Potential of random forest machine learning algorithm for geological mapping using PALSAR and Sentinel-2A remote sensing data: A case study of Tsagaan-uul area, southern Mongolia

[Display omitted] •Higher train-test splits increased variable influence in Random Forest models.•ALOS PALSAR DEM data showed the highest Gini index, aiding geological mapping.•Data split ratio impacted model performance more than the number of decision trees.•In rock sample studies, stratification...

Full description

Saved in:
Bibliographic Details
Published inJournal of Asian Earth Sciences: X Vol. 14; p. 100204
Main Authors Badrakh, Munkhsuren, Tserendash, Narantsetseg, Choindonjamts, Erdenejargal, Albert, Gáspár
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2025
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Higher train-test splits increased variable influence in Random Forest models.•ALOS PALSAR DEM data showed the highest Gini index, aiding geological mapping.•Data split ratio impacted model performance more than the number of decision trees.•In rock sample studies, stratification influenced results more than ntree, mtry. Geological mapping in remote and geologically complex regions can be substantially improved by integrating remote sensing data with machine learning algorithms. This study evaluates the effectiveness of the Random Forest algorithm for geological mapping in the Tsagaan-uul area of the Khatanbulag ancient massif, Mongolia, a region characterized by limited accessibility and sparse field data. A comprehensive set of predictor variables was used, including Sentinel-2A spectral bands and indices, ALOS PALSAR digital elevation model, and terrain morphometric features. Two distinct training strategies were employed: (1) based on a geological map, (2) based on field-collected rock samples from two lithologically diverse formations. Variable importance was assessed using the Mean Decrease Gini index, while classification performance was measured through overall accuracy, precision, recall, F1-score, and the Kappa coefficient. In the first experiment, ALOS PALSAR DEM and Terrain Ruggedness Index were identified as the most influential predictors. Overall accuracy across all nine models ranged from 59.9 % to 64.4 %, with Kappa coefficients between 0.508 and 0.562. Model 1, which used a 90–10 % split, achieved the highest performance, while Model 4 recorded the lowest. These suggest that the data split ratio had a greater impact on model accuracy than the number of decision trees. In the second experiment, variations in the number of trees and variables per split had minimal effects, whereas the choice of stratification method significantly affected model outcomes. Overall, findings emphasize the critical role of dataset configuration, such as class balance and representative sampling, in optimizing Random Forest-based geological mapping.
AbstractList Geological mapping in remote and geologically complex regions can be substantially improved by integrating remote sensing data with machine learning algorithms. This study evaluates the effectiveness of the Random Forest algorithm for geological mapping in the Tsagaan-uul area of the Khatanbulag ancient massif, Mongolia, a region characterized by limited accessibility and sparse field data. A comprehensive set of predictor variables was used, including Sentinel-2A spectral bands and indices, ALOS PALSAR digital elevation model, and terrain morphometric features. Two distinct training strategies were employed: (1) based on a geological map, (2) based on field-collected rock samples from two lithologically diverse formations. Variable importance was assessed using the Mean Decrease Gini index, while classification performance was measured through overall accuracy, precision, recall, F1-score, and the Kappa coefficient. In the first experiment, ALOS PALSAR DEM and Terrain Ruggedness Index were identified as the most influential predictors. Overall accuracy across all nine models ranged from 59.9 % to 64.4 %, with Kappa coefficients between 0.508 and 0.562. Model 1, which used a 90–10 % split, achieved the highest performance, while Model 4 recorded the lowest. These suggest that the data split ratio had a greater impact on model accuracy than the number of decision trees. In the second experiment, variations in the number of trees and variables per split had minimal effects, whereas the choice of stratification method significantly affected model outcomes. Overall, findings emphasize the critical role of dataset configuration, such as class balance and representative sampling, in optimizing Random Forest-based geological mapping.
[Display omitted] •Higher train-test splits increased variable influence in Random Forest models.•ALOS PALSAR DEM data showed the highest Gini index, aiding geological mapping.•Data split ratio impacted model performance more than the number of decision trees.•In rock sample studies, stratification influenced results more than ntree, mtry. Geological mapping in remote and geologically complex regions can be substantially improved by integrating remote sensing data with machine learning algorithms. This study evaluates the effectiveness of the Random Forest algorithm for geological mapping in the Tsagaan-uul area of the Khatanbulag ancient massif, Mongolia, a region characterized by limited accessibility and sparse field data. A comprehensive set of predictor variables was used, including Sentinel-2A spectral bands and indices, ALOS PALSAR digital elevation model, and terrain morphometric features. Two distinct training strategies were employed: (1) based on a geological map, (2) based on field-collected rock samples from two lithologically diverse formations. Variable importance was assessed using the Mean Decrease Gini index, while classification performance was measured through overall accuracy, precision, recall, F1-score, and the Kappa coefficient. In the first experiment, ALOS PALSAR DEM and Terrain Ruggedness Index were identified as the most influential predictors. Overall accuracy across all nine models ranged from 59.9 % to 64.4 %, with Kappa coefficients between 0.508 and 0.562. Model 1, which used a 90–10 % split, achieved the highest performance, while Model 4 recorded the lowest. These suggest that the data split ratio had a greater impact on model accuracy than the number of decision trees. In the second experiment, variations in the number of trees and variables per split had minimal effects, whereas the choice of stratification method significantly affected model outcomes. Overall, findings emphasize the critical role of dataset configuration, such as class balance and representative sampling, in optimizing Random Forest-based geological mapping.
ArticleNumber 100204
Author Tserendash, Narantsetseg
Albert, Gáspár
Badrakh, Munkhsuren
Choindonjamts, Erdenejargal
Author_xml – sequence: 1
  givenname: Munkhsuren
  orcidid: 0000-0001-8328-128X
  surname: Badrakh
  fullname: Badrakh, Munkhsuren
  email: muujuub@student.elte.hu
  organization: Doctoral School of Earth Sciences, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
– sequence: 2
  givenname: Narantsetseg
  surname: Tserendash
  fullname: Tserendash, Narantsetseg
  email: ts_narangeo@yahoo.com
  organization: Department of Regional Geology and Tectonics, Institute of Geology, Mongolian Academy of Sciences, 15160 Ulaanbaatar, Mongolia
– sequence: 3
  givenname: Erdenejargal
  surname: Choindonjamts
  fullname: Choindonjamts, Erdenejargal
  email: erdenejargalch@mas.ac.mn
  organization: Department of Regional Geology and Tectonics, Institute of Geology, Mongolian Academy of Sciences, 15160 Ulaanbaatar, Mongolia
– sequence: 4
  givenname: Gáspár
  surname: Albert
  fullname: Albert, Gáspár
  email: gaspalbert@ik.elte.hu
  organization: Institute of Cartography and Geoinformatics, Faculty of Informatics, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
BookMark eNp9kc1u3CAUha0qlZqmeYJueIB6CjZ4cKUurKg_kaZq1KRrdAcuHiwbRmBXzWv1CYtnoiqrbgAdzvm46LwuLnzwWBRvGd0wypr3w2YATL83Fa1EVmhF-YvishItLalo6MWz86viOqWBZo8UjeTysvhzF2b0s4ORBEsieBMmYkPENJMJ9MF5JCNC9M73BMY-RDcfTg7SYxhD73SOTnA8roYlretdt7vvfpDMIvcr2-NYVh2JOOW3SEJ_chmY4QPpiIaUxXkxj-sEDwl6AF8uy0ggIrwjKSzzAaMn34Lvw-jgTfHSwpjw-mm_Kn5-_vRw87Xcff9ye9PtSl1JxktWGSHtFmQDWlesEYbuq1Ywy1u-pRpF28p8y6A1xspaozVcWI6NbvdbNPv6qrg9c02AQR2jmyA-qgBOnYQQewVxdnpExbnQyKSR3DAOwPZUGsF1LShv65razKrPLB1DShHtPx6jam1RDerUolpbVOcWc-rjOYX5m78cRpW0Q6_RuIh6znO4_-b_ApMRqqY
Cites_doi 10.1016/S1367-9120(02)00017-2
10.3390/geosciences11050183
10.1190/geo2012-0411.1
10.1016/j.oregeorev.2019.103106
10.1080/00206814.2017.1326181
10.1127/zfg_suppl/2016/0328
10.1016/j.earscirev.2017.09.020
10.3390/rs17030384
10.1109/TGRS.2007.901027
10.3390/min13060766
10.1016/S0012-821X(00)00017-0
10.1016/j.oregeorev.2019.04.003
10.3390/min13060826
10.1109/TGRS.2010.2053546
10.3390/min14050500
10.1109/ACCESS.2024.3469228
10.1016/j.aci.2018.08.003
10.1016/j.patrec.2005.08.011
10.1023/A:1010933404324
10.1016/j.cageo.2015.03.013
10.1190/geo2019-0461.1
10.1007/s11749-016-0481-7
10.1002/widm.1301
10.1007/s12517-021-08509-x
10.5194/gmd-8-1991-2015
10.3390/ijgi8060248
10.7717/peerj.5518
10.1007/s12145-025-01734-y
10.4018/IJAGR.297524
10.1007/s13201-015-0327-6
10.1007/s12145-022-00826-3
10.1016/j.oregeorev.2025.106573
10.3390/min14121202
10.1201/9781439808085
10.3390/rs14040819
10.1016/j.oregeorev.2022.105163
10.1109/JSTARS.2018.2855207
10.1038/364299a0
10.1016/j.jseaes.2017.05.005
10.1016/j.cageo.2024.105738
10.1016/j.cageo.2013.10.008
10.1016/j.eswa.2019.05.028
10.3390/rs8110883
10.1002/hyp.3360050103
10.1016/j.gexplo.2025.107755
10.1016/j.cageo.2011.11.019
10.1111/2041-210X.13495
10.5194/egusphere-egu23-5684
10.1007/s12145-024-01243-4
10.1016/j.jafrearsci.2017.01.028
10.3390/rs13050914
10.1007/BF02901917
10.5564/mgs.v26i53.1790
10.5194/ica-proc-2-4-2019
10.3390/min14020202
10.1071/ASEG2013ab204
10.1007/978-981-99-8997-3_1
10.1071/WF01031
10.1144/0016-76492006-022
10.5194/adgeo-14-3-2008
ContentType Journal Article
Copyright 2025 The Author(s)
Copyright_xml – notice: 2025 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.jaesx.2025.100204
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journal Collection
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2590-0560
ExternalDocumentID oai_doaj_org_article_445ce18d84d14aa1b08d54c35049330f
10_1016_j_jaesx_2025_100204
S2590056025000155
GroupedDBID 0R~
6I.
AAEDW
AAFTH
AALRI
AAXUO
AAYWO
ABMAC
ACVFH
ADBBV
ADCNI
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AFTJW
AIGII
AITUG
AKBMS
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
OK1
ROL
SSZ
AAYXX
CITATION
M41
ID FETCH-LOGICAL-c2814-12d58f7a86acc2165d0b2951f49470ce59987a81a9ddf83cefd45f4e6c9b7edb3
IEDL.DBID DOA
ISSN 2590-0560
IngestDate Wed Aug 27 01:30:14 EDT 2025
Wed Aug 06 19:18:53 EDT 2025
Sat Aug 30 17:17:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Geological mapping
PALSAR
Mongolia
Random forest
Machine learning
Sentinel-2
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2814-12d58f7a86acc2165d0b2951f49470ce59987a81a9ddf83cefd45f4e6c9b7edb3
ORCID 0000-0001-8328-128X
OpenAccessLink https://doaj.org/article/445ce18d84d14aa1b08d54c35049330f
ParticipantIDs doaj_primary_oai_doaj_org_article_445ce18d84d14aa1b08d54c35049330f
crossref_primary_10_1016_j_jaesx_2025_100204
elsevier_sciencedirect_doi_10_1016_j_jaesx_2025_100204
PublicationCentury 2000
PublicationDate 2025-12-01
2025-12-00
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of Asian Earth Sciences: X
PublicationYear 2025
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Tóth-Makk, Á., 1994. 125 years, Hungarian Geological Survey. Geological Institute of Hungary, Hungarian Geological Survey.
Marinov (b0220) 1957
Buyanbaatar, Ch., Zoljargal, A., Bilguunbaatar, Kh., Jamyandorj, O., Burenbayar, G., 2011. 1:50000 scale geological mapping and general prospecting results report carried out in K-48-III, IV, V, VI, VIII, IX, XIII, XIV, XV, XX, XXI covering certain areas of Ömnögovi and Dornogovi aimags, No. 6326. (in Mongolian).
Rafiq, Abu-Mahfouz, Chavanidis, Arrofi, Soupios (b0285) 2025; 13
Xiao, Shen, Chen (b0445) 2017; 59
Othman, Gloaguen (b0265) 2017; 146
Tomurtogoo, O., 2002. Tectonic map of Mongolia, scale 1:1,000,000 (with Brief Explanatory Notes). Geological Information Center of the Mineral Resources and Petroleum Authority, 23 pp. (in Mongolian).
Kuhn, Cracknell, Reading, Sykora (b0205) 2020; 85
Stolz (b0370) 2008
Albert (b0010) 2019; 2
Hajaj, Harti, Jellouli, Pour, Himyari, Hamzaoui, Hashim (b0155) 2023; 13
Sun, Chen, Zhong, Liu, Wang (b0380) 2019; 109
Yu, Porwal, Holden, Dentith (b0455) 2012; 45
Rosenqvist, Shimada, Ito, Watanabe (b0310) 2007; 45
Arnaut, Đurić, Đurić, Samardžić-Petrović, Peshevski (b0020) 2024; 17
Tharwat (b0390) 2021; 17
Zhang, Carranza, Fu, Zhang, Qin (b0460) 2024; 14
Albert, Ammar (b0015) 2021; 14
Shebl, El-Desoky, Abdel-Rahman, Fahmy, El-Awny, El-Sherif, El-Rahmany, Csámer (b0335) 2023; 13
Munkhsuren, Enkhdalai, Narantsetseg, Udaanjargal, Orolmaa, Munkhjin (b0245) 2021; 26
Speiser, Miller, Tooze, Ip (b0365) 2019; 134
Story, Congalton (b0375) 1986; 52
Van Der Werff, Van Der Meer (b0425) 2016; 8
Harris, Grunsky (b0185) 2015; 80
Riley, DeGloria, Elliott (b0305) 1999; 5
Sammut, Webb (b0320) 2017
Chen, W., Li, X., Qin, X., Wang, L., 2024. Geological remote sensing: An overview, In: Remote Sensing Intelligent Interpretation for Geology. Springer Nature Singapore, 1–14. Doi: 10.1007/978-981-99-8997-3_1.
Moore, Grayson, Ladson (b0235) 1991; 5
Radford, Cracknell, Roach, Cumming (b0280) 2018; 11
Bachri, Hakdaoui, Raji, Benbouziane, Si Mhamdi (b0025) 2022; 13
Son, You, Bang, Cho, Kim, Baik, Nam (b0360) 2021; 13
Nabatian, Songjian, Pour, Abdollahi, Habashi (b0250) 2025; 18
Badarch, Dickson Cunningham, Windley (b0040) 2002; 21
Cracknell, Reading, McNeill (b0115) 2013; 2013
Brimhall, Dilles, Proffett (b0070) 2006; 12
European Space Agency (ESA), 2015. Sentinel-2 user handbook. Revision 2. ESA Standard Document, Paris, France.
Rajaveni, Brindha, Elango (b0295) 2017; 7
Tectonic Map of the Mongolian People's Republic, 1978. Main Directorate of Geodesy and Cartography, Moscow. (in Russian).
Cracknell, Reading (b0110) 2014; 63
Shirmard, Farahbakhsh, Heidari, Beiranvand Pour, Pradhan, Müller, Chandra (b0340) 2022; 14
Skentos (b0345) 2018; 4–1
Windley, Alexeiev, Xiao, Kröner, Badarch (b0440) 2007; 164
Hajihosseinlou, Maghsoudi, Ghezelbash (b0165) 2025; 274
Tomurtogoo, O., 2017. Tectonic subdivision of Mongolia: scale 1:4,500,000.
Hansen (b0175) 2000; 176
Kanevski, M., Timonin, V., Pozdnukhov, A., 2009. Machine Learning for Spatial Environmental Data: Theory, Applications, and Software, first ed. EPFL Press, New York. Doi: 10.1201/9781439808085.
Hajihosseinlou, Maghsoudi, Ghezelbash (b0160) 2024; 14
Han, Guo, Yu (b0170) 2016; 2016
Hanžl, Verner, Buriánek, Šíma, Janderkova, Paleček, Hroch, Martínek, Megerssa, Hrdličková, Metelka (b0180) 2018
Probst, Wright, Boulesteix (b0270) 2019; 9
Xiao, Windley, Han, Liu, Wan, Zhang, Ao, Zhang, Song (b0450) 2018; 186
Bahrami, Esmaeili, Homayouni, Pour, Chokmani, Bahroudi (b0050) 2024; 14
Fallah, Jamali, Alaminia, Pour (b0140) 2024; 1–31
Gislason, Benediktsson, Sveinsson (b0145) 2006; 27
Rahmani, Sekandari, Pour, Ranjbar, Nezamabadi Pour, Carranza (b0290) 2025; 37
Zhang, Wang, Qi, Su, Kong (b0465) 2024; 13
Manap, San (b0215) 2022; 15
Dandar, Okamoto, Uno, Batsaikhan, Ulziiburen, Tsuchiya (b0120) 2018; 53–57
Hengl, Nussbaum, Wright, Heuvelink, Gräler (b9005) 2018
Son, Kim, Yoon, Cho (b0355) 2019; 113
Usov (b0420) 1915; 34
Quinn, Le, Cardilini (b0275) 2021; 12
Bachri, Hakdaoui, Raji, Teodoro, Benbouziane (b0030) 2019; 8
Chen, Cai, Xia, Zeng, Yang, Zhang, He, Zhang, Chen, Xu, Zhao (b0085) 2025; 180
Breiman (b0065) 2001; 45
Badrakh, M., Tserendash, N., Choindonjamts, E., Albert, G., 2023. Random forest classification of Proterozoic and Paleozoic rock types of Tsagaan-Uul area, Mongolia. EGU Gen. Assem. 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-5684. Doi: 10.5194/egusphere-egu23-5684.
Barnes, Lisle (b0055) 2004
Rezaei, Hassani, Moarefvand, Golmohammadi (b0300) 2019; 4
NASA Earthdata, 2024. Earthdata. National Aeronautics and Space Administration. https://www.earthdata.nasa.gov/.
Badamtulga, L., Damdinjav, B., Sumya, T., Altantogos, T., 2005. 1:50000 scale geological mapping and general prospecting results report carried out in the Tsagaan-Uul unit in Noyon, Bayandalai and Khurmen sub-districts of Umnogobi province, No. 5626. (in Mongolian).
Zheng, Zhou, An, Cui, Shi (b0470) 2025; 17
Ahmadi, Pekkan (b0005) 2021; 11
Congalton (b0095) 2001; 10
Conrad, Bechtel, Bock, Dietrich, Fischer, Gerlitz, Wehberg, Wichmann, Böhner (b0100) 2015; 8
Wang, Zheng, Gehrels, Mu (b0430) 2001; 46
Masoumi, Eslamkish, Abkar, Honarmand, Harris (b0230) 2017; 129
Erdenechimeg, D., Enkhbayar, B., Boldbaatar, G., Damdinjav, B., Taivanbaatar, Ts., 2018. Report on the results of the geological mapping project at 1:500,000 scale of Mongolia, conducted between 2014–2017 within the framework of the “Geo-Information Database-2013” project, No. 8480. (in Mongolian).
Grohmann, Smith, Riccomini (b0150) 2011; 49
Weiss, A.D., 2001. Topographic position and landforms analysis. Presented at the ESRI Users Conference, San Diego, CA.
Marinov, N.A., Khasin, R.A., Khurts, Ch., eds., 1977. Geology of Mongolian People’s Republic, v. 3, Nedra, Moscow, 703 in Russian.
Różycka, Migoń, Michniewicz (b0315) 2017; 61
Shebl, Abdellatif, Hissen, Abdelaziz, Csámer (b0330) 2021; 105
Tilling (b0395) 2008; 14
Byamba (b0080) 2011; 1
Morgan, Elgendy, Said, Hashem, Li, Maharjan, El-Askary (b0240) 2024; 193
Narantsetseg, T., Enkhdalai, B., Orolmaa, D., Munkhjin, D., Erdenejargal, Ch., Munkhsuren, B., Delgerzaya, P., 2022. The basement and cover complexes of the Khatanbulag and South Gobi Massifs: Geological development and mineralization. Fundamental research report, Institute of Geology, Mongolian Academy of Sciences. (in Mongolian).
Erdenejargal, Ariunchimeg, Uugantsetseg, Munkhsuren (b0130) 2021; 36
Son, Kang, Yoon (b0350) 2014; 26
Biau, Scornet (b0060) 2016; 25
Lu, Yang, He (b0210) 2022; 150
National Geological Survey of Mongolia, 2024. The current state of geological research in Mongolia. Khaiguulchin, The Explorer 68, 6–9. (in Mongolian).
Kozakov (b0200) 1986
Tomurtogoo, O., 2014. Tectonics of Mongolia, in: Tectonics of Northern, Central and Eastern Asia, Explanatory note to the tectonic map of Northern Central Eastern Asia and adjacent areas at scale 1:2,500,000, 110–126.
Cracknell, Reading (b0105) 2013; 78
Isles, Rankin (b0190) 2013; 10
Şengör, Natal’in, Burtman (b0325) 1993; 364
10.1016/j.jaesx.2025.100204_b0405
Wang (10.1016/j.jaesx.2025.100204_b0430) 2001; 46
Zhang (10.1016/j.jaesx.2025.100204_b0460) 2024; 14
Albert (10.1016/j.jaesx.2025.100204_b0010) 2019; 2
Dandar (10.1016/j.jaesx.2025.100204_b0120) 2018; 53–57
Grohmann (10.1016/j.jaesx.2025.100204_b0150) 2011; 49
Zheng (10.1016/j.jaesx.2025.100204_b0470) 2025; 17
Son (10.1016/j.jaesx.2025.100204_b0350) 2014; 26
Bachri (10.1016/j.jaesx.2025.100204_b0025) 2022; 13
Kuhn (10.1016/j.jaesx.2025.100204_b0205) 2020; 85
Yu (10.1016/j.jaesx.2025.100204_b0455) 2012; 45
10.1016/j.jaesx.2025.100204_b0090
Bahrami (10.1016/j.jaesx.2025.100204_b0050) 2024; 14
Congalton (10.1016/j.jaesx.2025.100204_b0095) 2001; 10
Harris (10.1016/j.jaesx.2025.100204_b0185) 2015; 80
Sammut (10.1016/j.jaesx.2025.100204_b0320) 2017
Skentos (10.1016/j.jaesx.2025.100204_b0345) 2018; 4–1
10.1016/j.jaesx.2025.100204_b0135
10.1016/j.jaesx.2025.100204_b0410
10.1016/j.jaesx.2025.100204_b0255
Stolz (10.1016/j.jaesx.2025.100204_b0370) 2008
Byamba (10.1016/j.jaesx.2025.100204_b0080) 2011; 1
10.1016/j.jaesx.2025.100204_b0415
Shebl (10.1016/j.jaesx.2025.100204_b0330) 2021; 105
Son (10.1016/j.jaesx.2025.100204_b0355) 2019; 113
Bachri (10.1016/j.jaesx.2025.100204_b0030) 2019; 8
Probst (10.1016/j.jaesx.2025.100204_b0270) 2019; 9
Son (10.1016/j.jaesx.2025.100204_b0360) 2021; 13
Lu (10.1016/j.jaesx.2025.100204_b0210) 2022; 150
Sun (10.1016/j.jaesx.2025.100204_b0380) 2019; 109
Windley (10.1016/j.jaesx.2025.100204_b0440) 2007; 164
Usov (10.1016/j.jaesx.2025.100204_b0420) 1915; 34
Różycka (10.1016/j.jaesx.2025.100204_b0315) 2017; 61
Cracknell (10.1016/j.jaesx.2025.100204_b0110) 2014; 63
Fallah (10.1016/j.jaesx.2025.100204_b0140) 2024; 1–31
10.1016/j.jaesx.2025.100204_b0260
Riley (10.1016/j.jaesx.2025.100204_b0305) 1999; 5
10.1016/j.jaesx.2025.100204_b0385
Ahmadi (10.1016/j.jaesx.2025.100204_b0005) 2021; 11
Xiao (10.1016/j.jaesx.2025.100204_b0450) 2018; 186
10.1016/j.jaesx.2025.100204_b0225
Quinn (10.1016/j.jaesx.2025.100204_b0275) 2021; 12
Chen (10.1016/j.jaesx.2025.100204_b0085) 2025; 180
Rahmani (10.1016/j.jaesx.2025.100204_b0290) 2025; 37
Hajihosseinlou (10.1016/j.jaesx.2025.100204_b0165) 2025; 274
Rafiq (10.1016/j.jaesx.2025.100204_b0285) 2025; 13
Morgan (10.1016/j.jaesx.2025.100204_b0240) 2024; 193
Hajihosseinlou (10.1016/j.jaesx.2025.100204_b0160) 2024; 14
Arnaut (10.1016/j.jaesx.2025.100204_b0020) 2024; 17
Hajaj (10.1016/j.jaesx.2025.100204_b0155) 2023; 13
Isles (10.1016/j.jaesx.2025.100204_b0190) 2013; 10
Shirmard (10.1016/j.jaesx.2025.100204_b0340) 2022; 14
Barnes (10.1016/j.jaesx.2025.100204_b0055) 2004
Hansen (10.1016/j.jaesx.2025.100204_b0175) 2000; 176
Brimhall (10.1016/j.jaesx.2025.100204_b0070) 2006; 12
Tilling (10.1016/j.jaesx.2025.100204_b0395) 2008; 14
Rosenqvist (10.1016/j.jaesx.2025.100204_b0310) 2007; 45
Tharwat (10.1016/j.jaesx.2025.100204_b0390) 2021; 17
Gislason (10.1016/j.jaesx.2025.100204_b0145) 2006; 27
Hanžl (10.1016/j.jaesx.2025.100204_b0180) 2018
Munkhsuren (10.1016/j.jaesx.2025.100204_b0245) 2021; 26
Othman (10.1016/j.jaesx.2025.100204_b0265) 2017; 146
Moore (10.1016/j.jaesx.2025.100204_b0235) 1991; 5
10.1016/j.jaesx.2025.100204_b0195
Erdenejargal (10.1016/j.jaesx.2025.100204_b0130) 2021; 36
Albert (10.1016/j.jaesx.2025.100204_b0015) 2021; 14
Hengl (10.1016/j.jaesx.2025.100204_b9005) 2018
Speiser (10.1016/j.jaesx.2025.100204_b0365) 2019; 134
10.1016/j.jaesx.2025.100204_b0075
Van Der Werff (10.1016/j.jaesx.2025.100204_b0425) 2016; 8
10.1016/j.jaesx.2025.100204_b0035
Breiman (10.1016/j.jaesx.2025.100204_b0065) 2001; 45
Radford (10.1016/j.jaesx.2025.100204_b0280) 2018; 11
Rezaei (10.1016/j.jaesx.2025.100204_b0300) 2019; 4
10.1016/j.jaesx.2025.100204_b0435
Han (10.1016/j.jaesx.2025.100204_b0170) 2016; 2016
Biau (10.1016/j.jaesx.2025.100204_b0060) 2016; 25
Conrad (10.1016/j.jaesx.2025.100204_b0100) 2015; 8
Cracknell (10.1016/j.jaesx.2025.100204_b0115) 2013; 2013
Manap (10.1016/j.jaesx.2025.100204_b0215) 2022; 15
Badarch (10.1016/j.jaesx.2025.100204_b0040) 2002; 21
Shebl (10.1016/j.jaesx.2025.100204_b0335) 2023; 13
Zhang (10.1016/j.jaesx.2025.100204_b0465) 2024; 13
Masoumi (10.1016/j.jaesx.2025.100204_b0230) 2017; 129
Xiao (10.1016/j.jaesx.2025.100204_b0445) 2017; 59
10.1016/j.jaesx.2025.100204_b0480
Nabatian (10.1016/j.jaesx.2025.100204_b0250) 2025; 18
Story (10.1016/j.jaesx.2025.100204_b0375) 1986; 52
Kozakov (10.1016/j.jaesx.2025.100204_b0200) 1986
10.1016/j.jaesx.2025.100204_b0045
Cracknell (10.1016/j.jaesx.2025.100204_b0105) 2013; 78
Şengör (10.1016/j.jaesx.2025.100204_b0325) 1993; 364
Marinov (10.1016/j.jaesx.2025.100204_b0220) 1957
10.1016/j.jaesx.2025.100204_b0125
Rajaveni (10.1016/j.jaesx.2025.100204_b0295) 2017; 7
10.1016/j.jaesx.2025.100204_b0400
References_xml – volume: 45
  start-page: 3307
  year: 2007
  end-page: 3316
  ident: b0310
  article-title: ALOS PALSAR: a pathfinder mission for global-scale monitoring of the environment
  publication-title: IEEE Trans. Geosci. Remote Sens.
– reference: Tóth-Makk, Á., 1994. 125 years, Hungarian Geological Survey. Geological Institute of Hungary, Hungarian Geological Survey.
– volume: 59
  start-page: 1047
  year: 2017
  end-page: 1052
  ident: b0445
  article-title: Tectonics, magmatism, and mineralization of Circum–Balkash–Junggar area in the Central Asian Orogenic Belt
  publication-title: Int. Geol. Rev.
– volume: 13
  start-page: 766
  year: 2023
  ident: b0155
  article-title: Evaluating the performance of machine learning and deep learning techniques to HyMap imagery for lithological mapping in a semi-arid region: Case study from Western Anti-Atlas, Morocco
  publication-title: Minerals.
– volume: 14
  start-page: 819
  year: 2022
  ident: b0340
  article-title: A comparative study of convolutional neural networks and conventional machine learning models for lithological mapping using remote sensing data
  publication-title: Remote Sens.
– volume: 129
  start-page: 445
  year: 2017
  end-page: 457
  ident: b0230
  article-title: Integration of spectral, thermal, and textural features of ASTER data using Random Forests classification for lithological mapping
  publication-title: J. Afr. Earth Sc.
– volume: 146
  start-page: 90
  year: 2017
  end-page: 102
  ident: b0265
  article-title: Integration of spectral, spatial and morphometric data into lithological mapping: a comparison of different machine learning algorithms in the Kurdistan region, NE Iraq
  publication-title: J. Asian Earth Sci.
– volume: 364
  start-page: 299
  year: 1993
  end-page: 307
  ident: b0325
  article-title: Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia
  publication-title: Nature
– volume: 26
  start-page: 205
  year: 2014
  end-page: 216
  ident: b0350
  article-title: Lithological and mineralogical survey of the Oyu Tolgoi region, southeastern Gobi, Mongolia using ASTER reflectance and emissivity data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 46
  start-page: 2005
  year: 2001
  end-page: 2008
  ident: b0430
  article-title: Geochronological evidence for existence of south Mongolian microcontinent—A zircon U-Pb age of grantoid gneisses from the Yagan-Onch Hayrhan Metamorphic Core complex
  publication-title: Chin. Sci. Bull.
– volume: 13
  start-page: 3038
  year: 2024
  end-page: 3050
  ident: b0465
  article-title: Deep learning-based methods for lithology classification and identification in remote sensing images
  publication-title: IEEE Access
– volume: 4–1
  start-page: 7
  year: 2018
  end-page: 15
  ident: b0345
  article-title: Topographic position index based landform analysis of Messaria (Ikaria Island, Greece)
  publication-title: Acta Geobalcanica.
– volume: 109
  start-page: 26
  year: 2019
  end-page: 49
  ident: b0380
  article-title: GIS-based mineral prospectivity mapping using machine learning methods: a case study from Tongling ore district, eastern China
  publication-title: Ore Geol. Rev.
– volume: 8
  start-page: 248
  year: 2019
  ident: b0030
  article-title: Machine learning algorithms for automatic lithological mapping using remote sensing data: a case study from Souk Arbaa Sahel, Sidi Ifni Inlier, Western Anti-Atlas, Morocco
  publication-title: ISPRS Int. J. Geo-Inf.
– year: 2018
  ident: b0180
  article-title: Basic principles of geological and thematic mapping
– volume: 45
  start-page: 229
  year: 2012
  end-page: 239
  ident: b0455
  article-title: Towards automatic lithological classification from remote sensing data using support vector machines
  publication-title: Comput. Geosci.
– volume: 8
  start-page: 1991
  year: 2015
  end-page: 2007
  ident: b0100
  article-title: System for Automated Geoscientific analyses (SAGA) v2.1.4
  publication-title: Geosci. Model Dev.
– volume: 113
  year: 2019
  ident: b0355
  article-title: Regional mineral mapping of island arc terranes in southeastern Mongolia using multi-spectral remote sensing data
  publication-title: Ore Geol. Rev.
– reference: Kanevski, M., Timonin, V., Pozdnukhov, A., 2009. Machine Learning for Spatial Environmental Data: Theory, Applications, and Software, first ed. EPFL Press, New York. Doi: 10.1201/9781439808085.
– reference: National Geological Survey of Mongolia, 2024. The current state of geological research in Mongolia. Khaiguulchin, The Explorer 68, 6–9. (in Mongolian).
– year: 1957
  ident: b0220
  article-title: Stratigraphy of the Mongolian People's Republic
– volume: 14
  start-page: 202
  year: 2024
  ident: b0050
  article-title: Machine learning-based lithological mapping from ASTER remote-sensing imagery
  publication-title: Minerals
– reference: Tomurtogoo, O., 2017. Tectonic subdivision of Mongolia: scale 1:4,500,000.
– volume: 78
  year: 2013
  ident: b0105
  article-title: The upside of uncertainty: identification of lithology contact zones from airborne geophysics and satellite data using random forests and support vector machines
  publication-title: Geophysics
– reference: Badrakh, M., Tserendash, N., Choindonjamts, E., Albert, G., 2023. Random forest classification of Proterozoic and Paleozoic rock types of Tsagaan-Uul area, Mongolia. EGU Gen. Assem. 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-5684. Doi: 10.5194/egusphere-egu23-5684.
– volume: 193
  year: 2024
  ident: b0240
  article-title: Enhanced lithological mapping in arid crystalline regions using explainable AI and multi-spectral remote sensing data
  publication-title: Comput. Geosci.
– reference: Tectonic Map of the Mongolian People's Republic, 1978. Main Directorate of Geodesy and Cartography, Moscow. (in Russian).
– volume: 134
  start-page: 93
  year: 2019
  end-page: 101
  ident: b0365
  article-title: A comparison of random forest variable selection methods for classification prediction modeling
  publication-title: Expert Syst. Appl.
– volume: 25
  start-page: 197
  year: 2016
  end-page: 227
  ident: b0060
  article-title: A random forest guided tour
  publication-title: TEST
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b0065
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 11
  start-page: 183
  year: 2021
  ident: b0005
  article-title: Fault-based geological lineaments extraction using remote sensing and GIS—a review
  publication-title: Geosciences
– volume: 2
  start-page: 4
  year: 2019
  ident: b0010
  article-title: The changing use-cases of medium and large-scale geological maps in Hungary
  publication-title: Proc. Int. Cartogr. Assoc.
– volume: 8
  start-page: 883
  year: 2016
  ident: b0425
  article-title: Sentinel-2A MSI and Landsat 8 OLI provide data continuity for geological remote sensing
  publication-title: Remote Sens.
– volume: 13
  start-page: 914
  year: 2021
  ident: b0360
  article-title: Mapping alteration mineralogy in eastern Tsogttsetsii, Mongolia, based on the WorldView-3 and field shortwave-infrared spectroscopy analyses
  publication-title: Remote Sens.
– volume: 11
  start-page: 3075
  year: 2018
  end-page: 3087
  ident: b0280
  article-title: Geological mapping in Western Tasmania using radar and random forests
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 14
  start-page: 3
  year: 2008
  end-page: 11
  ident: b0395
  article-title: The critical role of volcano monitoring in risk reduction
  publication-title: Adv. Geosci.
– reference: Weiss, A.D., 2001. Topographic position and landforms analysis. Presented at the ESRI Users Conference, San Diego, CA.
– volume: 164
  start-page: 31
  year: 2007
  end-page: 47
  ident: b0440
  article-title: Tectonic models for accretion of the Central Asian Orogenic Belt
  publication-title: J. Geol. Soc.
– reference: Narantsetseg, T., Enkhdalai, B., Orolmaa, D., Munkhjin, D., Erdenejargal, Ch., Munkhsuren, B., Delgerzaya, P., 2022. The basement and cover complexes of the Khatanbulag and South Gobi Massifs: Geological development and mineralization. Fundamental research report, Institute of Geology, Mongolian Academy of Sciences. (in Mongolian).
– volume: 12
  start-page: 221
  year: 2006
  end-page: 241
  ident: b0070
  article-title: The role of geologic mapping in mineral exploration
  publication-title: Soc. Econ. Geol. Spec. Publ.
– volume: 85
  start-page: B249
  year: 2020
  end-page: B258
  ident: b0205
  article-title: Identification of intrusive lithologies in volcanic terrains in British Columbia by machine learning using random forests: the value of using a soft classifier
  publication-title: Geophysics
– volume: 14
  start-page: 2240
  year: 2021
  ident: b0015
  article-title: Application of random forest classification and remotely sensed data in geological mapping on the Jebel Meloussi area (Tunisia)
  publication-title: Arab. J. Geosci.
– volume: 21
  start-page: 87
  year: 2002
  end-page: 110
  ident: b0040
  article-title: A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia
  publication-title: J. Asian Earth Sci.
– volume: 105
  year: 2021
  ident: b0330
  article-title: Lithological mapping enhancement by integrating Sentinel-2 and gamma-ray data utilizing support vector machine: a case study from Egypt
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– year: 2008
  ident: b0370
  article-title: Geological mapping of Orhon, Tariat, and Egiin Dawaa, Central Mongolia, through the interpretation of remote sensing data
– reference: NASA Earthdata, 2024. Earthdata. National Aeronautics and Space Administration. https://www.earthdata.nasa.gov/.
– volume: 34
  start-page: 297
  year: 1915
  end-page: 298
  ident: b0420
  article-title: Orography and geology of the Kentey Range in Mongolia
  publication-title: Geol. Kom. Izv
– volume: 63
  start-page: 22
  year: 2014
  end-page: 33
  ident: b0110
  article-title: Geological mapping using remote sensing data: a comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information
  publication-title: Comput. Geosci.
– volume: 274
  year: 2025
  ident: b0165
  article-title: A semi-supervised learning framework for intelligent mineral prospectivity mapping: Incorporation of the CatBoost and Gaussian mixture model algorithms
  publication-title: J. Geochem. Explor.
– volume: 5
  start-page: 23
  year: 1999
  end-page: 27
  ident: b0305
  article-title: A terrain ruggedness index that quantifies topographic heterogeneity
  publication-title: Intermountain J. Sci.
– volume: 2013
  start-page: 1
  year: 2013
  end-page: 4
  ident: b0115
  article-title: Supervised and unsupervised classification of near-mine soil geochemistry and geophysics data
  publication-title: ASEG Extended Abstract.
– reference: European Space Agency (ESA), 2015. Sentinel-2 user handbook. Revision 2. ESA Standard Document, Paris, France.
– volume: 12
  start-page: 127
  year: 2021
  end-page: 129
  ident: b0275
  article-title: Test set verification is an essential step in model building
  publication-title: Methods Ecol. Evol.
– volume: 17
  start-page: 384
  year: 2025
  ident: b0470
  article-title: Granitoid mapping with convolutional neural network from ASTER and landsat 8 OLI data: a case study in the Western Junggar Orogen
  publication-title: Remote Sens.
– volume: 53–57
  year: 2018
  ident: b0120
  article-title: Drone brings new advance of geological mapping in Mongolia: Opportunities and challenges
  publication-title: Mong. Geosci.
– volume: 13
  start-page: 1
  year: 2022
  end-page: 17
  ident: b0025
  article-title: Identification of lithology using Sentinel-2A through an ensemble of machine learning algorithms
  publication-title: Int. J. Appl. Geospat. Res.
– year: 2004
  ident: b0055
  article-title: Basic Geological Mapping
– volume: 15
  start-page: 1841
  year: 2022
  end-page: 1859
  ident: b0215
  article-title: Data integration for lithological mapping using machine learning algorithms
  publication-title: Earth Sci. Inform.
– volume: 61
  start-page: 61
  year: 2017
  end-page: 80
  ident: b0315
  article-title: Topographic wetness index and terrain ruggedness index in geomorphic characterisation of landslide terrains, on examples from the Sudetes, SW Poland
  publication-title: Z. Geomorphol. Suppl. Issues
– reference: Buyanbaatar, Ch., Zoljargal, A., Bilguunbaatar, Kh., Jamyandorj, O., Burenbayar, G., 2011. 1:50000 scale geological mapping and general prospecting results report carried out in K-48-III, IV, V, VI, VIII, IX, XIII, XIV, XV, XX, XXI covering certain areas of Ömnögovi and Dornogovi aimags, No. 6326. (in Mongolian).
– volume: 13
  start-page: 826
  year: 2023
  ident: b0335
  article-title: Impact of DEMs for improvement Sentinel 2 lithological mapping utilizing support vector machine: a case study of mineralized Fe-Ti-rich gabbroic rocks from the South Eastern Desert of Egypt
  publication-title: Minerals
– reference: Erdenechimeg, D., Enkhbayar, B., Boldbaatar, G., Damdinjav, B., Taivanbaatar, Ts., 2018. Report on the results of the geological mapping project at 1:500,000 scale of Mongolia, conducted between 2014–2017 within the framework of the “Geo-Information Database-2013” project, No. 8480. (in Mongolian).
– volume: 14
  start-page: 1202
  year: 2024
  ident: b0160
  article-title: Geochemical anomaly detection and pattern recognition: a combined study of the Apriori algorithm, principal component analysis, and spectral clustering
  publication-title: Minerals
– reference: Badamtulga, L., Damdinjav, B., Sumya, T., Altantogos, T., 2005. 1:50000 scale geological mapping and general prospecting results report carried out in the Tsagaan-Uul unit in Noyon, Bayandalai and Khurmen sub-districts of Umnogobi province, No. 5626. (in Mongolian).
– volume: 37
  year: 2025
  ident: b0290
  article-title: Evaluation of support vector machine classifiers for lithological mapping using PRISMA hyperspectral remote sensing data: Sahand–Bazman magmatic arc, central Iran
  publication-title: Remote Sens. Appl.: Soc. Environ.
– reference: Tomurtogoo, O., 2002. Tectonic map of Mongolia, scale 1:1,000,000 (with Brief Explanatory Notes). Geological Information Center of the Mineral Resources and Petroleum Authority, 23 pp. (in Mongolian).
– volume: 5
  start-page: 3
  year: 1991
  end-page: 30
  ident: b0235
  article-title: Digital terrain modelling: a review of hydrological, geomorphological, and biological applications
  publication-title: Hydrol. Process.
– volume: 14
  start-page: 500
  year: 2024
  ident: b0460
  article-title: Interpretable machine learning for geochemical anomaly delineation in the Yuanbo Nang District, Gansu Province, China
  publication-title: Minerals
– volume: 17
  start-page: 1625
  year: 2024
  end-page: 1644
  ident: b0020
  article-title: Application of geophysical and multispectral imagery data for predictive mapping of a complex geo-tectonic unit: a case study of the East Vardar Ophiolite Zone, North-Macedonia
  publication-title: Earth Sci. Inform.
– volume: 10
  start-page: 321
  year: 2001
  end-page: 328
  ident: b0095
  article-title: Accuracy assessment and validation of remotely sensed and other spatial information
  publication-title: Int. J. Wildl. Fire
– volume: 27
  start-page: 294
  year: 2006
  end-page: 300
  ident: b0145
  article-title: Random forests for land cover classification
  publication-title: Pattern Recogn. Lett.
– volume: 10
  year: 2013
  ident: b0190
  article-title: Geological Interpretation of Aeromagnetic Data
  publication-title: Australian Society of Exploration Geophysicists
– volume: 150
  year: 2022
  ident: b0210
  article-title: Towards lithology mapping in semi-arid areas using time-series Landsat-8 data
  publication-title: Ore Geol. Rev.
– reference: Chen, W., Li, X., Qin, X., Wang, L., 2024. Geological remote sensing: An overview, In: Remote Sensing Intelligent Interpretation for Geology. Springer Nature Singapore, 1–14. Doi: 10.1007/978-981-99-8997-3_1.
– volume: 176
  start-page: 527
  year: 2000
  end-page: 542
  ident: b0175
  article-title: Geologic mapping of tectonic planets
  publication-title: Earth Planet. Sci. Lett.
– year: 1986
  ident: b0200
  article-title: Precambrian Complexes of infrastructure in Mongolia
– volume: 36
  start-page: 110
  year: 2021
  end-page: 119
  ident: b0130
  article-title: On the age of the Silurian Khukh Morit Formation
  publication-title: Geology
– reference: Tomurtogoo, O., 2014. Tectonics of Mongolia, in: Tectonics of Northern, Central and Eastern Asia, Explanatory note to the tectonic map of Northern Central Eastern Asia and adjacent areas at scale 1:2,500,000, 110–126.
– volume: 26
  start-page: 37
  year: 2021
  end-page: 54
  ident: b0245
  article-title: Lithological mapping using remote sensing techniques: a case study of Alagbayan area, Dornogobi Province, Mongolia
  publication-title: Mong. Geosci.
– volume: 17
  start-page: 168
  year: 2021
  end-page: 192
  ident: b0390
  article-title: Classification assessment methods
  publication-title: Appl. Comput. Inform.
– reference: Marinov, N.A., Khasin, R.A., Khurts, Ch., eds., 1977. Geology of Mongolian People’s Republic, v. 3, Nedra, Moscow, 703 in Russian.
– volume: 1
  start-page: 14
  year: 2011
  end-page: 19
  ident: b0080
  article-title: Overview of geological research in Mongolia
  publication-title: Stratigraphy. Geol. Miner. Resour. Mong.
– volume: 180
  year: 2025
  ident: b0085
  article-title: Remote sensing identification of hydrothermal alteration minerals in the Duobuza porphyry copper mining area in Tibet using WorldView-3 and GF-5 data: the impact of spatial and spectral resolution
  publication-title: Ore Geol. Rev.
– year: 2017
  ident: b0320
  article-title: Encyclopedia of machine learning and data mining
– volume: 49
  start-page: 1200
  year: 2011
  end-page: 1213
  ident: b0150
  article-title: Multiscale analysis of topographic surface roughness in the Midland Valley, Scotland
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 18
  start-page: 245
  year: 2025
  ident: b0250
  article-title: Integration of ASTER imagery and field data for chromite exploration in the Eastern Khoy Ophiolite complex, NW Iran
  publication-title: Earth Sci. Inform.
– volume: 1–31
  year: 2024
  ident: b0140
  article-title: ASTER remote sensing data for detecting porphyry copper type alteration patterns in West Zafarghand Cu±Mo deposit
  publication-title: Iran. Int. J. Image Data Fusion
– volume: 2016
  start-page: 219
  year: 2016
  end-page: 224
  ident: b0170
  article-title: Variable selection using mean Decrease Accuracy and mean Decrease Gini based on Random Forest
  publication-title: ICSESS
– start-page: e5518
  year: 2018
  ident: b9005
  article-title: Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables
  publication-title: PeerJ.
– volume: 80
  start-page: 9
  year: 2015
  end-page: 25
  ident: b0185
  article-title: Predictive lithological mapping of Canada’s North using random forest classification applied to geophysical and geochemical data
  publication-title: Comput. Geosci.
– volume: 7
  start-page: 1377
  year: 2017
  end-page: 1389
  ident: b0295
  article-title: Geological and geomorphological controls on groundwater occurrence in a hard rock region
  publication-title: Appl. Water Sci.
– volume: 52
  start-page: 397
  year: 1986
  end-page: 399
  ident: b0375
  article-title: Accuracy assessment: a user’s perspective
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 9
  start-page: e1301
  year: 2019
  ident: b0270
  article-title: Hyperparameters and tuning strategies for random forest
  publication-title: Wires Data Min. Knowl. Discov.
– volume: 186
  start-page: 94
  year: 2018
  end-page: 128
  ident: b0450
  article-title: Late Paleozoic to early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia
  publication-title: Earth Sci. Rev.
– volume: 13
  year: 2025
  ident: b0285
  article-title: Spatial distribution of structural lineaments in the Al-Lith geothermal field, western Saudi Arabia: Remote sensing and aeromagnetic data analysis
  publication-title: J. Asian Earth Sci. X
– volume: 4
  start-page: 59
  year: 2019
  end-page: 70
  ident: b0300
  article-title: Lithological mapping in Sangan region in Northeast Iran using ASTER satellite data and image processing methods
  publication-title: Geol. Ecol. Landsc.
– volume: 21
  start-page: 87
  year: 2002
  ident: 10.1016/j.jaesx.2025.100204_b0040
  article-title: A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia
  publication-title: J. Asian Earth Sci.
  doi: 10.1016/S1367-9120(02)00017-2
– volume: 11
  start-page: 183
  issue: 5
  year: 2021
  ident: 10.1016/j.jaesx.2025.100204_b0005
  article-title: Fault-based geological lineaments extraction using remote sensing and GIS—a review
  publication-title: Geosciences
  doi: 10.3390/geosciences11050183
– volume: 78
  year: 2013
  ident: 10.1016/j.jaesx.2025.100204_b0105
  article-title: The upside of uncertainty: identification of lithology contact zones from airborne geophysics and satellite data using random forests and support vector machines
  publication-title: Geophysics
  doi: 10.1190/geo2012-0411.1
– volume: 37
  year: 2025
  ident: 10.1016/j.jaesx.2025.100204_b0290
  article-title: Evaluation of support vector machine classifiers for lithological mapping using PRISMA hyperspectral remote sensing data: Sahand–Bazman magmatic arc, central Iran
  publication-title: Remote Sens. Appl.: Soc. Environ.
– ident: 10.1016/j.jaesx.2025.100204_b0225
– volume: 113
  year: 2019
  ident: 10.1016/j.jaesx.2025.100204_b0355
  article-title: Regional mineral mapping of island arc terranes in southeastern Mongolia using multi-spectral remote sensing data
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2019.103106
– volume: 59
  start-page: 1047
  year: 2017
  ident: 10.1016/j.jaesx.2025.100204_b0445
  article-title: Tectonics, magmatism, and mineralization of Circum–Balkash–Junggar area in the Central Asian Orogenic Belt
  publication-title: Int. Geol. Rev.
  doi: 10.1080/00206814.2017.1326181
– volume: 61
  start-page: 61
  year: 2017
  ident: 10.1016/j.jaesx.2025.100204_b0315
  article-title: Topographic wetness index and terrain ruggedness index in geomorphic characterisation of landslide terrains, on examples from the Sudetes, SW Poland
  publication-title: Z. Geomorphol. Suppl. Issues
  doi: 10.1127/zfg_suppl/2016/0328
– volume: 186
  start-page: 94
  year: 2018
  ident: 10.1016/j.jaesx.2025.100204_b0450
  article-title: Late Paleozoic to early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2017.09.020
– volume: 17
  start-page: 384
  year: 2025
  ident: 10.1016/j.jaesx.2025.100204_b0470
  article-title: Granitoid mapping with convolutional neural network from ASTER and landsat 8 OLI data: a case study in the Western Junggar Orogen
  publication-title: Remote Sens.
  doi: 10.3390/rs17030384
– volume: 12
  start-page: 221
  year: 2006
  ident: 10.1016/j.jaesx.2025.100204_b0070
  article-title: The role of geologic mapping in mineral exploration
  publication-title: Soc. Econ. Geol. Spec. Publ.
– volume: 45
  start-page: 3307
  year: 2007
  ident: 10.1016/j.jaesx.2025.100204_b0310
  article-title: ALOS PALSAR: a pathfinder mission for global-scale monitoring of the environment
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2007.901027
– volume: 13
  start-page: 766
  year: 2023
  ident: 10.1016/j.jaesx.2025.100204_b0155
  article-title: Evaluating the performance of machine learning and deep learning techniques to HyMap imagery for lithological mapping in a semi-arid region: Case study from Western Anti-Atlas, Morocco
  publication-title: Minerals.
  doi: 10.3390/min13060766
– ident: 10.1016/j.jaesx.2025.100204_b0405
– volume: 176
  start-page: 527
  year: 2000
  ident: 10.1016/j.jaesx.2025.100204_b0175
  article-title: Geologic mapping of tectonic planets
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/S0012-821X(00)00017-0
– volume: 109
  start-page: 26
  year: 2019
  ident: 10.1016/j.jaesx.2025.100204_b0380
  article-title: GIS-based mineral prospectivity mapping using machine learning methods: a case study from Tongling ore district, eastern China
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2019.04.003
– volume: 13
  start-page: 826
  year: 2023
  ident: 10.1016/j.jaesx.2025.100204_b0335
  article-title: Impact of DEMs for improvement Sentinel 2 lithological mapping utilizing support vector machine: a case study of mineralized Fe-Ti-rich gabbroic rocks from the South Eastern Desert of Egypt
  publication-title: Minerals
  doi: 10.3390/min13060826
– volume: 49
  start-page: 1200
  year: 2011
  ident: 10.1016/j.jaesx.2025.100204_b0150
  article-title: Multiscale analysis of topographic surface roughness in the Midland Valley, Scotland
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2010.2053546
– volume: 13
  year: 2025
  ident: 10.1016/j.jaesx.2025.100204_b0285
  article-title: Spatial distribution of structural lineaments in the Al-Lith geothermal field, western Saudi Arabia: Remote sensing and aeromagnetic data analysis
  publication-title: J. Asian Earth Sci. X
– ident: 10.1016/j.jaesx.2025.100204_b0135
– ident: 10.1016/j.jaesx.2025.100204_b0410
– volume: 14
  start-page: 500
  year: 2024
  ident: 10.1016/j.jaesx.2025.100204_b0460
  article-title: Interpretable machine learning for geochemical anomaly delineation in the Yuanbo Nang District, Gansu Province, China
  publication-title: Minerals
  doi: 10.3390/min14050500
– volume: 13
  start-page: 3038
  year: 2024
  ident: 10.1016/j.jaesx.2025.100204_b0465
  article-title: Deep learning-based methods for lithology classification and identification in remote sensing images
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3469228
– volume: 17
  start-page: 168
  year: 2021
  ident: 10.1016/j.jaesx.2025.100204_b0390
  article-title: Classification assessment methods
  publication-title: Appl. Comput. Inform.
  doi: 10.1016/j.aci.2018.08.003
– volume: 27
  start-page: 294
  year: 2006
  ident: 10.1016/j.jaesx.2025.100204_b0145
  article-title: Random forests for land cover classification
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2005.08.011
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.jaesx.2025.100204_b0065
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 80
  start-page: 9
  year: 2015
  ident: 10.1016/j.jaesx.2025.100204_b0185
  article-title: Predictive lithological mapping of Canada’s North using random forest classification applied to geophysical and geochemical data
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2015.03.013
– volume: 85
  start-page: B249
  issue: 6
  year: 2020
  ident: 10.1016/j.jaesx.2025.100204_b0205
  article-title: Identification of intrusive lithologies in volcanic terrains in British Columbia by machine learning using random forests: the value of using a soft classifier
  publication-title: Geophysics
  doi: 10.1190/geo2019-0461.1
– volume: 25
  start-page: 197
  year: 2016
  ident: 10.1016/j.jaesx.2025.100204_b0060
  article-title: A random forest guided tour
  publication-title: TEST
  doi: 10.1007/s11749-016-0481-7
– volume: 9
  start-page: e1301
  year: 2019
  ident: 10.1016/j.jaesx.2025.100204_b0270
  article-title: Hyperparameters and tuning strategies for random forest
  publication-title: Wires Data Min. Knowl. Discov.
  doi: 10.1002/widm.1301
– ident: 10.1016/j.jaesx.2025.100204_b0385
– volume: 14
  start-page: 2240
  year: 2021
  ident: 10.1016/j.jaesx.2025.100204_b0015
  article-title: Application of random forest classification and remotely sensed data in geological mapping on the Jebel Meloussi area (Tunisia)
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-021-08509-x
– ident: 10.1016/j.jaesx.2025.100204_b0255
– volume: 8
  start-page: 1991
  year: 2015
  ident: 10.1016/j.jaesx.2025.100204_b0100
  article-title: System for Automated Geoscientific analyses (SAGA) v2.1.4
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-8-1991-2015
– volume: 36
  start-page: 110
  year: 2021
  ident: 10.1016/j.jaesx.2025.100204_b0130
  article-title: On the age of the Silurian Khukh Morit Formation
  publication-title: Geology
– volume: 2016
  start-page: 219
  year: 2016
  ident: 10.1016/j.jaesx.2025.100204_b0170
  article-title: Variable selection using mean Decrease Accuracy and mean Decrease Gini based on Random Forest
  publication-title: ICSESS
– volume: 8
  start-page: 248
  issue: 6
  year: 2019
  ident: 10.1016/j.jaesx.2025.100204_b0030
  article-title: Machine learning algorithms for automatic lithological mapping using remote sensing data: a case study from Souk Arbaa Sahel, Sidi Ifni Inlier, Western Anti-Atlas, Morocco
  publication-title: ISPRS Int. J. Geo-Inf.
  doi: 10.3390/ijgi8060248
– year: 2008
  ident: 10.1016/j.jaesx.2025.100204_b0370
– ident: 10.1016/j.jaesx.2025.100204_b0125
– ident: 10.1016/j.jaesx.2025.100204_b0400
– start-page: e5518
  year: 2018
  ident: 10.1016/j.jaesx.2025.100204_b9005
  article-title: Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables
  publication-title: PeerJ.
  doi: 10.7717/peerj.5518
– volume: 18
  start-page: 245
  year: 2025
  ident: 10.1016/j.jaesx.2025.100204_b0250
  article-title: Integration of ASTER imagery and field data for chromite exploration in the Eastern Khoy Ophiolite complex, NW Iran
  publication-title: Earth Sci. Inform.
  doi: 10.1007/s12145-025-01734-y
– volume: 13
  start-page: 1
  year: 2022
  ident: 10.1016/j.jaesx.2025.100204_b0025
  article-title: Identification of lithology using Sentinel-2A through an ensemble of machine learning algorithms
  publication-title: Int. J. Appl. Geospat. Res.
  doi: 10.4018/IJAGR.297524
– volume: 7
  start-page: 1377
  year: 2017
  ident: 10.1016/j.jaesx.2025.100204_b0295
  article-title: Geological and geomorphological controls on groundwater occurrence in a hard rock region
  publication-title: Appl. Water Sci.
  doi: 10.1007/s13201-015-0327-6
– volume: 26
  start-page: 205
  year: 2014
  ident: 10.1016/j.jaesx.2025.100204_b0350
  article-title: Lithological and mineralogical survey of the Oyu Tolgoi region, southeastern Gobi, Mongolia using ASTER reflectance and emissivity data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: 10.1016/j.jaesx.2025.100204_b0075
– volume: 15
  start-page: 1841
  year: 2022
  ident: 10.1016/j.jaesx.2025.100204_b0215
  article-title: Data integration for lithological mapping using machine learning algorithms
  publication-title: Earth Sci. Inform.
  doi: 10.1007/s12145-022-00826-3
– ident: 10.1016/j.jaesx.2025.100204_b0480
– volume: 180
  year: 2025
  ident: 10.1016/j.jaesx.2025.100204_b0085
  article-title: Remote sensing identification of hydrothermal alteration minerals in the Duobuza porphyry copper mining area in Tibet using WorldView-3 and GF-5 data: the impact of spatial and spectral resolution
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2025.106573
– volume: 14
  start-page: 1202
  year: 2024
  ident: 10.1016/j.jaesx.2025.100204_b0160
  article-title: Geochemical anomaly detection and pattern recognition: a combined study of the Apriori algorithm, principal component analysis, and spectral clustering
  publication-title: Minerals
  doi: 10.3390/min14121202
– volume: 10
  issue: 1190/1
  year: 2013
  ident: 10.1016/j.jaesx.2025.100204_b0190
  article-title: Geological Interpretation of Aeromagnetic Data
  publication-title: Australian Society of Exploration Geophysicists
– ident: 10.1016/j.jaesx.2025.100204_b0195
  doi: 10.1201/9781439808085
– ident: 10.1016/j.jaesx.2025.100204_b0415
– volume: 14
  start-page: 819
  year: 2022
  ident: 10.1016/j.jaesx.2025.100204_b0340
  article-title: A comparative study of convolutional neural networks and conventional machine learning models for lithological mapping using remote sensing data
  publication-title: Remote Sens.
  doi: 10.3390/rs14040819
– volume: 150
  year: 2022
  ident: 10.1016/j.jaesx.2025.100204_b0210
  article-title: Towards lithology mapping in semi-arid areas using time-series Landsat-8 data
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2022.105163
– volume: 11
  start-page: 3075
  year: 2018
  ident: 10.1016/j.jaesx.2025.100204_b0280
  article-title: Geological mapping in Western Tasmania using radar and random forests
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2018.2855207
– volume: 364
  start-page: 299
  year: 1993
  ident: 10.1016/j.jaesx.2025.100204_b0325
  article-title: Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia
  publication-title: Nature
  doi: 10.1038/364299a0
– volume: 146
  start-page: 90
  year: 2017
  ident: 10.1016/j.jaesx.2025.100204_b0265
  article-title: Integration of spectral, spatial and morphometric data into lithological mapping: a comparison of different machine learning algorithms in the Kurdistan region, NE Iraq
  publication-title: J. Asian Earth Sci.
  doi: 10.1016/j.jseaes.2017.05.005
– volume: 193
  year: 2024
  ident: 10.1016/j.jaesx.2025.100204_b0240
  article-title: Enhanced lithological mapping in arid crystalline regions using explainable AI and multi-spectral remote sensing data
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2024.105738
– volume: 5
  start-page: 23
  year: 1999
  ident: 10.1016/j.jaesx.2025.100204_b0305
  article-title: A terrain ruggedness index that quantifies topographic heterogeneity
  publication-title: Intermountain J. Sci.
– volume: 63
  start-page: 22
  year: 2014
  ident: 10.1016/j.jaesx.2025.100204_b0110
  article-title: Geological mapping using remote sensing data: a comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2013.10.008
– volume: 134
  start-page: 93
  year: 2019
  ident: 10.1016/j.jaesx.2025.100204_b0365
  article-title: A comparison of random forest variable selection methods for classification prediction modeling
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.05.028
– volume: 8
  start-page: 883
  year: 2016
  ident: 10.1016/j.jaesx.2025.100204_b0425
  article-title: Sentinel-2A MSI and Landsat 8 OLI provide data continuity for geological remote sensing
  publication-title: Remote Sens.
  doi: 10.3390/rs8110883
– volume: 5
  start-page: 3
  year: 1991
  ident: 10.1016/j.jaesx.2025.100204_b0235
  article-title: Digital terrain modelling: a review of hydrological, geomorphological, and biological applications
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.3360050103
– volume: 274
  year: 2025
  ident: 10.1016/j.jaesx.2025.100204_b0165
  article-title: A semi-supervised learning framework for intelligent mineral prospectivity mapping: Incorporation of the CatBoost and Gaussian mixture model algorithms
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2025.107755
– volume: 52
  start-page: 397
  year: 1986
  ident: 10.1016/j.jaesx.2025.100204_b0375
  article-title: Accuracy assessment: a user’s perspective
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 34
  start-page: 297
  year: 1915
  ident: 10.1016/j.jaesx.2025.100204_b0420
  article-title: Orography and geology of the Kentey Range in Mongolia
  publication-title: Geol. Kom. Izv
– volume: 45
  start-page: 229
  year: 2012
  ident: 10.1016/j.jaesx.2025.100204_b0455
  article-title: Towards automatic lithological classification from remote sensing data using support vector machines
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2011.11.019
– volume: 12
  start-page: 127
  year: 2021
  ident: 10.1016/j.jaesx.2025.100204_b0275
  article-title: Test set verification is an essential step in model building
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210X.13495
– ident: 10.1016/j.jaesx.2025.100204_b0045
  doi: 10.5194/egusphere-egu23-5684
– volume: 105
  year: 2021
  ident: 10.1016/j.jaesx.2025.100204_b0330
  article-title: Lithological mapping enhancement by integrating Sentinel-2 and gamma-ray data utilizing support vector machine: a case study from Egypt
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: 10.1016/j.jaesx.2025.100204_b0435
– volume: 17
  start-page: 1625
  year: 2024
  ident: 10.1016/j.jaesx.2025.100204_b0020
  article-title: Application of geophysical and multispectral imagery data for predictive mapping of a complex geo-tectonic unit: a case study of the East Vardar Ophiolite Zone, North-Macedonia
  publication-title: Earth Sci. Inform.
  doi: 10.1007/s12145-024-01243-4
– year: 1957
  ident: 10.1016/j.jaesx.2025.100204_b0220
– volume: 53–57
  year: 2018
  ident: 10.1016/j.jaesx.2025.100204_b0120
  article-title: Drone brings new advance of geological mapping in Mongolia: Opportunities and challenges
  publication-title: Mong. Geosci.
– volume: 129
  start-page: 445
  year: 2017
  ident: 10.1016/j.jaesx.2025.100204_b0230
  article-title: Integration of spectral, thermal, and textural features of ASTER data using Random Forests classification for lithological mapping
  publication-title: J. Afr. Earth Sc.
  doi: 10.1016/j.jafrearsci.2017.01.028
– volume: 4
  start-page: 59
  year: 2019
  ident: 10.1016/j.jaesx.2025.100204_b0300
  article-title: Lithological mapping in Sangan region in Northeast Iran using ASTER satellite data and image processing methods
  publication-title: Geol. Ecol. Landsc.
– volume: 13
  start-page: 914
  year: 2021
  ident: 10.1016/j.jaesx.2025.100204_b0360
  article-title: Mapping alteration mineralogy in eastern Tsogttsetsii, Mongolia, based on the WorldView-3 and field shortwave-infrared spectroscopy analyses
  publication-title: Remote Sens.
  doi: 10.3390/rs13050914
– volume: 46
  start-page: 2005
  year: 2001
  ident: 10.1016/j.jaesx.2025.100204_b0430
  article-title: Geochronological evidence for existence of south Mongolian microcontinent—A zircon U-Pb age of grantoid gneisses from the Yagan-Onch Hayrhan Metamorphic Core complex
  publication-title: Chin. Sci. Bull.
  doi: 10.1007/BF02901917
– volume: 1
  start-page: 14
  year: 2011
  ident: 10.1016/j.jaesx.2025.100204_b0080
  article-title: Overview of geological research in Mongolia
  publication-title: Stratigraphy. Geol. Miner. Resour. Mong.
– volume: 26
  start-page: 37
  year: 2021
  ident: 10.1016/j.jaesx.2025.100204_b0245
  article-title: Lithological mapping using remote sensing techniques: a case study of Alagbayan area, Dornogobi Province, Mongolia
  publication-title: Mong. Geosci.
  doi: 10.5564/mgs.v26i53.1790
– volume: 2
  start-page: 4
  year: 2019
  ident: 10.1016/j.jaesx.2025.100204_b0010
  article-title: The changing use-cases of medium and large-scale geological maps in Hungary
  publication-title: Proc. Int. Cartogr. Assoc.
  doi: 10.5194/ica-proc-2-4-2019
– ident: 10.1016/j.jaesx.2025.100204_b0035
– volume: 14
  start-page: 202
  year: 2024
  ident: 10.1016/j.jaesx.2025.100204_b0050
  article-title: Machine learning-based lithological mapping from ASTER remote-sensing imagery
  publication-title: Minerals
  doi: 10.3390/min14020202
– year: 1986
  ident: 10.1016/j.jaesx.2025.100204_b0200
– volume: 2013
  start-page: 1
  year: 2013
  ident: 10.1016/j.jaesx.2025.100204_b0115
  article-title: Supervised and unsupervised classification of near-mine soil geochemistry and geophysics data
  publication-title: ASEG Extended Abstract.
  doi: 10.1071/ASEG2013ab204
– ident: 10.1016/j.jaesx.2025.100204_b0090
  doi: 10.1007/978-981-99-8997-3_1
– volume: 4–1
  start-page: 7
  year: 2018
  ident: 10.1016/j.jaesx.2025.100204_b0345
  article-title: Topographic position index based landform analysis of Messaria (Ikaria Island, Greece)
  publication-title: Acta Geobalcanica.
– volume: 10
  start-page: 321
  year: 2001
  ident: 10.1016/j.jaesx.2025.100204_b0095
  article-title: Accuracy assessment and validation of remotely sensed and other spatial information
  publication-title: Int. J. Wildl. Fire
  doi: 10.1071/WF01031
– year: 2017
  ident: 10.1016/j.jaesx.2025.100204_b0320
– ident: 10.1016/j.jaesx.2025.100204_b0260
– year: 2004
  ident: 10.1016/j.jaesx.2025.100204_b0055
– volume: 1–31
  year: 2024
  ident: 10.1016/j.jaesx.2025.100204_b0140
  article-title: ASTER remote sensing data for detecting porphyry copper type alteration patterns in West Zafarghand Cu±Mo deposit
  publication-title: Iran. Int. J. Image Data Fusion
– volume: 164
  start-page: 31
  year: 2007
  ident: 10.1016/j.jaesx.2025.100204_b0440
  article-title: Tectonic models for accretion of the Central Asian Orogenic Belt
  publication-title: J. Geol. Soc.
  doi: 10.1144/0016-76492006-022
– year: 2018
  ident: 10.1016/j.jaesx.2025.100204_b0180
– volume: 14
  start-page: 3
  year: 2008
  ident: 10.1016/j.jaesx.2025.100204_b0395
  article-title: The critical role of volcano monitoring in risk reduction
  publication-title: Adv. Geosci.
  doi: 10.5194/adgeo-14-3-2008
SSID ssj0002856848
Score 2.3105402
Snippet [Display omitted] •Higher train-test splits increased variable influence in Random Forest models.•ALOS PALSAR DEM data showed the highest Gini index, aiding...
Geological mapping in remote and geologically complex regions can be substantially improved by integrating remote sensing data with machine learning...
SourceID doaj
crossref
elsevier
SourceType Open Website
Index Database
Publisher
StartPage 100204
SubjectTerms Geological mapping
Machine learning
Mongolia
PALSAR
Random forest
Sentinel-2
Title Potential of random forest machine learning algorithm for geological mapping using PALSAR and Sentinel-2A remote sensing data: A case study of Tsagaan-uul area, southern Mongolia
URI https://dx.doi.org/10.1016/j.jaesx.2025.100204
https://doaj.org/article/445ce18d84d14aa1b08d54c35049330f
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYsoKq4v5uDR4rZNsom3KoqIivgAbyXP6rK24u6Cv8tf6CRtZU968ZoMk5AJmW_K128IObRaC0OdTKT0NqE8c4lmLE-Ut3zojdc6qvPf3PLLJ3r1zJ4XWn0FTlgrD9we3DGlzLhUWEFtSpVK9VBYRk3OENpiLe7D64s5b6GYGsdPRowLKnqZoUjoGis3_cSKMGNRd7RrzdanoqjYv5CRFrLMxRpZ7eAhFO221smSqzfI110zC6QenGg8YHKxzRsg2MQHHd4iGdJB1_2hAjWpGiz4X6IFVK5_3NAySDFUEJjuFdwV1w_FPaAveAi-azdJsgI-HIbOwTTQ2tEq8EdPoACDuQ6iEm3YweNUVUrVyXw-AYWg8wimTSTK14BPRNVMXtUmebo4fzy7TLpeC4nJRBqkCy0TfqQEV8ZkKWd2qDNEX55KOhqGf7WkwNlUSWu9yI3zljJPHTdSj5zV-RZZrpvabRPAQcRUzihMA9RzKRWWeLmlI59KxdJ8QI76Yy_fW0mNsueajcsYpTJEqWyjNCCnITQ_pkEPOw7gLSm7W1L-dUsGhPeBLTto0UIGdPX62-o7_7H6LlkJLlsWzB5Znn3M3T5imZk-iNf2G7AA9FA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Potential+of+random+forest+machine+learning+algorithm+for+geological+mapping+using+PALSAR+and+Sentinel-2A+remote+sensing+data%3A+A+case+study+of+Tsagaan-uul+area%2C+southern+Mongolia&rft.jtitle=Journal+of+Asian+Earth+Sciences%3A+X&rft.au=Badrakh%2C+Munkhsuren&rft.au=Tserendash%2C+Narantsetseg&rft.au=Choindonjamts%2C+Erdenejargal&rft.au=Albert%2C+G%C3%A1sp%C3%A1r&rft.date=2025-12-01&rft.issn=2590-0560&rft.eissn=2590-0560&rft.volume=14&rft.spage=100204&rft_id=info:doi/10.1016%2Fj.jaesx.2025.100204&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jaesx_2025_100204
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-0560&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-0560&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-0560&client=summon