Cationic defect-enriched hydroxides as anodic catalysts for efficient seawater electrolysis

Seawater electrocatalysis driven by renewable energy resources has long been considered as a promising approach for producing clean hydrogen. However, anodic electrode materials suffer from severe issues such as large overpotential and electrochemical corrosion during seawater electrolysis due to th...

Full description

Saved in:
Bibliographic Details
Published inInorganic chemistry frontiers Vol. 1; no. 8; pp. 2444 - 2456
Main Authors Wu, Yi-jin, Zheng, Jian-zhong, Zhou, Xiao, Tu, Teng-xiu, Liu, Yangyang, Zhang, Peng-fang, Tan, Liang, Zhao, Shenlong
Format Journal Article
LanguageEnglish
Published London Royal Society of Chemistry 11.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Seawater electrocatalysis driven by renewable energy resources has long been considered as a promising approach for producing clean hydrogen. However, anodic electrode materials suffer from severe issues such as large overpotential and electrochemical corrosion during seawater electrolysis due to the existence of abundant chloride ions. Herein, we report a cationic defect engineering approach to tailoring the structure of NiFe layered double hydroxide (NiFe LDH) for the oxygen evolution reaction (OER) in an alkaline seawater-like solution. Impressively, the obtained cation defect-enriched NiFe LDH array exhibits an extremely low overpotential of 232 mV at 100 mA cm −2 and excellent durability after 40 h electrolysis. The density functional theory (DFT) calculations show that CD-NiFe LDH-E facilitates charge transfer between metals (Ni/Fe) and oxygen (O), leading to inhibition of the competitive chlorine evolution reaction (CER). Moreover, homemade rechargeable Zn-air batteries with CD-NiFe LDH-E as the cathode are assembled, exhibiting high open circuit voltage (1.4 V) and excellent stability after 250 hours at a charging-discharging rate of 10 mA cm −2 . The strategy is expected to pave the way for the future development of high-performance electrocatalysts toward seawater splitting. A porous NiFe LDH with abundant cationic defects was synthesized to optimize interactions between active Ni species and adsorbates, exhibiting a highly efficient seawater electrolysis performance.
AbstractList Seawater electrocatalysis driven by renewable energy resources has long been considered as a promising approach for producing clean hydrogen. However, anodic electrode materials suffer from severe issues such as large overpotential and electrochemical corrosion during seawater electrolysis due to the existence of abundant chloride ions. Herein, we report a cationic defect engineering approach to tailoring the structure of NiFe layered double hydroxide (NiFe LDH) for the oxygen evolution reaction (OER) in an alkaline seawater-like solution. Impressively, the obtained cation defect-enriched NiFe LDH array exhibits an extremely low overpotential of 232 mV at 100 mA cm −2 and excellent durability after 40 h electrolysis. The density functional theory (DFT) calculations show that CD-NiFe LDH-E facilitates charge transfer between metals (Ni/Fe) and oxygen (O), leading to inhibition of the competitive chlorine evolution reaction (CER). Moreover, homemade rechargeable Zn-air batteries with CD-NiFe LDH-E as the cathode are assembled, exhibiting high open circuit voltage (1.4 V) and excellent stability after 250 hours at a charging-discharging rate of 10 mA cm −2 . The strategy is expected to pave the way for the future development of high-performance electrocatalysts toward seawater splitting. A porous NiFe LDH with abundant cationic defects was synthesized to optimize interactions between active Ni species and adsorbates, exhibiting a highly efficient seawater electrolysis performance.
Seawater electrocatalysis driven by renewable energy resources has long been considered as a promising approach for producing clean hydrogen. However, anodic electrode materials suffer from severe issues such as large overpotential and electrochemical corrosion during seawater electrolysis due to the existence of abundant chloride ions. Herein, we report a cationic defect engineering approach to tailoring the structure of NiFe layered double hydroxide (NiFe LDH) for the oxygen evolution reaction (OER) in an alkaline seawater-like solution. Impressively, the obtained cation defect-enriched NiFe LDH array exhibits an extremely low overpotential of 232 mV at 100 mA cm −2 and excellent durability after 40 h electrolysis. The density functional theory (DFT) calculations show that CD-NiFe LDH-E facilitates charge transfer between metals (Ni/Fe) and oxygen (O), leading to inhibition of the competitive chlorine evolution reaction (CER). Moreover, homemade rechargeable Zn–air batteries with CD-NiFe LDH-E as the cathode are assembled, exhibiting high open circuit voltage (1.4 V) and excellent stability after 250 hours at a charging–discharging rate of 10 mA cm −2 . The strategy is expected to pave the way for the future development of high-performance electrocatalysts toward seawater splitting.
Seawater electrocatalysis driven by renewable energy resources has long been considered as a promising approach for producing clean hydrogen. However, anodic electrode materials suffer from severe issues such as large overpotential and electrochemical corrosion during seawater electrolysis due to the existence of abundant chloride ions. Herein, we report a cationic defect engineering approach to tailoring the structure of NiFe layered double hydroxide (NiFe LDH) for the oxygen evolution reaction (OER) in an alkaline seawater-like solution. Impressively, the obtained cation defect-enriched NiFe LDH array exhibits an extremely low overpotential of 232 mV at 100 mA cm−2 and excellent durability after 40 h electrolysis. The density functional theory (DFT) calculations show that CD-NiFe LDH-E facilitates charge transfer between metals (Ni/Fe) and oxygen (O), leading to inhibition of the competitive chlorine evolution reaction (CER). Moreover, homemade rechargeable Zn–air batteries with CD-NiFe LDH-E as the cathode are assembled, exhibiting high open circuit voltage (1.4 V) and excellent stability after 250 hours at a charging–discharging rate of 10 mA cm−2. The strategy is expected to pave the way for the future development of high-performance electrocatalysts toward seawater splitting.
Author Wu, Yi-jin
Zheng, Jian-zhong
Zhao, Shenlong
Zhang, Peng-fang
Tu, Teng-xiu
Zhou, Xiao
Liu, Yangyang
Tan, Liang
AuthorAffiliation College of Chemistry and Material Science
School of Chemical and Biomolecular Engineering
The University of Sydney
Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metals Pollution in the Upper Reaches of XiangJiang River
Hengyang Normal University
Nanyue College
Nanjing Tech University
Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
School of Environmental Science and Engineering
Key Laboratory of Functional Metal-Organic Compounds of Hunan Province
School of Chemistry and Chemical Engineering
Liaocheng University
AuthorAffiliation_xml – sequence: 0
  name: Key Laboratory of Functional Metal-Organic Compounds of Hunan Province
– sequence: 0
  name: Liaocheng University
– sequence: 0
  name: Nanyue College
– sequence: 0
  name: Hengyang Normal University
– sequence: 0
  name: Nanjing Tech University
– sequence: 0
  name: School of Chemistry and Chemical Engineering
– sequence: 0
  name: Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metals Pollution in the Upper Reaches of XiangJiang River
– sequence: 0
  name: The University of Sydney
– sequence: 0
  name: College of Chemistry and Material Science
– sequence: 0
  name: School of Chemical and Biomolecular Engineering
– sequence: 0
  name: Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
– sequence: 0
  name: School of Environmental Science and Engineering
Author_xml – sequence: 1
  givenname: Yi-jin
  surname: Wu
  fullname: Wu, Yi-jin
– sequence: 2
  givenname: Jian-zhong
  surname: Zheng
  fullname: Zheng, Jian-zhong
– sequence: 3
  givenname: Xiao
  surname: Zhou
  fullname: Zhou, Xiao
– sequence: 4
  givenname: Teng-xiu
  surname: Tu
  fullname: Tu, Teng-xiu
– sequence: 5
  givenname: Yangyang
  surname: Liu
  fullname: Liu, Yangyang
– sequence: 6
  givenname: Peng-fang
  surname: Zhang
  fullname: Zhang, Peng-fang
– sequence: 7
  givenname: Liang
  surname: Tan
  fullname: Tan, Liang
– sequence: 8
  givenname: Shenlong
  surname: Zhao
  fullname: Zhao, Shenlong
BookMark eNptkU1LAzEQhoNUsNZevAsL3oTVfGz24yi1aqEggp48LNNkQlPqpk1StP_e2IqKCAMzDM-8w7xzTHqd65CQU0YvGRXNlRZrSynlJR6QPqeS50xK0ftVH5FhCIvEMFZQVtI-eRlBtK6zKtNoUMUcO2_VHHU232rv3q3GkEGKzukEKYiw3IYYMuN8hsZYZbGLWUB4g4iptUwi3iXGhhNyaGAZcPiVB-T5dvw0us-nD3eT0fU0V7xmMWeMU1RcAqqZYiBkSQ0vhKQCEKGUrCoqXSMtKlMz0HLWGFXMahBVzQRPVw3I-V535d16gyG2C7fxXVrZ8qqpG1FXDU3UxZ5S3oXg0bQrb1_Bb1tG20__2hvxONn5N04w_QMrG3dORQ92-f_I2X7EB_Ut_fMS8QH-Kn6l
CitedBy_id crossref_primary_10_3390_catal14030171
crossref_primary_10_1039_D4SC02853H
crossref_primary_10_1039_D4EE01693A
crossref_primary_10_1021_acssuschemeng_4c02912
crossref_primary_10_1021_acsnano_3c05749
crossref_primary_10_1016_j_electacta_2023_143587
crossref_primary_10_1039_D3CC03457G
crossref_primary_10_1016_j_cej_2024_153187
crossref_primary_10_1016_j_gee_2024_02_001
crossref_primary_10_1002_eem2_12817
crossref_primary_10_1016_j_mtener_2024_101784
crossref_primary_10_1002_aenm_202405749
crossref_primary_10_1016_j_cej_2024_155307
crossref_primary_10_1007_s11664_024_11019_7
crossref_primary_10_1016_j_jallcom_2024_175368
crossref_primary_10_1016_j_mattod_2025_03_003
crossref_primary_10_1002_adma_202309211
Cites_doi 10.1002/smll.201803009
10.1039/C5RA11248F
10.1039/c6ee01046f
10.1021/jacs.8b05382
10.1038/s41560-019-0407-1
10.1016/j.apcatb.2021.120256
10.1002/aenm.201703585
10.1038/s41560-020-0550-8
10.1016/j.jcis.2019.01.022
10.1038/s41467-023-36532-x
10.1016/j.nanoen.2020.105606
10.1016/j.cej.2021.134040
10.1002/ange.200504386
10.1016/j.coelec.2022.101202
10.1007/s12274-021-3568-8
10.1002/anie.202206050
10.1002/anie.202106631
10.1007/10.1021/jacs.2c00242
10.1007/s40820-022-00857-x
10.1007/s11783-020-1229-x
10.1039/d0ee01617a
10.1038/s41467-020-17934-7
10.1016/j.jcis.2022.08.160
10.1002/advs.201800295
10.1016/j.cclet.2021.12.095
10.1016/j.cej.2021.132632
10.1126/science.aam7092
10.1039/d0ee00921k
10.1016/j.nanoms.2020.12.003
10.1007/s12274-018-2033-9
10.1016/j.chemosphere.2009.10.057
10.1002/adfm.202006484
10.1021/ja405351s
10.1021/acs.chemmater.0c01067
10.1039/D0QM01003K
10.1038/nmat4551
10.1016/j.apcatb.2021.120150
10.1002/anie.202112447
10.1039/d2qi01078j
10.1002/adfm.202201127
10.1002/anie.202114696
10.1007/s12274-022-4377-4
10.1016/j.cej.2021.131643
10.1038/nature11475
10.1073/pnas.2024855118
10.1073/pnas.2202382119
10.1039/c9ee03634b
10.1002/advs.202200146
10.1021/jp970893q
10.1016/j.saa.2011.06.057
10.1002/anie.202110186
10.1002/crat.201000299
10.1007/s40843-019-9434-7
10.1016/S1872-2067(22)64093-2
10.1016/j.jpowsour.2020.229351
10.1002/adma.202106541
10.1002/adma.202204021
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1039/d3qi00026e
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
EISSN 2052-1553
EndPage 2456
ExternalDocumentID 10_1039_D3QI00026E
d3qi00026e
GroupedDBID 0R~
AAEMU
AAJAE
AARTK
AAXHV
ABASK
ABPDG
ACGFS
ACLDK
ADSRN
AENGV
AETIL
AFOGI
AGEGJ
AGRSR
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
BLAPV
C6K
EBS
ECGLT
GGIMP
H13
HZ~
M~E
O9-
RCNCU
RRC
RSCEA
RVUXY
AAYXX
ABJNI
AKMSF
CITATION
7SR
8BQ
8FD
AAIWI
AANOJ
ABDVN
ABRYZ
ACIWK
ADMRA
AEFDR
AFRZK
ASKNT
JG9
RAOCF
ID FETCH-LOGICAL-c281t-1120ec25aecbc1a3560f243503aeea651747d8e047f81ad5b9fc4b8a378132553
ISSN 2052-1553
2052-1545
IngestDate Wed Aug 13 11:06:43 EDT 2025
Tue Jul 01 02:30:01 EDT 2025
Thu Apr 24 22:53:39 EDT 2025
Tue Dec 17 20:59:03 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c281t-1120ec25aecbc1a3560f243503aeea651747d8e047f81ad5b9fc4b8a378132553
Notes Electronic supplementary information (ESI) available: Additional SEM, TEM, XRD, XPS and electrochemical data. See DOI
https://doi.org/10.1039/d3qi00026e
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4073-1102
PQID 2798938790
PQPubID 2048885
PageCount 13
ParticipantIDs crossref_primary_10_1039_D3QI00026E
proquest_journals_2798938790
rsc_primary_d3qi00026e
crossref_citationtrail_10_1039_D3QI00026E
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-11
PublicationDateYYYYMMDD 2023-04-11
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-11
  day: 11
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Inorganic chemistry frontiers
PublicationYear 2023
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Wang (D3QI00026E/cit28/1) 2021; 81
Zhang (D3QI00026E/cit33/1) 2011; 81
Li (D3QI00026E/cit17/1) 2022; 14
Jiang (D3QI00026E/cit34/1) 2019; 540
Ding (D3QI00026E/cit42/1) 2022; 15
Chen (D3QI00026E/cit39/1) 2022; 430
Zhao (D3QI00026E/cit14/1) 2022; 61
Zhou (D3QI00026E/cit22/1) 2022; 427
Tong (D3QI00026E/cit6/1) 2020; 5
Wu (D3QI00026E/cit24/1) 2021; 60
Zhou (D3QI00026E/cit23/1) 2021; 292
Zhou (D3QI00026E/cit31/1) 2010; 78
Yu (D3QI00026E/cit38/1) 2022; 119
Yang (D3QI00026E/cit18/1) 2018; 14
Zhao (D3QI00026E/cit29/1) 2018; 8
Wang (D3QI00026E/cit47/1) 2022; 15
Li (D3QI00026E/cit32/1) 2020; 14
Pei (D3QI00026E/cit15/1) 2023; 14
Kibsgaard (D3QI00026E/cit52/1) 2019; 4
Zhang (D3QI00026E/cit53/1) 2020; 11
Grimaud (D3QI00026E/cit54/1) 2016; 15
Zhang (D3QI00026E/cit46/1) 2022; 9
Vos (D3QI00026E/cit11/1) 2018; 140
Louie (D3QI00026E/cit50/1) 2013; 135
Li (D3QI00026E/cit37/1) 2022; 33
Wang (D3QI00026E/cit57/1) 2022; 61
Batool (D3QI00026E/cit1/1) 2021; 5
Wu (D3QI00026E/cit43/1) 2020; 31
Hwang (D3QI00026E/cit51/1) 2017; 358
Han (D3QI00026E/cit13/1) 2022; 61
Fan (D3QI00026E/cit25/1) 2022; 431
Veroneau (D3QI00026E/cit10/1) 2021; 118
Wang (D3QI00026E/cit9/1) 2021; 9
Li (D3QI00026E/cit27/1) 2010; 45
Wu (D3QI00026E/cit45/1) 2021; 294
Liu (D3QI00026E/cit8/1) 2023; 37
Stamenkovic (D3QI00026E/cit16/1) 2006; 45
Liu (D3QI00026E/cit5/1) 2021; 486
Guo (D3QI00026E/cit20/1) 2023; 629
Zhou (D3QI00026E/cit12/1) 2022; 34
Zhou (D3QI00026E/cit2/1) 2020; 13
Cui (D3QI00026E/cit48/1) 2022; 43
Yu (D3QI00026E/cit41/1) 2020; 13
Xie (D3QI00026E/cit36/1) 2018; 11
Liu (D3QI00026E/cit4/1) 2020; 15
You (D3QI00026E/cit44/1) 2022; 144
Zhao (D3QI00026E/cit26/1) 2018; 5
Huang (D3QI00026E/cit30/1) 2015; 5
Wang (D3QI00026E/cit49/1) 2022; 34
Dresp (D3QI00026E/cit56/1) 2016; 9
Chu (D3QI00026E/cit3/1) 2012; 488
Gao (D3QI00026E/cit21/1) 2019; 62
Shafi (D3QI00026E/cit35/1) 1997; 101
Bo (D3QI00026E/cit55/1) 2020; 32
Fan (D3QI00026E/cit40/1) 2022; 9
Yu (D3QI00026E/cit7/1) 2020; 13
Zhang (D3QI00026E/cit19/1) 2021; 60
References_xml – volume: 14
  start-page: 1803009
  year: 2018
  ident: D3QI00026E/cit18/1
  publication-title: Small
  doi: 10.1002/smll.201803009
– volume: 5
  start-page: 65660
  year: 2015
  ident: D3QI00026E/cit30/1
  publication-title: RSC Adv.
  doi: 10.1039/C5RA11248F
– volume: 9
  start-page: 2020
  year: 2016
  ident: D3QI00026E/cit56/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c6ee01046f
– volume: 140
  start-page: 10270
  year: 2018
  ident: D3QI00026E/cit11/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b05382
– volume: 4
  start-page: 430
  year: 2019
  ident: D3QI00026E/cit52/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0407-1
– volume: 294
  start-page: 120256
  year: 2021
  ident: D3QI00026E/cit45/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2021.120256
– volume: 8
  start-page: 1703585
  year: 2018
  ident: D3QI00026E/cit29/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703585
– volume: 5
  start-page: 367
  year: 2020
  ident: D3QI00026E/cit6/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-0550-8
– volume: 540
  start-page: 398
  year: 2019
  ident: D3QI00026E/cit34/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2019.01.022
– volume: 14
  start-page: 818
  year: 2023
  ident: D3QI00026E/cit15/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-36532-x
– volume: 81
  start-page: 105606
  year: 2021
  ident: D3QI00026E/cit28/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105606
– volume: 431
  start-page: 134040
  year: 2022
  ident: D3QI00026E/cit25/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.134040
– volume: 45
  start-page: 2897
  year: 2006
  ident: D3QI00026E/cit16/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.200504386
– volume: 9
  start-page: 18974
  year: 2021
  ident: D3QI00026E/cit9/1
  publication-title: J. Mater. Chem. A
  doi: 10.1016/j.coelec.2022.101202
– volume: 15
  start-page: 872
  year: 2022
  ident: D3QI00026E/cit47/1
  publication-title: Nano Res.
  doi: 10.1007/s12274-021-3568-8
– volume: 61
  start-page: e202206050
  year: 2022
  ident: D3QI00026E/cit13/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202206050
– volume: 60
  start-page: 18821
  year: 2021
  ident: D3QI00026E/cit19/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202106631
– volume: 144
  start-page: 9254
  year: 2022
  ident: D3QI00026E/cit44/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1007/10.1021/jacs.2c00242
– volume: 14
  start-page: 1
  year: 2022
  ident: D3QI00026E/cit17/1
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-022-00857-x
– volume: 14
  start-page: 52
  year: 2020
  ident: D3QI00026E/cit32/1
  publication-title: Front. Environ. Sci. Eng.
  doi: 10.1007/s11783-020-1229-x
– volume: 13
  start-page: 3253
  year: 2020
  ident: D3QI00026E/cit7/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/d0ee01617a
– volume: 11
  start-page: 1
  year: 2020
  ident: D3QI00026E/cit53/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17934-7
– volume: 629
  start-page: 346
  year: 2023
  ident: D3QI00026E/cit20/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2022.08.160
– volume: 5
  start-page: 1800295
  year: 2018
  ident: D3QI00026E/cit26/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201800295
– volume: 33
  start-page: 4761
  year: 2022
  ident: D3QI00026E/cit37/1
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2021.12.095
– volume: 430
  start-page: 132632
  year: 2022
  ident: D3QI00026E/cit39/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.132632
– volume: 358
  start-page: 751
  year: 2017
  ident: D3QI00026E/cit51/1
  publication-title: Science
  doi: 10.1126/science.aam7092
– volume: 13
  start-page: 3439
  year: 2020
  ident: D3QI00026E/cit41/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/d0ee00921k
– volume: 15
  start-page: 1408
  year: 2020
  ident: D3QI00026E/cit4/1
  publication-title: Nano Mater. Sci.
  doi: 10.1016/j.nanoms.2020.12.003
– volume: 11
  start-page: 4524
  year: 2018
  ident: D3QI00026E/cit36/1
  publication-title: Nano Res.
  doi: 10.1007/s12274-018-2033-9
– volume: 78
  start-page: 576
  year: 2010
  ident: D3QI00026E/cit31/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2009.10.057
– volume: 31
  start-page: 2006484
  year: 2020
  ident: D3QI00026E/cit43/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202006484
– volume: 135
  start-page: 12329
  year: 2013
  ident: D3QI00026E/cit50/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja405351s
– volume: 32
  start-page: 4303
  year: 2020
  ident: D3QI00026E/cit55/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.0c01067
– volume: 5
  start-page: 2950
  year: 2021
  ident: D3QI00026E/cit1/1
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D0QM01003K
– volume: 15
  start-page: 121
  year: 2016
  ident: D3QI00026E/cit54/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4551
– volume: 292
  start-page: 120150
  year: 2021
  ident: D3QI00026E/cit23/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2021.120150
– volume: 60
  start-page: 26829
  year: 2021
  ident: D3QI00026E/cit24/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202112447
– volume: 9
  start-page: 4216
  year: 2022
  ident: D3QI00026E/cit40/1
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/d2qi01078j
– volume: 37
  start-page: 101202
  year: 2023
  ident: D3QI00026E/cit8/1
  publication-title: Curr. Opin. Electrochem.
  doi: 10.1002/adfm.202201127
– volume: 61
  start-page: e202114696
  year: 2022
  ident: D3QI00026E/cit57/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202114696
– volume: 15
  start-page: 7063
  year: 2022
  ident: D3QI00026E/cit42/1
  publication-title: Nano Res.
  doi: 10.1007/s12274-022-4377-4
– volume: 427
  start-page: 131643
  year: 2022
  ident: D3QI00026E/cit22/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.131643
– volume: 488
  start-page: 294
  year: 2012
  ident: D3QI00026E/cit3/1
  publication-title: Nature
  doi: 10.1038/nature11475
– volume: 118
  start-page: e2024855118
  year: 2021
  ident: D3QI00026E/cit10/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2024855118
– volume: 119
  start-page: e2202382119
  year: 2022
  ident: D3QI00026E/cit38/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2202382119
– volume: 13
  start-page: 1132
  year: 2020
  ident: D3QI00026E/cit2/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c9ee03634b
– volume: 9
  start-page: 2200146
  year: 2022
  ident: D3QI00026E/cit46/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202200146
– volume: 101
  start-page: 6409
  year: 1997
  ident: D3QI00026E/cit35/1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp970893q
– volume: 81
  start-page: 598
  year: 2011
  ident: D3QI00026E/cit33/1
  publication-title: Spectrochim. Acta, Part A
  doi: 10.1016/j.saa.2011.06.057
– volume: 61
  start-page: e202110186
  year: 2022
  ident: D3QI00026E/cit14/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202110186
– volume: 45
  start-page: 1083
  year: 2010
  ident: D3QI00026E/cit27/1
  publication-title: Cryst. Res. Technol.
  doi: 10.1002/crat.201000299
– volume: 62
  start-page: 1285
  year: 2019
  ident: D3QI00026E/cit21/1
  publication-title: Sci. China Mater.
  doi: 10.1007/s40843-019-9434-7
– volume: 43
  start-page: 2202
  year: 2022
  ident: D3QI00026E/cit48/1
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(22)64093-2
– volume: 486
  start-page: 229351
  year: 2021
  ident: D3QI00026E/cit5/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.229351
– volume: 34
  start-page: 2106541
  year: 2022
  ident: D3QI00026E/cit12/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202106541
– volume: 34
  start-page: 2204021
  year: 2022
  ident: D3QI00026E/cit49/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202204021
SSID ssj0001140160
Score 2.3829563
Snippet Seawater electrocatalysis driven by renewable energy resources has long been considered as a promising approach for producing clean hydrogen. However, anodic...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2444
SubjectTerms Anodic cleaning
Cations
Charge transfer
Chloride ions
Chlorine
Defects
Density functional theory
Electrocatalysts
Electrochemical corrosion
Electrode materials
Electrolysis
Energy sources
Hydroxides
Inorganic chemistry
Intermetallic compounds
Iron
Iron compounds
Metal air batteries
Nickel compounds
Open circuit voltage
Oxygen evolution reactions
Rechargeable batteries
Seawater
Zinc-oxygen batteries
Title Cationic defect-enriched hydroxides as anodic catalysts for efficient seawater electrolysis
URI https://www.proquest.com/docview/2798938790
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ri9QwEA7e3Ysvoujh6imB80WOaJt02-TxOPe4FRWEPVz0oaRJylak1d0u3t2vd5KmTU9WUKGU0mT6kG86mSQz3yD0IjUZV1GRkjQtEpKoghGhhCFGcMWVdcmlzR1-_yG9uEzeLqfLUN7KZZe0xSt1szOv5H9QhXeAq82S_Qdkh4_CC3gGfOEOCMP9rzA-67ZT1Yk2NiqDQD8b2alPVtd63VxV2mxsHRlZNxo6uZ2a60276Wi-HXeEjQQAZf8pLVeiL4njSErGTuu87mo_wSf68nA2LaVuKxPOgj5tnTWvyNdq0LfPK-MDfkEJyc2q8dOka2qcwLKSTYjxcNoDMuSq2o73IyizRyveXhpnt2g0pcSWI7plZEe6xMcGM-noH_3ka49hdxr2iFleVM1-VNaGpyZMX0NQYWjcQwcUVg1g9g5OZ4v5u7DpZpeTadTT1DLxOgjddkzCamNv3ZeCcS7H4j6659cK-LQD_gG6Y-qH6EsPOv4NdBxAxxIuBzoeQMcAOh5Axz3oeAz6I3R5PlucXRBfIYMoyuMWxp1GRtGpNKpQsWTgvpYUHOCISWNkalnIM81NlGQlj6WeFqJUScEly3jMYDHJDtF-3dTmMcLCOC64aSJKEEq4oFroqBQmhumyNMUEveyHJ1eePt5WMfmWuzAGJvI37OPcDeVsgo6Hvt870pSdvY76Uc79T7XJaSbAg-aZiCboEEZ-kA9APflTw1N0NyjkEdpv11vzDFzGtnjuFeEXOfByxA
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cationic+defect-enriched+hydroxides+as+anodic+catalysts+for+efficient+seawater+electrolysis&rft.jtitle=Inorganic+chemistry+frontiers&rft.au=Wu%2C+Yi-jin&rft.au=Zheng%2C+Jian-zhong&rft.au=Zhou%2C+Xiao&rft.au=Tu%2C+Teng-xiu&rft.date=2023-04-11&rft.eissn=2052-1553&rft.volume=1&rft.issue=8&rft.spage=2444&rft.epage=2456&rft_id=info:doi/10.1039%2Fd3qi00026e&rft.externalDocID=d3qi00026e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-1553&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-1553&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-1553&client=summon