A novel method for rapidly calculating explosion dynamic displacement response of reticulated shell structure based on influence surfaces
In order to analyse the mechanical behaviour of a reticulated shell structure under explosive load, a novel method was proposed to calculate the dynamic displacement response of the cylindrical reticulated shell structure by using the influence surface in this article. First, the theory of the dynam...
Saved in:
Published in | Advances in structural engineering Vol. 23; no. 6; pp. 1098 - 1113 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London, England
SAGE Publications
01.04.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1369-4332 2048-4011 |
DOI | 10.1177/1369433219888750 |
Cover
Loading…
Abstract | In order to analyse the mechanical behaviour of a reticulated shell structure under explosive load, a novel method was proposed to calculate the dynamic displacement response of the cylindrical reticulated shell structure by using the influence surface in this article. First, the theory of the dynamic influence line was developed and the consistency between the dynamic influence lines and the static ones was verified. Then, based on the theory of the dynamic influence line and for the simplified calculation of dynamic responses, the dynamic influence lines of a simply supported beam were simplified as the static ones multiplied by the dynamic amplification factor β. And then the explosion dynamic responses of the beam could be fast calculated using the influence lines. The extended application of the above method to single-layer cylindrical reticulated shell was the influence surface method. The results of numerical examples showed that the nodal displacements of the structure obtained by using the influence surface method agreed well with those obtained by using ANSYS/LS-DYNA. The research results also indicated that the influence surface method was applicable to the node displacement calculation of the structure under three different conditions, including the centre node of the symmetrical structure, the arbitrary nodes (excluding those near the supports) of symmetrical structure under symmetrical loads and the arbitrary nodes of arbitrary structures in which the load holding time is much longer than the natural vibration period of structure. The proposed approach could reduce the computation cost for analysing the explosion dynamic response of the reticulated shell structure, thereby providing a more effective method for the anti-explosion design of reticulated shell structures. |
---|---|
AbstractList | In order to analyse the mechanical behaviour of a reticulated shell structure under explosive load, a novel method was proposed to calculate the dynamic displacement response of the cylindrical reticulated shell structure by using the influence surface in this article. First, the theory of the dynamic influence line was developed and the consistency between the dynamic influence lines and the static ones was verified. Then, based on the theory of the dynamic influence line and for the simplified calculation of dynamic responses, the dynamic influence lines of a simply supported beam were simplified as the static ones multiplied by the dynamic amplification factor β. And then the explosion dynamic responses of the beam could be fast calculated using the influence lines. The extended application of the above method to single-layer cylindrical reticulated shell was the influence surface method. The results of numerical examples showed that the nodal displacements of the structure obtained by using the influence surface method agreed well with those obtained by using ANSYS/LS-DYNA. The research results also indicated that the influence surface method was applicable to the node displacement calculation of the structure under three different conditions, including the centre node of the symmetrical structure, the arbitrary nodes (excluding those near the supports) of symmetrical structure under symmetrical loads and the arbitrary nodes of arbitrary structures in which the load holding time is much longer than the natural vibration period of structure. The proposed approach could reduce the computation cost for analysing the explosion dynamic response of the reticulated shell structure, thereby providing a more effective method for the anti-explosion design of reticulated shell structures. |
Author | Chen, Xin Lin, Xiang Liu, Jingliang Gao, Xuanneng Le, Lihui |
Author_xml | – sequence: 1 givenname: Xin orcidid: 0000-0001-7742-8396 surname: Chen fullname: Chen, Xin – sequence: 2 givenname: Xuanneng surname: Gao fullname: Gao, Xuanneng email: gaoxn117@sina.com – sequence: 3 givenname: Xiang surname: Lin fullname: Lin, Xiang – sequence: 4 givenname: Jingliang orcidid: 0000-0001-5508-158X surname: Liu fullname: Liu, Jingliang – sequence: 5 givenname: Lihui surname: Le fullname: Le, Lihui |
BookMark | eNp9kM1OwzAQhC1UJNrCnaNfIGA7aeweq4o_qRIXOEeOvW5dOXZkO4g-Am9NSjlVgtOudvYbaWaGJj54QOiWkjtKOb-nZb2sypLRpRCCL8gFmjJSiaIilE7Q9CgXR_0KzVLaE0IZ53SKvlbYhw9wuIO8CxqbEHGUvdXugJV0anAyW7_F8Nm7kGzwWB-87KzC2qbeSQUd-IwjpD74BDiYcc_2hwON0w6cwynHQeUhAm5lGq-ji_XGDeAV4DREM9qka3RppEtw8zvn6P3x4W39XGxen17Wq02hmKC5oDUILVjdasJbzqtqSbhWCyC6knRJK1ZCqwXhoiSlMJQoxoypZMuAL9oW2nKO6pOviiGlCKZRNo8hg89RWtdQ0hwLbc4LHUFyBvbRdjIe_kOKE5LkFpp9GKIfo_39_w3rwooE |
CitedBy_id | crossref_primary_10_1155_2022_4616889 |
Cites_doi | 10.1016/j.engstruct.2017.11.067 10.1016/j.jcsr.2014.05.005 10.12989/sem.2013.45.6.803 10.1016/j.engstruct.2016.03.048 10.1080/09720529.2016.1253353 10.3846/13923730.2015.1073172 10.1016/j.ijimpeng.2015.09.001 10.1016/j.engstruct.2017.08.061 10.1016/j.jksues.2017.06.005 10.1061/(ASCE)0733-9445(2004)130:7(991) 10.1016/j.ijimpeng.2017.03.024 10.1016/j.proeng.2017.11.091 10.1016/j.matdes.2015.05.045 10.1016/j.tws.2015.08.001 10.1016/j.ijimpeng.2012.11.010 10.1016/j.engstruct.2017.02.009 10.1016/j.jcsr.2007.12.013 10.1016/j.ijimpeng.2017.11.013 10.1016/j.proeng.2017.09.388 10.1007/s12205-017-0559-0 10.1016/j.ijimpeng.2016.08.010 10.1016/j.engstruct.2017.05.063 10.1016/j.ijimpeng.2016.04.007 10.1177/1369433216656430 10.1016/j.engstruct.2016.12.057 10.1080/10168664.2018.1462673 10.1016/j.ijimpeng.2018.08.010 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 |
Copyright_xml | – notice: The Author(s) 2019 |
DBID | AAYXX CITATION |
DOI | 10.1177/1369433219888750 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2048-4011 |
EndPage | 1113 |
ExternalDocumentID | 10_1177_1369433219888750 10.1177_1369433219888750 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 51278208 funderid: https://doi.org/10.13039/501100001809 – fundername: Science and Technology Programs of Fujian Province grantid: 2018Y0063 – fundername: National Natural Science Foundation of China grantid: 51608122 funderid: https://doi.org/10.13039/501100001809 |
GroupedDBID | -TM -TN 0R~ 23M 4.4 54M 5GY 6KP AABPG AADUE AAGGD AAGLT AAJPV AANSI AAOTM AAOVH AAPEO AAQXI AARIX AATAA AATZT ABAWP ABCCA ABCJG ABDBF ABDWY ABEIX ABFNE ABFWQ ABGWC ABHKI ABIDT ABJNI ABKRH ABLUO ABPNF ABQKF ABQXT ABRHV ABUBZ ABUJY ABYTW ACDXX ACGBL ACGFS ACOFE ACOXC ACROE ACSIQ ACUAV ACUHS ACUIR ACXKE ADEBD ADEIA ADGDL ADMLS ADRRZ ADTBJ ADUKL ADVBO AEDFJ AENEX AEPTA AEQLS AESZF AEWDL AEWHI AEXNY AFEET AFGYO AFKRG AFMOU AFQAA AFUIA AGKLV AGNHF AGWFA AHDMH AIZZC AJEFB AJUZI ALMA_UNASSIGNED_HOLDINGS ARTOV AUTPY AYAKG BBRGL BDDNI BPACV CBRKF CFDXU CKLRP CORYS CS3 DH. DOPDO DV7 EBS EJD ESX FHBDP GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION H13 I-F IL9 J8X K.F MET MV1 O9- Q1R ROL SASJQ SAUOL SCNPE SFC SPV TUS ZPPRI ZRKOI AAYXX AJGYC CITATION |
ID | FETCH-LOGICAL-c281t-16e8d826bd07b7744907dc5e0d4a191423ebd80783038f10c22ff4ab2e75bbeb3 |
ISSN | 1369-4332 |
IngestDate | Thu Apr 24 22:55:38 EDT 2025 Tue Jul 01 05:27:00 EDT 2025 Tue Jun 17 22:30:51 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | influence line/surface cylindrical reticulated shell dynamic displacement response quick calculation method explosive load numerical simulation dynamic amplification factor |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c281t-16e8d826bd07b7744907dc5e0d4a191423ebd80783038f10c22ff4ab2e75bbeb3 |
ORCID | 0000-0001-7742-8396 0000-0001-5508-158X |
PageCount | 16 |
ParticipantIDs | crossref_citationtrail_10_1177_1369433219888750 crossref_primary_10_1177_1369433219888750 sage_journals_10_1177_1369433219888750 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200400 2020-04-00 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 4 year: 2020 text: 20200400 |
PublicationDecade | 2020 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England |
PublicationTitle | Advances in structural engineering |
PublicationYear | 2020 |
Publisher | SAGE Publications |
Publisher_xml | – name: SAGE Publications |
References | Aune, Valsamos, Casadei 2017; 99 Zheng, Kong, Wu 2018; 113 Figuli, Bedon, Zvaková 2017; 199 Remennikov, Ngo, Mohotti 2017; 105 Coffield, Adeli 2016; 22 Cao, Xu, Chen 2018; 28 Gao, Zong, Wu 2013; 46 Xu, Wu, Xiang 2016; 118 Feldgun, Yankelevsky, Karinski 2016; 88 Li, Wu, Hao 2017; 134 Olmati, Petrini, Bontempi 2013; 45 Pourasil, Mohammadi, Gholizad 2017; 21 Dinu, Marginean, Dubina 2017; 210 Hao, Hao, Li 2016; 19 Tian, Fan 2016; 33 Ding, Wang, Li 2010; 43 Nourzadeh, Humar, Braimah 2017; 138 2008 Zhai, Wang 2012; 32 Liew 2008; 64 Al-Thairy 2016; 94 Ding, Chen, Shi 2015; 32 Gao, Fu 2017; 39 Gao, Chao, Yuan 2015; 48 Ding, Song, Zhu 2017; 147 Gao, Liu, Wang 2011; 30 Heng, Hjiaj, Battini 2017; 152 Al-Salloum, Abbas, Almusallam 2017; 29 Chen, Gao 2014; 35 He, Zhou, Zhou 2018; 40 Elsanadedy, Almusallam, Alharbi 2014; 101 Wang, Dong, Chen 2016; 46 Nagata, Beppu, Ichino 2018; 157 Chen, Liew 2004; 130 Fu, Gao, Chen 2018; 112 Li, Wu, Hao 2015; 82 Gao, Wang, Jiang 2010; 27 Liu, Zhao 2018; 48 Wang, Gao 2016; 19 Ma, Fan, Wu 2015; 96 Nassr, Razaqpur, Tait 2013; 55 bibr39-1369433219888750 bibr34-1369433219888750 bibr26-1369433219888750 Zhai XM (bibr42-1369433219888750) 2012; 32 bibr4-1369433219888750 bibr21-1369433219888750 bibr43-1369433219888750 bibr30-1369433219888750 bibr13-1369433219888750 bibr27-1369433219888750 bibr35-1369433219888750 Gao XN (bibr19-1369433219888750) 2011; 30 Tian L (bibr37-1369433219888750) 2016; 33 bibr1-1369433219888750 Gao C (bibr16-1369433219888750) 2013; 46 Gao XN (bibr17-1369433219888750) 2017; 39 bibr31-1369433219888750 bibr5-1369433219888750 Ding Y (bibr10-1369433219888750) 2010; 43 bibr14-1369433219888750 bibr9-1369433219888750 Chen X (bibr6-1369433219888750) 2014; 35 Liu S (bibr28-1369433219888750) 2018; 48 Li C (bibr24-1369433219888750) 2016 bibr2-1369433219888750 bibr23-1369433219888750 Thomson WT (bibr36-1369433219888750) 1972 He YJ (bibr22-1369433219888750) 2018; 40 bibr11-1369433219888750 bibr32-1369433219888750 Gao XN (bibr20-1369433219888750) 2010; 27 Wang XD (bibr40-1369433219888750) 2016; 46 bibr41-1369433219888750 bibr15-1369433219888750 bibr3-1369433219888750 bibr33-1369433219888750 Gao XN (bibr18-1369433219888750) 2015; 48 Ding Y (bibr8-1369433219888750) 2015; 32 bibr7-1369433219888750 bibr12-1369433219888750 bibr25-1369433219888750 US Department of Defense (bibr38-1369433219888750) 2008 bibr29-1369433219888750 |
References_xml | – volume: 28 start-page: 526 issue: 4 year: 2018 end-page: 534 article-title: Damage prediction for an AP1000 Nuclear Island subjected to a contact explosion publication-title: Structural Engineering International – volume: 152 start-page: 771 year: 2017 end-page: 789 article-title: An enhanced SDOF model to predict the behaviour of a steel column impacted by a rigid body publication-title: Engineering Structures – volume: 35 start-page: 5570 year: 2014 end-page: 5575 article-title: Numerical simulation and analysis of influence parameters for explosions near ground publication-title: Journal of Huaqiao University – year: 2008 publication-title: Structures to Resist the Effects of Accidental Explosions – volume: 134 start-page: 289 year: 2017 end-page: 302 article-title: Post-blast capacity of ultra-high performance concrete columns publication-title: Engineering Structures – volume: 210 start-page: 377 year: 2017 end-page: 385 article-title: Experimental testing and numerical modeling of steel frames under close-in detonations publication-title: Procedia Engineering – volume: 19 start-page: 1 issue: 8 year: 2016 end-page: 31 article-title: Review of the current practices in blast-resistant analysis and design of concrete structures publication-title: Advances in Structural Engineering – volume: 64 start-page: 854 issue: 7 year: 2008 end-page: 866 article-title: Survivability of steel frame structures subject to blast and fire publication-title: Journal of Constructional Steel Research – volume: 22 start-page: 17 issue: 1 year: 2016 end-page: 25 article-title: Irregular steel building structures subjected to blast loading publication-title: Journal of Civil Engineering and Management – volume: 19 start-page: 1073 issue: 5–6 year: 2016 end-page: 1090 article-title: Overpressure peak formula of surface shock waves in single layer spherical lattice shell under the effect of internal explosion publication-title: Journal of Discrete Mathematical Sciences & Cryptography – volume: 113 start-page: 144 year: 2018 end-page: 160 article-title: Experimental and numerical studies on the dynamic response of steel plates subjected to confined blast loading publication-title: International Journal of Impact Engineering – volume: 105 start-page: 1 year: 2017 end-page: 12 article-title: Reprint of: experimental investigation and simplified modeling of response of steel plates subjected to close-in blast loading from spherical liquid explosive charges publication-title: International Journal of Impact Engineering – volume: 99 start-page: 131 year: 2017 end-page: 144 article-title: Numerical study on the structural response of blast-loaded thin aluminium and steel plates publication-title: International Journal of Impact Engineering – volume: 40 start-page: 55 issue: 1 year: 2018 end-page: 61 article-title: Dynamic response of single-layer reticulated domes under fire and blast loads publication-title: Journal of Civil Architectural & Environmental Engineering – volume: 88 start-page: 172 year: 2016 end-page: 188 article-title: A nonlinear SDOF model for blast response simulation of elastic thin rectangular plates publication-title: International Journal of Impact Engineering – volume: 147 start-page: 679 year: 2017 end-page: 691 article-title: Probabilistic progressive collapse analysis of steel frame structures against blast loads publication-title: Engineering Structures – volume: 94 start-page: 120 year: 2016 end-page: 133 article-title: A modified single degree of freedom method for the analysis of building steel columns subjected to explosion induced blast load publication-title: International Journal of Impact Engineering – volume: 30 start-page: 70 issue: 9 year: 2011 end-page: 75 article-title: Analysis of explosive shock wave pressure distribution on large-space cylindrical reticulated shell based on LS-DYNA publication-title: Journal of Vibration & Shock – volume: 21 start-page: 1 issue: 6 year: 2017 end-page: 9 article-title: A proposed procedure for progressive collapse analysis of common steel building structures to blast loading publication-title: KSCE Journal of Civil Engineering – volume: 138 start-page: 50 year: 2017 end-page: 62 article-title: Response of roof beams in buildings subject to blast loading: analytical treatment publication-title: Engineering Structures – volume: 199 start-page: 2463 year: 2017 end-page: 2469 article-title: Dynamic analysis of a blast loaded steel structure publication-title: Procedia Engineering – volume: 48 start-page: 102 year: 2015 end-page: 109 article-title: Dynamic responses of single-layer spherical steel reticulated shell under internal explosions publication-title: Journal of Tianjin University – volume: 45 start-page: 803 issue: 6 year: 2013 end-page: 819 article-title: Numerical analyses for the structural assessment of steel buildings under explosions publication-title: Structural Engineering & Mechanics – volume: 32 start-page: 119 issue: 3 year: 2015 end-page: 125 article-title: Simplified model of overpressure loading caused by internal blast publication-title: Engineering Mechanics – volume: 96 start-page: 130 year: 2015 end-page: 138 article-title: Counter-intuitive collapse of single-layer reticulated domes subject to interior blast loading publication-title: Thin-Walled Structures – volume: 118 start-page: 97 year: 2016 end-page: 107 article-title: Behaviour of ultra high performance fibre reinforced concrete columns subjected to blast loading publication-title: Engineering Structures – volume: 46 start-page: 169 issue: 9 year: 2016 end-page: 174 article-title: Dynamic responses of a space truss structure subjected to simultaneous explosion seism and air shock wave publication-title: Industrial Construction – volume: 33 start-page: 47 issue: 1 year: 2016 end-page: 53 article-title: Research on progressive collapse mechanism of multi-layered frame structure under blast impact in internal of basement publication-title: Journal of Architecture & Civil Engineering – volume: 32 start-page: 404 issue: 4 year: 2012 end-page: 410 article-title: Dynamic response and explosion relief of reticulated shell under blast loading publication-title: Explosion & Shock Waves – volume: 46 start-page: 9 issue: 7 year: 2013 end-page: 20 article-title: Experimental study on progressive collapse failure of RC frame structures under blast loading publication-title: China Civil Engineering Journal – volume: 39 start-page: 107 issue: 4 year: 2017 end-page: 114 article-title: Influence of space height on the internal explosion response of single-layer spherical reticulated shell publication-title: Architectural & Environmental Engineering – volume: 48 start-page: 72 issue: 4 year: 2018 end-page: 77 article-title: Parameter analysis of the dynamic responses of steel column under internal blast loading publication-title: Building Structure – volume: 29 start-page: 313 issue: 4 year: 2017 end-page: 320 article-title: Progressive collapse analysis of a typical RC high-rise tower publication-title: Journal of King Saud University: Engineering Sciences – volume: 55 start-page: 34 issue: 5 year: 2013 end-page: 48 article-title: Strength and stability of steel beam columns under blast load publication-title: International Journal of Impact Engineering – volume: 101 start-page: 143 issue: 10 year: 2014 end-page: 157 article-title: Progressive collapse potential of a typical steel building due to blast attacks publication-title: Journal of Constructional Steel Research – volume: 82 start-page: 64 year: 2015 end-page: 76 article-title: An experimental and numerical study of reinforced ultra-high performance concrete slabs under blast loads publication-title: Materials & Design – volume: 112 start-page: 38 year: 2018 end-page: 49 article-title: The similarity law and its verification of cylindrical lattice shell model under internal explosion publication-title: International Journal of Impact Engineering – volume: 130 start-page: 991 issue: 7 year: 2004 end-page: 1000 article-title: Explosion and fire analysis of steel frames publication-title: Journal of Structural Engineering – volume: 27 start-page: 226 issue: 4 year: 2010 end-page: 233 article-title: Shock wave pressure distribution on large-space structures and explosion venting under blast loading publication-title: Engineering Mechanics – volume: 157 start-page: 105 year: 2018 end-page: 118 article-title: Method for evaluating the displacement response of RC beams subjected to close-in explosion using modified SDOF model publication-title: Engineering Structures – volume: 43 start-page: 34 year: 2010 end-page: 41 article-title: Numerical analysis of the damage and collapse process of planar lattice structures under blast loads publication-title: China Civil Engineering Journal – ident: bibr30-1369433219888750 doi: 10.1016/j.engstruct.2017.11.067 – ident: bibr12-1369433219888750 doi: 10.1016/j.jcsr.2014.05.005 – volume: 48 start-page: 102 year: 2015 ident: bibr18-1369433219888750 publication-title: Journal of Tianjin University – ident: bibr33-1369433219888750 doi: 10.12989/sem.2013.45.6.803 – ident: bibr41-1369433219888750 doi: 10.1016/j.engstruct.2016.03.048 – ident: bibr39-1369433219888750 doi: 10.1080/09720529.2016.1253353 – ident: bibr7-1369433219888750 doi: 10.3846/13923730.2015.1073172 – volume: 43 start-page: 34 year: 2010 ident: bibr10-1369433219888750 publication-title: China Civil Engineering Journal – ident: bibr13-1369433219888750 doi: 10.1016/j.ijimpeng.2015.09.001 – volume: 33 start-page: 47 issue: 1 year: 2016 ident: bibr37-1369433219888750 publication-title: Journal of Architecture & Civil Engineering – ident: bibr23-1369433219888750 doi: 10.1016/j.engstruct.2017.08.061 – ident: bibr1-1369433219888750 doi: 10.1016/j.jksues.2017.06.005 – volume: 39 start-page: 107 issue: 4 year: 2017 ident: bibr17-1369433219888750 publication-title: Architectural & Environmental Engineering – ident: bibr5-1369433219888750 doi: 10.1061/(ASCE)0733-9445(2004)130:7(991) – ident: bibr35-1369433219888750 doi: 10.1016/j.ijimpeng.2017.03.024 – ident: bibr11-1369433219888750 doi: 10.1016/j.proeng.2017.11.091 – ident: bibr25-1369433219888750 doi: 10.1016/j.matdes.2015.05.045 – ident: bibr29-1369433219888750 doi: 10.1016/j.tws.2015.08.001 – volume: 32 start-page: 404 issue: 4 year: 2012 ident: bibr42-1369433219888750 publication-title: Explosion & Shock Waves – ident: bibr31-1369433219888750 doi: 10.1016/j.ijimpeng.2012.11.010 – volume: 46 start-page: 169 issue: 9 year: 2016 ident: bibr40-1369433219888750 publication-title: Industrial Construction – ident: bibr32-1369433219888750 doi: 10.1016/j.engstruct.2017.02.009 – ident: bibr27-1369433219888750 doi: 10.1016/j.jcsr.2007.12.013 – ident: bibr43-1369433219888750 doi: 10.1016/j.ijimpeng.2017.11.013 – volume: 40 start-page: 55 issue: 1 year: 2018 ident: bibr22-1369433219888750 publication-title: Journal of Civil Architectural & Environmental Engineering – ident: bibr14-1369433219888750 doi: 10.1016/j.proeng.2017.09.388 – ident: bibr34-1369433219888750 doi: 10.1007/s12205-017-0559-0 – volume: 46 start-page: 9 issue: 7 year: 2013 ident: bibr16-1369433219888750 publication-title: China Civil Engineering Journal – volume-title: Failure mechanism and explosion protection method of cylindrical reticulated shell structures under internal explosion year: 2016 ident: bibr24-1369433219888750 – ident: bibr3-1369433219888750 doi: 10.1016/j.ijimpeng.2016.08.010 – volume: 35 start-page: 5570 year: 2014 ident: bibr6-1369433219888750 publication-title: Journal of Huaqiao University – ident: bibr9-1369433219888750 doi: 10.1016/j.engstruct.2017.05.063 – ident: bibr2-1369433219888750 doi: 10.1016/j.ijimpeng.2016.04.007 – volume: 30 start-page: 70 issue: 9 year: 2011 ident: bibr19-1369433219888750 publication-title: Journal of Vibration & Shock – volume-title: Theory of Vibration with Applications year: 1972 ident: bibr36-1369433219888750 – ident: bibr21-1369433219888750 doi: 10.1177/1369433216656430 – volume: 27 start-page: 226 issue: 4 year: 2010 ident: bibr20-1369433219888750 publication-title: Engineering Mechanics – volume: 48 start-page: 72 issue: 4 year: 2018 ident: bibr28-1369433219888750 publication-title: Building Structure – volume: 32 start-page: 119 issue: 3 year: 2015 ident: bibr8-1369433219888750 publication-title: Engineering Mechanics – ident: bibr26-1369433219888750 doi: 10.1016/j.engstruct.2016.12.057 – year: 2008 ident: bibr38-1369433219888750 publication-title: Structures to Resist the Effects of Accidental Explosions – ident: bibr4-1369433219888750 doi: 10.1080/10168664.2018.1462673 – ident: bibr15-1369433219888750 doi: 10.1016/j.ijimpeng.2018.08.010 |
SSID | ssj0012771 |
Score | 2.175955 |
Snippet | In order to analyse the mechanical behaviour of a reticulated shell structure under explosive load, a novel method was proposed to calculate the dynamic... |
SourceID | crossref sage |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1098 |
Title | A novel method for rapidly calculating explosion dynamic displacement response of reticulated shell structure based on influence surfaces |
URI | https://journals.sagepub.com/doi/full/10.1177/1369433219888750 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW9gIHVF6i0CIfEBKKQvP0JscUKBUCTq20t1X8CFppla32gUT_Qf8TP64zYydxVy2iXKKVZTuK59uZsf3NDGNvtdBJkTcqNKUwsEGJ0lCClQqVSCTls9JU7u37D3F6nn2d5JPR6I_HWtqs5Qd1eWtcyf9IFdpArhglew_J9pNCA_wG-cITJAzPf5JxFbSLX2buykATY3BZX8z0_HcAS6-oMlf7E7P4zxd4KhZoW38er2WIjEVMgKWlydLhAcU04jjwQ1fIEQ1sglm8ZkCDpwOiRrrCJsFqs2yQ0-W7uJVlFRDPthsMODBD4sOBUmB13mTWI_RLTUe3k00N-n_o-W3mOtZ-24YgOMNA5K7dnV8kkUd7sSo3FSXGbVmdbKgNswkDcJwadnraxiU7PPpKN45sIWtnwEF7p7cbB7qexvfh6-ISNv9jm_X2Zh7uLfvYsxZjlxp9e4YHbDeBTQqYhd3q-NPxSX-LBa0u7s9-4XBNfrQ9xw23yOMUkptztsceu_0JryzYnrCRaZ-yR17WymfsquIEO25hxwF23MGOe7DjPey4gx33Ycc72PFFwz3YcYId72HHCXYcZulhxzvYPWfnJ5_PPp6GrqJHqJIiXoexMIWGDa3U0VjCxiMro7FWuYl0VmOiwSQ1UmMFBHCsiiaOVJI0TVbLxIxzKY1MX7CddtGal4xHpoHxOVENstyUtTBCKVAvRSGyopH77Khb0Kly6e6x6sp8epcY99n7fsSFTfXyl77vUEZTpwxWd3Z8dY9JX7OHwx_kgO3AQptDcHnX8o1D1jW64KnN |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+method+for+rapidly+calculating+explosion+dynamic+displacement+response+of+reticulated+shell+structure+based+on+influence+surfaces&rft.jtitle=Advances+in+structural+engineering&rft.au=Chen%2C+Xin&rft.au=Gao%2C+Xuanneng&rft.au=Lin%2C+Xiang&rft.au=Liu%2C+Jingliang&rft.date=2020-04-01&rft.issn=1369-4332&rft.eissn=2048-4011&rft.volume=23&rft.issue=6&rft.spage=1098&rft.epage=1113&rft_id=info:doi/10.1177%2F1369433219888750&rft.externalDBID=n%2Fa&rft.externalDocID=10_1177_1369433219888750 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1369-4332&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1369-4332&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1369-4332&client=summon |