Potential of random forest machine learning algorithm for geological mapping using PALSAR and Sentinel-2A remote sensing data: A case study of Tsagaan-uul area, southern Mongolia
[Display omitted] •Higher train-test splits increased variable influence in Random Forest models.•ALOS PALSAR DEM data showed the highest Gini index, aiding geological mapping.•Data split ratio impacted model performance more than the number of decision trees.•In rock sample studies, stratification...
Saved in:
Published in | Journal of Asian Earth Sciences: X Vol. 14; p. 100204 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2025
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Higher train-test splits increased variable influence in Random Forest models.•ALOS PALSAR DEM data showed the highest Gini index, aiding geological mapping.•Data split ratio impacted model performance more than the number of decision trees.•In rock sample studies, stratification influenced results more than ntree, mtry.
Geological mapping in remote and geologically complex regions can be substantially improved by integrating remote sensing data with machine learning algorithms. This study evaluates the effectiveness of the Random Forest algorithm for geological mapping in the Tsagaan-uul area of the Khatanbulag ancient massif, Mongolia, a region characterized by limited accessibility and sparse field data. A comprehensive set of predictor variables was used, including Sentinel-2A spectral bands and indices, ALOS PALSAR digital elevation model, and terrain morphometric features. Two distinct training strategies were employed: (1) based on a geological map, (2) based on field-collected rock samples from two lithologically diverse formations. Variable importance was assessed using the Mean Decrease Gini index, while classification performance was measured through overall accuracy, precision, recall, F1-score, and the Kappa coefficient. In the first experiment, ALOS PALSAR DEM and Terrain Ruggedness Index were identified as the most influential predictors. Overall accuracy across all nine models ranged from 59.9 % to 64.4 %, with Kappa coefficients between 0.508 and 0.562. Model 1, which used a 90–10 % split, achieved the highest performance, while Model 4 recorded the lowest. These suggest that the data split ratio had a greater impact on model accuracy than the number of decision trees. In the second experiment, variations in the number of trees and variables per split had minimal effects, whereas the choice of stratification method significantly affected model outcomes. Overall, findings emphasize the critical role of dataset configuration, such as class balance and representative sampling, in optimizing Random Forest-based geological mapping. |
---|---|
AbstractList | Geological mapping in remote and geologically complex regions can be substantially improved by integrating remote sensing data with machine learning algorithms. This study evaluates the effectiveness of the Random Forest algorithm for geological mapping in the Tsagaan-uul area of the Khatanbulag ancient massif, Mongolia, a region characterized by limited accessibility and sparse field data. A comprehensive set of predictor variables was used, including Sentinel-2A spectral bands and indices, ALOS PALSAR digital elevation model, and terrain morphometric features. Two distinct training strategies were employed: (1) based on a geological map, (2) based on field-collected rock samples from two lithologically diverse formations. Variable importance was assessed using the Mean Decrease Gini index, while classification performance was measured through overall accuracy, precision, recall, F1-score, and the Kappa coefficient. In the first experiment, ALOS PALSAR DEM and Terrain Ruggedness Index were identified as the most influential predictors. Overall accuracy across all nine models ranged from 59.9 % to 64.4 %, with Kappa coefficients between 0.508 and 0.562. Model 1, which used a 90–10 % split, achieved the highest performance, while Model 4 recorded the lowest. These suggest that the data split ratio had a greater impact on model accuracy than the number of decision trees. In the second experiment, variations in the number of trees and variables per split had minimal effects, whereas the choice of stratification method significantly affected model outcomes. Overall, findings emphasize the critical role of dataset configuration, such as class balance and representative sampling, in optimizing Random Forest-based geological mapping. [Display omitted] •Higher train-test splits increased variable influence in Random Forest models.•ALOS PALSAR DEM data showed the highest Gini index, aiding geological mapping.•Data split ratio impacted model performance more than the number of decision trees.•In rock sample studies, stratification influenced results more than ntree, mtry. Geological mapping in remote and geologically complex regions can be substantially improved by integrating remote sensing data with machine learning algorithms. This study evaluates the effectiveness of the Random Forest algorithm for geological mapping in the Tsagaan-uul area of the Khatanbulag ancient massif, Mongolia, a region characterized by limited accessibility and sparse field data. A comprehensive set of predictor variables was used, including Sentinel-2A spectral bands and indices, ALOS PALSAR digital elevation model, and terrain morphometric features. Two distinct training strategies were employed: (1) based on a geological map, (2) based on field-collected rock samples from two lithologically diverse formations. Variable importance was assessed using the Mean Decrease Gini index, while classification performance was measured through overall accuracy, precision, recall, F1-score, and the Kappa coefficient. In the first experiment, ALOS PALSAR DEM and Terrain Ruggedness Index were identified as the most influential predictors. Overall accuracy across all nine models ranged from 59.9 % to 64.4 %, with Kappa coefficients between 0.508 and 0.562. Model 1, which used a 90–10 % split, achieved the highest performance, while Model 4 recorded the lowest. These suggest that the data split ratio had a greater impact on model accuracy than the number of decision trees. In the second experiment, variations in the number of trees and variables per split had minimal effects, whereas the choice of stratification method significantly affected model outcomes. Overall, findings emphasize the critical role of dataset configuration, such as class balance and representative sampling, in optimizing Random Forest-based geological mapping. |
ArticleNumber | 100204 |
Author | Tserendash, Narantsetseg Albert, Gáspár Badrakh, Munkhsuren Choindonjamts, Erdenejargal |
Author_xml | – sequence: 1 givenname: Munkhsuren orcidid: 0000-0001-8328-128X surname: Badrakh fullname: Badrakh, Munkhsuren email: muujuub@student.elte.hu organization: Doctoral School of Earth Sciences, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary – sequence: 2 givenname: Narantsetseg surname: Tserendash fullname: Tserendash, Narantsetseg email: ts_narangeo@yahoo.com organization: Department of Regional Geology and Tectonics, Institute of Geology, Mongolian Academy of Sciences, 15160 Ulaanbaatar, Mongolia – sequence: 3 givenname: Erdenejargal surname: Choindonjamts fullname: Choindonjamts, Erdenejargal email: erdenejargalch@mas.ac.mn organization: Department of Regional Geology and Tectonics, Institute of Geology, Mongolian Academy of Sciences, 15160 Ulaanbaatar, Mongolia – sequence: 4 givenname: Gáspár surname: Albert fullname: Albert, Gáspár email: gaspalbert@ik.elte.hu organization: Institute of Cartography and Geoinformatics, Faculty of Informatics, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary |
BookMark | eNp9kc1u3CAUha0qlZqmeYJueIB6CjZ4cKUurKg_kaZq1KRrdAcuHiwbRmBXzWv1CYtnoiqrbgAdzvm46LwuLnzwWBRvGd0wypr3w2YATL83Fa1EVmhF-YvishItLalo6MWz86viOqWBZo8UjeTysvhzF2b0s4ORBEsieBMmYkPENJMJ9MF5JCNC9M73BMY-RDcfTg7SYxhD73SOTnA8roYlretdt7vvfpDMIvcr2-NYVh2JOOW3SEJ_chmY4QPpiIaUxXkxj-sEDwl6AF8uy0ggIrwjKSzzAaMn34Lvw-jgTfHSwpjw-mm_Kn5-_vRw87Xcff9ye9PtSl1JxktWGSHtFmQDWlesEYbuq1Ywy1u-pRpF28p8y6A1xspaozVcWI6NbvdbNPv6qrg9c02AQR2jmyA-qgBOnYQQewVxdnpExbnQyKSR3DAOwPZUGsF1LShv65razKrPLB1DShHtPx6jam1RDerUolpbVOcWc-rjOYX5m78cRpW0Q6_RuIh6znO4_-b_ApMRqqY |
Cites_doi | 10.1016/S1367-9120(02)00017-2 10.3390/geosciences11050183 10.1190/geo2012-0411.1 10.1016/j.oregeorev.2019.103106 10.1080/00206814.2017.1326181 10.1127/zfg_suppl/2016/0328 10.1016/j.earscirev.2017.09.020 10.3390/rs17030384 10.1109/TGRS.2007.901027 10.3390/min13060766 10.1016/S0012-821X(00)00017-0 10.1016/j.oregeorev.2019.04.003 10.3390/min13060826 10.1109/TGRS.2010.2053546 10.3390/min14050500 10.1109/ACCESS.2024.3469228 10.1016/j.aci.2018.08.003 10.1016/j.patrec.2005.08.011 10.1023/A:1010933404324 10.1016/j.cageo.2015.03.013 10.1190/geo2019-0461.1 10.1007/s11749-016-0481-7 10.1002/widm.1301 10.1007/s12517-021-08509-x 10.5194/gmd-8-1991-2015 10.3390/ijgi8060248 10.7717/peerj.5518 10.1007/s12145-025-01734-y 10.4018/IJAGR.297524 10.1007/s13201-015-0327-6 10.1007/s12145-022-00826-3 10.1016/j.oregeorev.2025.106573 10.3390/min14121202 10.1201/9781439808085 10.3390/rs14040819 10.1016/j.oregeorev.2022.105163 10.1109/JSTARS.2018.2855207 10.1038/364299a0 10.1016/j.jseaes.2017.05.005 10.1016/j.cageo.2024.105738 10.1016/j.cageo.2013.10.008 10.1016/j.eswa.2019.05.028 10.3390/rs8110883 10.1002/hyp.3360050103 10.1016/j.gexplo.2025.107755 10.1016/j.cageo.2011.11.019 10.1111/2041-210X.13495 10.5194/egusphere-egu23-5684 10.1007/s12145-024-01243-4 10.1016/j.jafrearsci.2017.01.028 10.3390/rs13050914 10.1007/BF02901917 10.5564/mgs.v26i53.1790 10.5194/ica-proc-2-4-2019 10.3390/min14020202 10.1071/ASEG2013ab204 10.1007/978-981-99-8997-3_1 10.1071/WF01031 10.1144/0016-76492006-022 10.5194/adgeo-14-3-2008 |
ContentType | Journal Article |
Copyright | 2025 The Author(s) |
Copyright_xml | – notice: 2025 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.jaesx.2025.100204 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journal Collection |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2590-0560 |
ExternalDocumentID | oai_doaj_org_article_445ce18d84d14aa1b08d54c35049330f 10_1016_j_jaesx_2025_100204 S2590056025000155 |
GroupedDBID | 0R~ 6I. AAEDW AAFTH AALRI AAXUO AAYWO ABMAC ACVFH ADBBV ADCNI ADVLN AEUPX AEXQZ AFJKZ AFPUW AFTJW AIGII AITUG AKBMS AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BCNDV EBS EJD FDB GROUPED_DOAJ OK1 ROL SSZ AAYXX CITATION M41 |
ID | FETCH-LOGICAL-c2814-12d58f7a86acc2165d0b2951f49470ce59987a81a9ddf83cefd45f4e6c9b7edb3 |
IEDL.DBID | DOA |
ISSN | 2590-0560 |
IngestDate | Wed Aug 27 01:30:14 EDT 2025 Wed Aug 06 19:18:53 EDT 2025 Sat Aug 30 17:17:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Geological mapping PALSAR Mongolia Random forest Machine learning Sentinel-2 |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2814-12d58f7a86acc2165d0b2951f49470ce59987a81a9ddf83cefd45f4e6c9b7edb3 |
ORCID | 0000-0001-8328-128X |
OpenAccessLink | https://doaj.org/article/445ce18d84d14aa1b08d54c35049330f |
ParticipantIDs | doaj_primary_oai_doaj_org_article_445ce18d84d14aa1b08d54c35049330f crossref_primary_10_1016_j_jaesx_2025_100204 elsevier_sciencedirect_doi_10_1016_j_jaesx_2025_100204 |
PublicationCentury | 2000 |
PublicationDate | 2025-12-01 2025-12-00 |
PublicationDateYYYYMMDD | 2025-12-01 |
PublicationDate_xml | – month: 12 year: 2025 text: 2025-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of Asian Earth Sciences: X |
PublicationYear | 2025 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Tóth-Makk, Á., 1994. 125 years, Hungarian Geological Survey. Geological Institute of Hungary, Hungarian Geological Survey. Marinov (b0220) 1957 Buyanbaatar, Ch., Zoljargal, A., Bilguunbaatar, Kh., Jamyandorj, O., Burenbayar, G., 2011. 1:50000 scale geological mapping and general prospecting results report carried out in K-48-III, IV, V, VI, VIII, IX, XIII, XIV, XV, XX, XXI covering certain areas of Ömnögovi and Dornogovi aimags, No. 6326. (in Mongolian). Rafiq, Abu-Mahfouz, Chavanidis, Arrofi, Soupios (b0285) 2025; 13 Xiao, Shen, Chen (b0445) 2017; 59 Othman, Gloaguen (b0265) 2017; 146 Tomurtogoo, O., 2002. Tectonic map of Mongolia, scale 1:1,000,000 (with Brief Explanatory Notes). Geological Information Center of the Mineral Resources and Petroleum Authority, 23 pp. (in Mongolian). Kuhn, Cracknell, Reading, Sykora (b0205) 2020; 85 Stolz (b0370) 2008 Albert (b0010) 2019; 2 Hajaj, Harti, Jellouli, Pour, Himyari, Hamzaoui, Hashim (b0155) 2023; 13 Sun, Chen, Zhong, Liu, Wang (b0380) 2019; 109 Yu, Porwal, Holden, Dentith (b0455) 2012; 45 Rosenqvist, Shimada, Ito, Watanabe (b0310) 2007; 45 Arnaut, Đurić, Đurić, Samardžić-Petrović, Peshevski (b0020) 2024; 17 Tharwat (b0390) 2021; 17 Zhang, Carranza, Fu, Zhang, Qin (b0460) 2024; 14 Albert, Ammar (b0015) 2021; 14 Shebl, El-Desoky, Abdel-Rahman, Fahmy, El-Awny, El-Sherif, El-Rahmany, Csámer (b0335) 2023; 13 Munkhsuren, Enkhdalai, Narantsetseg, Udaanjargal, Orolmaa, Munkhjin (b0245) 2021; 26 Speiser, Miller, Tooze, Ip (b0365) 2019; 134 Story, Congalton (b0375) 1986; 52 Van Der Werff, Van Der Meer (b0425) 2016; 8 Harris, Grunsky (b0185) 2015; 80 Riley, DeGloria, Elliott (b0305) 1999; 5 Sammut, Webb (b0320) 2017 Chen, W., Li, X., Qin, X., Wang, L., 2024. Geological remote sensing: An overview, In: Remote Sensing Intelligent Interpretation for Geology. Springer Nature Singapore, 1–14. Doi: 10.1007/978-981-99-8997-3_1. Moore, Grayson, Ladson (b0235) 1991; 5 Radford, Cracknell, Roach, Cumming (b0280) 2018; 11 Bachri, Hakdaoui, Raji, Benbouziane, Si Mhamdi (b0025) 2022; 13 Son, You, Bang, Cho, Kim, Baik, Nam (b0360) 2021; 13 Nabatian, Songjian, Pour, Abdollahi, Habashi (b0250) 2025; 18 Badarch, Dickson Cunningham, Windley (b0040) 2002; 21 Cracknell, Reading, McNeill (b0115) 2013; 2013 Brimhall, Dilles, Proffett (b0070) 2006; 12 European Space Agency (ESA), 2015. Sentinel-2 user handbook. Revision 2. ESA Standard Document, Paris, France. Rajaveni, Brindha, Elango (b0295) 2017; 7 Tectonic Map of the Mongolian People's Republic, 1978. Main Directorate of Geodesy and Cartography, Moscow. (in Russian). Cracknell, Reading (b0110) 2014; 63 Shirmard, Farahbakhsh, Heidari, Beiranvand Pour, Pradhan, Müller, Chandra (b0340) 2022; 14 Skentos (b0345) 2018; 4–1 Windley, Alexeiev, Xiao, Kröner, Badarch (b0440) 2007; 164 Hajihosseinlou, Maghsoudi, Ghezelbash (b0165) 2025; 274 Tomurtogoo, O., 2017. Tectonic subdivision of Mongolia: scale 1:4,500,000. Hansen (b0175) 2000; 176 Kanevski, M., Timonin, V., Pozdnukhov, A., 2009. Machine Learning for Spatial Environmental Data: Theory, Applications, and Software, first ed. EPFL Press, New York. Doi: 10.1201/9781439808085. Hajihosseinlou, Maghsoudi, Ghezelbash (b0160) 2024; 14 Han, Guo, Yu (b0170) 2016; 2016 Hanžl, Verner, Buriánek, Šíma, Janderkova, Paleček, Hroch, Martínek, Megerssa, Hrdličková, Metelka (b0180) 2018 Probst, Wright, Boulesteix (b0270) 2019; 9 Xiao, Windley, Han, Liu, Wan, Zhang, Ao, Zhang, Song (b0450) 2018; 186 Bahrami, Esmaeili, Homayouni, Pour, Chokmani, Bahroudi (b0050) 2024; 14 Fallah, Jamali, Alaminia, Pour (b0140) 2024; 1–31 Gislason, Benediktsson, Sveinsson (b0145) 2006; 27 Rahmani, Sekandari, Pour, Ranjbar, Nezamabadi Pour, Carranza (b0290) 2025; 37 Zhang, Wang, Qi, Su, Kong (b0465) 2024; 13 Manap, San (b0215) 2022; 15 Dandar, Okamoto, Uno, Batsaikhan, Ulziiburen, Tsuchiya (b0120) 2018; 53–57 Hengl, Nussbaum, Wright, Heuvelink, Gräler (b9005) 2018 Son, Kim, Yoon, Cho (b0355) 2019; 113 Usov (b0420) 1915; 34 Quinn, Le, Cardilini (b0275) 2021; 12 Bachri, Hakdaoui, Raji, Teodoro, Benbouziane (b0030) 2019; 8 Chen, Cai, Xia, Zeng, Yang, Zhang, He, Zhang, Chen, Xu, Zhao (b0085) 2025; 180 Breiman (b0065) 2001; 45 Badrakh, M., Tserendash, N., Choindonjamts, E., Albert, G., 2023. Random forest classification of Proterozoic and Paleozoic rock types of Tsagaan-Uul area, Mongolia. EGU Gen. Assem. 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-5684. Doi: 10.5194/egusphere-egu23-5684. Barnes, Lisle (b0055) 2004 Rezaei, Hassani, Moarefvand, Golmohammadi (b0300) 2019; 4 NASA Earthdata, 2024. Earthdata. National Aeronautics and Space Administration. https://www.earthdata.nasa.gov/. Badamtulga, L., Damdinjav, B., Sumya, T., Altantogos, T., 2005. 1:50000 scale geological mapping and general prospecting results report carried out in the Tsagaan-Uul unit in Noyon, Bayandalai and Khurmen sub-districts of Umnogobi province, No. 5626. (in Mongolian). Zheng, Zhou, An, Cui, Shi (b0470) 2025; 17 Ahmadi, Pekkan (b0005) 2021; 11 Congalton (b0095) 2001; 10 Conrad, Bechtel, Bock, Dietrich, Fischer, Gerlitz, Wehberg, Wichmann, Böhner (b0100) 2015; 8 Wang, Zheng, Gehrels, Mu (b0430) 2001; 46 Masoumi, Eslamkish, Abkar, Honarmand, Harris (b0230) 2017; 129 Erdenechimeg, D., Enkhbayar, B., Boldbaatar, G., Damdinjav, B., Taivanbaatar, Ts., 2018. Report on the results of the geological mapping project at 1:500,000 scale of Mongolia, conducted between 2014–2017 within the framework of the “Geo-Information Database-2013” project, No. 8480. (in Mongolian). Grohmann, Smith, Riccomini (b0150) 2011; 49 Weiss, A.D., 2001. Topographic position and landforms analysis. Presented at the ESRI Users Conference, San Diego, CA. Marinov, N.A., Khasin, R.A., Khurts, Ch., eds., 1977. Geology of Mongolian People’s Republic, v. 3, Nedra, Moscow, 703 in Russian. Różycka, Migoń, Michniewicz (b0315) 2017; 61 Shebl, Abdellatif, Hissen, Abdelaziz, Csámer (b0330) 2021; 105 Tilling (b0395) 2008; 14 Byamba (b0080) 2011; 1 Morgan, Elgendy, Said, Hashem, Li, Maharjan, El-Askary (b0240) 2024; 193 Narantsetseg, T., Enkhdalai, B., Orolmaa, D., Munkhjin, D., Erdenejargal, Ch., Munkhsuren, B., Delgerzaya, P., 2022. The basement and cover complexes of the Khatanbulag and South Gobi Massifs: Geological development and mineralization. Fundamental research report, Institute of Geology, Mongolian Academy of Sciences. (in Mongolian). Erdenejargal, Ariunchimeg, Uugantsetseg, Munkhsuren (b0130) 2021; 36 Son, Kang, Yoon (b0350) 2014; 26 Biau, Scornet (b0060) 2016; 25 Lu, Yang, He (b0210) 2022; 150 National Geological Survey of Mongolia, 2024. The current state of geological research in Mongolia. Khaiguulchin, The Explorer 68, 6–9. (in Mongolian). Kozakov (b0200) 1986 Tomurtogoo, O., 2014. Tectonics of Mongolia, in: Tectonics of Northern, Central and Eastern Asia, Explanatory note to the tectonic map of Northern Central Eastern Asia and adjacent areas at scale 1:2,500,000, 110–126. Cracknell, Reading (b0105) 2013; 78 Isles, Rankin (b0190) 2013; 10 Şengör, Natal’in, Burtman (b0325) 1993; 364 10.1016/j.jaesx.2025.100204_b0405 Wang (10.1016/j.jaesx.2025.100204_b0430) 2001; 46 Zhang (10.1016/j.jaesx.2025.100204_b0460) 2024; 14 Albert (10.1016/j.jaesx.2025.100204_b0010) 2019; 2 Dandar (10.1016/j.jaesx.2025.100204_b0120) 2018; 53–57 Grohmann (10.1016/j.jaesx.2025.100204_b0150) 2011; 49 Zheng (10.1016/j.jaesx.2025.100204_b0470) 2025; 17 Son (10.1016/j.jaesx.2025.100204_b0350) 2014; 26 Bachri (10.1016/j.jaesx.2025.100204_b0025) 2022; 13 Kuhn (10.1016/j.jaesx.2025.100204_b0205) 2020; 85 Yu (10.1016/j.jaesx.2025.100204_b0455) 2012; 45 10.1016/j.jaesx.2025.100204_b0090 Bahrami (10.1016/j.jaesx.2025.100204_b0050) 2024; 14 Congalton (10.1016/j.jaesx.2025.100204_b0095) 2001; 10 Harris (10.1016/j.jaesx.2025.100204_b0185) 2015; 80 Sammut (10.1016/j.jaesx.2025.100204_b0320) 2017 Skentos (10.1016/j.jaesx.2025.100204_b0345) 2018; 4–1 10.1016/j.jaesx.2025.100204_b0135 10.1016/j.jaesx.2025.100204_b0410 10.1016/j.jaesx.2025.100204_b0255 Stolz (10.1016/j.jaesx.2025.100204_b0370) 2008 Byamba (10.1016/j.jaesx.2025.100204_b0080) 2011; 1 10.1016/j.jaesx.2025.100204_b0415 Shebl (10.1016/j.jaesx.2025.100204_b0330) 2021; 105 Son (10.1016/j.jaesx.2025.100204_b0355) 2019; 113 Bachri (10.1016/j.jaesx.2025.100204_b0030) 2019; 8 Probst (10.1016/j.jaesx.2025.100204_b0270) 2019; 9 Son (10.1016/j.jaesx.2025.100204_b0360) 2021; 13 Lu (10.1016/j.jaesx.2025.100204_b0210) 2022; 150 Sun (10.1016/j.jaesx.2025.100204_b0380) 2019; 109 Windley (10.1016/j.jaesx.2025.100204_b0440) 2007; 164 Usov (10.1016/j.jaesx.2025.100204_b0420) 1915; 34 Różycka (10.1016/j.jaesx.2025.100204_b0315) 2017; 61 Cracknell (10.1016/j.jaesx.2025.100204_b0110) 2014; 63 Fallah (10.1016/j.jaesx.2025.100204_b0140) 2024; 1–31 10.1016/j.jaesx.2025.100204_b0260 Riley (10.1016/j.jaesx.2025.100204_b0305) 1999; 5 10.1016/j.jaesx.2025.100204_b0385 Ahmadi (10.1016/j.jaesx.2025.100204_b0005) 2021; 11 Xiao (10.1016/j.jaesx.2025.100204_b0450) 2018; 186 10.1016/j.jaesx.2025.100204_b0225 Quinn (10.1016/j.jaesx.2025.100204_b0275) 2021; 12 Chen (10.1016/j.jaesx.2025.100204_b0085) 2025; 180 Rahmani (10.1016/j.jaesx.2025.100204_b0290) 2025; 37 Hajihosseinlou (10.1016/j.jaesx.2025.100204_b0165) 2025; 274 Rafiq (10.1016/j.jaesx.2025.100204_b0285) 2025; 13 Morgan (10.1016/j.jaesx.2025.100204_b0240) 2024; 193 Hajihosseinlou (10.1016/j.jaesx.2025.100204_b0160) 2024; 14 Arnaut (10.1016/j.jaesx.2025.100204_b0020) 2024; 17 Hajaj (10.1016/j.jaesx.2025.100204_b0155) 2023; 13 Isles (10.1016/j.jaesx.2025.100204_b0190) 2013; 10 Shirmard (10.1016/j.jaesx.2025.100204_b0340) 2022; 14 Barnes (10.1016/j.jaesx.2025.100204_b0055) 2004 Hansen (10.1016/j.jaesx.2025.100204_b0175) 2000; 176 Brimhall (10.1016/j.jaesx.2025.100204_b0070) 2006; 12 Tilling (10.1016/j.jaesx.2025.100204_b0395) 2008; 14 Rosenqvist (10.1016/j.jaesx.2025.100204_b0310) 2007; 45 Tharwat (10.1016/j.jaesx.2025.100204_b0390) 2021; 17 Gislason (10.1016/j.jaesx.2025.100204_b0145) 2006; 27 Hanžl (10.1016/j.jaesx.2025.100204_b0180) 2018 Munkhsuren (10.1016/j.jaesx.2025.100204_b0245) 2021; 26 Othman (10.1016/j.jaesx.2025.100204_b0265) 2017; 146 Moore (10.1016/j.jaesx.2025.100204_b0235) 1991; 5 10.1016/j.jaesx.2025.100204_b0195 Erdenejargal (10.1016/j.jaesx.2025.100204_b0130) 2021; 36 Albert (10.1016/j.jaesx.2025.100204_b0015) 2021; 14 Hengl (10.1016/j.jaesx.2025.100204_b9005) 2018 Speiser (10.1016/j.jaesx.2025.100204_b0365) 2019; 134 10.1016/j.jaesx.2025.100204_b0075 Van Der Werff (10.1016/j.jaesx.2025.100204_b0425) 2016; 8 10.1016/j.jaesx.2025.100204_b0035 Breiman (10.1016/j.jaesx.2025.100204_b0065) 2001; 45 Radford (10.1016/j.jaesx.2025.100204_b0280) 2018; 11 Rezaei (10.1016/j.jaesx.2025.100204_b0300) 2019; 4 10.1016/j.jaesx.2025.100204_b0435 Han (10.1016/j.jaesx.2025.100204_b0170) 2016; 2016 Biau (10.1016/j.jaesx.2025.100204_b0060) 2016; 25 Conrad (10.1016/j.jaesx.2025.100204_b0100) 2015; 8 Cracknell (10.1016/j.jaesx.2025.100204_b0115) 2013; 2013 Manap (10.1016/j.jaesx.2025.100204_b0215) 2022; 15 Badarch (10.1016/j.jaesx.2025.100204_b0040) 2002; 21 Shebl (10.1016/j.jaesx.2025.100204_b0335) 2023; 13 Zhang (10.1016/j.jaesx.2025.100204_b0465) 2024; 13 Masoumi (10.1016/j.jaesx.2025.100204_b0230) 2017; 129 Xiao (10.1016/j.jaesx.2025.100204_b0445) 2017; 59 10.1016/j.jaesx.2025.100204_b0480 Nabatian (10.1016/j.jaesx.2025.100204_b0250) 2025; 18 Story (10.1016/j.jaesx.2025.100204_b0375) 1986; 52 Kozakov (10.1016/j.jaesx.2025.100204_b0200) 1986 10.1016/j.jaesx.2025.100204_b0045 Cracknell (10.1016/j.jaesx.2025.100204_b0105) 2013; 78 Şengör (10.1016/j.jaesx.2025.100204_b0325) 1993; 364 Marinov (10.1016/j.jaesx.2025.100204_b0220) 1957 10.1016/j.jaesx.2025.100204_b0125 Rajaveni (10.1016/j.jaesx.2025.100204_b0295) 2017; 7 10.1016/j.jaesx.2025.100204_b0400 |
References_xml | – volume: 45 start-page: 3307 year: 2007 end-page: 3316 ident: b0310 article-title: ALOS PALSAR: a pathfinder mission for global-scale monitoring of the environment publication-title: IEEE Trans. Geosci. Remote Sens. – reference: Tóth-Makk, Á., 1994. 125 years, Hungarian Geological Survey. Geological Institute of Hungary, Hungarian Geological Survey. – volume: 59 start-page: 1047 year: 2017 end-page: 1052 ident: b0445 article-title: Tectonics, magmatism, and mineralization of Circum–Balkash–Junggar area in the Central Asian Orogenic Belt publication-title: Int. Geol. Rev. – volume: 13 start-page: 766 year: 2023 ident: b0155 article-title: Evaluating the performance of machine learning and deep learning techniques to HyMap imagery for lithological mapping in a semi-arid region: Case study from Western Anti-Atlas, Morocco publication-title: Minerals. – volume: 14 start-page: 819 year: 2022 ident: b0340 article-title: A comparative study of convolutional neural networks and conventional machine learning models for lithological mapping using remote sensing data publication-title: Remote Sens. – volume: 129 start-page: 445 year: 2017 end-page: 457 ident: b0230 article-title: Integration of spectral, thermal, and textural features of ASTER data using Random Forests classification for lithological mapping publication-title: J. Afr. Earth Sc. – volume: 146 start-page: 90 year: 2017 end-page: 102 ident: b0265 article-title: Integration of spectral, spatial and morphometric data into lithological mapping: a comparison of different machine learning algorithms in the Kurdistan region, NE Iraq publication-title: J. Asian Earth Sci. – volume: 364 start-page: 299 year: 1993 end-page: 307 ident: b0325 article-title: Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia publication-title: Nature – volume: 26 start-page: 205 year: 2014 end-page: 216 ident: b0350 article-title: Lithological and mineralogical survey of the Oyu Tolgoi region, southeastern Gobi, Mongolia using ASTER reflectance and emissivity data publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 46 start-page: 2005 year: 2001 end-page: 2008 ident: b0430 article-title: Geochronological evidence for existence of south Mongolian microcontinent—A zircon U-Pb age of grantoid gneisses from the Yagan-Onch Hayrhan Metamorphic Core complex publication-title: Chin. Sci. Bull. – volume: 13 start-page: 3038 year: 2024 end-page: 3050 ident: b0465 article-title: Deep learning-based methods for lithology classification and identification in remote sensing images publication-title: IEEE Access – volume: 4–1 start-page: 7 year: 2018 end-page: 15 ident: b0345 article-title: Topographic position index based landform analysis of Messaria (Ikaria Island, Greece) publication-title: Acta Geobalcanica. – volume: 109 start-page: 26 year: 2019 end-page: 49 ident: b0380 article-title: GIS-based mineral prospectivity mapping using machine learning methods: a case study from Tongling ore district, eastern China publication-title: Ore Geol. Rev. – volume: 8 start-page: 248 year: 2019 ident: b0030 article-title: Machine learning algorithms for automatic lithological mapping using remote sensing data: a case study from Souk Arbaa Sahel, Sidi Ifni Inlier, Western Anti-Atlas, Morocco publication-title: ISPRS Int. J. Geo-Inf. – year: 2018 ident: b0180 article-title: Basic principles of geological and thematic mapping – volume: 45 start-page: 229 year: 2012 end-page: 239 ident: b0455 article-title: Towards automatic lithological classification from remote sensing data using support vector machines publication-title: Comput. Geosci. – volume: 8 start-page: 1991 year: 2015 end-page: 2007 ident: b0100 article-title: System for Automated Geoscientific analyses (SAGA) v2.1.4 publication-title: Geosci. Model Dev. – volume: 113 year: 2019 ident: b0355 article-title: Regional mineral mapping of island arc terranes in southeastern Mongolia using multi-spectral remote sensing data publication-title: Ore Geol. Rev. – reference: Kanevski, M., Timonin, V., Pozdnukhov, A., 2009. Machine Learning for Spatial Environmental Data: Theory, Applications, and Software, first ed. EPFL Press, New York. Doi: 10.1201/9781439808085. – reference: National Geological Survey of Mongolia, 2024. The current state of geological research in Mongolia. Khaiguulchin, The Explorer 68, 6–9. (in Mongolian). – year: 1957 ident: b0220 article-title: Stratigraphy of the Mongolian People's Republic – volume: 14 start-page: 202 year: 2024 ident: b0050 article-title: Machine learning-based lithological mapping from ASTER remote-sensing imagery publication-title: Minerals – reference: Tomurtogoo, O., 2017. Tectonic subdivision of Mongolia: scale 1:4,500,000. – volume: 78 year: 2013 ident: b0105 article-title: The upside of uncertainty: identification of lithology contact zones from airborne geophysics and satellite data using random forests and support vector machines publication-title: Geophysics – reference: Badrakh, M., Tserendash, N., Choindonjamts, E., Albert, G., 2023. Random forest classification of Proterozoic and Paleozoic rock types of Tsagaan-Uul area, Mongolia. EGU Gen. Assem. 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-5684. Doi: 10.5194/egusphere-egu23-5684. – volume: 193 year: 2024 ident: b0240 article-title: Enhanced lithological mapping in arid crystalline regions using explainable AI and multi-spectral remote sensing data publication-title: Comput. Geosci. – reference: Tectonic Map of the Mongolian People's Republic, 1978. Main Directorate of Geodesy and Cartography, Moscow. (in Russian). – volume: 134 start-page: 93 year: 2019 end-page: 101 ident: b0365 article-title: A comparison of random forest variable selection methods for classification prediction modeling publication-title: Expert Syst. Appl. – volume: 25 start-page: 197 year: 2016 end-page: 227 ident: b0060 article-title: A random forest guided tour publication-title: TEST – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: b0065 article-title: Random forests publication-title: Mach. Learn. – volume: 11 start-page: 183 year: 2021 ident: b0005 article-title: Fault-based geological lineaments extraction using remote sensing and GIS—a review publication-title: Geosciences – volume: 2 start-page: 4 year: 2019 ident: b0010 article-title: The changing use-cases of medium and large-scale geological maps in Hungary publication-title: Proc. Int. Cartogr. Assoc. – volume: 8 start-page: 883 year: 2016 ident: b0425 article-title: Sentinel-2A MSI and Landsat 8 OLI provide data continuity for geological remote sensing publication-title: Remote Sens. – volume: 13 start-page: 914 year: 2021 ident: b0360 article-title: Mapping alteration mineralogy in eastern Tsogttsetsii, Mongolia, based on the WorldView-3 and field shortwave-infrared spectroscopy analyses publication-title: Remote Sens. – volume: 11 start-page: 3075 year: 2018 end-page: 3087 ident: b0280 article-title: Geological mapping in Western Tasmania using radar and random forests publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 14 start-page: 3 year: 2008 end-page: 11 ident: b0395 article-title: The critical role of volcano monitoring in risk reduction publication-title: Adv. Geosci. – reference: Weiss, A.D., 2001. Topographic position and landforms analysis. Presented at the ESRI Users Conference, San Diego, CA. – volume: 164 start-page: 31 year: 2007 end-page: 47 ident: b0440 article-title: Tectonic models for accretion of the Central Asian Orogenic Belt publication-title: J. Geol. Soc. – reference: Narantsetseg, T., Enkhdalai, B., Orolmaa, D., Munkhjin, D., Erdenejargal, Ch., Munkhsuren, B., Delgerzaya, P., 2022. The basement and cover complexes of the Khatanbulag and South Gobi Massifs: Geological development and mineralization. Fundamental research report, Institute of Geology, Mongolian Academy of Sciences. (in Mongolian). – volume: 12 start-page: 221 year: 2006 end-page: 241 ident: b0070 article-title: The role of geologic mapping in mineral exploration publication-title: Soc. Econ. Geol. Spec. Publ. – volume: 85 start-page: B249 year: 2020 end-page: B258 ident: b0205 article-title: Identification of intrusive lithologies in volcanic terrains in British Columbia by machine learning using random forests: the value of using a soft classifier publication-title: Geophysics – volume: 14 start-page: 2240 year: 2021 ident: b0015 article-title: Application of random forest classification and remotely sensed data in geological mapping on the Jebel Meloussi area (Tunisia) publication-title: Arab. J. Geosci. – volume: 21 start-page: 87 year: 2002 end-page: 110 ident: b0040 article-title: A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia publication-title: J. Asian Earth Sci. – volume: 105 year: 2021 ident: b0330 article-title: Lithological mapping enhancement by integrating Sentinel-2 and gamma-ray data utilizing support vector machine: a case study from Egypt publication-title: Int. J. Appl. Earth Obs. Geoinf. – year: 2008 ident: b0370 article-title: Geological mapping of Orhon, Tariat, and Egiin Dawaa, Central Mongolia, through the interpretation of remote sensing data – reference: NASA Earthdata, 2024. Earthdata. National Aeronautics and Space Administration. https://www.earthdata.nasa.gov/. – volume: 34 start-page: 297 year: 1915 end-page: 298 ident: b0420 article-title: Orography and geology of the Kentey Range in Mongolia publication-title: Geol. Kom. Izv – volume: 63 start-page: 22 year: 2014 end-page: 33 ident: b0110 article-title: Geological mapping using remote sensing data: a comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information publication-title: Comput. Geosci. – volume: 274 year: 2025 ident: b0165 article-title: A semi-supervised learning framework for intelligent mineral prospectivity mapping: Incorporation of the CatBoost and Gaussian mixture model algorithms publication-title: J. Geochem. Explor. – volume: 5 start-page: 23 year: 1999 end-page: 27 ident: b0305 article-title: A terrain ruggedness index that quantifies topographic heterogeneity publication-title: Intermountain J. Sci. – volume: 2013 start-page: 1 year: 2013 end-page: 4 ident: b0115 article-title: Supervised and unsupervised classification of near-mine soil geochemistry and geophysics data publication-title: ASEG Extended Abstract. – reference: European Space Agency (ESA), 2015. Sentinel-2 user handbook. Revision 2. ESA Standard Document, Paris, France. – volume: 12 start-page: 127 year: 2021 end-page: 129 ident: b0275 article-title: Test set verification is an essential step in model building publication-title: Methods Ecol. Evol. – volume: 17 start-page: 384 year: 2025 ident: b0470 article-title: Granitoid mapping with convolutional neural network from ASTER and landsat 8 OLI data: a case study in the Western Junggar Orogen publication-title: Remote Sens. – volume: 53–57 year: 2018 ident: b0120 article-title: Drone brings new advance of geological mapping in Mongolia: Opportunities and challenges publication-title: Mong. Geosci. – volume: 13 start-page: 1 year: 2022 end-page: 17 ident: b0025 article-title: Identification of lithology using Sentinel-2A through an ensemble of machine learning algorithms publication-title: Int. J. Appl. Geospat. Res. – year: 2004 ident: b0055 article-title: Basic Geological Mapping – volume: 15 start-page: 1841 year: 2022 end-page: 1859 ident: b0215 article-title: Data integration for lithological mapping using machine learning algorithms publication-title: Earth Sci. Inform. – volume: 61 start-page: 61 year: 2017 end-page: 80 ident: b0315 article-title: Topographic wetness index and terrain ruggedness index in geomorphic characterisation of landslide terrains, on examples from the Sudetes, SW Poland publication-title: Z. Geomorphol. Suppl. Issues – reference: Buyanbaatar, Ch., Zoljargal, A., Bilguunbaatar, Kh., Jamyandorj, O., Burenbayar, G., 2011. 1:50000 scale geological mapping and general prospecting results report carried out in K-48-III, IV, V, VI, VIII, IX, XIII, XIV, XV, XX, XXI covering certain areas of Ömnögovi and Dornogovi aimags, No. 6326. (in Mongolian). – volume: 13 start-page: 826 year: 2023 ident: b0335 article-title: Impact of DEMs for improvement Sentinel 2 lithological mapping utilizing support vector machine: a case study of mineralized Fe-Ti-rich gabbroic rocks from the South Eastern Desert of Egypt publication-title: Minerals – reference: Erdenechimeg, D., Enkhbayar, B., Boldbaatar, G., Damdinjav, B., Taivanbaatar, Ts., 2018. Report on the results of the geological mapping project at 1:500,000 scale of Mongolia, conducted between 2014–2017 within the framework of the “Geo-Information Database-2013” project, No. 8480. (in Mongolian). – volume: 14 start-page: 1202 year: 2024 ident: b0160 article-title: Geochemical anomaly detection and pattern recognition: a combined study of the Apriori algorithm, principal component analysis, and spectral clustering publication-title: Minerals – reference: Badamtulga, L., Damdinjav, B., Sumya, T., Altantogos, T., 2005. 1:50000 scale geological mapping and general prospecting results report carried out in the Tsagaan-Uul unit in Noyon, Bayandalai and Khurmen sub-districts of Umnogobi province, No. 5626. (in Mongolian). – volume: 37 year: 2025 ident: b0290 article-title: Evaluation of support vector machine classifiers for lithological mapping using PRISMA hyperspectral remote sensing data: Sahand–Bazman magmatic arc, central Iran publication-title: Remote Sens. Appl.: Soc. Environ. – reference: Tomurtogoo, O., 2002. Tectonic map of Mongolia, scale 1:1,000,000 (with Brief Explanatory Notes). Geological Information Center of the Mineral Resources and Petroleum Authority, 23 pp. (in Mongolian). – volume: 5 start-page: 3 year: 1991 end-page: 30 ident: b0235 article-title: Digital terrain modelling: a review of hydrological, geomorphological, and biological applications publication-title: Hydrol. Process. – volume: 14 start-page: 500 year: 2024 ident: b0460 article-title: Interpretable machine learning for geochemical anomaly delineation in the Yuanbo Nang District, Gansu Province, China publication-title: Minerals – volume: 17 start-page: 1625 year: 2024 end-page: 1644 ident: b0020 article-title: Application of geophysical and multispectral imagery data for predictive mapping of a complex geo-tectonic unit: a case study of the East Vardar Ophiolite Zone, North-Macedonia publication-title: Earth Sci. Inform. – volume: 10 start-page: 321 year: 2001 end-page: 328 ident: b0095 article-title: Accuracy assessment and validation of remotely sensed and other spatial information publication-title: Int. J. Wildl. Fire – volume: 27 start-page: 294 year: 2006 end-page: 300 ident: b0145 article-title: Random forests for land cover classification publication-title: Pattern Recogn. Lett. – volume: 10 year: 2013 ident: b0190 article-title: Geological Interpretation of Aeromagnetic Data publication-title: Australian Society of Exploration Geophysicists – volume: 150 year: 2022 ident: b0210 article-title: Towards lithology mapping in semi-arid areas using time-series Landsat-8 data publication-title: Ore Geol. Rev. – reference: Chen, W., Li, X., Qin, X., Wang, L., 2024. Geological remote sensing: An overview, In: Remote Sensing Intelligent Interpretation for Geology. Springer Nature Singapore, 1–14. Doi: 10.1007/978-981-99-8997-3_1. – volume: 176 start-page: 527 year: 2000 end-page: 542 ident: b0175 article-title: Geologic mapping of tectonic planets publication-title: Earth Planet. Sci. Lett. – year: 1986 ident: b0200 article-title: Precambrian Complexes of infrastructure in Mongolia – volume: 36 start-page: 110 year: 2021 end-page: 119 ident: b0130 article-title: On the age of the Silurian Khukh Morit Formation publication-title: Geology – reference: Tomurtogoo, O., 2014. Tectonics of Mongolia, in: Tectonics of Northern, Central and Eastern Asia, Explanatory note to the tectonic map of Northern Central Eastern Asia and adjacent areas at scale 1:2,500,000, 110–126. – volume: 26 start-page: 37 year: 2021 end-page: 54 ident: b0245 article-title: Lithological mapping using remote sensing techniques: a case study of Alagbayan area, Dornogobi Province, Mongolia publication-title: Mong. Geosci. – volume: 17 start-page: 168 year: 2021 end-page: 192 ident: b0390 article-title: Classification assessment methods publication-title: Appl. Comput. Inform. – reference: Marinov, N.A., Khasin, R.A., Khurts, Ch., eds., 1977. Geology of Mongolian People’s Republic, v. 3, Nedra, Moscow, 703 in Russian. – volume: 1 start-page: 14 year: 2011 end-page: 19 ident: b0080 article-title: Overview of geological research in Mongolia publication-title: Stratigraphy. Geol. Miner. Resour. Mong. – volume: 180 year: 2025 ident: b0085 article-title: Remote sensing identification of hydrothermal alteration minerals in the Duobuza porphyry copper mining area in Tibet using WorldView-3 and GF-5 data: the impact of spatial and spectral resolution publication-title: Ore Geol. Rev. – year: 2017 ident: b0320 article-title: Encyclopedia of machine learning and data mining – volume: 49 start-page: 1200 year: 2011 end-page: 1213 ident: b0150 article-title: Multiscale analysis of topographic surface roughness in the Midland Valley, Scotland publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 18 start-page: 245 year: 2025 ident: b0250 article-title: Integration of ASTER imagery and field data for chromite exploration in the Eastern Khoy Ophiolite complex, NW Iran publication-title: Earth Sci. Inform. – volume: 1–31 year: 2024 ident: b0140 article-title: ASTER remote sensing data for detecting porphyry copper type alteration patterns in West Zafarghand Cu±Mo deposit publication-title: Iran. Int. J. Image Data Fusion – volume: 2016 start-page: 219 year: 2016 end-page: 224 ident: b0170 article-title: Variable selection using mean Decrease Accuracy and mean Decrease Gini based on Random Forest publication-title: ICSESS – start-page: e5518 year: 2018 ident: b9005 article-title: Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables publication-title: PeerJ. – volume: 80 start-page: 9 year: 2015 end-page: 25 ident: b0185 article-title: Predictive lithological mapping of Canada’s North using random forest classification applied to geophysical and geochemical data publication-title: Comput. Geosci. – volume: 7 start-page: 1377 year: 2017 end-page: 1389 ident: b0295 article-title: Geological and geomorphological controls on groundwater occurrence in a hard rock region publication-title: Appl. Water Sci. – volume: 52 start-page: 397 year: 1986 end-page: 399 ident: b0375 article-title: Accuracy assessment: a user’s perspective publication-title: Photogramm. Eng. Remote Sens. – volume: 9 start-page: e1301 year: 2019 ident: b0270 article-title: Hyperparameters and tuning strategies for random forest publication-title: Wires Data Min. Knowl. Discov. – volume: 186 start-page: 94 year: 2018 end-page: 128 ident: b0450 article-title: Late Paleozoic to early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia publication-title: Earth Sci. Rev. – volume: 13 year: 2025 ident: b0285 article-title: Spatial distribution of structural lineaments in the Al-Lith geothermal field, western Saudi Arabia: Remote sensing and aeromagnetic data analysis publication-title: J. Asian Earth Sci. X – volume: 4 start-page: 59 year: 2019 end-page: 70 ident: b0300 article-title: Lithological mapping in Sangan region in Northeast Iran using ASTER satellite data and image processing methods publication-title: Geol. Ecol. Landsc. – volume: 21 start-page: 87 year: 2002 ident: 10.1016/j.jaesx.2025.100204_b0040 article-title: A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia publication-title: J. Asian Earth Sci. doi: 10.1016/S1367-9120(02)00017-2 – volume: 11 start-page: 183 issue: 5 year: 2021 ident: 10.1016/j.jaesx.2025.100204_b0005 article-title: Fault-based geological lineaments extraction using remote sensing and GIS—a review publication-title: Geosciences doi: 10.3390/geosciences11050183 – volume: 78 year: 2013 ident: 10.1016/j.jaesx.2025.100204_b0105 article-title: The upside of uncertainty: identification of lithology contact zones from airborne geophysics and satellite data using random forests and support vector machines publication-title: Geophysics doi: 10.1190/geo2012-0411.1 – volume: 37 year: 2025 ident: 10.1016/j.jaesx.2025.100204_b0290 article-title: Evaluation of support vector machine classifiers for lithological mapping using PRISMA hyperspectral remote sensing data: Sahand–Bazman magmatic arc, central Iran publication-title: Remote Sens. Appl.: Soc. Environ. – ident: 10.1016/j.jaesx.2025.100204_b0225 – volume: 113 year: 2019 ident: 10.1016/j.jaesx.2025.100204_b0355 article-title: Regional mineral mapping of island arc terranes in southeastern Mongolia using multi-spectral remote sensing data publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2019.103106 – volume: 59 start-page: 1047 year: 2017 ident: 10.1016/j.jaesx.2025.100204_b0445 article-title: Tectonics, magmatism, and mineralization of Circum–Balkash–Junggar area in the Central Asian Orogenic Belt publication-title: Int. Geol. Rev. doi: 10.1080/00206814.2017.1326181 – volume: 61 start-page: 61 year: 2017 ident: 10.1016/j.jaesx.2025.100204_b0315 article-title: Topographic wetness index and terrain ruggedness index in geomorphic characterisation of landslide terrains, on examples from the Sudetes, SW Poland publication-title: Z. Geomorphol. Suppl. Issues doi: 10.1127/zfg_suppl/2016/0328 – volume: 186 start-page: 94 year: 2018 ident: 10.1016/j.jaesx.2025.100204_b0450 article-title: Late Paleozoic to early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2017.09.020 – volume: 17 start-page: 384 year: 2025 ident: 10.1016/j.jaesx.2025.100204_b0470 article-title: Granitoid mapping with convolutional neural network from ASTER and landsat 8 OLI data: a case study in the Western Junggar Orogen publication-title: Remote Sens. doi: 10.3390/rs17030384 – volume: 12 start-page: 221 year: 2006 ident: 10.1016/j.jaesx.2025.100204_b0070 article-title: The role of geologic mapping in mineral exploration publication-title: Soc. Econ. Geol. Spec. Publ. – volume: 45 start-page: 3307 year: 2007 ident: 10.1016/j.jaesx.2025.100204_b0310 article-title: ALOS PALSAR: a pathfinder mission for global-scale monitoring of the environment publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2007.901027 – volume: 13 start-page: 766 year: 2023 ident: 10.1016/j.jaesx.2025.100204_b0155 article-title: Evaluating the performance of machine learning and deep learning techniques to HyMap imagery for lithological mapping in a semi-arid region: Case study from Western Anti-Atlas, Morocco publication-title: Minerals. doi: 10.3390/min13060766 – ident: 10.1016/j.jaesx.2025.100204_b0405 – volume: 176 start-page: 527 year: 2000 ident: 10.1016/j.jaesx.2025.100204_b0175 article-title: Geologic mapping of tectonic planets publication-title: Earth Planet. Sci. Lett. doi: 10.1016/S0012-821X(00)00017-0 – volume: 109 start-page: 26 year: 2019 ident: 10.1016/j.jaesx.2025.100204_b0380 article-title: GIS-based mineral prospectivity mapping using machine learning methods: a case study from Tongling ore district, eastern China publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2019.04.003 – volume: 13 start-page: 826 year: 2023 ident: 10.1016/j.jaesx.2025.100204_b0335 article-title: Impact of DEMs for improvement Sentinel 2 lithological mapping utilizing support vector machine: a case study of mineralized Fe-Ti-rich gabbroic rocks from the South Eastern Desert of Egypt publication-title: Minerals doi: 10.3390/min13060826 – volume: 49 start-page: 1200 year: 2011 ident: 10.1016/j.jaesx.2025.100204_b0150 article-title: Multiscale analysis of topographic surface roughness in the Midland Valley, Scotland publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2010.2053546 – volume: 13 year: 2025 ident: 10.1016/j.jaesx.2025.100204_b0285 article-title: Spatial distribution of structural lineaments in the Al-Lith geothermal field, western Saudi Arabia: Remote sensing and aeromagnetic data analysis publication-title: J. Asian Earth Sci. X – ident: 10.1016/j.jaesx.2025.100204_b0135 – ident: 10.1016/j.jaesx.2025.100204_b0410 – volume: 14 start-page: 500 year: 2024 ident: 10.1016/j.jaesx.2025.100204_b0460 article-title: Interpretable machine learning for geochemical anomaly delineation in the Yuanbo Nang District, Gansu Province, China publication-title: Minerals doi: 10.3390/min14050500 – volume: 13 start-page: 3038 year: 2024 ident: 10.1016/j.jaesx.2025.100204_b0465 article-title: Deep learning-based methods for lithology classification and identification in remote sensing images publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3469228 – volume: 17 start-page: 168 year: 2021 ident: 10.1016/j.jaesx.2025.100204_b0390 article-title: Classification assessment methods publication-title: Appl. Comput. Inform. doi: 10.1016/j.aci.2018.08.003 – volume: 27 start-page: 294 year: 2006 ident: 10.1016/j.jaesx.2025.100204_b0145 article-title: Random forests for land cover classification publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2005.08.011 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.jaesx.2025.100204_b0065 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 80 start-page: 9 year: 2015 ident: 10.1016/j.jaesx.2025.100204_b0185 article-title: Predictive lithological mapping of Canada’s North using random forest classification applied to geophysical and geochemical data publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2015.03.013 – volume: 85 start-page: B249 issue: 6 year: 2020 ident: 10.1016/j.jaesx.2025.100204_b0205 article-title: Identification of intrusive lithologies in volcanic terrains in British Columbia by machine learning using random forests: the value of using a soft classifier publication-title: Geophysics doi: 10.1190/geo2019-0461.1 – volume: 25 start-page: 197 year: 2016 ident: 10.1016/j.jaesx.2025.100204_b0060 article-title: A random forest guided tour publication-title: TEST doi: 10.1007/s11749-016-0481-7 – volume: 9 start-page: e1301 year: 2019 ident: 10.1016/j.jaesx.2025.100204_b0270 article-title: Hyperparameters and tuning strategies for random forest publication-title: Wires Data Min. Knowl. Discov. doi: 10.1002/widm.1301 – ident: 10.1016/j.jaesx.2025.100204_b0385 – volume: 14 start-page: 2240 year: 2021 ident: 10.1016/j.jaesx.2025.100204_b0015 article-title: Application of random forest classification and remotely sensed data in geological mapping on the Jebel Meloussi area (Tunisia) publication-title: Arab. J. Geosci. doi: 10.1007/s12517-021-08509-x – ident: 10.1016/j.jaesx.2025.100204_b0255 – volume: 8 start-page: 1991 year: 2015 ident: 10.1016/j.jaesx.2025.100204_b0100 article-title: System for Automated Geoscientific analyses (SAGA) v2.1.4 publication-title: Geosci. Model Dev. doi: 10.5194/gmd-8-1991-2015 – volume: 36 start-page: 110 year: 2021 ident: 10.1016/j.jaesx.2025.100204_b0130 article-title: On the age of the Silurian Khukh Morit Formation publication-title: Geology – volume: 2016 start-page: 219 year: 2016 ident: 10.1016/j.jaesx.2025.100204_b0170 article-title: Variable selection using mean Decrease Accuracy and mean Decrease Gini based on Random Forest publication-title: ICSESS – volume: 8 start-page: 248 issue: 6 year: 2019 ident: 10.1016/j.jaesx.2025.100204_b0030 article-title: Machine learning algorithms for automatic lithological mapping using remote sensing data: a case study from Souk Arbaa Sahel, Sidi Ifni Inlier, Western Anti-Atlas, Morocco publication-title: ISPRS Int. J. Geo-Inf. doi: 10.3390/ijgi8060248 – year: 2008 ident: 10.1016/j.jaesx.2025.100204_b0370 – ident: 10.1016/j.jaesx.2025.100204_b0125 – ident: 10.1016/j.jaesx.2025.100204_b0400 – start-page: e5518 year: 2018 ident: 10.1016/j.jaesx.2025.100204_b9005 article-title: Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables publication-title: PeerJ. doi: 10.7717/peerj.5518 – volume: 18 start-page: 245 year: 2025 ident: 10.1016/j.jaesx.2025.100204_b0250 article-title: Integration of ASTER imagery and field data for chromite exploration in the Eastern Khoy Ophiolite complex, NW Iran publication-title: Earth Sci. Inform. doi: 10.1007/s12145-025-01734-y – volume: 13 start-page: 1 year: 2022 ident: 10.1016/j.jaesx.2025.100204_b0025 article-title: Identification of lithology using Sentinel-2A through an ensemble of machine learning algorithms publication-title: Int. J. Appl. Geospat. Res. doi: 10.4018/IJAGR.297524 – volume: 7 start-page: 1377 year: 2017 ident: 10.1016/j.jaesx.2025.100204_b0295 article-title: Geological and geomorphological controls on groundwater occurrence in a hard rock region publication-title: Appl. Water Sci. doi: 10.1007/s13201-015-0327-6 – volume: 26 start-page: 205 year: 2014 ident: 10.1016/j.jaesx.2025.100204_b0350 article-title: Lithological and mineralogical survey of the Oyu Tolgoi region, southeastern Gobi, Mongolia using ASTER reflectance and emissivity data publication-title: Int. J. Appl. Earth Obs. Geoinf. – ident: 10.1016/j.jaesx.2025.100204_b0075 – volume: 15 start-page: 1841 year: 2022 ident: 10.1016/j.jaesx.2025.100204_b0215 article-title: Data integration for lithological mapping using machine learning algorithms publication-title: Earth Sci. Inform. doi: 10.1007/s12145-022-00826-3 – ident: 10.1016/j.jaesx.2025.100204_b0480 – volume: 180 year: 2025 ident: 10.1016/j.jaesx.2025.100204_b0085 article-title: Remote sensing identification of hydrothermal alteration minerals in the Duobuza porphyry copper mining area in Tibet using WorldView-3 and GF-5 data: the impact of spatial and spectral resolution publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2025.106573 – volume: 14 start-page: 1202 year: 2024 ident: 10.1016/j.jaesx.2025.100204_b0160 article-title: Geochemical anomaly detection and pattern recognition: a combined study of the Apriori algorithm, principal component analysis, and spectral clustering publication-title: Minerals doi: 10.3390/min14121202 – volume: 10 issue: 1190/1 year: 2013 ident: 10.1016/j.jaesx.2025.100204_b0190 article-title: Geological Interpretation of Aeromagnetic Data publication-title: Australian Society of Exploration Geophysicists – ident: 10.1016/j.jaesx.2025.100204_b0195 doi: 10.1201/9781439808085 – ident: 10.1016/j.jaesx.2025.100204_b0415 – volume: 14 start-page: 819 year: 2022 ident: 10.1016/j.jaesx.2025.100204_b0340 article-title: A comparative study of convolutional neural networks and conventional machine learning models for lithological mapping using remote sensing data publication-title: Remote Sens. doi: 10.3390/rs14040819 – volume: 150 year: 2022 ident: 10.1016/j.jaesx.2025.100204_b0210 article-title: Towards lithology mapping in semi-arid areas using time-series Landsat-8 data publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2022.105163 – volume: 11 start-page: 3075 year: 2018 ident: 10.1016/j.jaesx.2025.100204_b0280 article-title: Geological mapping in Western Tasmania using radar and random forests publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2018.2855207 – volume: 364 start-page: 299 year: 1993 ident: 10.1016/j.jaesx.2025.100204_b0325 article-title: Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia publication-title: Nature doi: 10.1038/364299a0 – volume: 146 start-page: 90 year: 2017 ident: 10.1016/j.jaesx.2025.100204_b0265 article-title: Integration of spectral, spatial and morphometric data into lithological mapping: a comparison of different machine learning algorithms in the Kurdistan region, NE Iraq publication-title: J. Asian Earth Sci. doi: 10.1016/j.jseaes.2017.05.005 – volume: 193 year: 2024 ident: 10.1016/j.jaesx.2025.100204_b0240 article-title: Enhanced lithological mapping in arid crystalline regions using explainable AI and multi-spectral remote sensing data publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2024.105738 – volume: 5 start-page: 23 year: 1999 ident: 10.1016/j.jaesx.2025.100204_b0305 article-title: A terrain ruggedness index that quantifies topographic heterogeneity publication-title: Intermountain J. Sci. – volume: 63 start-page: 22 year: 2014 ident: 10.1016/j.jaesx.2025.100204_b0110 article-title: Geological mapping using remote sensing data: a comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2013.10.008 – volume: 134 start-page: 93 year: 2019 ident: 10.1016/j.jaesx.2025.100204_b0365 article-title: A comparison of random forest variable selection methods for classification prediction modeling publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.05.028 – volume: 8 start-page: 883 year: 2016 ident: 10.1016/j.jaesx.2025.100204_b0425 article-title: Sentinel-2A MSI and Landsat 8 OLI provide data continuity for geological remote sensing publication-title: Remote Sens. doi: 10.3390/rs8110883 – volume: 5 start-page: 3 year: 1991 ident: 10.1016/j.jaesx.2025.100204_b0235 article-title: Digital terrain modelling: a review of hydrological, geomorphological, and biological applications publication-title: Hydrol. Process. doi: 10.1002/hyp.3360050103 – volume: 274 year: 2025 ident: 10.1016/j.jaesx.2025.100204_b0165 article-title: A semi-supervised learning framework for intelligent mineral prospectivity mapping: Incorporation of the CatBoost and Gaussian mixture model algorithms publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2025.107755 – volume: 52 start-page: 397 year: 1986 ident: 10.1016/j.jaesx.2025.100204_b0375 article-title: Accuracy assessment: a user’s perspective publication-title: Photogramm. Eng. Remote Sens. – volume: 34 start-page: 297 year: 1915 ident: 10.1016/j.jaesx.2025.100204_b0420 article-title: Orography and geology of the Kentey Range in Mongolia publication-title: Geol. Kom. Izv – volume: 45 start-page: 229 year: 2012 ident: 10.1016/j.jaesx.2025.100204_b0455 article-title: Towards automatic lithological classification from remote sensing data using support vector machines publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2011.11.019 – volume: 12 start-page: 127 year: 2021 ident: 10.1016/j.jaesx.2025.100204_b0275 article-title: Test set verification is an essential step in model building publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.13495 – ident: 10.1016/j.jaesx.2025.100204_b0045 doi: 10.5194/egusphere-egu23-5684 – volume: 105 year: 2021 ident: 10.1016/j.jaesx.2025.100204_b0330 article-title: Lithological mapping enhancement by integrating Sentinel-2 and gamma-ray data utilizing support vector machine: a case study from Egypt publication-title: Int. J. Appl. Earth Obs. Geoinf. – ident: 10.1016/j.jaesx.2025.100204_b0435 – volume: 17 start-page: 1625 year: 2024 ident: 10.1016/j.jaesx.2025.100204_b0020 article-title: Application of geophysical and multispectral imagery data for predictive mapping of a complex geo-tectonic unit: a case study of the East Vardar Ophiolite Zone, North-Macedonia publication-title: Earth Sci. Inform. doi: 10.1007/s12145-024-01243-4 – year: 1957 ident: 10.1016/j.jaesx.2025.100204_b0220 – volume: 53–57 year: 2018 ident: 10.1016/j.jaesx.2025.100204_b0120 article-title: Drone brings new advance of geological mapping in Mongolia: Opportunities and challenges publication-title: Mong. Geosci. – volume: 129 start-page: 445 year: 2017 ident: 10.1016/j.jaesx.2025.100204_b0230 article-title: Integration of spectral, thermal, and textural features of ASTER data using Random Forests classification for lithological mapping publication-title: J. Afr. Earth Sc. doi: 10.1016/j.jafrearsci.2017.01.028 – volume: 4 start-page: 59 year: 2019 ident: 10.1016/j.jaesx.2025.100204_b0300 article-title: Lithological mapping in Sangan region in Northeast Iran using ASTER satellite data and image processing methods publication-title: Geol. Ecol. Landsc. – volume: 13 start-page: 914 year: 2021 ident: 10.1016/j.jaesx.2025.100204_b0360 article-title: Mapping alteration mineralogy in eastern Tsogttsetsii, Mongolia, based on the WorldView-3 and field shortwave-infrared spectroscopy analyses publication-title: Remote Sens. doi: 10.3390/rs13050914 – volume: 46 start-page: 2005 year: 2001 ident: 10.1016/j.jaesx.2025.100204_b0430 article-title: Geochronological evidence for existence of south Mongolian microcontinent—A zircon U-Pb age of grantoid gneisses from the Yagan-Onch Hayrhan Metamorphic Core complex publication-title: Chin. Sci. Bull. doi: 10.1007/BF02901917 – volume: 1 start-page: 14 year: 2011 ident: 10.1016/j.jaesx.2025.100204_b0080 article-title: Overview of geological research in Mongolia publication-title: Stratigraphy. Geol. Miner. Resour. Mong. – volume: 26 start-page: 37 year: 2021 ident: 10.1016/j.jaesx.2025.100204_b0245 article-title: Lithological mapping using remote sensing techniques: a case study of Alagbayan area, Dornogobi Province, Mongolia publication-title: Mong. Geosci. doi: 10.5564/mgs.v26i53.1790 – volume: 2 start-page: 4 year: 2019 ident: 10.1016/j.jaesx.2025.100204_b0010 article-title: The changing use-cases of medium and large-scale geological maps in Hungary publication-title: Proc. Int. Cartogr. Assoc. doi: 10.5194/ica-proc-2-4-2019 – ident: 10.1016/j.jaesx.2025.100204_b0035 – volume: 14 start-page: 202 year: 2024 ident: 10.1016/j.jaesx.2025.100204_b0050 article-title: Machine learning-based lithological mapping from ASTER remote-sensing imagery publication-title: Minerals doi: 10.3390/min14020202 – year: 1986 ident: 10.1016/j.jaesx.2025.100204_b0200 – volume: 2013 start-page: 1 year: 2013 ident: 10.1016/j.jaesx.2025.100204_b0115 article-title: Supervised and unsupervised classification of near-mine soil geochemistry and geophysics data publication-title: ASEG Extended Abstract. doi: 10.1071/ASEG2013ab204 – ident: 10.1016/j.jaesx.2025.100204_b0090 doi: 10.1007/978-981-99-8997-3_1 – volume: 4–1 start-page: 7 year: 2018 ident: 10.1016/j.jaesx.2025.100204_b0345 article-title: Topographic position index based landform analysis of Messaria (Ikaria Island, Greece) publication-title: Acta Geobalcanica. – volume: 10 start-page: 321 year: 2001 ident: 10.1016/j.jaesx.2025.100204_b0095 article-title: Accuracy assessment and validation of remotely sensed and other spatial information publication-title: Int. J. Wildl. Fire doi: 10.1071/WF01031 – year: 2017 ident: 10.1016/j.jaesx.2025.100204_b0320 – ident: 10.1016/j.jaesx.2025.100204_b0260 – year: 2004 ident: 10.1016/j.jaesx.2025.100204_b0055 – volume: 1–31 year: 2024 ident: 10.1016/j.jaesx.2025.100204_b0140 article-title: ASTER remote sensing data for detecting porphyry copper type alteration patterns in West Zafarghand Cu±Mo deposit publication-title: Iran. Int. J. Image Data Fusion – volume: 164 start-page: 31 year: 2007 ident: 10.1016/j.jaesx.2025.100204_b0440 article-title: Tectonic models for accretion of the Central Asian Orogenic Belt publication-title: J. Geol. Soc. doi: 10.1144/0016-76492006-022 – year: 2018 ident: 10.1016/j.jaesx.2025.100204_b0180 – volume: 14 start-page: 3 year: 2008 ident: 10.1016/j.jaesx.2025.100204_b0395 article-title: The critical role of volcano monitoring in risk reduction publication-title: Adv. Geosci. doi: 10.5194/adgeo-14-3-2008 |
SSID | ssj0002856848 |
Score | 2.3105402 |
Snippet | [Display omitted]
•Higher train-test splits increased variable influence in Random Forest models.•ALOS PALSAR DEM data showed the highest Gini index, aiding... Geological mapping in remote and geologically complex regions can be substantially improved by integrating remote sensing data with machine learning... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Index Database Publisher |
StartPage | 100204 |
SubjectTerms | Geological mapping Machine learning Mongolia PALSAR Random forest Sentinel-2 |
Title | Potential of random forest machine learning algorithm for geological mapping using PALSAR and Sentinel-2A remote sensing data: A case study of Tsagaan-uul area, southern Mongolia |
URI | https://dx.doi.org/10.1016/j.jaesx.2025.100204 https://doaj.org/article/445ce18d84d14aa1b08d54c35049330f |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYsoKq4v5uDR4rZNsom3KoqIivgAbyXP6rK24u6Cv8tf6CRtZU968ZoMk5AJmW_K128IObRaC0OdTKT0NqE8c4lmLE-Ut3zojdc6qvPf3PLLJ3r1zJ4XWn0FTlgrD9we3DGlzLhUWEFtSpVK9VBYRk3OENpiLe7D64s5b6GYGsdPRowLKnqZoUjoGis3_cSKMGNRd7RrzdanoqjYv5CRFrLMxRpZ7eAhFO221smSqzfI110zC6QenGg8YHKxzRsg2MQHHd4iGdJB1_2hAjWpGiz4X6IFVK5_3NAySDFUEJjuFdwV1w_FPaAveAi-azdJsgI-HIbOwTTQ2tEq8EdPoACDuQ6iEm3YweNUVUrVyXw-AYWg8wimTSTK14BPRNVMXtUmebo4fzy7TLpeC4nJRBqkCy0TfqQEV8ZkKWd2qDNEX55KOhqGf7WkwNlUSWu9yI3zljJPHTdSj5zV-RZZrpvabRPAQcRUzihMA9RzKRWWeLmlI59KxdJ8QI76Yy_fW0mNsueajcsYpTJEqWyjNCCnITQ_pkEPOw7gLSm7W1L-dUsGhPeBLTto0UIGdPX62-o7_7H6LlkJLlsWzB5Znn3M3T5imZk-iNf2G7AA9FA |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Potential+of+random+forest+machine+learning+algorithm+for+geological+mapping+using+PALSAR+and+Sentinel-2A+remote+sensing+data%3A+A+case+study+of+Tsagaan-uul+area%2C+southern+Mongolia&rft.jtitle=Journal+of+Asian+Earth+Sciences%3A+X&rft.au=Badrakh%2C+Munkhsuren&rft.au=Tserendash%2C+Narantsetseg&rft.au=Choindonjamts%2C+Erdenejargal&rft.au=Albert%2C+G%C3%A1sp%C3%A1r&rft.date=2025-12-01&rft.issn=2590-0560&rft.eissn=2590-0560&rft.volume=14&rft.spage=100204&rft_id=info:doi/10.1016%2Fj.jaesx.2025.100204&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jaesx_2025_100204 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-0560&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-0560&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-0560&client=summon |