PACT-3D, a deep learning algorithm for pneumoperitoneum detection in abdominal CT scans
Delays or misdiagnoses in detecting pneumoperitoneum can significantly increase mortality and morbidity. We developed and validated a deep learning model designed to identify pneumoperitoneum in computed tomography images. The model is trained on abdominal scans from Far Eastern Memorial Hospital (J...
Saved in:
Published in | Nature communications Vol. 15; no. 1; pp. 9660 - 7 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
07.11.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Delays or misdiagnoses in detecting pneumoperitoneum can significantly increase mortality and morbidity. We developed and validated a deep learning model designed to identify pneumoperitoneum in computed tomography images. The model is trained on abdominal scans from Far Eastern Memorial Hospital (January 2012–December 2021) and evaluated using a simulated test set (14,039 scans) and a prospective test set (6351 scans) collected from the same center between December 2022 and May 2023. External validation included 480 scans from Cedars-Sinai Medical Center. Overall, the model achieves a sensitivity of 0.81–0.83 and a specificity of 0.97–0.99 across retrospective, prospective, and external validation; sensitivity improves to 0.92–0.98 when cases with a small amount of free air (total volume <10 ml) are excluded. These findings suggest that the model can deliver accurate and consistent predictions for pneumoperitoneum in computed tomography scans with segmented masks, potentially accelerating diagnostic and treatment workflows in emergency care.
CT scans are routinely used to diagnose pneumoperitoneum. Here the authors present a deep learning model for detecting pneumoperitoneum in abdominal CT scans, validated on datasets from Taiwan and the US, showing high accuracy and potential to accelerate diagnosis and treatment in emergency care. |
---|---|
AbstractList | Delays or misdiagnoses in detecting pneumoperitoneum can significantly increase mortality and morbidity. We developed and validated a deep learning model designed to identify pneumoperitoneum in computed tomography images. The model is trained on abdominal scans from Far Eastern Memorial Hospital (January 2012-December 2021) and evaluated using a simulated test set (14,039 scans) and a prospective test set (6351 scans) collected from the same center between December 2022 and May 2023. External validation included 480 scans from Cedars-Sinai Medical Center. Overall, the model achieves a sensitivity of 0.81-0.83 and a specificity of 0.97-0.99 across retrospective, prospective, and external validation; sensitivity improves to 0.92-0.98 when cases with a small amount of free air (total volume <10 ml) are excluded. These findings suggest that the model can deliver accurate and consistent predictions for pneumoperitoneum in computed tomography scans with segmented masks, potentially accelerating diagnostic and treatment workflows in emergency care.Delays or misdiagnoses in detecting pneumoperitoneum can significantly increase mortality and morbidity. We developed and validated a deep learning model designed to identify pneumoperitoneum in computed tomography images. The model is trained on abdominal scans from Far Eastern Memorial Hospital (January 2012-December 2021) and evaluated using a simulated test set (14,039 scans) and a prospective test set (6351 scans) collected from the same center between December 2022 and May 2023. External validation included 480 scans from Cedars-Sinai Medical Center. Overall, the model achieves a sensitivity of 0.81-0.83 and a specificity of 0.97-0.99 across retrospective, prospective, and external validation; sensitivity improves to 0.92-0.98 when cases with a small amount of free air (total volume <10 ml) are excluded. These findings suggest that the model can deliver accurate and consistent predictions for pneumoperitoneum in computed