage=5875&rft_id=info:doi/10.1039%2Fd4ee00666f&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon