Detecting Data Poisoning Attacks in Federated Learning for Healthcare Applications Using Deep Learning

This work presents a novel method for securing federated learning in healthcare applications, focusing on skin cancer classification. The suggested solution detects and mitigates data poisoning attacks using deep learning and CNN architecture, specifically VGG16. In a federated learning architecture...

Full description

Saved in:
Bibliographic Details
Published inIraqi Journal for Computer Science and Mathematics Vol. 4; no. 4
Main Authors Alaa Hamza Omran, Sahar Yousif Mohammed, Mohammad Aljanabi
Format Journal Article
LanguageEnglish
Published College of Education, Al-Iraqia University 30.10.2024
Subjects
Online AccessGet full text
ISSN2958-0544
2788-7421
DOI10.52866/ijcsm.2023.04.04.018

Cover

Loading…
Abstract This work presents a novel method for securing federated learning in healthcare applications, focusing on skin cancer classification. The suggested solution detects and mitigates data poisoning attacks using deep learning and CNN architecture, specifically VGG16. In a federated learning architecture with ten healthcare institutions, the approach ensures collaborative model training while protecting sensitive medical data. Data is meticulously prepared and preprocessed using the Skin Cancer MNIST: HAM10000 dataset. The federated learning approach uses VGG16's powerful feature extraction to classify skin cancer. A robust strategy for spotting data poisoning threats in federated learning is presented in the study. Outlier detection techniques and strict criteria flag and evaluate problematic model modifications. Performance evaluation proves the model's accuracy, privacy, and data poisoning resilience. This research presents federated learning-based skin cancer categorization for healthcare applications that is secure and accurate. The suggested approach improves healthcare diagnostics and emphasizes data security and privacy in federated learning settings by tackling data poisoning attacks.
AbstractList This work presents a novel method for securing federated learning in healthcare applications, focusing on skin cancer classification. The suggested solution detects and mitigates data poisoning attacks using deep learning and CNN architecture, specifically VGG16. In a federated learning architecture with ten healthcare institutions, the approach ensures collaborative model training while protecting sensitive medical data. Data is meticulously prepared and preprocessed using the Skin Cancer MNIST: HAM10000 dataset. The federated learning approach uses VGG16's powerful feature extraction to classify skin cancer. A robust strategy for spotting data poisoning threats in federated learning is presented in the study. Outlier detection techniques and strict criteria flag and evaluate problematic model modifications. Performance evaluation proves the model's accuracy, privacy, and data poisoning resilience. This research presents federated learning-based skin cancer categorization for healthcare applications that is secure and accurate. The suggested approach improves healthcare diagnostics and emphasizes data security and privacy in federated learning settings by tackling data poisoning attacks.
Author Sahar Yousif Mohammed
Mohammad Aljanabi
Alaa Hamza Omran
Author_xml – sequence: 1
  fullname: Alaa Hamza Omran
  organization: Director of the Scientific Affairs Department, Ministry of Higher Education and Scientific Research, Iraq
– sequence: 2
  fullname: Sahar Yousif Mohammed
  organization: Computer Science Department, Computer Science &Information Technology College, Anbar University, Anbar, 31001, Iraq
– sequence: 3
  fullname: Mohammad Aljanabi
  organization: Department of Computer, College of Education, Al-Iraqia University, Baghdad, 10011, Iraq
BookMark eNo9Td1KwzAUDjLBOfcIQl6gMzlJmvRybM4NBnoxr0uans7MrhlJbnx7ZxXhwPfLd-7JZAgDEvLI2UKBKcsnf3LpvAAGYsHkeNzckCloYwotgU-uvFKmYErKOzJP6cQYA1MJrdWUdGvM6LIfjnRts6Vvwacw_MhlztZ9JuoHusEWo83Y0j3aOKZdiHSLts8fzkaky8ul985mH4ZE39M4h3j57z-Q2872Ced_OCOHzfNhtS32ry-71XJfODDcFJVDrRivOCjBuutXrhsUGlkjpZYcwDS8UQDQ2NLpspWdcLwSpkWjwaCYkd3vbBvsqb5Ef7bxqw7W16MR4rG2MXvXY43MGiZNydoKZFN1jegqJZWyZStKMCC-AUeIaIo
CitedBy_id crossref_primary_10_1016_j_bspc_2024_107320
crossref_primary_10_1515_jisys_2023_0248
crossref_primary_10_1016_j_procs_2025_01_258
crossref_primary_10_3390_info15070379
ContentType Journal Article
DBID DOA
DOI 10.52866/ijcsm.2023.04.04.018
DatabaseName DOAJ Directory of Open Access Journals
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2788-7421
ExternalDocumentID oai_doaj_org_article_e0a804860d924b9fb3f95455a6d36282
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
M~E
ID FETCH-LOGICAL-c2818-9ce7501912530fede17be37e0b44741228b1b5222ba6c76d4f3c1938de8728e3
IEDL.DBID DOA
ISSN 2958-0544
IngestDate Wed Aug 27 01:31:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2818-9ce7501912530fede17be37e0b44741228b1b5222ba6c76d4f3c1938de8728e3
OpenAccessLink https://doaj.org/article/e0a804860d924b9fb3f95455a6d36282
ParticipantIDs doaj_primary_oai_doaj_org_article_e0a804860d924b9fb3f95455a6d36282
PublicationCentury 2000
PublicationDate 2024-10-30
PublicationDateYYYYMMDD 2024-10-30
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-30
  day: 30
PublicationDecade 2020
PublicationTitle Iraqi Journal for Computer Science and Mathematics
PublicationYear 2024
Publisher College of Education, Al-Iraqia University
Publisher_xml – name: College of Education, Al-Iraqia University
SSID ssj0002893775
Score 2.3561084
Snippet This work presents a novel method for securing federated learning in healthcare applications, focusing on skin cancer classification. The suggested solution...
SourceID doaj
SourceType Open Website
SubjectTerms Data Poisoning Attacks
Deep Learning
Federated Learning
Healthcare
Skin Cancer Detection
Title Detecting Data Poisoning Attacks in Federated Learning for Healthcare Applications Using Deep Learning
URI https://doaj.org/article/e0a804860d924b9fb3f95455a6d36282
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwGA2ykxdRVPxNDl7D2iRN0mN1K0OYeJiwW8lP2Q7d0Hr1b_dLWkZvXoRSaGnakg_yXpLvvQ-hx9yEQum8JADmgXDNZRQrB0J1zo0FNkd5FCcvX8Xinb-si_Wo1FfMCevtgfuOm_pMq1QpyUEzUwbDQgmoX2jhYOxVafQFzBtNprb99hmTyWWXloUiwEt4L98pqBJiutnaryhDpyz5nMIRi36MTPsTutSn6GSghbjqf-cMHfn2HIWZj0v8AC54pjuN33Yx9SdeVl0XtfF40-I6ukEAYXR4sEr9wMBD8eKQ14Wr0R41TikCeOb9_vD8BVrV89Xzggx1EYiN3k2ktB5wHiZatGBZgK_k0ngmfWY4B4JAqTK5AV5FjRZWCscDs8DTlPNKUuXZJZq0u9ZfISwYEEAtoAVnXCpvXMmEYlYyl2vH6TV6in3S7HvniyZ6UacbEKFmiFDzV4Ru_uMlt-gYwsUTamR3aNJ9fvt7oAOdeUiRh_PyZ_4LTa2vpg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+Data+Poisoning+Attacks+in+Federated+Learning+for+Healthcare+Applications+Using+Deep+Learning&rft.jtitle=Iraqi+Journal+for+Computer+Science+and+Mathematics&rft.au=Alaa+Hamza+Omran&rft.au=Sahar+Yousif+Mohammed&rft.au=Mohammad+Aljanabi&rft.date=2024-10-30&rft.pub=College+of+Education%2C+Al-Iraqia+University&rft.issn=2958-0544&rft.eissn=2788-7421&rft.volume=4&rft.issue=4&rft_id=info:doi/10.52866%2Fijcsm.2023.04.04.018&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e0a804860d924b9fb3f95455a6d36282
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2958-0544&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2958-0544&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2958-0544&client=summon