tomography scans with segmented masks, potentially accelerating diagnostic and treatment workflows in emergency care. Abstract Delays or misdiagnoses in detecting pneumoperitoneum can significantly increase mortality and morbidity. We developed and validated a deep learning model designed to identify pneumoperitoneum in computed tomography images. The model is trained on abdominal scans from Far Eastern Memorial Hospital (January 2012–December 2021) and evaluated using a simulated test set (14,039 scans) and a prospective test set (6351 scans) collected from the same center between December 2022 and May 2023. External validation included 480 scans from Cedars-Sinai Medical Center. Overall, the model achieves a sensitivity of 0.81–0.83 and a specificity of 0.97–0.99 across retrospective, prospective, and external validation; sensitivity improves to 0.92–0.98 when cases with a small amount of free air (total volume <10 ml) are excluded. These findings suggest that the model can deliver accurate and consistent predictions for pneumoperitoneum in computed tomography scans with segmented masks, potentially accelerating diagnostic and treatment workflows in emergency care. Delays or misdiagnoses in detecting pneumoperitoneum can significantly increase mortality and morbidity. We developed and validated a deep learning model designed to identify pneumoperitoneum in computed tomography images. The model is trained on abdominal scans from Far Eastern Memorial Hospital (January 2012–December 2021) and evaluated using a simulated test set (14,039 scans) and a prospective test set (6351 scans) collected from the same center between December 2022 and May 2023. External validation included 480 scans from Cedars-Sinai Medical Center. Overall, the model achieves a sensitivity of 0.81–0.83 and a specificity of 0.97–0.99 across retrospective, prospective, and external validation; sensitivity improves to 0.92–0.98 when cases with a small amount of free air (total volume <10 ml) are excluded. These findings suggest that the model can deliver accurate and consistent predictions for pneumoperitoneum in computed tomography scans with segmented masks, potentially accelerating diagnostic and treatment workflows in emergency care.CT scans are routinely used to diagnose pneumoperitoneum. Here the authors present a deep learning model for detecting pneumoperitoneum in abdominal CT scans, validated on datasets from Taiwan and the US, showing high accuracy and potential to accelerate diagnosis and treatment in emergency care. Delays or misdiagnoses in detecting pneumoperitoneum can significantly increase mortality and morbidity. We developed and validated a deep learning model designed to identify pneumoperitoneum in computed tomography images. The model is trained on abdominal scans from Far Eastern Memorial Hospital (January 2012–December 2021) and evaluated using a simulated test set (14,039 scans) and a prospective test set (6351 scans) collected from the same center between December 2022 and May 2023. External validation included 480 scans from Cedars-Sinai Medical Center. Overall, the model achieves a sensitivity of 0.81–0.83 and a specificity of 0.97–0.99 across retrospective, prospective, and external validation; sensitivity improves to 0.92–0.98 when cases with a small amount of free air (total volume <10 ml) are excluded. These findings suggest that the model can deliver accurate and consistent predictions for pneumoperitoneum in computed tomography scans with segmented masks, potentially accelerating diagnostic and treatment workflows in emergency care. CT scans are routinely used to diagnose pneumoperitoneum. Here the authors present a deep learning model for detecting pneumoperitoneum in abdominal CT scans, validated on datasets from Taiwan and the US, showing high accuracy and potential to accelerate diagnosis and treatment in emergency care. Delays or misdiagnoses in detecting pneumoperitoneum can significantly increase mortality and morbidity. We developed and validated a deep learning model designed to identify pneumoperitoneum in computed tomography images. The model is trained on abdominal scans from Far Eastern Memorial Hospital (January 2012-December 2021) and evaluated using a simulated test set (14,039 scans) and a prospective test set (6351 scans) collected from the same center between December 2022 and May 2023. External validation included 480 scans from Cedars-Sinai Medical Center. Overall, the model achieves a sensitivity of 0.81-0.83 and a specificity of 0.97-0.99 across retrospective, prospective, and external validation; sensitivity improves to 0.92-0.98 when cases with a small amount of free air (total volume <10 ml) are excluded. These findings suggest that the model can deliver accurate and consistent predictions for pneumoperitoneum in computed tomography scans with segmented masks, potentially accelerating diagnostic and treatment workflows in emergency care. |
ArticleNumber | 9660 |
Author | Pan, Yi-Ju Kuo, Kuei-Hong Chiu, I-Min Lu, Chia-Yin Huang, Teng-Yi Ouyang, David Lin, Wei-Che |
Author_xml | – sequence: 1 givenname: I-Min orcidid: 0000-0001-6876-8217 surname: Chiu fullname: Chiu, I-Min email: outofray@hotmail.com organization: Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital – sequence: 2 givenname: Teng-Yi surname: Huang fullname: Huang, Teng-Yi organization: Department of Electrical Engineering, National Taiwan University of Science and Technology – sequence: 3 givenname: David orcidid: 0000-0002-3813-7518 surname: Ouyang fullname: Ouyang, David organization: Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center – sequence: 4 givenname: Wei-Che surname: Lin fullname: Lin, Wei-Che organization: Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Thyroid Head and Neck Ablation Center, Kaohsiung Chang Gung Memorial Hospital, School of Medicine, College of Medicine, National Sun Yat-Sen University – sequence: 5 givenname: Yi-Ju surname: Pan fullname: Pan, Yi-Ju organization: Department of Psychiatry, Far Eastern Memorial Hospital, Department of Chemical Engineering and Materials Science, Yuan Ze University – sequence: 6 givenname: Chia-Yin surname: Lu fullname: Lu, Chia-Yin organization: Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine – sequence: 7 givenname: Kuei-Hong surname: Kuo fullname: Kuo, Kuei-Hong email: goman178@gmail.com organization: Division of Medical Image, Far Eastern Memorial Hospital, National Yang Ming Chiao Tung University School of Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39511229$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1v1DAQhiNURD_oH-CALHHhQMCfG_tYLV-VKsFhEUdr4oyXrBI72MmBf1_vphTEAV9mNPP4tWfey-osxIBV9YLRt4wK_S5LJjdNTbmslaRS1OxJdcGpZDVruDj7Kz-vrnM-0HKEYVrKZ9W5MIoxzs1F9f3rzXZXi_dvCJAOcSIDQgp92BMY9jH184-R-JjIFHAZ44SlEo9pgWd0cx8D6QOBtotjH2Ag2x3JDkJ-Xj31MGS8fohX1bePH3bbz_Xdl0-325u72nHNWK0QhNbYdNIb2TbYtXpDvdOqYU40ArhzwLRpvZLQKbXxWBrghVfUtU4xcVXdrrpdhIOdUj9C-mUj9PZUiGlvIc29G9CC5w4k12bDjxszgNhK1zE0hvIWRdF6vWpNKf5cMM927LPDYYCAcclWMK4FZ1LIgr76Bz3EJZUFnCilG0OFKhRfKZdizgn94wcZtUcX7eqiLS7ak4v2ONHLB-mlHbF7vPLbswKIFcilFfaY_rz9H9l741Onlw |
Cites_doi | 10.1002/bjs5.50290 10.1016/j.patrec.2019.11.020 10.1001/jama.298.8.865 10.1016/j.radi.2021.07.010 10.1016/j.annemergmed.2011.05.020 10.1016/j.ajem.2006.04.008 10.3390/info11020125 10.1016/j.suc.2006.09.006 10.3390/s20051516 10.1097/00003246-200007000-00078 10.23736/S2724-5691.21.08997-8 10.1016/j.ejrad.2022.110216 10.1016/j.ejrad.2021.109717 10.1001/jamanetworkopen.2023.5102 10.3810/pgm.2010.01.2101 10.1148/radiology.199.3.8637994 10.2214/AJR.07.2307 10.3389/fcvm.2023.1195235 10.1016/j.jmau.2016.04.004 10.1016/j.acra.2012.10.006 10.1177/2058460121989313 10.3389/fmed.2021.707437 10.1007/978-3-030-59713-9_23 10.1007/978-3-319-46723-8_49 10.1038/s41746-024-01269-4 10.1007/s10278-024-01156-0 10.1016/j.asoc.2022.109319 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PIMPY PQEST PQQKQ PQUKI RC3 SOI 7X8 DOA |
DOI | 10.1038/s41467-024-54043-1 |
DatabaseName | Springer Nature OA/Free Journals* Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management Health Research Premium Collection Natural Science Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Technology Collection Technology Research Database ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen website url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 7 |
ExternalDocumentID | oai_doaj_org_article_af2ca42896254049aeeb4cd1e9902be3 10_1038_s41467_024_54043_1 39511229 |
Genre | Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADRAZ AENEX AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M48 P64 PQEST PQUKI RC3 SOI 7X8 |
ID | FETCH-LOGICAL-c2811-5ea388e7d4f94b7edb860fc8571c373a2cca189bf54ad556fe71caf3f50cbc513 |
IEDL.DBID | 8FG |
ISSN | 2041-1723 |
IngestDate | Mon Nov 11 19:41:30 EST 2024 Sat Nov 16 17:46:42 EST 2024 Fri Nov 08 03:14:07 EST 2024 Wed Nov 13 12:51:39 EST 2024 Thu Nov 28 20:46:34 EST 2024 Fri Nov 08 02:03:53 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2024. The Author(s). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2811-5ea388e7d4f94b7edb860fc8571c373a2cca189bf54ad556fe71caf3f50cbc513 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3813-7518 0000-0001-6876-8217 |
OpenAccessLink | https://www.proquest.com/docview/3125879035?pq-origsite=%requestingapplication% |
PMID | 39511229 |
PQID | 3125879035 |
PQPubID | 546298 |
PageCount | 7 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_af2ca42896254049aeeb4cd1e9902be3 proquest_miscellaneous_3128321434 proquest_journals_3125879035 crossref_primary_10_1038_s41467_024_54043_1 pubmed_primary_39511229 springer_journals_10_1038_s41467_024_54043_1 |
PublicationCentury | 2000 |
PublicationDate | 11-7-2024 |
PublicationDateYYYYMMDD | 2024-11-07 |
PublicationDate_xml | – month: 11 year: 2024 text: 11-7-2024 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Kocher (CR7) 2011; 58 Ordoñez, Puyana (CR4) 2006; 86 Makki (CR2) 2017; 5 Ali, Iqbal, Sayani (CR27) 2018; 10 Brejnebøl, Nielsen, Taubmann, Eibenberger, Müller (CR20) 2022; 150 Cheng (CR15) 2021; 8 CR19 CR18 Baheti, Pati, Menze, Bakas (CR25) 2023; 13769 CR17 Martín-Román (CR28) 2022; 77 Tiwari, Srivastava, Pant (CR24) 2020; 131 Larsen, Mikkelsen, Knudsen, Larsen (CR3) 2021; 10 CR13 Ruchman (CR11) 2007; 189 Shen, Chen, Yue, Xu (CR14) 2021; 139 CR31 Wechsler (CR9) 1996; 199 Immonen (CR12) 2022; 28 Saha, Roland, Hartman, Daffner (CR8) 2013; 20 Mills (CR6) 2010; 122 Thorisson (CR26) 2020; 4 Tieng, Grinberg, Li (CR10) 2007; 25 Chiu (CR16) 2023; 6 CR29 Mularski, Sippel, Osborne (CR1) 2000; 28 CR21 Cheng (CR22) 2023; 10 Buslaev (CR30) 2020; 11 Almotairi, Kareem, Aouf, Almutairi, Salem (CR23) 2020; 20 van Ruler (CR5) 2007; 298 I-M Chiu (54043_CR16) 2023; 6 MW Brejnebøl (54043_CR20) 2022; 150 54043_CR31 CY Cheng (54043_CR15) 2021; 8 AM Makki (54043_CR2) 2017; 5 M Ali (54043_CR27) 2018; 10 CA Ordoñez (54043_CR4) 2006; 86 C-Y Cheng (54043_CR22) 2023; 10 E Immonen (54043_CR12) 2022; 28 L Martín-Román (54043_CR28) 2022; 77 Y-T Shen (54043_CR14) 2021; 139 O van Ruler (54043_CR5) 2007; 298 S Almotairi (54043_CR23) 2020; 20 AM Mills (54043_CR6) 2010; 122 N Tieng (54043_CR10) 2007; 25 54043_CR29 54043_CR21 RJ Wechsler (54043_CR9) 1996; 199 A Tiwari (54043_CR24) 2020; 131 RA Mularski (54043_CR1) 2000; 28 NE Larsen (54043_CR3) 2021; 10 A Thorisson (54043_CR26) 2020; 4 A Saha (54043_CR8) 2013; 20 A Buslaev (54043_CR30) 2020; 11 54043_CR13 RB Ruchman (54043_CR11) 2007; 189 B Baheti (54043_CR25) 2023; 13769 KE Kocher (54043_CR7) 2011; 58 54043_CR17 54043_CR18 54043_CR19 |
References_xml | – volume: 4 start-page: 659 year: 2020 end-page: 665 ident: CR26 article-title: Diagnostic accuracy of acute diverticulitis with unenhanced low-dose CT publication-title: BJS Open doi: 10.1002/bjs5.50290 contributor: fullname: Thorisson – ident: CR18 – volume: 131 start-page: 244 year: 2020 end-page: 260 ident: CR24 article-title: Brain tumor segmentation and classification from magnetic resonance images: Review of selected methods from 2014 to 2019 publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2019.11.020 contributor: fullname: Pant – volume: 10 year: 2018 ident: CR27 article-title: Accuracy of computed tomography in differentiating perforated from nonperforated appendicitis, taking histopathology as the gold standard publication-title: Cureus contributor: fullname: Sayani – volume: 298 start-page: 865 year: 2007 end-page: 872 ident: CR5 article-title: Comparison of on-demand vs planned relaparotomy strategy in patients with severe peritonitis: a randomized trial publication-title: Jama doi: 10.1001/jama.298.8.865 contributor: fullname: van Ruler – volume: 28 start-page: 208 year: 2022 end-page: 214 ident: CR12 article-title: The use of deep learning towards dose optimization in low-dose computed tomography: A scoping review publication-title: Radiography doi: 10.1016/j.radi.2021.07.010 contributor: fullname: Immonen – volume: 13769 start-page: 68 year: 2023 end-page: 79 ident: CR25 article-title: Leveraging 2D deep learning imagenet-trained models for native 3D medical image analysis publication-title: Brainlesion contributor: fullname: Bakas – volume: 58 start-page: 452 year: 2011 end-page: 462.e3 ident: CR7 article-title: National trends in use of computed tomography in the emergency department publication-title: Ann. Emerg. Med. doi: 10.1016/j.annemergmed.2011.05.020 contributor: fullname: Kocher – volume: 25 start-page: 45 year: 2007 end-page: 48 ident: CR10 article-title: Discrepancies in interpretation of ED body computed tomographic scans by radiology residents publication-title: Am. J. Emerg. Med. doi: 10.1016/j.ajem.2006.04.008 contributor: fullname: Li – volume: 11 start-page: 125 year: 2020 ident: CR30 article-title: Albumentations: fast and flexible image augmentations publication-title: Information doi: 10.3390/info11020125 contributor: fullname: Buslaev – ident: CR29 – volume: 86 start-page: 1323 year: 2006 end-page: 1349 ident: CR4 article-title: Management of peritonitis in the critically ill patient publication-title: Surg. Clin. North Am. doi: 10.1016/j.suc.2006.09.006 contributor: fullname: Puyana – volume: 20 start-page: 1516 year: 2020 ident: CR23 article-title: Liver tumor segmentation in CT scans using modified SegNet publication-title: Sensors doi: 10.3390/s20051516 contributor: fullname: Salem – volume: 28 start-page: 2638 year: 2000 end-page: 2644 ident: CR1 article-title: Pneumoperitoneum: a review of nonsurgical causes publication-title: Crit. Care Med. doi: 10.1097/00003246-200007000-00078 contributor: fullname: Osborne – volume: 77 start-page: 327 year: 2022 end-page: 334 ident: CR28 article-title: Relevance of pneumoperitoneum in the conservative approach to complicated acute diverticulitis. A retrospective study identifying risk factors associated with treatment failure publication-title: Minerva Surg. doi: 10.23736/S2724-5691.21.08997-8 contributor: fullname: Martín-Román – ident: CR21 – ident: CR19 – ident: CR17 – ident: CR31 – ident: CR13 – volume: 150 year: 2022 ident: CR20 article-title: Artificial Intelligence based detection of pneumoperitoneum on CT scans in patients presenting with acute abdominal pain: a clinical diagnostic test accuracy study publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2022.110216 contributor: fullname: Müller – volume: 139 year: 2021 ident: CR14 article-title: Artificial intelligence in ultrasound publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2021.109717 contributor: fullname: Xu – volume: 6 start-page: e235102 year: 2023 end-page: e235102 ident: CR16 article-title: Use of a deep-learning algorithm to guide novices in performing focused assessment with sonography in trauma publication-title: JAMA Netw. Open doi: 10.1001/jamanetworkopen.2023.5102 contributor: fullname: Chiu – volume: 122 start-page: 75 year: 2010 end-page: 81 ident: CR6 article-title: The impact of crowding on time until abdominal CT interpretation in emergency department patients with acute abdominal pain publication-title: Postgrad. Med. doi: 10.3810/pgm.2010.01.2101 contributor: fullname: Mills – volume: 199 start-page: 717 year: 1996 end-page: 720 ident: CR9 article-title: Effects of training and experience in interpretation of emergency body CT scans publication-title: Radiology doi: 10.1148/radiology.199.3.8637994 contributor: fullname: Wechsler – volume: 189 start-page: 523 year: 2007 end-page: 526 ident: CR11 article-title: Preliminary radiology resident interpretations versus final attending radiologist interpretations and the impact on patient care in a community hospital publication-title: Am. J. Roentgenol. doi: 10.2214/AJR.07.2307 contributor: fullname: Ruchman – volume: 10 year: 2023 ident: CR22 article-title: Development and validation of a deep learning pipeline to measure pericardial effusion in echocardiography publication-title: Front. Cardiovasc. Med. doi: 10.3389/fcvm.2023.1195235 contributor: fullname: Cheng – volume: 5 start-page: 28 year: 2017 end-page: 31 ident: CR2 article-title: The pattern of causes of pneumoperitoneum-induced peritonitis: results of an empirical study publication-title: J. Microsc Ultrastruct. doi: 10.1016/j.jmau.2016.04.004 contributor: fullname: Makki – volume: 20 start-page: 284 year: 2013 end-page: 289 ident: CR8 article-title: Radiology medical student education: an outcome-based survey of PGY-1 residents publication-title: Acad. Radio. doi: 10.1016/j.acra.2012.10.006 contributor: fullname: Daffner – volume: 10 start-page: 2058460121989313 year: 2021 ident: CR3 article-title: Low-dose CT for diagnosing intestinal obstruction and pneumoperitoneum; need for retakes and diagnostic accuracy publication-title: Acta Radio. Open doi: 10.1177/2058460121989313 contributor: fullname: Larsen – volume: 8 year: 2021 ident: CR15 article-title: Deep learning assisted detection of abdominal free fluid in Morison’s pouch during focused assessment with sonography in Trauma publication-title: Front. Med. (Lausanne) doi: 10.3389/fmed.2021.707437 contributor: fullname: Cheng – volume: 4 start-page: 659 year: 2020 ident: 54043_CR26 publication-title: BJS Open doi: 10.1002/bjs5.50290 contributor: fullname: A Thorisson – volume: 77 start-page: 327 year: 2022 ident: 54043_CR28 publication-title: Minerva Surg. doi: 10.23736/S2724-5691.21.08997-8 contributor: fullname: L Martín-Román – ident: 54043_CR19 doi: 10.1007/978-3-030-59713-9_23 – ident: 54043_CR29 doi: 10.1007/978-3-319-46723-8_49 – volume: 20 start-page: 284 year: 2013 ident: 54043_CR8 publication-title: Acad. Radio. doi: 10.1016/j.acra.2012.10.006 contributor: fullname: A Saha – volume: 58 start-page: 452 year: 2011 ident: 54043_CR7 publication-title: Ann. Emerg. Med. doi: 10.1016/j.annemergmed.2011.05.020 contributor: fullname: KE Kocher – volume: 131 start-page: 244 year: 2020 ident: 54043_CR24 publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2019.11.020 contributor: fullname: A Tiwari – ident: 54043_CR31 – volume: 8 year: 2021 ident: 54043_CR15 publication-title: Front. Med. (Lausanne) doi: 10.3389/fmed.2021.707437 contributor: fullname: CY Cheng – volume: 139 year: 2021 ident: 54043_CR14 publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2021.109717 contributor: fullname: Y-T Shen – volume: 122 start-page: 75 year: 2010 ident: 54043_CR6 publication-title: Postgrad. Med. doi: 10.3810/pgm.2010.01.2101 contributor: fullname: AM Mills – volume: 10 year: 2023 ident: 54043_CR22 publication-title: Front. Cardiovasc. Med. doi: 10.3389/fcvm.2023.1195235 contributor: fullname: C-Y Cheng – volume: 6 start-page: e235102 year: 2023 ident: 54043_CR16 publication-title: JAMA Netw. Open doi: 10.1001/jamanetworkopen.2023.5102 contributor: fullname: I-M Chiu – ident: 54043_CR18 doi: 10.1038/s41746-024-01269-4 – volume: 5 start-page: 28 year: 2017 ident: 54043_CR2 publication-title: J. Microsc Ultrastruct. doi: 10.1016/j.jmau.2016.04.004 contributor: fullname: AM Makki – ident: 54043_CR17 doi: 10.1007/s10278-024-01156-0 – ident: 54043_CR21 – ident: 54043_CR13 doi: 10.1016/j.asoc.2022.109319 – volume: 10 start-page: 205846012198931 year: 2021 ident: 54043_CR3 publication-title: Acta Radio. Open doi: 10.1177/2058460121989313 contributor: fullname: NE Larsen – volume: 28 start-page: 208 year: 2022 ident: 54043_CR12 publication-title: Radiography doi: 10.1016/j.radi.2021.07.010 contributor: fullname: E Immonen – volume: 86 start-page: 1323 year: 2006 ident: 54043_CR4 publication-title: Surg. Clin. North Am. doi: 10.1016/j.suc.2006.09.006 contributor: fullname: CA Ordoñez – volume: 10 year: 2018 ident: 54043_CR27 publication-title: Cureus contributor: fullname: M Ali – volume: 199 start-page: 717 year: 1996 ident: 54043_CR9 publication-title: Radiology doi: 10.1148/radiology.199.3.8637994 contributor: fullname: RJ Wechsler – volume: 25 start-page: 45 year: 2007 ident: 54043_CR10 publication-title: Am. J. Emerg. Med. doi: 10.1016/j.ajem.2006.04.008 contributor: fullname: N Tieng – volume: 28 start-page: 2638 year: 2000 ident: 54043_CR1 publication-title: Crit. Care Med. doi: 10.1097/00003246-200007000-00078 contributor: fullname: RA Mularski – volume: 298 start-page: 865 year: 2007 ident: 54043_CR5 publication-title: Jama doi: 10.1001/jama.298.8.865 contributor: fullname: O van Ruler – volume: 150 year: 2022 ident: 54043_CR20 publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2022.110216 contributor: fullname: MW Brejnebøl – volume: 189 start-page: 523 year: 2007 ident: 54043_CR11 publication-title: Am. J. Roentgenol. doi: 10.2214/AJR.07.2307 contributor: fullname: RB Ruchman – volume: 13769 start-page: 68 year: 2023 ident: 54043_CR25 publication-title: Brainlesion contributor: fullname: B Baheti – volume: 20 start-page: 1516 year: 2020 ident: 54043_CR23 publication-title: Sensors doi: 10.3390/s20051516 contributor: fullname: S Almotairi – volume: 11 start-page: 125 year: 2020 ident: 54043_CR30 publication-title: Information doi: 10.3390/info11020125 contributor: fullname: A Buslaev |
SSID | ssj0000391844 |
Score | 2.503501 |
Snippet | Delays or misdiagnoses in detecting pneumoperitoneum can significantly increase mortality and morbidity. We developed and validated a deep learning model... Abstract Delays or misdiagnoses in detecting pneumoperitoneum can significantly increase mortality and morbidity. We developed and validated a deep learning... |
SourceID | doaj proquest crossref pubmed springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 9660 |
SubjectTerms | 59 631/114/1305 692/700/1421/2025 Abdomen Abdomen - diagnostic imaging Adult Aged Algorithms Computed tomography Deep Learning Emergency medical care Emergency medical services Female Health care facilities Health services Humanities and Social Sciences Humans Machine learning Male Medical imaging Middle Aged Morbidity multidisciplinary Pneumoperitoneum - diagnostic imaging Prospective Studies Radiography, Abdominal - methods Retrospective Studies Science Science (multidisciplinary) Sensitivity and Specificity Test sets Tomography Tomography, X-Ray Computed - methods |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yIHgR37auEsGb22w6j-70cR1dFkHxMIt7C5WksgpOz-DMHPbfbyXdM66oePHaCSGpSipfdVW-Yuw1BmE8NLJOkGKtrWxqQEOuigRDNhOFKi_kPn5qz871hwtzcaPUV84JG-mBR8EdQ5IBCCP3BNQ1wVlA9DrEBsmMSo8jz6eQN5ypYoNVT66Lnl7JCGWP17rYBLqSci5A5uX85SYqhP1_Qpm_RUjLxXN6j92dECM_GWd6n93C4QG7PdaQvHrIvnw-mc1r9e6IA4-IKz7Vgbjk8P1ySa7_1wUnYMpXA24Xy8xrnOm3twvqvClpWAP_NnDwcVnKe_HZnK9J3OtH7Pz0_Xx2Vk_VEuogbdPUBkFZi13Uqde-w-htK1KwpmuC6hRI0lVje5-MhmhMm5AaIKlkRPDBNOoxOxhoAk8ZD63wUoccRBQ0GgAKgBZtC6hjhK5ib3aSc6uRFMOVYLaybpSzIzm7ImfXVOxtFu6-Zya0Lh9IzW5Ss_uXmit2uFONm07Z2ilCZ7brhTIVe7VvpvORgx4w4HJb-pRiTEpX7Mmo0v1MVJ_hpuwrdrTT8c_B_76gZ_9jQc_ZHZk3Y_5D3R2yg82PLb4gfLPxL8tWvga9BPQ7 priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA/Free Journals* dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDI9gCImXiW-6DRQk3lhFm482fdwK04QE4uEm9hY5iTOQuN6Ju3vYfz8n7R2aGA-8Nk6U2nFtx_XPjL1DX2kHtSgjxFAqI-oSUFOoIkDTNxMrmSvkvnxtzi_U50t9OcHkpFqYW_l7aT6sVFZlsiQphZ_gNO-zB2SD23Sa-6bf3ackpHOj1FQXc_fUW7YnQ_Tf5Vf-lRPNpubsMduffER-Mgr1CbuHw1P2cOwaef2Mff920s9K-fGYAw-ISz51frji8OtqQcH-jzknV5QvB9zMFwnJOAFub-ZEvM4_Xg3858DBhUVu6MX7GV8Rg1fP2cXZp1l_Xk79EUovTF2XGkEag21QsVOuxeBMU0VvdFt72UoQJJ3adC5qBUHrJiINQJRRV955XcsXbG-gDbxi3DeVE8qntGFFqwFgBdCgaQBVCNAW7P2Wc3Y5wmDYnL6Wxo58tsRnm_ls64KdJubuKBOEdX5AkrWTRliIwgMFPx1FYDStA0SnfKiR7KNwKAt2tBWNnfRqZSX5Y6btKqkL9nY3TBqR0hww4GKTaXL7JakK9nIU6W4nsksOpugKdryV8Z_F__1CB_9HfsgeiXTs0u1ze8T21r83-Jp8l7V7kw_tDUK35Ck priority: 102 providerName: Springer Nature |
Title | PACT-3D, a deep learning algorithm for pneumoperitoneum detection in abdominal CT scans |
URI | https://link.springer.com/article/10.1038/s41467-024-54043-1 https://www.ncbi.nlm.nih.gov/pubmed/39511229 https://www.proquest.com/docview/3125879035 https://www.proquest.com/docview/3128321434 https://doaj.org/article/af2ca42896254049aeeb4cd1e9902be3 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1db9Mw0GKbkHhBfBMYlZF4Y9Hir8R5Ql1ZmSoxTdCJvlkX2ylINClL-8C_5-yknRAfT5Fsx7Lv7Pv2HSFvvM1UBYynNdQulZqzFLxCVYWDQprpMxFfyH28zC-u5WyhFoPBrRvCKnc0MRJq19pgIz8VyIl1UWZCvVv_SEPVqOBdHUpoHJAjxos8hPTp6Ye9jSVkP9dSDm9lMqFPOxkpAzKmEBEQsnP-xo9i2v6_yZp_-Ekj-5k-IPcHuZGOe0Q_JHd884jc7StJ_nxMvlyNJ_NUvD-hQJ33azpUg1hS-L7EbWy-riiKp3Td-O2qDdmNQxLu7QoHb2IwVkO_NRQq18YiX3Qypx0CvXtCrqfn88lFOtRMSC3XjKXKg9DaF07WpawK7yqdZ7XVqmBWFAI4YozpsqqVBKdUXnvsgFrUKrOVVUw8JYcNLuA5oTbPKi5tcCVmOBuAzwByr3Pw0jkoEvJ2Bzmz7lNjmOjSFtr0cDYIZxPhbFhCzgJw9yNDWuvY0N4szXBLDNTcAipEJWpl-FsJ3lfSOuaRZ_LKi4Qc71BjhrvWmduTkZDX-268JcH1AY1vt3FMLMkkZEKe9Sjdr0SUQejkZUJOdji-nfzfG3rx_7W8JPd4OGbBAl0ck8PNzda_QvllU43IQbEoRvGojsjReDz7PMPv2fnl1SdsneSTUbQM_ALilfEx |
link.rule.ids | 314,780,784,864,2102,12056,12765,21388,27924,27925,31719,31720,33373,33374,33744,33745,41120,42189,43310,43600,43805,51576,73745,74035,74302 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9QwDI5gEYIL4k1hgSBxY6tt82jTE1oGhgF2Vxxmxd4iN3EHJKYdtjMH_j1O2pkV4nFt0iixE9uxnc-MvUSX6RpykTbQ-FQZkaeAmq4qAjTJTMxkfCF3clrMztTHc30-Otz6Ma1yKxOjoPadCz7yQ0ma2JRVJvXr1Y80VI0K0dWxhMZVdk1JUt3hpfj0_c7HEtDPjVLjW5lMmsNeRclAiilkBAR0zt_0UYTt_5ut-UecNKqf6W12a7Qb-dHA6DvsCrZ32fWhkuTPe-zL56PJPJVvDzhwj7jiYzWIBYfvC1rG-uuSk3nKVy1ull1ANw4g3JsldV7HZKyWf2s51L6LRb74ZM57Inp_n51N380ns3SsmZA6YfI81QjSGCy9aipVl-hrU2SNM7rMnSwlCOJYbqq60Qq81kWD1ACNbHTmaqdz-YDttTSBR4y7IquFciGUmNFoAJgBFGgKQOU9lAl7taWcXQ3QGDaGtKWxA50t0dlGOts8YW8CcXc9A6x1_NBdLOx4Siw0wgFdiCq6ldFvFSDWyvkcSWeKGmXC9resseNZ6-3lzkjYi10znZIQ-oAWu03sE0sySZWwhwNLdzORVTA6RZWwgy2PLwf_94Ie_38uz9mN2fzk2B5_OP30hN0UYcsFb3S5z_bWFxt8SrbMun4WN-wvUoLuNA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELegE4iXic-RMcBIvLGojj8S5wlt3arxVVWoE3uzLo5TkGhSlvaB_56z63ZCfLzGjmXfne_OvvPvCHntLFMVZDxtoKlTqXmWglN4VOGgUGc6JsILuU-T_OJSvr9SVzH_qY9plVudGBR13Vl_Rz4UaIl1UTKhhk1Mi5iejd8uf6S-gpSPtMZyGrfJHlpFxgdk7_R8Mv28u3HxWOhayvhyhgk97GXQE2imfH6Ax-r8zToFEP-_eZ5_RE2DMRrfJ_vRi6QnG7Y_ILdc-5Dc2dSV_PmIfJmejGapODumQGvnljTWhphT-D7Hhay-Lig6q3TZuvWi81jHHpJ7vcDOq5Ca1dJvLYWq7kLJLzqa0R5Z0D8ml-Pz2egijRUUUst1lqXKgdDaFbVsSlkVrq50zhqrVZFZUQjgyL9Ml1WjJNRK5Y3DBmhEo5itrMrEEzJocQJPCbU5q7i0PrDIcDQAxwByp3Nwsq6hSMibLeXMcgOUYUKAW2izobNBOptAZ5Ml5NQTd9fTg1yHD9313MQ9Y6DhFvB4VOIZDX8rwblK2jpzaEF55URCjrasMXHn9eZGThLyateMe8YHQqB13Tr0CQWahEzIwYalu5mI0rugvEzI8ZbHN4P_e0GH_5_LS3IXpdV8fDf58Izc417i_NV0cUQGq-u1e46Ozap6ESX2F7_R89A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PACT-3D%2C+a+deep+learning+algorithm+for+pneumoperitoneum+detection+in+abdominal+CT+scans&rft.jtitle=Nature+communications&rft.au=Chiu%2C+I-Min&rft.au=Huang%2C+Teng-Yi&rft.au=Ouyang%2C+David&rft.au=Lin%2C+Wei-Che&rft.date=2024-11-07&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-024-54043-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_024_54043_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |