A novel method for rapidly calculating explosion dynamic displacement response of reticulated shell structure based on influence surfaces

In order to analyse the mechanical behaviour of a reticulated shell structure under explosive load, a novel method was proposed to calculate the dynamic displacement response of the cylindrical reticulated shell structure by using the influence surface in this article. First, the theory of the dynam...

Full description

Saved in:
Bibliographic Details
Published inAdvances in structural engineering Vol. 23; no. 6; pp. 1098 - 1113
Main Authors Chen, Xin, Gao, Xuanneng, Lin, Xiang, Liu, Jingliang, Le, Lihui
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.04.2020
Subjects
Online AccessGet full text
ISSN1369-4332
2048-4011
DOI10.1177/1369433219888750

Cover

Loading…
Abstract In order to analyse the mechanical behaviour of a reticulated shell structure under explosive load, a novel method was proposed to calculate the dynamic displacement response of the cylindrical reticulated shell structure by using the influence surface in this article. First, the theory of the dynamic influence line was developed and the consistency between the dynamic influence lines and the static ones was verified. Then, based on the theory of the dynamic influence line and for the simplified calculation of dynamic responses, the dynamic influence lines of a simply supported beam were simplified as the static ones multiplied by the dynamic amplification factor β. And then the explosion dynamic responses of the beam could be fast calculated using the influence lines. The extended application of the above method to single-layer cylindrical reticulated shell was the influence surface method. The results of numerical examples showed that the nodal displacements of the structure obtained by using the influence surface method agreed well with those obtained by using ANSYS/LS-DYNA. The research results also indicated that the influence surface method was applicable to the node displacement calculation of the structure under three different conditions, including the centre node of the symmetrical structure, the arbitrary nodes (excluding those near the supports) of symmetrical structure under symmetrical loads and the arbitrary nodes of arbitrary structures in which the load holding time is much longer than the natural vibration period of structure. The proposed approach could reduce the computation cost for analysing the explosion dynamic response of the reticulated shell structure, thereby providing a more effective method for the anti-explosion design of reticulated shell structures.
AbstractList In order to analyse the mechanical behaviour of a reticulated shell structure under explosive load, a novel method was proposed to calculate the dynamic displacement response of the cylindrical reticulated shell structure by using the influence surface in this article. First, the theory of the dynamic influence line was developed and the consistency between the dynamic influence lines and the static ones was verified. Then, based on the theory of the dynamic influence line and for the simplified calculation of dynamic responses, the dynamic influence lines of a simply supported beam were simplified as the static ones multiplied by the dynamic amplification factor β. And then the explosion dynamic responses of the beam could be fast calculated using the influence lines. The extended application of the above method to single-layer cylindrical reticulated shell was the influence surface method. The results of numerical examples showed that the nodal displacements of the structure obtained by using the influence surface method agreed well with those obtained by using ANSYS/LS-DYNA. The research results also indicated that the influence surface method was applicable to the node displacement calculation of the structure under three different conditions, including the centre node of the symmetrical structure, the arbitrary nodes (excluding those near the supports) of symmetrical structure under symmetrical loads and the arbitrary nodes of arbitrary structures in which the load holding time is much longer than the natural vibration period of structure. The proposed approach could reduce the computation cost for analysing the explosion dynamic response of the reticulated shell structure, thereby providing a more effective method for the anti-explosion design of reticulated shell structures.
Author Chen, Xin
Lin, Xiang
Liu, Jingliang
Gao, Xuanneng
Le, Lihui
Author_xml – sequence: 1
  givenname: Xin
  orcidid: 0000-0001-7742-8396
  surname: Chen
  fullname: Chen, Xin
– sequence: 2
  givenname: Xuanneng
  surname: Gao
  fullname: Gao, Xuanneng
  email: gaoxn117@sina.com
– sequence: 3
  givenname: Xiang
  surname: Lin
  fullname: Lin, Xiang
– sequence: 4
  givenname: Jingliang
  orcidid: 0000-0001-5508-158X
  surname: Liu
  fullname: Liu, Jingliang
– sequence: 5
  givenname: Lihui
  surname: Le
  fullname: Le, Lihui
BookMark eNp9kM1OwzAQhC1UJNrCnaNfIGA7aeweq4o_qRIXOEeOvW5dOXZkO4g-Am9NSjlVgtOudvYbaWaGJj54QOiWkjtKOb-nZb2sypLRpRCCL8gFmjJSiaIilE7Q9CgXR_0KzVLaE0IZ53SKvlbYhw9wuIO8CxqbEHGUvdXugJV0anAyW7_F8Nm7kGzwWB-87KzC2qbeSQUd-IwjpD74BDiYcc_2hwON0w6cwynHQeUhAm5lGq-ji_XGDeAV4DREM9qka3RppEtw8zvn6P3x4W39XGxen17Wq02hmKC5oDUILVjdasJbzqtqSbhWCyC6knRJK1ZCqwXhoiSlMJQoxoypZMuAL9oW2nKO6pOviiGlCKZRNo8hg89RWtdQ0hwLbc4LHUFyBvbRdjIe_kOKE5LkFpp9GKIfo_39_w3rwooE
CitedBy_id crossref_primary_10_1155_2022_4616889
Cites_doi 10.1016/j.engstruct.2017.11.067
10.1016/j.jcsr.2014.05.005
10.12989/sem.2013.45.6.803
10.1016/j.engstruct.2016.03.048
10.1080/09720529.2016.1253353
10.3846/13923730.2015.1073172
10.1016/j.ijimpeng.2015.09.001
10.1016/j.engstruct.2017.08.061
10.1016/j.jksues.2017.06.005
10.1061/(ASCE)0733-9445(2004)130:7(991)
10.1016/j.ijimpeng.2017.03.024
10.1016/j.proeng.2017.11.091
10.1016/j.matdes.2015.05.045
10.1016/j.tws.2015.08.001
10.1016/j.ijimpeng.2012.11.010
10.1016/j.engstruct.2017.02.009
10.1016/j.jcsr.2007.12.013
10.1016/j.ijimpeng.2017.11.013
10.1016/j.proeng.2017.09.388
10.1007/s12205-017-0559-0
10.1016/j.ijimpeng.2016.08.010
10.1016/j.engstruct.2017.05.063
10.1016/j.ijimpeng.2016.04.007
10.1177/1369433216656430
10.1016/j.engstruct.2016.12.057
10.1080/10168664.2018.1462673
10.1016/j.ijimpeng.2018.08.010
ContentType Journal Article
Copyright The Author(s) 2019
Copyright_xml – notice: The Author(s) 2019
DBID AAYXX
CITATION
DOI 10.1177/1369433219888750
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2048-4011
EndPage 1113
ExternalDocumentID 10_1177_1369433219888750
10.1177_1369433219888750
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51278208
  funderid: https://doi.org/10.13039/501100001809
– fundername: Science and Technology Programs of Fujian Province
  grantid: 2018Y0063
– fundername: National Natural Science Foundation of China
  grantid: 51608122
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID -TM
-TN
0R~
23M
4.4
54M
5GY
6KP
AABPG
AADUE
AAGGD
AAGLT
AAJPV
AANSI
AAOTM
AAOVH
AAPEO
AAQXI
AARIX
AATAA
AATZT
ABAWP
ABCCA
ABCJG
ABDBF
ABDWY
ABEIX
ABFNE
ABFWQ
ABGWC
ABHKI
ABIDT
ABJNI
ABKRH
ABLUO
ABPNF
ABQKF
ABQXT
ABRHV
ABUBZ
ABUJY
ABYTW
ACDXX
ACGBL
ACGFS
ACOFE
ACOXC
ACROE
ACSIQ
ACUAV
ACUHS
ACUIR
ACXKE
ADEBD
ADEIA
ADGDL
ADMLS
ADRRZ
ADTBJ
ADUKL
ADVBO
AEDFJ
AENEX
AEPTA
AEQLS
AESZF
AEWDL
AEWHI
AEXNY
AFEET
AFGYO
AFKRG
AFMOU
AFQAA
AFUIA
AGKLV
AGNHF
AGWFA
AHDMH
AIZZC
AJEFB
AJUZI
ALMA_UNASSIGNED_HOLDINGS
ARTOV
AUTPY
AYAKG
BBRGL
BDDNI
BPACV
CBRKF
CFDXU
CKLRP
CORYS
CS3
DH.
DOPDO
DV7
EBS
EJD
ESX
FHBDP
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
H13
I-F
IL9
J8X
K.F
MET
MV1
O9-
Q1R
ROL
SASJQ
SAUOL
SCNPE
SFC
SPV
TUS
ZPPRI
ZRKOI
AAYXX
AJGYC
CITATION
ID FETCH-LOGICAL-c281t-16e8d826bd07b7744907dc5e0d4a191423ebd80783038f10c22ff4ab2e75bbeb3
ISSN 1369-4332
IngestDate Thu Apr 24 22:55:38 EDT 2025
Tue Jul 01 05:27:00 EDT 2025
Tue Jun 17 22:30:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords influence line/surface
cylindrical reticulated shell
dynamic displacement response
quick calculation method
explosive load
numerical simulation
dynamic amplification factor
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c281t-16e8d826bd07b7744907dc5e0d4a191423ebd80783038f10c22ff4ab2e75bbeb3
ORCID 0000-0001-7742-8396
0000-0001-5508-158X
PageCount 16
ParticipantIDs crossref_citationtrail_10_1177_1369433219888750
crossref_primary_10_1177_1369433219888750
sage_journals_10_1177_1369433219888750
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200400
2020-04-00
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 4
  year: 2020
  text: 20200400
PublicationDecade 2020
PublicationPlace London, England
PublicationPlace_xml – name: London, England
PublicationTitle Advances in structural engineering
PublicationYear 2020
Publisher SAGE Publications
Publisher_xml – name: SAGE Publications
References Aune, Valsamos, Casadei 2017; 99
Zheng, Kong, Wu 2018; 113
Figuli, Bedon, Zvaková 2017; 199
Remennikov, Ngo, Mohotti 2017; 105
Coffield, Adeli 2016; 22
Cao, Xu, Chen 2018; 28
Gao, Zong, Wu 2013; 46
Xu, Wu, Xiang 2016; 118
Feldgun, Yankelevsky, Karinski 2016; 88
Li, Wu, Hao 2017; 134
Olmati, Petrini, Bontempi 2013; 45
Pourasil, Mohammadi, Gholizad 2017; 21
Dinu, Marginean, Dubina 2017; 210
Hao, Hao, Li 2016; 19
Tian, Fan 2016; 33
Ding, Wang, Li 2010; 43
Nourzadeh, Humar, Braimah 2017; 138
2008
Zhai, Wang 2012; 32
Liew 2008; 64
Al-Thairy 2016; 94
Ding, Chen, Shi 2015; 32
Gao, Fu 2017; 39
Gao, Chao, Yuan 2015; 48
Ding, Song, Zhu 2017; 147
Gao, Liu, Wang 2011; 30
Heng, Hjiaj, Battini 2017; 152
Al-Salloum, Abbas, Almusallam 2017; 29
Chen, Gao 2014; 35
He, Zhou, Zhou 2018; 40
Elsanadedy, Almusallam, Alharbi 2014; 101
Wang, Dong, Chen 2016; 46
Nagata, Beppu, Ichino 2018; 157
Chen, Liew 2004; 130
Fu, Gao, Chen 2018; 112
Li, Wu, Hao 2015; 82
Gao, Wang, Jiang 2010; 27
Liu, Zhao 2018; 48
Wang, Gao 2016; 19
Ma, Fan, Wu 2015; 96
Nassr, Razaqpur, Tait 2013; 55
bibr39-1369433219888750
bibr34-1369433219888750
bibr26-1369433219888750
Zhai XM (bibr42-1369433219888750) 2012; 32
bibr4-1369433219888750
bibr21-1369433219888750
bibr43-1369433219888750
bibr30-1369433219888750
bibr13-1369433219888750
bibr27-1369433219888750
bibr35-1369433219888750
Gao XN (bibr19-1369433219888750) 2011; 30
Tian L (bibr37-1369433219888750) 2016; 33
bibr1-1369433219888750
Gao C (bibr16-1369433219888750) 2013; 46
Gao XN (bibr17-1369433219888750) 2017; 39
bibr31-1369433219888750
bibr5-1369433219888750
Ding Y (bibr10-1369433219888750) 2010; 43
bibr14-1369433219888750
bibr9-1369433219888750
Chen X (bibr6-1369433219888750) 2014; 35
Liu S (bibr28-1369433219888750) 2018; 48
Li C (bibr24-1369433219888750) 2016
bibr2-1369433219888750
bibr23-1369433219888750
Thomson WT (bibr36-1369433219888750) 1972
He YJ (bibr22-1369433219888750) 2018; 40
bibr11-1369433219888750
bibr32-1369433219888750
Gao XN (bibr20-1369433219888750) 2010; 27
Wang XD (bibr40-1369433219888750) 2016; 46
bibr41-1369433219888750
bibr15-1369433219888750
bibr3-1369433219888750
bibr33-1369433219888750
Gao XN (bibr18-1369433219888750) 2015; 48
Ding Y (bibr8-1369433219888750) 2015; 32
bibr7-1369433219888750
bibr12-1369433219888750
bibr25-1369433219888750
US Department of Defense (bibr38-1369433219888750) 2008
bibr29-1369433219888750
References_xml – volume: 28
  start-page: 526
  issue: 4
  year: 2018
  end-page: 534
  article-title: Damage prediction for an AP1000 Nuclear Island subjected to a contact explosion
  publication-title: Structural Engineering International
– volume: 152
  start-page: 771
  year: 2017
  end-page: 789
  article-title: An enhanced SDOF model to predict the behaviour of a steel column impacted by a rigid body
  publication-title: Engineering Structures
– volume: 35
  start-page: 5570
  year: 2014
  end-page: 5575
  article-title: Numerical simulation and analysis of influence parameters for explosions near ground
  publication-title: Journal of Huaqiao University
– year: 2008
  publication-title: Structures to Resist the Effects of Accidental Explosions
– volume: 134
  start-page: 289
  year: 2017
  end-page: 302
  article-title: Post-blast capacity of ultra-high performance concrete columns
  publication-title: Engineering Structures
– volume: 210
  start-page: 377
  year: 2017
  end-page: 385
  article-title: Experimental testing and numerical modeling of steel frames under close-in detonations
  publication-title: Procedia Engineering
– volume: 19
  start-page: 1
  issue: 8
  year: 2016
  end-page: 31
  article-title: Review of the current practices in blast-resistant analysis and design of concrete structures
  publication-title: Advances in Structural Engineering
– volume: 64
  start-page: 854
  issue: 7
  year: 2008
  end-page: 866
  article-title: Survivability of steel frame structures subject to blast and fire
  publication-title: Journal of Constructional Steel Research
– volume: 22
  start-page: 17
  issue: 1
  year: 2016
  end-page: 25
  article-title: Irregular steel building structures subjected to blast loading
  publication-title: Journal of Civil Engineering and Management
– volume: 19
  start-page: 1073
  issue: 5–6
  year: 2016
  end-page: 1090
  article-title: Overpressure peak formula of surface shock waves in single layer spherical lattice shell under the effect of internal explosion
  publication-title: Journal of Discrete Mathematical Sciences & Cryptography
– volume: 113
  start-page: 144
  year: 2018
  end-page: 160
  article-title: Experimental and numerical studies on the dynamic response of steel plates subjected to confined blast loading
  publication-title: International Journal of Impact Engineering
– volume: 105
  start-page: 1
  year: 2017
  end-page: 12
  article-title: Reprint of: experimental investigation and simplified modeling of response of steel plates subjected to close-in blast loading from spherical liquid explosive charges
  publication-title: International Journal of Impact Engineering
– volume: 99
  start-page: 131
  year: 2017
  end-page: 144
  article-title: Numerical study on the structural response of blast-loaded thin aluminium and steel plates
  publication-title: International Journal of Impact Engineering
– volume: 40
  start-page: 55
  issue: 1
  year: 2018
  end-page: 61
  article-title: Dynamic response of single-layer reticulated domes under fire and blast loads
  publication-title: Journal of Civil Architectural & Environmental Engineering
– volume: 88
  start-page: 172
  year: 2016
  end-page: 188
  article-title: A nonlinear SDOF model for blast response simulation of elastic thin rectangular plates
  publication-title: International Journal of Impact Engineering
– volume: 147
  start-page: 679
  year: 2017
  end-page: 691
  article-title: Probabilistic progressive collapse analysis of steel frame structures against blast loads
  publication-title: Engineering Structures
– volume: 94
  start-page: 120
  year: 2016
  end-page: 133
  article-title: A modified single degree of freedom method for the analysis of building steel columns subjected to explosion induced blast load
  publication-title: International Journal of Impact Engineering
– volume: 30
  start-page: 70
  issue: 9
  year: 2011
  end-page: 75
  article-title: Analysis of explosive shock wave pressure distribution on large-space cylindrical reticulated shell based on LS-DYNA
  publication-title: Journal of Vibration & Shock
– volume: 21
  start-page: 1
  issue: 6
  year: 2017
  end-page: 9
  article-title: A proposed procedure for progressive collapse analysis of common steel building structures to blast loading
  publication-title: KSCE Journal of Civil Engineering
– volume: 138
  start-page: 50
  year: 2017
  end-page: 62
  article-title: Response of roof beams in buildings subject to blast loading: analytical treatment
  publication-title: Engineering Structures
– volume: 199
  start-page: 2463
  year: 2017
  end-page: 2469
  article-title: Dynamic analysis of a blast loaded steel structure
  publication-title: Procedia Engineering
– volume: 48
  start-page: 102
  year: 2015
  end-page: 109
  article-title: Dynamic responses of single-layer spherical steel reticulated shell under internal explosions
  publication-title: Journal of Tianjin University
– volume: 45
  start-page: 803
  issue: 6
  year: 2013
  end-page: 819
  article-title: Numerical analyses for the structural assessment of steel buildings under explosions
  publication-title: Structural Engineering & Mechanics
– volume: 32
  start-page: 119
  issue: 3
  year: 2015
  end-page: 125
  article-title: Simplified model of overpressure loading caused by internal blast
  publication-title: Engineering Mechanics
– volume: 96
  start-page: 130
  year: 2015
  end-page: 138
  article-title: Counter-intuitive collapse of single-layer reticulated domes subject to interior blast loading
  publication-title: Thin-Walled Structures
– volume: 118
  start-page: 97
  year: 2016
  end-page: 107
  article-title: Behaviour of ultra high performance fibre reinforced concrete columns subjected to blast loading
  publication-title: Engineering Structures
– volume: 46
  start-page: 169
  issue: 9
  year: 2016
  end-page: 174
  article-title: Dynamic responses of a space truss structure subjected to simultaneous explosion seism and air shock wave
  publication-title: Industrial Construction
– volume: 33
  start-page: 47
  issue: 1
  year: 2016
  end-page: 53
  article-title: Research on progressive collapse mechanism of multi-layered frame structure under blast impact in internal of basement
  publication-title: Journal of Architecture & Civil Engineering
– volume: 32
  start-page: 404
  issue: 4
  year: 2012
  end-page: 410
  article-title: Dynamic response and explosion relief of reticulated shell under blast loading
  publication-title: Explosion & Shock Waves
– volume: 46
  start-page: 9
  issue: 7
  year: 2013
  end-page: 20
  article-title: Experimental study on progressive collapse failure of RC frame structures under blast loading
  publication-title: China Civil Engineering Journal
– volume: 39
  start-page: 107
  issue: 4
  year: 2017
  end-page: 114
  article-title: Influence of space height on the internal explosion response of single-layer spherical reticulated shell
  publication-title: Architectural & Environmental Engineering
– volume: 48
  start-page: 72
  issue: 4
  year: 2018
  end-page: 77
  article-title: Parameter analysis of the dynamic responses of steel column under internal blast loading
  publication-title: Building Structure
– volume: 29
  start-page: 313
  issue: 4
  year: 2017
  end-page: 320
  article-title: Progressive collapse analysis of a typical RC high-rise tower
  publication-title: Journal of King Saud University: Engineering Sciences
– volume: 55
  start-page: 34
  issue: 5
  year: 2013
  end-page: 48
  article-title: Strength and stability of steel beam columns under blast load
  publication-title: International Journal of Impact Engineering
– volume: 101
  start-page: 143
  issue: 10
  year: 2014
  end-page: 157
  article-title: Progressive collapse potential of a typical steel building due to blast attacks
  publication-title: Journal of Constructional Steel Research
– volume: 82
  start-page: 64
  year: 2015
  end-page: 76
  article-title: An experimental and numerical study of reinforced ultra-high performance concrete slabs under blast loads
  publication-title: Materials & Design
– volume: 112
  start-page: 38
  year: 2018
  end-page: 49
  article-title: The similarity law and its verification of cylindrical lattice shell model under internal explosion
  publication-title: International Journal of Impact Engineering
– volume: 130
  start-page: 991
  issue: 7
  year: 2004
  end-page: 1000
  article-title: Explosion and fire analysis of steel frames
  publication-title: Journal of Structural Engineering
– volume: 27
  start-page: 226
  issue: 4
  year: 2010
  end-page: 233
  article-title: Shock wave pressure distribution on large-space structures and explosion venting under blast loading
  publication-title: Engineering Mechanics
– volume: 157
  start-page: 105
  year: 2018
  end-page: 118
  article-title: Method for evaluating the displacement response of RC beams subjected to close-in explosion using modified SDOF model
  publication-title: Engineering Structures
– volume: 43
  start-page: 34
  year: 2010
  end-page: 41
  article-title: Numerical analysis of the damage and collapse process of planar lattice structures under blast loads
  publication-title: China Civil Engineering Journal
– ident: bibr30-1369433219888750
  doi: 10.1016/j.engstruct.2017.11.067
– ident: bibr12-1369433219888750
  doi: 10.1016/j.jcsr.2014.05.005
– volume: 48
  start-page: 102
  year: 2015
  ident: bibr18-1369433219888750
  publication-title: Journal of Tianjin University
– ident: bibr33-1369433219888750
  doi: 10.12989/sem.2013.45.6.803
– ident: bibr41-1369433219888750
  doi: 10.1016/j.engstruct.2016.03.048
– ident: bibr39-1369433219888750
  doi: 10.1080/09720529.2016.1253353
– ident: bibr7-1369433219888750
  doi: 10.3846/13923730.2015.1073172
– volume: 43
  start-page: 34
  year: 2010
  ident: bibr10-1369433219888750
  publication-title: China Civil Engineering Journal
– ident: bibr13-1369433219888750
  doi: 10.1016/j.ijimpeng.2015.09.001
– volume: 33
  start-page: 47
  issue: 1
  year: 2016
  ident: bibr37-1369433219888750
  publication-title: Journal of Architecture & Civil Engineering
– ident: bibr23-1369433219888750
  doi: 10.1016/j.engstruct.2017.08.061
– ident: bibr1-1369433219888750
  doi: 10.1016/j.jksues.2017.06.005
– volume: 39
  start-page: 107
  issue: 4
  year: 2017
  ident: bibr17-1369433219888750
  publication-title: Architectural & Environmental Engineering
– ident: bibr5-1369433219888750
  doi: 10.1061/(ASCE)0733-9445(2004)130:7(991)
– ident: bibr35-1369433219888750
  doi: 10.1016/j.ijimpeng.2017.03.024
– ident: bibr11-1369433219888750
  doi: 10.1016/j.proeng.2017.11.091
– ident: bibr25-1369433219888750
  doi: 10.1016/j.matdes.2015.05.045
– ident: bibr29-1369433219888750
  doi: 10.1016/j.tws.2015.08.001
– volume: 32
  start-page: 404
  issue: 4
  year: 2012
  ident: bibr42-1369433219888750
  publication-title: Explosion & Shock Waves
– ident: bibr31-1369433219888750
  doi: 10.1016/j.ijimpeng.2012.11.010
– volume: 46
  start-page: 169
  issue: 9
  year: 2016
  ident: bibr40-1369433219888750
  publication-title: Industrial Construction
– ident: bibr32-1369433219888750
  doi: 10.1016/j.engstruct.2017.02.009
– ident: bibr27-1369433219888750
  doi: 10.1016/j.jcsr.2007.12.013
– ident: bibr43-1369433219888750
  doi: 10.1016/j.ijimpeng.2017.11.013
– volume: 40
  start-page: 55
  issue: 1
  year: 2018
  ident: bibr22-1369433219888750
  publication-title: Journal of Civil Architectural & Environmental Engineering
– ident: bibr14-1369433219888750
  doi: 10.1016/j.proeng.2017.09.388
– ident: bibr34-1369433219888750
  doi: 10.1007/s12205-017-0559-0
– volume: 46
  start-page: 9
  issue: 7
  year: 2013
  ident: bibr16-1369433219888750
  publication-title: China Civil Engineering Journal
– volume-title: Failure mechanism and explosion protection method of cylindrical reticulated shell structures under internal explosion
  year: 2016
  ident: bibr24-1369433219888750
– ident: bibr3-1369433219888750
  doi: 10.1016/j.ijimpeng.2016.08.010
– volume: 35
  start-page: 5570
  year: 2014
  ident: bibr6-1369433219888750
  publication-title: Journal of Huaqiao University
– ident: bibr9-1369433219888750
  doi: 10.1016/j.engstruct.2017.05.063
– ident: bibr2-1369433219888750
  doi: 10.1016/j.ijimpeng.2016.04.007
– volume: 30
  start-page: 70
  issue: 9
  year: 2011
  ident: bibr19-1369433219888750
  publication-title: Journal of Vibration & Shock
– volume-title: Theory of Vibration with Applications
  year: 1972
  ident: bibr36-1369433219888750
– ident: bibr21-1369433219888750
  doi: 10.1177/1369433216656430
– volume: 27
  start-page: 226
  issue: 4
  year: 2010
  ident: bibr20-1369433219888750
  publication-title: Engineering Mechanics
– volume: 48
  start-page: 72
  issue: 4
  year: 2018
  ident: bibr28-1369433219888750
  publication-title: Building Structure
– volume: 32
  start-page: 119
  issue: 3
  year: 2015
  ident: bibr8-1369433219888750
  publication-title: Engineering Mechanics
– ident: bibr26-1369433219888750
  doi: 10.1016/j.engstruct.2016.12.057
– year: 2008
  ident: bibr38-1369433219888750
  publication-title: Structures to Resist the Effects of Accidental Explosions
– ident: bibr4-1369433219888750
  doi: 10.1080/10168664.2018.1462673
– ident: bibr15-1369433219888750
  doi: 10.1016/j.ijimpeng.2018.08.010
SSID ssj0012771
Score 2.175955
Snippet In order to analyse the mechanical behaviour of a reticulated shell structure under explosive load, a novel method was proposed to calculate the dynamic...
SourceID crossref
sage
SourceType Enrichment Source
Index Database
Publisher
StartPage 1098
Title A novel method for rapidly calculating explosion dynamic displacement response of reticulated shell structure based on influence surfaces
URI https://journals.sagepub.com/doi/full/10.1177/1369433219888750
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW9gIHVF6i0CIfEBKKQvP0JscUKBUCTq20t1X8CFppla32gUT_Qf8TP64zYydxVy2iXKKVZTuK59uZsf3NDGNvtdBJkTcqNKUwsEGJ0lCClQqVSCTls9JU7u37D3F6nn2d5JPR6I_HWtqs5Qd1eWtcyf9IFdpArhglew_J9pNCA_wG-cITJAzPf5JxFbSLX2buykATY3BZX8z0_HcAS6-oMlf7E7P4zxd4KhZoW38er2WIjEVMgKWlydLhAcU04jjwQ1fIEQ1sglm8ZkCDpwOiRrrCJsFqs2yQ0-W7uJVlFRDPthsMODBD4sOBUmB13mTWI_RLTUe3k00N-n_o-W3mOtZ-24YgOMNA5K7dnV8kkUd7sSo3FSXGbVmdbKgNswkDcJwadnraxiU7PPpKN45sIWtnwEF7p7cbB7qexvfh6-ISNv9jm_X2Zh7uLfvYsxZjlxp9e4YHbDeBTQqYhd3q-NPxSX-LBa0u7s9-4XBNfrQ9xw23yOMUkptztsceu_0JryzYnrCRaZ-yR17WymfsquIEO25hxwF23MGOe7DjPey4gx33Ycc72PFFwz3YcYId72HHCXYcZulhxzvYPWfnJ5_PPp6GrqJHqJIiXoexMIWGDa3U0VjCxiMro7FWuYl0VmOiwSQ1UmMFBHCsiiaOVJI0TVbLxIxzKY1MX7CddtGal4xHpoHxOVENstyUtTBCKVAvRSGyopH77Khb0Kly6e6x6sp8epcY99n7fsSFTfXyl77vUEZTpwxWd3Z8dY9JX7OHwx_kgO3AQptDcHnX8o1D1jW64KnN
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+method+for+rapidly+calculating+explosion+dynamic+displacement+response+of+reticulated+shell+structure+based+on+influence+surfaces&rft.jtitle=Advances+in+structural+engineering&rft.au=Chen%2C+Xin&rft.au=Gao%2C+Xuanneng&rft.au=Lin%2C+Xiang&rft.au=Liu%2C+Jingliang&rft.date=2020-04-01&rft.issn=1369-4332&rft.eissn=2048-4011&rft.volume=23&rft.issue=6&rft.spage=1098&rft.epage=1113&rft_id=info:doi/10.1177%2F1369433219888750&rft.externalDBID=n%2Fa&rft.externalDocID=10_1177_1369433219888750
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1369-4332&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1369-4332&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1369-4332&client=summon