PACT-3D, a deep learning algorithm for pneumoperitoneum detection in abdominal CT scans

Delays or misdiagnoses in detecting pneumoperitoneum can significantly increase mortality and morbidity. We developed and validated a deep learning model designed to identify pneumoperitoneum in computed tomography images. The model is trained on abdominal scans from Far Eastern Memorial Hospital (J...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 15; no. 1; pp. 9660 - 7
Main Authors Chiu, I-Min, Huang, Teng-Yi, Ouyang, David, Lin, Wei-Che, Pan, Yi-Ju, Lu, Chia-Yin, Kuo, Kuei-Hong
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 07.11.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Delays or misdiagnoses in detecting pneumoperitoneum can significantly increase mortality and morbidity. We developed and validated a deep learning model designed to identify pneumoperitoneum in computed tomography images. The model is trained on abdominal scans from Far Eastern Memorial Hospital (January 2012–December 2021) and evaluated using a simulated test set (14,039 scans) and a prospective test set (6351 scans) collected from the same center between December 2022 and May 2023. External validation included 480 scans from Cedars-Sinai Medical Center. Overall, the model achieves a sensitivity of 0.81–0.83 and a specificity of 0.97–0.99 across retrospective, prospective, and external validation; sensitivity improves to 0.92–0.98 when cases with a small amount of free air (total volume <10 ml) are excluded. These findings suggest that the model can deliver accurate and consistent predictions for pneumoperitoneum in computed tomography scans with segmented masks, potentially accelerating diagnostic and treatment workflows in emergency care. CT scans are routinely used to diagnose pneumoperitoneum. Here the authors present a deep learning model for detecting pneumoperitoneum in abdominal CT scans, validated on datasets from Taiwan and the US, showing high accuracy and potential to accelerate diagnosis and treatment in emergency care.
AbstractList Delays or misdiagnoses in detecting pneumoperitoneum can significantly increase mortality and morbidity. We developed and validated a deep learning model designed to identify pneumoperitoneum in computed tomography images. The model is trained on abdominal scans from Far Eastern Memorial Hospital (January 2012-December 2021) and evaluated using a simulated test set (14,039 scans) and a prospective test set (6351 scans) collected from the same center between December 2022 and May 2023. External validation included 480 scans from Cedars-Sinai Medical Center. Overall, the model achieves a sensitivity of 0.81-0.83 and a specificity of 0.97-0.99 across retrospective, prospective, and external validation; sensitivity improves to 0.92-0.98 when cases with a small amount of free air (total volume <10 ml) are excluded. These findings suggest that the model can deliver accurate and consistent predictions for pneumoperitoneum in computed tomography scans with segmented masks, potentially accelerating diagnostic and treatment workflows in emergency care.Delays or misdiagnoses in detecting pneumoperitoneum can significantly increase mortality and morbidity. We developed and validated a deep learning model designed to identify pneumoperitoneum in computed tomography images. The model is trained on abdominal scans from Far Eastern Memorial Hospital (January 2012-December 2021) and evaluated using a simulated test set (14,039 scans) and a prospective test set (6351 scans) collected from the same center between December 2022 and May 2023. External validation included 480 scans from Cedars-Sinai Medical Center. Overall, the model achieves a sensitivity of 0.81-0.83 and a specificity of 0.97-0.99 across retrospective, prospective, and external validation; sensitivity improves to 0.92-0.98 when cases with a small amount of free air (total volume <10 ml) are excluded. These findings suggest that the model can deliver accurate and consistent predictions for pneumoperitoneum in computed tomography scans with segmented masks, potentially accelerating diagnostic and treatment workflows in emergency care.
Abstract Delays or misdiagnoses in detecting pneumoperitoneum can significantly increase mortality and morbidity. We developed and validated a deep learning model designed to identify pneumoperitoneum in computed tomography images. The model is trained on abdominal scans from Far Eastern Memorial Hospital (January 2012–December 2021) and evaluated using a simulated test set (14,039 scans) and a prospective test set (6351 scans) collected from the same center between December 2022 and May 2023. External validation included 480 scans from Cedars-Sinai Medical Center. Overall, the model achieves a sensitivity of 0.81–0.83 and a specificity of 0.97–0.99 across retrospective, prospective, and external validation; sensitivity improves to 0.92–0.98 when cases with a small amount of free air (total volume <10 ml) are excluded. These findings suggest that the model can deliver accurate and consistent predictions for pneumoperitoneum in computed tomography scans with segmented masks, potentially accelerating diagnostic and treatment workflows in emergency care.
Delays or misdiagnoses in detecting pneumoperitoneum can significantly increase mortality and morbidity. We developed and validated a deep learning model designed to identify pneumoperitoneum in computed tomography images. The model is trained on abdominal scans from Far Eastern Memorial Hospital (January 2012–December 2021) and evaluated using a simulated test set (14,039 scans) and a prospective test set (6351 scans) collected from the same center between December 2022 and May 2023. External validation included 480 scans from Cedars-Sinai Medical Center. Overall, the model achieves a sensitivity of 0.81–0.83 and a specificity of 0.97–0.99 across retrospective, prospective, and external validation; sensitivity improves to 0.92–0.98 when cases with a small amount of free air (total volume <10 ml) are excluded. These findings suggest that the model can deliver accurate and consistent predictions for pneumoperitoneum in computed tomography scans with segmented masks, potentially accelerating diagnostic and treatment workflows in emergency care.CT scans are routinely used to diagnose pneumoperitoneum. Here the authors present a deep learning model for detecting pneumoperitoneum in abdominal CT scans, validated on datasets from Taiwan and the US, showing high accuracy and potential to accelerate diagnosis and treatment in emergency care.
Delays or misdiagnoses in detecting pneumoperitoneum can significantly increase mortality and morbidity. We developed and validated a deep learning model designed to identify pneumoperitoneum in computed tomography images. The model is trained on abdominal scans from Far Eastern Memorial Hospital (January 2012–December 2021) and evaluated using a simulated test set (14,039 scans) and a prospective test set (6351 scans) collected from the same center between December 2022 and May 2023. External validation included 480 scans from Cedars-Sinai Medical Center. Overall, the model achieves a sensitivity of 0.81–0.83 and a specificity of 0.97–0.99 across retrospective, prospective, and external validation; sensitivity improves to 0.92–0.98 when cases with a small amount of free air (total volume <10 ml) are excluded. These findings suggest that the model can deliver accurate and consistent predictions for pneumoperitoneum in computed tomography scans with segmented masks, potentially accelerating diagnostic and treatment workflows in emergency care. CT scans are routinely used to diagnose pneumoperitoneum. Here the authors present a deep learning model for detecting pneumoperitoneum in abdominal CT scans, validated on datasets from Taiwan and the US, showing high accuracy and potential to accelerate diagnosis and treatment in emergency care.
Delays or misdiagnoses in detecting pneumoperitoneum can significantly increase mortality and morbidity. We developed and validated a deep learning model designed to identify pneumoperitoneum in computed tomography images. The model is trained on abdominal scans from Far Eastern Memorial Hospital (January 2012-December 2021) and evaluated using a simulated test set (14,039 scans) and a prospective test set (6351 scans) collected from the same center between December 2022 and May 2023. External validation included 480 scans from Cedars-Sinai Medical Center. Overall, the model achieves a sensitivity of 0.81-0.83 and a specificity of 0.97-0.99 across retrospective, prospective, and external validation; sensitivity improves to 0.92-0.98 when cases with a small amount of free air (total volume <10 ml) are excluded. These findings suggest that the model can deliver accurate and consistent predictions for pneumoperitoneum in computed tomography scans with segmented masks, potentially accelerating diagnostic and treatment workflows in emergency care.
ArticleNumber 9660
Author Pan, Yi-Ju
Kuo, Kuei-Hong
Chiu, I-Min
Lu, Chia-Yin
Huang, Teng-Yi
Ouyang, David
Lin, Wei-Che
Author_xml – sequence: 1
  givenname: I-Min
  orcidid: 0000-0001-6876-8217
  surname: Chiu
  fullname: Chiu, I-Min
  email: outofray@hotmail.com
  organization: Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital
– sequence: 2
  givenname: Teng-Yi
  surname: Huang
  fullname: Huang, Teng-Yi
  organization: Department of Electrical Engineering, National Taiwan University of Science and Technology
– sequence: 3
  givenname: David
  orcidid: 0000-0002-3813-7518
  surname: Ouyang
  fullname: Ouyang, David
  organization: Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center
– sequence: 4
  givenname: Wei-Che
  surname: Lin
  fullname: Lin, Wei-Che
  organization: Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Thyroid Head and Neck Ablation Center, Kaohsiung Chang Gung Memorial Hospital, School of Medicine, College of Medicine, National Sun Yat-Sen University
– sequence: 5
  givenname: Yi-Ju
  surname: Pan
  fullname: Pan, Yi-Ju
  organization: Department of Psychiatry, Far Eastern Memorial Hospital, Department of Chemical Engineering and Materials Science, Yuan Ze University
– sequence: 6
  givenname: Chia-Yin
  surname: Lu
  fullname: Lu, Chia-Yin
  organization: Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine
– sequence: 7
  givenname: Kuei-Hong
  surname: Kuo
  fullname: Kuo, Kuei-Hong
  email: goman178@gmail.com
  organization: Division of Medical Image, Far Eastern Memorial Hospital, National Yang Ming Chiao Tung University School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39511229$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1v1DAQhiNURD_oH-CALHHhQMCfG_tYLV-VKsFhEUdr4oyXrBI72MmBf1_vphTEAV9mNPP4tWfey-osxIBV9YLRt4wK_S5LJjdNTbmslaRS1OxJdcGpZDVruDj7Kz-vrnM-0HKEYVrKZ9W5MIoxzs1F9f3rzXZXi_dvCJAOcSIDQgp92BMY9jH184-R-JjIFHAZ44SlEo9pgWd0cx8D6QOBtotjH2Ag2x3JDkJ-Xj31MGS8fohX1bePH3bbz_Xdl0-325u72nHNWK0QhNbYdNIb2TbYtXpDvdOqYU40ArhzwLRpvZLQKbXxWBrghVfUtU4xcVXdrrpdhIOdUj9C-mUj9PZUiGlvIc29G9CC5w4k12bDjxszgNhK1zE0hvIWRdF6vWpNKf5cMM927LPDYYCAcclWMK4FZ1LIgr76Bz3EJZUFnCilG0OFKhRfKZdizgn94wcZtUcX7eqiLS7ak4v2ONHLB-mlHbF7vPLbswKIFcilFfaY_rz9H9l741Onlw
Cites_doi 10.1002/bjs5.50290
10.1016/j.patrec.2019.11.020
10.1001/jama.298.8.865
10.1016/j.radi.2021.07.010
10.1016/j.annemergmed.2011.05.020
10.1016/j.ajem.2006.04.008
10.3390/info11020125
10.1016/j.suc.2006.09.006
10.3390/s20051516
10.1097/00003246-200007000-00078
10.23736/S2724-5691.21.08997-8
10.1016/j.ejrad.2022.110216
10.1016/j.ejrad.2021.109717
10.1001/jamanetworkopen.2023.5102
10.3810/pgm.2010.01.2101
10.1148/radiology.199.3.8637994
10.2214/AJR.07.2307
10.3389/fcvm.2023.1195235
10.1016/j.jmau.2016.04.004
10.1016/j.acra.2012.10.006
10.1177/2058460121989313
10.3389/fmed.2021.707437
10.1007/978-3-030-59713-9_23
10.1007/978-3-319-46723-8_49
10.1038/s41746-024-01269-4
10.1007/s10278-024-01156-0
10.1016/j.asoc.2022.109319
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PIMPY
PQEST
PQQKQ
PQUKI
RC3
SOI
7X8
DOA
DOI 10.1038/s41467-024-54043-1
DatabaseName Springer Nature OA/Free Journals*
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
Health Research Premium Collection
Natural Science Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Technology Collection
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Publicly Available Content Database

MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen website
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 7
ExternalDocumentID oai_doaj_org_article_af2ca42896254049aeeb4cd1e9902be3
10_1038_s41467_024_54043_1
39511229
Genre Journal Article
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADRAZ
AENEX
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M48
P64
PQEST
PQUKI
RC3
SOI
7X8
ID FETCH-LOGICAL-c2811-5ea388e7d4f94b7edb860fc8571c373a2cca189bf54ad556fe71caf3f50cbc513
IEDL.DBID 8FG
ISSN 2041-1723
IngestDate Mon Nov 11 19:41:30 EST 2024
Sat Nov 16 17:46:42 EST 2024
Fri Nov 08 03:14:07 EST 2024
Wed Nov 13 12:51:39 EST 2024
Thu Nov 28 20:46:34 EST 2024
Fri Nov 08 02:03:53 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2811-5ea388e7d4f94b7edb860fc8571c373a2cca189bf54ad556fe71caf3f50cbc513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3813-7518
0000-0001-6876-8217
OpenAccessLink https://www.proquest.com/docview/3125879035?pq-origsite=%requestingapplication%
PMID 39511229
PQID 3125879035
PQPubID 546298
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_af2ca42896254049aeeb4cd1e9902be3
proquest_miscellaneous_3128321434
proquest_journals_3125879035
crossref_primary_10_1038_s41467_024_54043_1
pubmed_primary_39511229
springer_journals_10_1038_s41467_024_54043_1
PublicationCentury 2000
PublicationDate 11-7-2024
PublicationDateYYYYMMDD 2024-11-07
PublicationDate_xml – month: 11
  year: 2024
  text: 11-7-2024
  day: 07
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Kocher (CR7) 2011; 58
Ordoñez, Puyana (CR4) 2006; 86
Makki (CR2) 2017; 5
Ali, Iqbal, Sayani (CR27) 2018; 10
Brejnebøl, Nielsen, Taubmann, Eibenberger, Müller (CR20) 2022; 150
Cheng (CR15) 2021; 8
CR19
CR18
Baheti, Pati, Menze, Bakas (CR25) 2023; 13769
CR17
Martín-Román (CR28) 2022; 77
Tiwari, Srivastava, Pant (CR24) 2020; 131
Larsen, Mikkelsen, Knudsen, Larsen (CR3) 2021; 10
CR13
Ruchman (CR11) 2007; 189
Shen, Chen, Yue, Xu (CR14) 2021; 139
CR31
Wechsler (CR9) 1996; 199
Immonen (CR12) 2022; 28
Saha, Roland, Hartman, Daffner (CR8) 2013; 20
Mills (CR6) 2010; 122
Thorisson (CR26) 2020; 4
Tieng, Grinberg, Li (CR10) 2007; 25
Chiu (CR16) 2023; 6
CR29
Mularski, Sippel, Osborne (CR1) 2000; 28
CR21
Cheng (CR22) 2023; 10
Buslaev (CR30) 2020; 11
Almotairi, Kareem, Aouf, Almutairi, Salem (CR23) 2020; 20
van Ruler (CR5) 2007; 298
I-M Chiu (54043_CR16) 2023; 6
MW Brejnebøl (54043_CR20) 2022; 150
54043_CR31
CY Cheng (54043_CR15) 2021; 8
AM Makki (54043_CR2) 2017; 5
M Ali (54043_CR27) 2018; 10
CA Ordoñez (54043_CR4) 2006; 86
C-Y Cheng (54043_CR22) 2023; 10
E Immonen (54043_CR12) 2022; 28
L Martín-Román (54043_CR28) 2022; 77
Y-T Shen (54043_CR14) 2021; 139
O van Ruler (54043_CR5) 2007; 298
S Almotairi (54043_CR23) 2020; 20
AM Mills (54043_CR6) 2010; 122
N Tieng (54043_CR10) 2007; 25
54043_CR29
54043_CR21
RJ Wechsler (54043_CR9) 1996; 199
A Tiwari (54043_CR24) 2020; 131
RA Mularski (54043_CR1) 2000; 28
NE Larsen (54043_CR3) 2021; 10
A Thorisson (54043_CR26) 2020; 4
A Saha (54043_CR8) 2013; 20
A Buslaev (54043_CR30) 2020; 11
54043_CR13
RB Ruchman (54043_CR11) 2007; 189
B Baheti (54043_CR25) 2023; 13769
KE Kocher (54043_CR7) 2011; 58
54043_CR17
54043_CR18
54043_CR19
References_xml – volume: 4
  start-page: 659
  year: 2020
  end-page: 665
  ident: CR26
  article-title: Diagnostic accuracy of acute diverticulitis with unenhanced low-dose CT
  publication-title: BJS Open
  doi: 10.1002/bjs5.50290
  contributor:
    fullname: Thorisson
– ident: CR18
– volume: 131
  start-page: 244
  year: 2020
  end-page: 260
  ident: CR24
  article-title: Brain tumor segmentation and classification from magnetic resonance images: Review of selected methods from 2014 to 2019
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2019.11.020
  contributor:
    fullname: Pant
– volume: 10
  year: 2018
  ident: CR27
  article-title: Accuracy of computed tomography in differentiating perforated from nonperforated appendicitis, taking histopathology as the gold standard
  publication-title: Cureus
  contributor:
    fullname: Sayani
– volume: 298
  start-page: 865
  year: 2007
  end-page: 872
  ident: CR5
  article-title: Comparison of on-demand vs planned relaparotomy strategy in patients with severe peritonitis: a randomized trial
  publication-title: Jama
  doi: 10.1001/jama.298.8.865
  contributor:
    fullname: van Ruler
– volume: 28
  start-page: 208
  year: 2022
  end-page: 214
  ident: CR12
  article-title: The use of deep learning towards dose optimization in low-dose computed tomography: A scoping review
  publication-title: Radiography
  doi: 10.1016/j.radi.2021.07.010
  contributor:
    fullname: Immonen
– volume: 13769
  start-page: 68
  year: 2023
  end-page: 79
  ident: CR25
  article-title: Leveraging 2D deep learning imagenet-trained models for native 3D medical image analysis
  publication-title: Brainlesion
  contributor:
    fullname: Bakas
– volume: 58
  start-page: 452
  year: 2011
  end-page: 462.e3
  ident: CR7
  article-title: National trends in use of computed tomography in the emergency department
  publication-title: Ann. Emerg. Med.
  doi: 10.1016/j.annemergmed.2011.05.020
  contributor:
    fullname: Kocher
– volume: 25
  start-page: 45
  year: 2007
  end-page: 48
  ident: CR10
  article-title: Discrepancies in interpretation of ED body computed tomographic scans by radiology residents
  publication-title: Am. J. Emerg. Med.
  doi: 10.1016/j.ajem.2006.04.008
  contributor:
    fullname: Li
– volume: 11
  start-page: 125
  year: 2020
  ident: CR30
  article-title: Albumentations: fast and flexible image augmentations
  publication-title: Information
  doi: 10.3390/info11020125
  contributor:
    fullname: Buslaev
– ident: CR29
– volume: 86
  start-page: 1323
  year: 2006
  end-page: 1349
  ident: CR4
  article-title: Management of peritonitis in the critically ill patient
  publication-title: Surg. Clin. North Am.
  doi: 10.1016/j.suc.2006.09.006
  contributor:
    fullname: Puyana
– volume: 20
  start-page: 1516
  year: 2020
  ident: CR23
  article-title: Liver tumor segmentation in CT scans using modified SegNet
  publication-title: Sensors
  doi: 10.3390/s20051516
  contributor:
    fullname: Salem
– volume: 28
  start-page: 2638
  year: 2000
  end-page: 2644
  ident: CR1
  article-title: Pneumoperitoneum: a review of nonsurgical causes
  publication-title: Crit. Care Med.
  doi: 10.1097/00003246-200007000-00078
  contributor:
    fullname: Osborne
– volume: 77
  start-page: 327
  year: 2022
  end-page: 334
  ident: CR28
  article-title: Relevance of pneumoperitoneum in the conservative approach to complicated acute diverticulitis. A retrospective study identifying risk factors associated with treatment failure
  publication-title: Minerva Surg.
  doi: 10.23736/S2724-5691.21.08997-8
  contributor:
    fullname: Martín-Román
– ident: CR21
– ident: CR19
– ident: CR17
– ident: CR31
– ident: CR13
– volume: 150
  year: 2022
  ident: CR20
  article-title: Artificial Intelligence based detection of pneumoperitoneum on CT scans in patients presenting with acute abdominal pain: a clinical diagnostic test accuracy study
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2022.110216
  contributor:
    fullname: Müller
– volume: 139
  year: 2021
  ident: CR14
  article-title: Artificial intelligence in ultrasound
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2021.109717
  contributor:
    fullname: Xu
– volume: 6
  start-page: e235102
  year: 2023
  end-page: e235102
  ident: CR16
  article-title: Use of a deep-learning algorithm to guide novices in performing focused assessment with sonography in trauma
  publication-title: JAMA Netw. Open
  doi: 10.1001/jamanetworkopen.2023.5102
  contributor:
    fullname: Chiu
– volume: 122
  start-page: 75
  year: 2010
  end-page: 81
  ident: CR6
  article-title: The impact of crowding on time until abdominal CT interpretation in emergency department patients with acute abdominal pain
  publication-title: Postgrad. Med.
  doi: 10.3810/pgm.2010.01.2101
  contributor:
    fullname: Mills
– volume: 199
  start-page: 717
  year: 1996
  end-page: 720
  ident: CR9
  article-title: Effects of training and experience in interpretation of emergency body CT scans
  publication-title: Radiology
  doi: 10.1148/radiology.199.3.8637994
  contributor:
    fullname: Wechsler
– volume: 189
  start-page: 523
  year: 2007
  end-page: 526
  ident: CR11
  article-title: Preliminary radiology resident interpretations versus final attending radiologist interpretations and the impact on patient care in a community hospital
  publication-title: Am. J. Roentgenol.
  doi: 10.2214/AJR.07.2307
  contributor:
    fullname: Ruchman
– volume: 10
  year: 2023
  ident: CR22
  article-title: Development and validation of a deep learning pipeline to measure pericardial effusion in echocardiography
  publication-title: Front. Cardiovasc. Med.
  doi: 10.3389/fcvm.2023.1195235
  contributor:
    fullname: Cheng
– volume: 5
  start-page: 28
  year: 2017
  end-page: 31
  ident: CR2
  article-title: The pattern of causes of pneumoperitoneum-induced peritonitis: results of an empirical study
  publication-title: J. Microsc Ultrastruct.
  doi: 10.1016/j.jmau.2016.04.004
  contributor:
    fullname: Makki
– volume: 20
  start-page: 284
  year: 2013
  end-page: 289
  ident: CR8
  article-title: Radiology medical student education: an outcome-based survey of PGY-1 residents
  publication-title: Acad. Radio.
  doi: 10.1016/j.acra.2012.10.006
  contributor:
    fullname: Daffner
– volume: 10
  start-page: 2058460121989313
  year: 2021
  ident: CR3
  article-title: Low-dose CT for diagnosing intestinal obstruction and pneumoperitoneum; need for retakes and diagnostic accuracy
  publication-title: Acta Radio. Open
  doi: 10.1177/2058460121989313
  contributor:
    fullname: Larsen
– volume: 8
  year: 2021
  ident: CR15
  article-title: Deep learning assisted detection of abdominal free fluid in Morison’s pouch during focused assessment with sonography in Trauma
  publication-title: Front. Med. (Lausanne)
  doi: 10.3389/fmed.2021.707437
  contributor:
    fullname: Cheng
– volume: 4
  start-page: 659
  year: 2020
  ident: 54043_CR26
  publication-title: BJS Open
  doi: 10.1002/bjs5.50290
  contributor:
    fullname: A Thorisson
– volume: 77
  start-page: 327
  year: 2022
  ident: 54043_CR28
  publication-title: Minerva Surg.
  doi: 10.23736/S2724-5691.21.08997-8
  contributor:
    fullname: L Martín-Román
– ident: 54043_CR19
  doi: 10.1007/978-3-030-59713-9_23
– ident: 54043_CR29
  doi: 10.1007/978-3-319-46723-8_49
– volume: 20
  start-page: 284
  year: 2013
  ident: 54043_CR8
  publication-title: Acad. Radio.
  doi: 10.1016/j.acra.2012.10.006
  contributor:
    fullname: A Saha
– volume: 58
  start-page: 452
  year: 2011
  ident: 54043_CR7
  publication-title: Ann. Emerg. Med.
  doi: 10.1016/j.annemergmed.2011.05.020
  contributor:
    fullname: KE Kocher
– volume: 131
  start-page: 244
  year: 2020
  ident: 54043_CR24
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2019.11.020
  contributor:
    fullname: A Tiwari
– ident: 54043_CR31
– volume: 8
  year: 2021
  ident: 54043_CR15
  publication-title: Front. Med. (Lausanne)
  doi: 10.3389/fmed.2021.707437
  contributor:
    fullname: CY Cheng
– volume: 139
  year: 2021
  ident: 54043_CR14
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2021.109717
  contributor:
    fullname: Y-T Shen
– volume: 122
  start-page: 75
  year: 2010
  ident: 54043_CR6
  publication-title: Postgrad. Med.
  doi: 10.3810/pgm.2010.01.2101
  contributor:
    fullname: AM Mills
– volume: 10
  year: 2023
  ident: 54043_CR22
  publication-title: Front. Cardiovasc. Med.
  doi: 10.3389/fcvm.2023.1195235
  contributor:
    fullname: C-Y Cheng
– volume: 6
  start-page: e235102
  year: 2023
  ident: 54043_CR16
  publication-title: JAMA Netw. Open
  doi: 10.1001/jamanetworkopen.2023.5102
  contributor:
    fullname: I-M Chiu
– ident: 54043_CR18
  doi: 10.1038/s41746-024-01269-4
– volume: 5
  start-page: 28
  year: 2017
  ident: 54043_CR2
  publication-title: J. Microsc Ultrastruct.
  doi: 10.1016/j.jmau.2016.04.004
  contributor:
    fullname: AM Makki
– ident: 54043_CR17
  doi: 10.1007/s10278-024-01156-0
– ident: 54043_CR21
– ident: 54043_CR13
  doi: 10.1016/j.asoc.2022.109319
– volume: 10
  start-page: 205846012198931
  year: 2021
  ident: 54043_CR3
  publication-title: Acta Radio. Open
  doi: 10.1177/2058460121989313
  contributor:
    fullname: NE Larsen
– volume: 28
  start-page: 208
  year: 2022
  ident: 54043_CR12
  publication-title: Radiography
  doi: 10.1016/j.radi.2021.07.010
  contributor:
    fullname: E Immonen
– volume: 86
  start-page: 1323
  year: 2006
  ident: 54043_CR4
  publication-title: Surg. Clin. North Am.
  doi: 10.1016/j.suc.2006.09.006
  contributor:
    fullname: CA Ordoñez
– volume: 10
  year: 2018
  ident: 54043_CR27
  publication-title: Cureus
  contributor:
    fullname: M Ali
– volume: 199
  start-page: 717
  year: 1996
  ident: 54043_CR9
  publication-title: Radiology
  doi: 10.1148/radiology.199.3.8637994
  contributor:
    fullname: RJ Wechsler
– volume: 25
  start-page: 45
  year: 2007
  ident: 54043_CR10
  publication-title: Am. J. Emerg. Med.
  doi: 10.1016/j.ajem.2006.04.008
  contributor:
    fullname: N Tieng
– volume: 28
  start-page: 2638
  year: 2000
  ident: 54043_CR1
  publication-title: Crit. Care Med.
  doi: 10.1097/00003246-200007000-00078
  contributor:
    fullname: RA Mularski
– volume: 298
  start-page: 865
  year: 2007
  ident: 54043_CR5
  publication-title: Jama
  doi: 10.1001/jama.298.8.865
  contributor:
    fullname: O van Ruler
– volume: 150
  year: 2022
  ident: 54043_CR20
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2022.110216
  contributor:
    fullname: MW Brejnebøl
– volume: 189
  start-page: 523
  year: 2007
  ident: 54043_CR11
  publication-title: Am. J. Roentgenol.
  doi: 10.2214/AJR.07.2307
  contributor:
    fullname: RB Ruchman
– volume: 13769
  start-page: 68
  year: 2023
  ident: 54043_CR25
  publication-title: Brainlesion
  contributor:
    fullname: B Baheti
– volume: 20
  start-page: 1516
  year: 2020
  ident: 54043_CR23
  publication-title: Sensors
  doi: 10.3390/s20051516
  contributor:
    fullname: S Almotairi
– volume: 11
  start-page: 125
  year: 2020
  ident: 54043_CR30
  publication-title: Information
  doi: 10.3390/info11020125
  contributor:
    fullname: A Buslaev
SSID ssj0000391844
Score 2.503501
Snippet Delays or misdiagnoses in detecting pneumoperitoneum can significantly increase mortality and morbidity. We developed and validated a deep learning model...
Abstract Delays or misdiagnoses in detecting pneumoperitoneum can significantly increase mortality and morbidity. We developed and validated a deep learning...
SourceID doaj
proquest
crossref
pubmed
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 9660
SubjectTerms 59
631/114/1305
692/700/1421/2025
Abdomen
Abdomen - diagnostic imaging
Adult
Aged
Algorithms
Computed tomography
Deep Learning
Emergency medical care
Emergency medical services
Female
Health care facilities
Health services
Humanities and Social Sciences
Humans
Machine learning
Male
Medical imaging
Middle Aged
Morbidity
multidisciplinary
Pneumoperitoneum - diagnostic imaging
Prospective Studies
Radiography, Abdominal - methods
Retrospective Studies
Science
Science (multidisciplinary)
Sensitivity and Specificity
Test sets
Tomography
Tomography, X-Ray Computed - methods
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yIHgR37auEsGb22w6j-70cR1dFkHxMIt7C5WksgpOz-DMHPbfbyXdM66oePHaCSGpSipfdVW-Yuw1BmE8NLJOkGKtrWxqQEOuigRDNhOFKi_kPn5qz871hwtzcaPUV84JG-mBR8EdQ5IBCCP3BNQ1wVlA9DrEBsmMSo8jz6eQN5ypYoNVT66Lnl7JCGWP17rYBLqSci5A5uX85SYqhP1_Qpm_RUjLxXN6j92dECM_GWd6n93C4QG7PdaQvHrIvnw-mc1r9e6IA4-IKz7Vgbjk8P1ySa7_1wUnYMpXA24Xy8xrnOm3twvqvClpWAP_NnDwcVnKe_HZnK9J3OtH7Pz0_Xx2Vk_VEuogbdPUBkFZi13Uqde-w-htK1KwpmuC6hRI0lVje5-MhmhMm5AaIKlkRPDBNOoxOxhoAk8ZD63wUoccRBQ0GgAKgBZtC6hjhK5ib3aSc6uRFMOVYLaybpSzIzm7ImfXVOxtFu6-Zya0Lh9IzW5Ss_uXmit2uFONm07Z2ilCZ7brhTIVe7VvpvORgx4w4HJb-pRiTEpX7Mmo0v1MVJ_hpuwrdrTT8c_B_76gZ_9jQc_ZHZk3Y_5D3R2yg82PLb4gfLPxL8tWvga9BPQ7
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA/Free Journals*
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDI9gCImXiW-6DRQk3lhFm482fdwK04QE4uEm9hY5iTOQuN6Ju3vYfz8n7R2aGA-8Nk6U2nFtx_XPjL1DX2kHtSgjxFAqI-oSUFOoIkDTNxMrmSvkvnxtzi_U50t9OcHkpFqYW_l7aT6sVFZlsiQphZ_gNO-zB2SD23Sa-6bf3ackpHOj1FQXc_fUW7YnQ_Tf5Vf-lRPNpubsMduffER-Mgr1CbuHw1P2cOwaef2Mff920s9K-fGYAw-ISz51frji8OtqQcH-jzknV5QvB9zMFwnJOAFub-ZEvM4_Xg3858DBhUVu6MX7GV8Rg1fP2cXZp1l_Xk79EUovTF2XGkEag21QsVOuxeBMU0VvdFt72UoQJJ3adC5qBUHrJiINQJRRV955XcsXbG-gDbxi3DeVE8qntGFFqwFgBdCgaQBVCNAW7P2Wc3Y5wmDYnL6Wxo58tsRnm_ls64KdJubuKBOEdX5AkrWTRliIwgMFPx1FYDStA0SnfKiR7KNwKAt2tBWNnfRqZSX5Y6btKqkL9nY3TBqR0hww4GKTaXL7JakK9nIU6W4nsksOpugKdryV8Z_F__1CB_9HfsgeiXTs0u1ze8T21r83-Jp8l7V7kw_tDUK35Ck
  priority: 102
  providerName: Springer Nature
Title PACT-3D, a deep learning algorithm for pneumoperitoneum detection in abdominal CT scans
URI https://link.springer.com/article/10.1038/s41467-024-54043-1
https://www.ncbi.nlm.nih.gov/pubmed/39511229
https://www.proquest.com/docview/3125879035
https://www.proquest.com/docview/3128321434
https://doaj.org/article/af2ca42896254049aeeb4cd1e9902be3
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1db9Mw0GKbkHhBfBMYlZF4Y9Hir8R5Ql1ZmSoxTdCJvlkX2ylINClL-8C_5-yknRAfT5Fsx7Lv7Pv2HSFvvM1UBYynNdQulZqzFLxCVYWDQprpMxFfyH28zC-u5WyhFoPBrRvCKnc0MRJq19pgIz8VyIl1UWZCvVv_SEPVqOBdHUpoHJAjxos8hPTp6Ye9jSVkP9dSDm9lMqFPOxkpAzKmEBEQsnP-xo9i2v6_yZp_-Ekj-5k-IPcHuZGOe0Q_JHd884jc7StJ_nxMvlyNJ_NUvD-hQJ33azpUg1hS-L7EbWy-riiKp3Td-O2qDdmNQxLu7QoHb2IwVkO_NRQq18YiX3Qypx0CvXtCrqfn88lFOtRMSC3XjKXKg9DaF07WpawK7yqdZ7XVqmBWFAI4YozpsqqVBKdUXnvsgFrUKrOVVUw8JYcNLuA5oTbPKi5tcCVmOBuAzwByr3Pw0jkoEvJ2Bzmz7lNjmOjSFtr0cDYIZxPhbFhCzgJw9yNDWuvY0N4szXBLDNTcAipEJWpl-FsJ3lfSOuaRZ_LKi4Qc71BjhrvWmduTkZDX-268JcH1AY1vt3FMLMkkZEKe9Sjdr0SUQejkZUJOdji-nfzfG3rx_7W8JPd4OGbBAl0ck8PNzda_QvllU43IQbEoRvGojsjReDz7PMPv2fnl1SdsneSTUbQM_ALilfEx
link.rule.ids 314,780,784,864,2102,12056,12765,21388,27924,27925,31719,31720,33373,33374,33744,33745,41120,42189,43310,43600,43805,51576,73745,74035,74302
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9QwDI5gEYIL4k1hgSBxY6tt82jTE1oGhgF2Vxxmxd4iN3EHJKYdtjMH_j1O2pkV4nFt0iixE9uxnc-MvUSX6RpykTbQ-FQZkaeAmq4qAjTJTMxkfCF3clrMztTHc30-Otz6Ma1yKxOjoPadCz7yQ0ma2JRVJvXr1Y80VI0K0dWxhMZVdk1JUt3hpfj0_c7HEtDPjVLjW5lMmsNeRclAiilkBAR0zt_0UYTt_5ut-UecNKqf6W12a7Qb-dHA6DvsCrZ32fWhkuTPe-zL56PJPJVvDzhwj7jiYzWIBYfvC1rG-uuSk3nKVy1ull1ANw4g3JsldV7HZKyWf2s51L6LRb74ZM57Inp_n51N380ns3SsmZA6YfI81QjSGCy9aipVl-hrU2SNM7rMnSwlCOJYbqq60Qq81kWD1ACNbHTmaqdz-YDttTSBR4y7IquFciGUmNFoAJgBFGgKQOU9lAl7taWcXQ3QGDaGtKWxA50t0dlGOts8YW8CcXc9A6x1_NBdLOx4Siw0wgFdiCq6ldFvFSDWyvkcSWeKGmXC9resseNZ6-3lzkjYi10znZIQ-oAWu03sE0sySZWwhwNLdzORVTA6RZWwgy2PLwf_94Ie_38uz9mN2fzk2B5_OP30hN0UYcsFb3S5z_bWFxt8SrbMun4WN-wvUoLuNA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELegE4iXic-RMcBIvLGojj8S5wlt3arxVVWoE3uzLo5TkGhSlvaB_56z63ZCfLzGjmXfne_OvvPvCHntLFMVZDxtoKlTqXmWglN4VOGgUGc6JsILuU-T_OJSvr9SVzH_qY9plVudGBR13Vl_Rz4UaIl1UTKhhk1Mi5iejd8uf6S-gpSPtMZyGrfJHlpFxgdk7_R8Mv28u3HxWOhayvhyhgk97GXQE2imfH6Ax-r8zToFEP-_eZ5_RE2DMRrfJ_vRi6QnG7Y_ILdc-5Dc2dSV_PmIfJmejGapODumQGvnljTWhphT-D7Hhay-Lig6q3TZuvWi81jHHpJ7vcDOq5Ca1dJvLYWq7kLJLzqa0R5Z0D8ml-Pz2egijRUUUst1lqXKgdDaFbVsSlkVrq50zhqrVZFZUQjgyL9Ml1WjJNRK5Y3DBmhEo5itrMrEEzJocQJPCbU5q7i0PrDIcDQAxwByp3Nwsq6hSMibLeXMcgOUYUKAW2izobNBOptAZ5Ml5NQTd9fTg1yHD9313MQ9Y6DhFvB4VOIZDX8rwblK2jpzaEF55URCjrasMXHn9eZGThLyateMe8YHQqB13Tr0CQWahEzIwYalu5mI0rugvEzI8ZbHN4P_e0GH_5_LS3IXpdV8fDf58Izc417i_NV0cUQGq-u1e46Ozap6ESX2F7_R89A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PACT-3D%2C+a+deep+learning+algorithm+for+pneumoperitoneum+detection+in+abdominal+CT+scans&rft.jtitle=Nature+communications&rft.au=Chiu%2C+I-Min&rft.au=Huang%2C+Teng-Yi&rft.au=Ouyang%2C+David&rft.au=Lin%2C+Wei-Che&rft.date=2024-11-07&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-024-54043-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_024_54043_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon