Cationic defect-enriched hydroxides as anodic catalysts for efficient seawater electrolysis
Seawater electrocatalysis driven by renewable energy resources has long been considered as a promising approach for producing clean hydrogen. However, anodic electrode materials suffer from severe issues such as large overpotential and electrochemical corrosion during seawater electrolysis due to th...
Saved in:
Published in | Inorganic chemistry frontiers Vol. 1; no. 8; pp. 2444 - 2456 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Royal Society of Chemistry
11.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Seawater electrocatalysis driven by renewable energy resources has long been considered as a promising approach for producing clean hydrogen. However, anodic electrode materials suffer from severe issues such as large overpotential and electrochemical corrosion during seawater electrolysis due to the existence of abundant chloride ions. Herein, we report a cationic defect engineering approach to tailoring the structure of NiFe layered double hydroxide (NiFe LDH) for the oxygen evolution reaction (OER) in an alkaline seawater-like solution. Impressively, the obtained cation defect-enriched NiFe LDH array exhibits an extremely low overpotential of 232 mV at 100 mA cm
−2
and excellent durability after 40 h electrolysis. The density functional theory (DFT) calculations show that CD-NiFe LDH-E facilitates charge transfer between metals (Ni/Fe) and oxygen (O), leading to inhibition of the competitive chlorine evolution reaction (CER). Moreover, homemade rechargeable Zn-air batteries with CD-NiFe LDH-E as the cathode are assembled, exhibiting high open circuit voltage (1.4 V) and excellent stability after 250 hours at a charging-discharging rate of 10 mA cm
−2
. The strategy is expected to pave the way for the future development of high-performance electrocatalysts toward seawater splitting.
A porous NiFe LDH with abundant cationic defects was synthesized to optimize interactions between active Ni species and adsorbates, exhibiting a highly efficient seawater electrolysis performance. |
---|---|
AbstractList | Seawater electrocatalysis driven by renewable energy resources has long been considered as a promising approach for producing clean hydrogen. However, anodic electrode materials suffer from severe issues such as large overpotential and electrochemical corrosion during seawater electrolysis due to the existence of abundant chloride ions. Herein, we report a cationic defect engineering approach to tailoring the structure of NiFe layered double hydroxide (NiFe LDH) for the oxygen evolution reaction (OER) in an alkaline seawater-like solution. Impressively, the obtained cation defect-enriched NiFe LDH array exhibits an extremely low overpotential of 232 mV at 100 mA cm
−2
and excellent durability after 40 h electrolysis. The density functional theory (DFT) calculations show that CD-NiFe LDH-E facilitates charge transfer between metals (Ni/Fe) and oxygen (O), leading to inhibition of the competitive chlorine evolution reaction (CER). Moreover, homemade rechargeable Zn-air batteries with CD-NiFe LDH-E as the cathode are assembled, exhibiting high open circuit voltage (1.4 V) and excellent stability after 250 hours at a charging-discharging rate of 10 mA cm
−2
. The strategy is expected to pave the way for the future development of high-performance electrocatalysts toward seawater splitting.
A porous NiFe LDH with abundant cationic defects was synthesized to optimize interactions between active Ni species and adsorbates, exhibiting a highly efficient seawater electrolysis performance. Seawater electrocatalysis driven by renewable energy resources has long been considered as a promising approach for producing clean hydrogen. However, anodic electrode materials suffer from severe issues such as large overpotential and electrochemical corrosion during seawater electrolysis due to the existence of abundant chloride ions. Herein, we report a cationic defect engineering approach to tailoring the structure of NiFe layered double hydroxide (NiFe LDH) for the oxygen evolution reaction (OER) in an alkaline seawater-like solution. Impressively, the obtained cation defect-enriched NiFe LDH array exhibits an extremely low overpotential of 232 mV at 100 mA cm −2 and excellent durability after 40 h electrolysis. The density functional theory (DFT) calculations show that CD-NiFe LDH-E facilitates charge transfer between metals (Ni/Fe) and oxygen (O), leading to inhibition of the competitive chlorine evolution reaction (CER). Moreover, homemade rechargeable Zn–air batteries with CD-NiFe LDH-E as the cathode are assembled, exhibiting high open circuit voltage (1.4 V) and excellent stability after 250 hours at a charging–discharging rate of 10 mA cm −2 . The strategy is expected to pave the way for the future development of high-performance electrocatalysts toward seawater splitting. Seawater electrocatalysis driven by renewable energy resources has long been considered as a promising approach for producing clean hydrogen. However, anodic electrode materials suffer from severe issues such as large overpotential and electrochemical corrosion during seawater electrolysis due to the existence of abundant chloride ions. Herein, we report a cationic defect engineering approach to tailoring the structure of NiFe layered double hydroxide (NiFe LDH) for the oxygen evolution reaction (OER) in an alkaline seawater-like solution. Impressively, the obtained cation defect-enriched NiFe LDH array exhibits an extremely low overpotential of 232 mV at 100 mA cm−2 and excellent durability after 40 h electrolysis. The density functional theory (DFT) calculations show that CD-NiFe LDH-E facilitates charge transfer between metals (Ni/Fe) and oxygen (O), leading to inhibition of the competitive chlorine evolution reaction (CER). Moreover, homemade rechargeable Zn–air batteries with CD-NiFe LDH-E as the cathode are assembled, exhibiting high open circuit voltage (1.4 V) and excellent stability after 250 hours at a charging–discharging rate of 10 mA cm−2. The strategy is expected to pave the way for the future development of high-performance electrocatalysts toward seawater splitting. |
Author | Wu, Yi-jin Zheng, Jian-zhong Zhao, Shenlong Zhang, Peng-fang Tu, Teng-xiu Zhou, Xiao Liu, Yangyang Tan, Liang |
AuthorAffiliation | College of Chemistry and Material Science School of Chemical and Biomolecular Engineering The University of Sydney Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metals Pollution in the Upper Reaches of XiangJiang River Hengyang Normal University Nanyue College Nanjing Tech University Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology School of Environmental Science and Engineering Key Laboratory of Functional Metal-Organic Compounds of Hunan Province School of Chemistry and Chemical Engineering Liaocheng University |
AuthorAffiliation_xml | – sequence: 0 name: Key Laboratory of Functional Metal-Organic Compounds of Hunan Province – sequence: 0 name: Liaocheng University – sequence: 0 name: Nanyue College – sequence: 0 name: Hengyang Normal University – sequence: 0 name: Nanjing Tech University – sequence: 0 name: School of Chemistry and Chemical Engineering – sequence: 0 name: Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metals Pollution in the Upper Reaches of XiangJiang River – sequence: 0 name: The University of Sydney – sequence: 0 name: College of Chemistry and Material Science – sequence: 0 name: School of Chemical and Biomolecular Engineering – sequence: 0 name: Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology – sequence: 0 name: School of Environmental Science and Engineering |
Author_xml | – sequence: 1 givenname: Yi-jin surname: Wu fullname: Wu, Yi-jin – sequence: 2 givenname: Jian-zhong surname: Zheng fullname: Zheng, Jian-zhong – sequence: 3 givenname: Xiao surname: Zhou fullname: Zhou, Xiao – sequence: 4 givenname: Teng-xiu surname: Tu fullname: Tu, Teng-xiu – sequence: 5 givenname: Yangyang surname: Liu fullname: Liu, Yangyang – sequence: 6 givenname: Peng-fang surname: Zhang fullname: Zhang, Peng-fang – sequence: 7 givenname: Liang surname: Tan fullname: Tan, Liang – sequence: 8 givenname: Shenlong surname: Zhao fullname: Zhao, Shenlong |
BookMark | eNptkU1LAzEQhoNUsNZevAsL3oTVfGz24yi1aqEggp48LNNkQlPqpk1StP_e2IqKCAMzDM-8w7xzTHqd65CQU0YvGRXNlRZrSynlJR6QPqeS50xK0ftVH5FhCIvEMFZQVtI-eRlBtK6zKtNoUMUcO2_VHHU232rv3q3GkEGKzukEKYiw3IYYMuN8hsZYZbGLWUB4g4iptUwi3iXGhhNyaGAZcPiVB-T5dvw0us-nD3eT0fU0V7xmMWeMU1RcAqqZYiBkSQ0vhKQCEKGUrCoqXSMtKlMz0HLWGFXMahBVzQRPVw3I-V535d16gyG2C7fxXVrZ8qqpG1FXDU3UxZ5S3oXg0bQrb1_Bb1tG20__2hvxONn5N04w_QMrG3dORQ92-f_I2X7EB_Ut_fMS8QH-Kn6l |
CitedBy_id | crossref_primary_10_3390_catal14030171 crossref_primary_10_1039_D4SC02853H crossref_primary_10_1039_D4EE01693A crossref_primary_10_1021_acssuschemeng_4c02912 crossref_primary_10_1021_acsnano_3c05749 crossref_primary_10_1016_j_electacta_2023_143587 crossref_primary_10_1039_D3CC03457G crossref_primary_10_1016_j_cej_2024_153187 crossref_primary_10_1016_j_gee_2024_02_001 crossref_primary_10_1002_eem2_12817 crossref_primary_10_1016_j_mtener_2024_101784 crossref_primary_10_1002_aenm_202405749 crossref_primary_10_1016_j_cej_2024_155307 crossref_primary_10_1007_s11664_024_11019_7 crossref_primary_10_1016_j_jallcom_2024_175368 crossref_primary_10_1016_j_mattod_2025_03_003 crossref_primary_10_1002_adma_202309211 |
Cites_doi | 10.1002/smll.201803009 10.1039/C5RA11248F 10.1039/c6ee01046f 10.1021/jacs.8b05382 10.1038/s41560-019-0407-1 10.1016/j.apcatb.2021.120256 10.1002/aenm.201703585 10.1038/s41560-020-0550-8 10.1016/j.jcis.2019.01.022 10.1038/s41467-023-36532-x 10.1016/j.nanoen.2020.105606 10.1016/j.cej.2021.134040 10.1002/ange.200504386 10.1016/j.coelec.2022.101202 10.1007/s12274-021-3568-8 10.1002/anie.202206050 10.1002/anie.202106631 10.1007/10.1021/jacs.2c00242 10.1007/s40820-022-00857-x 10.1007/s11783-020-1229-x 10.1039/d0ee01617a 10.1038/s41467-020-17934-7 10.1016/j.jcis.2022.08.160 10.1002/advs.201800295 10.1016/j.cclet.2021.12.095 10.1016/j.cej.2021.132632 10.1126/science.aam7092 10.1039/d0ee00921k 10.1016/j.nanoms.2020.12.003 10.1007/s12274-018-2033-9 10.1016/j.chemosphere.2009.10.057 10.1002/adfm.202006484 10.1021/ja405351s 10.1021/acs.chemmater.0c01067 10.1039/D0QM01003K 10.1038/nmat4551 10.1016/j.apcatb.2021.120150 10.1002/anie.202112447 10.1039/d2qi01078j 10.1002/adfm.202201127 10.1002/anie.202114696 10.1007/s12274-022-4377-4 10.1016/j.cej.2021.131643 10.1038/nature11475 10.1073/pnas.2024855118 10.1073/pnas.2202382119 10.1039/c9ee03634b 10.1002/advs.202200146 10.1021/jp970893q 10.1016/j.saa.2011.06.057 10.1002/anie.202110186 10.1002/crat.201000299 10.1007/s40843-019-9434-7 10.1016/S1872-2067(22)64093-2 10.1016/j.jpowsour.2020.229351 10.1002/adma.202106541 10.1002/adma.202204021 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2023 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1039/d3qi00026e |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2052-1553 |
EndPage | 2456 |
ExternalDocumentID | 10_1039_D3QI00026E d3qi00026e |
GroupedDBID | 0R~ AAEMU AAJAE AARTK AAXHV ABASK ABPDG ACGFS ACLDK ADSRN AENGV AETIL AFOGI AGEGJ AGRSR AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP BLAPV C6K EBS ECGLT GGIMP H13 HZ~ M~E O9- RCNCU RRC RSCEA RVUXY AAYXX ABJNI AKMSF CITATION 7SR 8BQ 8FD AAIWI AANOJ ABDVN ABRYZ ACIWK ADMRA AEFDR AFRZK ASKNT JG9 RAOCF |
ID | FETCH-LOGICAL-c281t-1120ec25aecbc1a3560f243503aeea651747d8e047f81ad5b9fc4b8a378132553 |
ISSN | 2052-1553 2052-1545 |
IngestDate | Wed Aug 13 11:06:43 EDT 2025 Tue Jul 01 02:30:01 EDT 2025 Thu Apr 24 22:53:39 EDT 2025 Tue Dec 17 20:59:03 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c281t-1120ec25aecbc1a3560f243503aeea651747d8e047f81ad5b9fc4b8a378132553 |
Notes | Electronic supplementary information (ESI) available: Additional SEM, TEM, XRD, XPS and electrochemical data. See DOI https://doi.org/10.1039/d3qi00026e ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4073-1102 |
PQID | 2798938790 |
PQPubID | 2048885 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1039_D3QI00026E proquest_journals_2798938790 rsc_primary_d3qi00026e crossref_citationtrail_10_1039_D3QI00026E |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-11 |
PublicationDateYYYYMMDD | 2023-04-11 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Inorganic chemistry frontiers |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Wang (D3QI00026E/cit28/1) 2021; 81 Zhang (D3QI00026E/cit33/1) 2011; 81 Li (D3QI00026E/cit17/1) 2022; 14 Jiang (D3QI00026E/cit34/1) 2019; 540 Ding (D3QI00026E/cit42/1) 2022; 15 Chen (D3QI00026E/cit39/1) 2022; 430 Zhao (D3QI00026E/cit14/1) 2022; 61 Zhou (D3QI00026E/cit22/1) 2022; 427 Tong (D3QI00026E/cit6/1) 2020; 5 Wu (D3QI00026E/cit24/1) 2021; 60 Zhou (D3QI00026E/cit23/1) 2021; 292 Zhou (D3QI00026E/cit31/1) 2010; 78 Yu (D3QI00026E/cit38/1) 2022; 119 Yang (D3QI00026E/cit18/1) 2018; 14 Zhao (D3QI00026E/cit29/1) 2018; 8 Wang (D3QI00026E/cit47/1) 2022; 15 Li (D3QI00026E/cit32/1) 2020; 14 Pei (D3QI00026E/cit15/1) 2023; 14 Kibsgaard (D3QI00026E/cit52/1) 2019; 4 Zhang (D3QI00026E/cit53/1) 2020; 11 Grimaud (D3QI00026E/cit54/1) 2016; 15 Zhang (D3QI00026E/cit46/1) 2022; 9 Vos (D3QI00026E/cit11/1) 2018; 140 Louie (D3QI00026E/cit50/1) 2013; 135 Li (D3QI00026E/cit37/1) 2022; 33 Wang (D3QI00026E/cit57/1) 2022; 61 Batool (D3QI00026E/cit1/1) 2021; 5 Wu (D3QI00026E/cit43/1) 2020; 31 Hwang (D3QI00026E/cit51/1) 2017; 358 Han (D3QI00026E/cit13/1) 2022; 61 Fan (D3QI00026E/cit25/1) 2022; 431 Veroneau (D3QI00026E/cit10/1) 2021; 118 Wang (D3QI00026E/cit9/1) 2021; 9 Li (D3QI00026E/cit27/1) 2010; 45 Wu (D3QI00026E/cit45/1) 2021; 294 Liu (D3QI00026E/cit8/1) 2023; 37 Stamenkovic (D3QI00026E/cit16/1) 2006; 45 Liu (D3QI00026E/cit5/1) 2021; 486 Guo (D3QI00026E/cit20/1) 2023; 629 Zhou (D3QI00026E/cit12/1) 2022; 34 Zhou (D3QI00026E/cit2/1) 2020; 13 Cui (D3QI00026E/cit48/1) 2022; 43 Yu (D3QI00026E/cit41/1) 2020; 13 Xie (D3QI00026E/cit36/1) 2018; 11 Liu (D3QI00026E/cit4/1) 2020; 15 You (D3QI00026E/cit44/1) 2022; 144 Zhao (D3QI00026E/cit26/1) 2018; 5 Huang (D3QI00026E/cit30/1) 2015; 5 Wang (D3QI00026E/cit49/1) 2022; 34 Dresp (D3QI00026E/cit56/1) 2016; 9 Chu (D3QI00026E/cit3/1) 2012; 488 Gao (D3QI00026E/cit21/1) 2019; 62 Shafi (D3QI00026E/cit35/1) 1997; 101 Bo (D3QI00026E/cit55/1) 2020; 32 Fan (D3QI00026E/cit40/1) 2022; 9 Yu (D3QI00026E/cit7/1) 2020; 13 Zhang (D3QI00026E/cit19/1) 2021; 60 |
References_xml | – volume: 14 start-page: 1803009 year: 2018 ident: D3QI00026E/cit18/1 publication-title: Small doi: 10.1002/smll.201803009 – volume: 5 start-page: 65660 year: 2015 ident: D3QI00026E/cit30/1 publication-title: RSC Adv. doi: 10.1039/C5RA11248F – volume: 9 start-page: 2020 year: 2016 ident: D3QI00026E/cit56/1 publication-title: Energy Environ. Sci. doi: 10.1039/c6ee01046f – volume: 140 start-page: 10270 year: 2018 ident: D3QI00026E/cit11/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b05382 – volume: 4 start-page: 430 year: 2019 ident: D3QI00026E/cit52/1 publication-title: Nat. Energy doi: 10.1038/s41560-019-0407-1 – volume: 294 start-page: 120256 year: 2021 ident: D3QI00026E/cit45/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2021.120256 – volume: 8 start-page: 1703585 year: 2018 ident: D3QI00026E/cit29/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703585 – volume: 5 start-page: 367 year: 2020 ident: D3QI00026E/cit6/1 publication-title: Nat. Energy doi: 10.1038/s41560-020-0550-8 – volume: 540 start-page: 398 year: 2019 ident: D3QI00026E/cit34/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.01.022 – volume: 14 start-page: 818 year: 2023 ident: D3QI00026E/cit15/1 publication-title: Nat. Commun. doi: 10.1038/s41467-023-36532-x – volume: 81 start-page: 105606 year: 2021 ident: D3QI00026E/cit28/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105606 – volume: 431 start-page: 134040 year: 2022 ident: D3QI00026E/cit25/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.134040 – volume: 45 start-page: 2897 year: 2006 ident: D3QI00026E/cit16/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.200504386 – volume: 9 start-page: 18974 year: 2021 ident: D3QI00026E/cit9/1 publication-title: J. Mater. Chem. A doi: 10.1016/j.coelec.2022.101202 – volume: 15 start-page: 872 year: 2022 ident: D3QI00026E/cit47/1 publication-title: Nano Res. doi: 10.1007/s12274-021-3568-8 – volume: 61 start-page: e202206050 year: 2022 ident: D3QI00026E/cit13/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202206050 – volume: 60 start-page: 18821 year: 2021 ident: D3QI00026E/cit19/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202106631 – volume: 144 start-page: 9254 year: 2022 ident: D3QI00026E/cit44/1 publication-title: J. Am. Chem. Soc. doi: 10.1007/10.1021/jacs.2c00242 – volume: 14 start-page: 1 year: 2022 ident: D3QI00026E/cit17/1 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-022-00857-x – volume: 14 start-page: 52 year: 2020 ident: D3QI00026E/cit32/1 publication-title: Front. Environ. Sci. Eng. doi: 10.1007/s11783-020-1229-x – volume: 13 start-page: 3253 year: 2020 ident: D3QI00026E/cit7/1 publication-title: Energy Environ. Sci. doi: 10.1039/d0ee01617a – volume: 11 start-page: 1 year: 2020 ident: D3QI00026E/cit53/1 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17934-7 – volume: 629 start-page: 346 year: 2023 ident: D3QI00026E/cit20/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2022.08.160 – volume: 5 start-page: 1800295 year: 2018 ident: D3QI00026E/cit26/1 publication-title: Adv. Sci. doi: 10.1002/advs.201800295 – volume: 33 start-page: 4761 year: 2022 ident: D3QI00026E/cit37/1 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2021.12.095 – volume: 430 start-page: 132632 year: 2022 ident: D3QI00026E/cit39/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.132632 – volume: 358 start-page: 751 year: 2017 ident: D3QI00026E/cit51/1 publication-title: Science doi: 10.1126/science.aam7092 – volume: 13 start-page: 3439 year: 2020 ident: D3QI00026E/cit41/1 publication-title: Energy Environ. Sci. doi: 10.1039/d0ee00921k – volume: 15 start-page: 1408 year: 2020 ident: D3QI00026E/cit4/1 publication-title: Nano Mater. Sci. doi: 10.1016/j.nanoms.2020.12.003 – volume: 11 start-page: 4524 year: 2018 ident: D3QI00026E/cit36/1 publication-title: Nano Res. doi: 10.1007/s12274-018-2033-9 – volume: 78 start-page: 576 year: 2010 ident: D3QI00026E/cit31/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2009.10.057 – volume: 31 start-page: 2006484 year: 2020 ident: D3QI00026E/cit43/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202006484 – volume: 135 start-page: 12329 year: 2013 ident: D3QI00026E/cit50/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja405351s – volume: 32 start-page: 4303 year: 2020 ident: D3QI00026E/cit55/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.0c01067 – volume: 5 start-page: 2950 year: 2021 ident: D3QI00026E/cit1/1 publication-title: Inorg. Chem. Front. doi: 10.1039/D0QM01003K – volume: 15 start-page: 121 year: 2016 ident: D3QI00026E/cit54/1 publication-title: Nat. Mater. doi: 10.1038/nmat4551 – volume: 292 start-page: 120150 year: 2021 ident: D3QI00026E/cit23/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2021.120150 – volume: 60 start-page: 26829 year: 2021 ident: D3QI00026E/cit24/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202112447 – volume: 9 start-page: 4216 year: 2022 ident: D3QI00026E/cit40/1 publication-title: Inorg. Chem. Front. doi: 10.1039/d2qi01078j – volume: 37 start-page: 101202 year: 2023 ident: D3QI00026E/cit8/1 publication-title: Curr. Opin. Electrochem. doi: 10.1002/adfm.202201127 – volume: 61 start-page: e202114696 year: 2022 ident: D3QI00026E/cit57/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202114696 – volume: 15 start-page: 7063 year: 2022 ident: D3QI00026E/cit42/1 publication-title: Nano Res. doi: 10.1007/s12274-022-4377-4 – volume: 427 start-page: 131643 year: 2022 ident: D3QI00026E/cit22/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131643 – volume: 488 start-page: 294 year: 2012 ident: D3QI00026E/cit3/1 publication-title: Nature doi: 10.1038/nature11475 – volume: 118 start-page: e2024855118 year: 2021 ident: D3QI00026E/cit10/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2024855118 – volume: 119 start-page: e2202382119 year: 2022 ident: D3QI00026E/cit38/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2202382119 – volume: 13 start-page: 1132 year: 2020 ident: D3QI00026E/cit2/1 publication-title: Energy Environ. Sci. doi: 10.1039/c9ee03634b – volume: 9 start-page: 2200146 year: 2022 ident: D3QI00026E/cit46/1 publication-title: Adv. Sci. doi: 10.1002/advs.202200146 – volume: 101 start-page: 6409 year: 1997 ident: D3QI00026E/cit35/1 publication-title: J. Phys. Chem. B doi: 10.1021/jp970893q – volume: 81 start-page: 598 year: 2011 ident: D3QI00026E/cit33/1 publication-title: Spectrochim. Acta, Part A doi: 10.1016/j.saa.2011.06.057 – volume: 61 start-page: e202110186 year: 2022 ident: D3QI00026E/cit14/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202110186 – volume: 45 start-page: 1083 year: 2010 ident: D3QI00026E/cit27/1 publication-title: Cryst. Res. Technol. doi: 10.1002/crat.201000299 – volume: 62 start-page: 1285 year: 2019 ident: D3QI00026E/cit21/1 publication-title: Sci. China Mater. doi: 10.1007/s40843-019-9434-7 – volume: 43 start-page: 2202 year: 2022 ident: D3QI00026E/cit48/1 publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(22)64093-2 – volume: 486 start-page: 229351 year: 2021 ident: D3QI00026E/cit5/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.229351 – volume: 34 start-page: 2106541 year: 2022 ident: D3QI00026E/cit12/1 publication-title: Adv. Mater. doi: 10.1002/adma.202106541 – volume: 34 start-page: 2204021 year: 2022 ident: D3QI00026E/cit49/1 publication-title: Adv. Mater. doi: 10.1002/adma.202204021 |
SSID | ssj0001140160 |
Score | 2.3829563 |
Snippet | Seawater electrocatalysis driven by renewable energy resources has long been considered as a promising approach for producing clean hydrogen. However, anodic... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2444 |
SubjectTerms | Anodic cleaning Cations Charge transfer Chloride ions Chlorine Defects Density functional theory Electrocatalysts Electrochemical corrosion Electrode materials Electrolysis Energy sources Hydroxides Inorganic chemistry Intermetallic compounds Iron Iron compounds Metal air batteries Nickel compounds Open circuit voltage Oxygen evolution reactions Rechargeable batteries Seawater Zinc-oxygen batteries |
Title | Cationic defect-enriched hydroxides as anodic catalysts for efficient seawater electrolysis |
URI | https://www.proquest.com/docview/2798938790 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ri9QwEA7e3Ysvoujh6imB80WOaJt02-TxOPe4FRWEPVz0oaRJylak1d0u3t2vd5KmTU9WUKGU0mT6kG86mSQz3yD0IjUZV1GRkjQtEpKoghGhhCFGcMWVdcmlzR1-_yG9uEzeLqfLUN7KZZe0xSt1szOv5H9QhXeAq82S_Qdkh4_CC3gGfOEOCMP9rzA-67ZT1Yk2NiqDQD8b2alPVtd63VxV2mxsHRlZNxo6uZ2a60276Wi-HXeEjQQAZf8pLVeiL4njSErGTuu87mo_wSf68nA2LaVuKxPOgj5tnTWvyNdq0LfPK-MDfkEJyc2q8dOka2qcwLKSTYjxcNoDMuSq2o73IyizRyveXhpnt2g0pcSWI7plZEe6xMcGM-noH_3ka49hdxr2iFleVM1-VNaGpyZMX0NQYWjcQwcUVg1g9g5OZ4v5u7DpZpeTadTT1DLxOgjddkzCamNv3ZeCcS7H4j6659cK-LQD_gG6Y-qH6EsPOv4NdBxAxxIuBzoeQMcAOh5Axz3oeAz6I3R5PlucXRBfIYMoyuMWxp1GRtGpNKpQsWTgvpYUHOCISWNkalnIM81NlGQlj6WeFqJUScEly3jMYDHJDtF-3dTmMcLCOC64aSJKEEq4oFroqBQmhumyNMUEveyHJ1eePt5WMfmWuzAGJvI37OPcDeVsgo6Hvt870pSdvY76Uc79T7XJaSbAg-aZiCboEEZ-kA9APflTw1N0NyjkEdpv11vzDFzGtnjuFeEXOfByxA |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cationic+defect-enriched+hydroxides+as+anodic+catalysts+for+efficient+seawater+electrolysis&rft.jtitle=Inorganic+chemistry+frontiers&rft.au=Wu%2C+Yi-jin&rft.au=Zheng%2C+Jian-zhong&rft.au=Zhou%2C+Xiao&rft.au=Tu%2C+Teng-xiu&rft.date=2023-04-11&rft.eissn=2052-1553&rft.volume=1&rft.issue=8&rft.spage=2444&rft.epage=2456&rft_id=info:doi/10.1039%2Fd3qi00026e&rft.externalDocID=d3qi00026e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-1553&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-1553&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-1553&client=summon |