Antiferromagnet phase of a square Rydberg lattice in the ladder configuration

We study the Rydberg excitation of a square atomic lattice driven by a pumping and a coupling fields into the ladder configuration via Monte Carlo simulations based on density matrix equations. Single-atom Rydberg population can be very close to unit benefiting from the formation of a dark state suc...

Full description

Saved in:
Bibliographic Details
Published inThe European physical journal. D, Atomic, molecular, and optical physics Vol. 75; no. 9
Main Authors Zhai, Shang-Yu, Liu, Yi-Mou, Wu, Jin-Hui
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We study the Rydberg excitation of a square atomic lattice driven by a pumping and a coupling fields into the ladder configuration via Monte Carlo simulations based on density matrix equations. Single-atom Rydberg population can be very close to unit benefiting from the formation of a dark state such that the antiferromagnet (AFM) phase has been observed at finite two-photon detunings owing to moderate van der Waals ( vdW ) interactions. We note in particular that the pumping Rabi frequency is more important than the coupling Rabi frequency in manipulating the AFM phase to occur for specific pumping detunings, coupling detunings, and nearest-neighbor vdW potentials. Moreover, the AFM phase may enter a saturation regime in terms of its parameter region when the boundary effect of vdW interactions is negligible for a large enough lattice size.
AbstractList We study the Rydberg excitation of a square atomic lattice driven by a pumping and a coupling fields into the ladder configuration via Monte Carlo simulations based on density matrix equations. Single-atom Rydberg population can be very close to unit benefiting from the formation of a dark state such that the antiferromagnet (AFM) phase has been observed at finite two-photon detunings owing to moderate van der Waals (vdW) interactions. We note in particular that the pumping Rabi frequency is more important than the coupling Rabi frequency in manipulating the AFM phase to occur for specific pumping detunings, coupling detunings, and nearest-neighbor vdW potentials. Moreover, the AFM phase may enter a saturation regime in terms of its parameter region when the boundary effect of vdW interactions is negligible for a large enough lattice size.
We study the Rydberg excitation of a square atomic lattice driven by a pumping and a coupling fields into the ladder configuration via Monte Carlo simulations based on density matrix equations. Single-atom Rydberg population can be very close to unit benefiting from the formation of a dark state such that the antiferromagnet (AFM) phase has been observed at finite two-photon detunings owing to moderate van der Waals ( vdW ) interactions. We note in particular that the pumping Rabi frequency is more important than the coupling Rabi frequency in manipulating the AFM phase to occur for specific pumping detunings, coupling detunings, and nearest-neighbor vdW potentials. Moreover, the AFM phase may enter a saturation regime in terms of its parameter region when the boundary effect of vdW interactions is negligible for a large enough lattice size.
ArticleNumber 249
Author Liu, Yi-Mou
Zhai, Shang-Yu
Wu, Jin-Hui
Author_xml – sequence: 1
  givenname: Shang-Yu
  surname: Zhai
  fullname: Zhai, Shang-Yu
  organization: Center for Quantum Sciences and School of Physics, Northeast Normal University
– sequence: 2
  givenname: Yi-Mou
  surname: Liu
  fullname: Liu, Yi-Mou
  email: liuym605@nenu.edu.cn
  organization: Center for Quantum Sciences and School of Physics, Northeast Normal University
– sequence: 3
  givenname: Jin-Hui
  surname: Wu
  fullname: Wu, Jin-Hui
  email: jhwu@nenu.edu.cn
  organization: Center for Quantum Sciences and School of Physics, Northeast Normal University
BookMark eNqFkF1LwzAUhoNMcJv-BgNe1yVtPi_H8Asmguh1SNPTrmNLtqS92L-3s6KXXp1z4H3eA88MTXzwgNAtJfeUMrKAw7ZaJEoILzKS04yQXLBMXaApZQXLBJF68rsLcoVmKW3JkOJMTNHr0ndtDTGGvW08dPiwsQlwqLHF6djbCPj9VJUQG7yzXdc6wK3H3QaGs6ogYhd83TZ9tF0b_DW6rO0uwc3PnKPPx4eP1XO2fnt6WS3XmcsV6TLQuVScKVEr0Kq2FWVOc16pUuSKMcuFrCpa8kJzLVzpSiIsqaXWhdQut2UxR3dj7yGGYw-pM9vQRz-8NDmXTEpFczak5JhyMaQUoTaH2O5tPBlKzNmdObszozszuDPf7owaSDWSaSB8A_Gv_z_0C50Xdxs
Cites_doi 10.1103/PhysRevA.83.041802
10.1103/PhysRevA.94.011401
10.1103/RevModPhys.89.035002
10.1103/PhysRevLett.112.073901
10.1007/s11433-013-5177-3
10.1117/12.801914
10.1103/PhysRevLett.93.063001
10.1103/PhysRevA.65.031401
10.1007/s11128-011-0303-5
10.1103/PhysRevLett.121.123605
10.1088/1367-2630/17/11/113039
10.1103/PhysRevLett.110.195301
10.1103/PhysRevLett.113.123003
10.1103/PhysRevA.85.065401
10.1103/PhysRevA.87.053412
10.1103/PhysRevA.98.022109
10.1103/PhysRevLett.99.073002
10.1103/PhysRevLett.114.123601
10.1088/1361-6455/aa8d7c
10.1103/PhysRevA.94.051603
10.1103/PhysRevA.87.023827
10.1088/2058-9565/aa9c59
10.1103/PhysRevA.76.013413
10.1103/RevModPhys.82.2313
10.1126/science.aau1949
10.1103/PhysRevA.97.023424
10.1016/bs.aamop.2020.04.004
10.1103/PhysRevA.101.013417
10.1103/PhysRevA.87.023401
10.1140/epjst/e2016-60179-6
10.1103/PhysRevLett.98.180601
10.1103/PhysRevLett.112.040501
10.1103/PhysRevA.93.012306
10.1103/RevModPhys.83.863
10.1038/s41567-020-0918-5
10.1088/0953-4075/48/20/202001
10.1140/epjd/e2006-00140-1
10.1140/epjd/e2018-90164-1
10.1073/pnas.2015785118
10.1103/PhysRevA.90.021603
10.1038/nphys1614
10.1126/science.abg2530
ContentType Journal Article
Copyright The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2021
The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2021.
DBID AAYXX
CITATION
DOI 10.1140/epjd/s10053-021-00264-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1434-6079
ExternalDocumentID 10_1140_epjd_s10053_021_00264_8
GrantInformation_xml – fundername: national natural science foundation of china
  grantid: 11704063; 12074061
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -5F
-5G
-BR
-EM
-XW
-Y2
-~C
-~X
.86
.VR
06D
0R~
199
1SB
203
28-
29G
29Q
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
78A
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAJKR
AANZL
AARTL
AATNV
AATVU
AAUYE
AAYFA
AAYIU
AAYQN
ABDBF
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACBMV
ACBRV
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADTPH
ADURQ
ADYFF
ADZKW
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFFNX
AFQWF
AFWTZ
AFZKB
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHSBF
AHYZX
AI.
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BDATZ
BGNMA
CAG
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P9T
PF0
PT5
QOS
R89
R9I
RED
RID
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UPT
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WJK
WK8
YLTOR
Z45
Z7R
Z7X
Z7Y
Z83
Z88
~8M
AACDK
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
ZMTXR
ID FETCH-LOGICAL-c280t-e92785486f8e98fad14c955d8b62844a567dd1b539596cbcb06a0f799379c2ab3
IEDL.DBID AGYKE
ISSN 1434-6060
IngestDate Thu Oct 10 19:02:37 EDT 2024
Thu Sep 12 19:26:18 EDT 2024
Sat Dec 16 12:09:18 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c280t-e92785486f8e98fad14c955d8b62844a567dd1b539596cbcb06a0f799379c2ab3
PQID 2574778124
PQPubID 2043699
ParticipantIDs proquest_journals_2574778124
crossref_primary_10_1140_epjd_s10053_021_00264_8
springer_journals_10_1140_epjd_s10053_021_00264_8
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Atomic, Molecular, Optical and Plasma Physics
PublicationTitle The European physical journal. D, Atomic, molecular, and optical physics
PublicationTitleAbbrev Eur. Phys. J. D
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References FanH-QKumarSSedlacekJKüblerHKarimkashiSShafferJPJ. Phys. B At. Mol. Opt. Phys.2015482020001
van DitzhuijzenCSEKoenderinkAFNoordamLDvan LindenHBEur. Phys. J. D20064013172006EPJD...40...13V
DingD-SBuscheHShiB-SGuoG-CAdamsCSPhys. Rev. X202010021023
BaratoDPAdamsCSPhys. Rev. Lett.2014112040501
MüllerMMKölleALöwRPfauTCalarcoTMontangeroSPhys. Rev. A2013870534122013PhRvA..87e3412M
QianJDongG-JZhouLZhangW-PPhys. Rev. A2012850654012012PhRvA..85f5401Q
PetrosyanDMølmerKPhys. Rev. Lett.20141131230032014PhRvL.113l3003P
HöeningMAbdussalamWFleischhauerMPohlTPhys. Rev. A2014900216032014PhRvA..90b1603H
SamajdarRHoWWPichlerHLukinMDSachdevSProc. Natl. Acad. Sci. USA202142015785118
TretyakovDBRyabtsevIIBeterovIIEntinVMProc. SPIE2008702370230K2008SPIE.7023E..0KT
SiebererLMHuberSDAltmanEDiehlSPhys. Rev. Lett.20131101953012013PhRvL.110s5301S
HelmrichSAriasAWhitlockSPhys. Rev. A2018980221092018PhRvA..98b2109H
DagvadorjGFellowsJMMatyjaśkiewiczSMarchettiFMCarusottoISzymańskaMHPhys. Rev. X20155041028
WeimerHMüllerMLesanovskyIZollerPBüchlerHPNat. Phys.20106382388
N. S̆ibalić, C.G. Wade, C.S. Adams, K.J. Weatherill, T. Pohl, Phys. Rev. A 94, 011401(R) (2016)
Reza BakhtiariMHemmerichARitschHThorwartMPhys. Rev. Lett.20151141236012015PhRvL.114l3601B
AtesCPohlTPattardTRostJMPhys. Rev. A2007760134132007PhRvA..76a3413A
de OliveiraALManciniMWBagnatoVSMarcassaLGPhys. Rev. A200265031401(R)2002PhRvA..65c1401O
LanZ-HLiW-BLesanovskyIPhys. Rev. A201694051603(R)2016PhRvA..94e1603L
KollathCLäuchliAMAltmanEPhys. Rev. Lett.2007981806012007PhRvL..98r0601K
AbdussalamaWGilLIREur. Phys. J. Spec. Top.201622530193036
PetrosyanDMølmerKPhys. Rev. Lett.20181211236052018PhRvL.121l3605P
KhazaliMHeshamiKSimonCJ. Phys. B At. Mol. Opt. Phys.2017502153012017JPhB...50u5301K
AtesCSevinçliSPohlTPhys. Rev. A201183041802(R)2011PhRvA..83d1802A
PolkovnikovASenguptaKSilvaAVengalattoreMRev. Mod. Phys.2011838638832011RvMP...83..863P
SuS-LLiangE-JZhangSWenJ-JSunL-LJinZZhuA-DPhys. Rev. A2016930123062016PhRvA..93a2306S
BluvsteinDOmranALevineHKeeslingASemeghiniGEbadiSWangTTMichailidisAAMaskaraNHoWWChoiSSerbynMGreinerMVuletićVLukinMDScience2021371135513592021Sci...371.1355B4269297
SaffmanSWalkerTGMølmerKRev. Mod. Phys.201082231323552010RvMP...82.2313S
TongDFarooqiSMStanojevicJKrishnanSZhangY-PCôtéREylerEEGouldPLPhys. Rev. Lett.2004930630012004PhRvL..93f3001T
KamenskiAAManakovNLMokhnenkoSNOvsiannikovaVDZenischevaAAEur. Phys. J. D2018721742018EPJD...72..174K
MattioliMGlätzleAWLechnerWNew J. Phys.2015171130392015NJPh...17k3039M
VogtTViteauMChotiaAZhaoJ-MComparatDPilletPPhys. Rev. Lett.2007990730022007PhRvL..99g3002V
YoungJTBoulierTMagnanEGoldschmidtEAWilsonRMRolstonSLPhys. Rev. A2018970234242018PhRvA..97b3424Y
FanC-HRossiniDZhangH-XWuJ-HArtoniMLa RoccaGCPhys. Rev. A20201010134172020PhRvA.101a3417F
SchaussPQuantum Sci. Technol.201830230012018QS&T....3b3001S
JingM-YHuYMaJZhangHJiaS-TNat. Phys.202016911921
MokhberiAHennrichMKalerFSAdv. At. Mol. Opt. Phys.202069233277
WeimerHMüllerMBüchlerHPLesanovskyIQuantum Inf. Proc.2011108859062011QuIP...10..885W
BaurSTiarksDRempeGDürrSPhys. Rev. Lett.20141120739012014PhRvL.112g3901B
NguyenTLRaimondJMSayrinCCortiñasRCantat-MoltrechtTAssematFDotsenkoIGleyzesSHarocheSRouxGJolicoeurTBruneMPhys. Rev. X20188011032
DegenCLReinhardFCappellaroPRev. Mod. Phys.2017890350022017RvMP...89c5002D
RipkaFKüblerHLöwRPfauTScience20183624464492018Sci...362..446R
YanDCuiC-LLiuY-MSongL-JWuJ-HPhys. Rev. A2013870238272013PhRvA..87b3827Y
SunR-HYeM-YLinX-MSci. China Phys. Mech. Astron.201356175517592013SCPMA..56.1755S
HöningMMuthDPetrosyanDFleischhauerMPhys. Rev. A2013870234012013PhRvA..87b3401H
AA Kamenski (264_CR18) 2018; 72
C Ates (264_CR43) 2007; 76
D Petrosyan (264_CR26) 2018; 121
S Saffman (264_CR5) 2010; 82
D Petrosyan (264_CR19) 2014; 113
H Weimer (264_CR1) 2010; 6
A Polkovnikov (264_CR34) 2011; 83
T Vogt (264_CR15) 2007; 99
H-Q Fan (264_CR10) 2015; 48
S-L Su (264_CR21) 2016; 93
J Qian (264_CR38) 2012; 85
AL de Oliveira (264_CR12) 2002; 65
CL Degen (264_CR11) 2017; 89
H Weimer (264_CR3) 2011; 10
M Khazali (264_CR24) 2017; 50
A Mokhberi (264_CR8) 2020; 69
D Yan (264_CR16) 2013; 87
DB Tretyakov (264_CR7) 2008; 7023
M-Y Jing (264_CR9) 2020; 16
264_CR30
C Kollath (264_CR32) 2007; 98
Z-H Lan (264_CR40) 2016; 94
W Abdussalama (264_CR45) 2016; 225
D Tong (264_CR14) 2004; 93
DP Barato (264_CR6) 2014; 112
S Baur (264_CR20) 2014; 112
R-H Sun (264_CR22) 2013; 56
G Dagvadorj (264_CR33) 2015; 5
P Schauss (264_CR4) 2018; 3
C-H Fan (264_CR37) 2020; 101
S Helmrich (264_CR28) 2018; 98
CSE van Ditzhuijzen (264_CR13) 2006; 40
M Reza Bakhtiari (264_CR35) 2015; 114
TL Nguyen (264_CR2) 2018; 8
D Bluvstein (264_CR39) 2021; 371
M Mattioli (264_CR41) 2015; 17
D-S Ding (264_CR29) 2020; 10
LM Sieberer (264_CR31) 2013; 110
C Ates (264_CR44) 2011; 83
JT Young (264_CR17) 2018; 97
MM Müller (264_CR23) 2013; 87
M Höning (264_CR42) 2013; 87
R Samajdar (264_CR27) 2021; 4
F Ripka (264_CR25) 2018; 362
M Höening (264_CR36) 2014; 90
References_xml – volume: 83
  start-page: 041802(R)
  year: 2011
  ident: 264_CR44
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.83.041802
  contributor:
    fullname: C Ates
– ident: 264_CR30
  doi: 10.1103/PhysRevA.94.011401
– volume: 89
  start-page: 035002
  year: 2017
  ident: 264_CR11
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.89.035002
  contributor:
    fullname: CL Degen
– volume: 112
  start-page: 073901
  year: 2014
  ident: 264_CR20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.073901
  contributor:
    fullname: S Baur
– volume: 56
  start-page: 1755
  year: 2013
  ident: 264_CR22
  publication-title: Sci. China Phys. Mech. Astron.
  doi: 10.1007/s11433-013-5177-3
  contributor:
    fullname: R-H Sun
– volume: 7023
  start-page: 70230K
  year: 2008
  ident: 264_CR7
  publication-title: Proc. SPIE
  doi: 10.1117/12.801914
  contributor:
    fullname: DB Tretyakov
– volume: 93
  start-page: 063001
  year: 2004
  ident: 264_CR14
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.063001
  contributor:
    fullname: D Tong
– volume: 65
  start-page: 031401(R)
  year: 2002
  ident: 264_CR12
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.65.031401
  contributor:
    fullname: AL de Oliveira
– volume: 10
  start-page: 885
  year: 2011
  ident: 264_CR3
  publication-title: Quantum Inf. Proc.
  doi: 10.1007/s11128-011-0303-5
  contributor:
    fullname: H Weimer
– volume: 121
  start-page: 123605
  year: 2018
  ident: 264_CR26
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.123605
  contributor:
    fullname: D Petrosyan
– volume: 17
  start-page: 113039
  year: 2015
  ident: 264_CR41
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/17/11/113039
  contributor:
    fullname: M Mattioli
– volume: 110
  start-page: 195301
  year: 2013
  ident: 264_CR31
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.195301
  contributor:
    fullname: LM Sieberer
– volume: 113
  start-page: 123003
  year: 2014
  ident: 264_CR19
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.123003
  contributor:
    fullname: D Petrosyan
– volume: 85
  start-page: 065401
  year: 2012
  ident: 264_CR38
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.85.065401
  contributor:
    fullname: J Qian
– volume: 87
  start-page: 053412
  year: 2013
  ident: 264_CR23
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.87.053412
  contributor:
    fullname: MM Müller
– volume: 98
  start-page: 022109
  year: 2018
  ident: 264_CR28
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.98.022109
  contributor:
    fullname: S Helmrich
– volume: 99
  start-page: 073002
  year: 2007
  ident: 264_CR15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.073002
  contributor:
    fullname: T Vogt
– volume: 114
  start-page: 123601
  year: 2015
  ident: 264_CR35
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.123601
  contributor:
    fullname: M Reza Bakhtiari
– volume: 50
  start-page: 215301
  year: 2017
  ident: 264_CR24
  publication-title: J. Phys. B At. Mol. Opt. Phys.
  doi: 10.1088/1361-6455/aa8d7c
  contributor:
    fullname: M Khazali
– volume: 94
  start-page: 051603(R)
  year: 2016
  ident: 264_CR40
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.94.051603
  contributor:
    fullname: Z-H Lan
– volume: 87
  start-page: 023827
  year: 2013
  ident: 264_CR16
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.87.023827
  contributor:
    fullname: D Yan
– volume: 5
  start-page: 041028
  year: 2015
  ident: 264_CR33
  publication-title: Phys. Rev. X
  contributor:
    fullname: G Dagvadorj
– volume: 3
  start-page: 023001
  year: 2018
  ident: 264_CR4
  publication-title: Quantum Sci. Technol.
  doi: 10.1088/2058-9565/aa9c59
  contributor:
    fullname: P Schauss
– volume: 76
  start-page: 013413
  year: 2007
  ident: 264_CR43
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.76.013413
  contributor:
    fullname: C Ates
– volume: 10
  start-page: 021023
  year: 2020
  ident: 264_CR29
  publication-title: Phys. Rev. X
  contributor:
    fullname: D-S Ding
– volume: 82
  start-page: 2313
  year: 2010
  ident: 264_CR5
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.82.2313
  contributor:
    fullname: S Saffman
– volume: 362
  start-page: 446
  year: 2018
  ident: 264_CR25
  publication-title: Science
  doi: 10.1126/science.aau1949
  contributor:
    fullname: F Ripka
– volume: 97
  start-page: 023424
  year: 2018
  ident: 264_CR17
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.97.023424
  contributor:
    fullname: JT Young
– volume: 69
  start-page: 233
  year: 2020
  ident: 264_CR8
  publication-title: Adv. At. Mol. Opt. Phys.
  doi: 10.1016/bs.aamop.2020.04.004
  contributor:
    fullname: A Mokhberi
– volume: 101
  start-page: 013417
  year: 2020
  ident: 264_CR37
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.101.013417
  contributor:
    fullname: C-H Fan
– volume: 87
  start-page: 023401
  year: 2013
  ident: 264_CR42
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.87.023401
  contributor:
    fullname: M Höning
– volume: 225
  start-page: 3019
  year: 2016
  ident: 264_CR45
  publication-title: Eur. Phys. J. Spec. Top.
  doi: 10.1140/epjst/e2016-60179-6
  contributor:
    fullname: W Abdussalama
– volume: 98
  start-page: 180601
  year: 2007
  ident: 264_CR32
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.180601
  contributor:
    fullname: C Kollath
– volume: 112
  start-page: 040501
  year: 2014
  ident: 264_CR6
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.040501
  contributor:
    fullname: DP Barato
– volume: 93
  start-page: 012306
  year: 2016
  ident: 264_CR21
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.93.012306
  contributor:
    fullname: S-L Su
– volume: 83
  start-page: 863
  year: 2011
  ident: 264_CR34
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.83.863
  contributor:
    fullname: A Polkovnikov
– volume: 8
  start-page: 011032
  year: 2018
  ident: 264_CR2
  publication-title: Phys. Rev. X
  contributor:
    fullname: TL Nguyen
– volume: 16
  start-page: 911
  year: 2020
  ident: 264_CR9
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-020-0918-5
  contributor:
    fullname: M-Y Jing
– volume: 48
  start-page: 2020001
  year: 2015
  ident: 264_CR10
  publication-title: J. Phys. B At. Mol. Opt. Phys.
  doi: 10.1088/0953-4075/48/20/202001
  contributor:
    fullname: H-Q Fan
– volume: 40
  start-page: 13
  year: 2006
  ident: 264_CR13
  publication-title: Eur. Phys. J. D
  doi: 10.1140/epjd/e2006-00140-1
  contributor:
    fullname: CSE van Ditzhuijzen
– volume: 72
  start-page: 174
  year: 2018
  ident: 264_CR18
  publication-title: Eur. Phys. J. D
  doi: 10.1140/epjd/e2018-90164-1
  contributor:
    fullname: AA Kamenski
– volume: 4
  start-page: 2015785118
  year: 2021
  ident: 264_CR27
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2015785118
  contributor:
    fullname: R Samajdar
– volume: 90
  start-page: 021603
  year: 2014
  ident: 264_CR36
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.90.021603
  contributor:
    fullname: M Höening
– volume: 6
  start-page: 382
  year: 2010
  ident: 264_CR1
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1614
  contributor:
    fullname: H Weimer
– volume: 371
  start-page: 1355
  year: 2021
  ident: 264_CR39
  publication-title: Science
  doi: 10.1126/science.abg2530
  contributor:
    fullname: D Bluvstein
SSID ssj0002546
Score 2.3533664
Snippet We study the Rydberg excitation of a square atomic lattice driven by a pumping and a coupling fields into the ladder configuration via Monte Carlo simulations...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
SubjectTerms Antiferromagnetism
Applications of Nonlinear Dynamics and Chaos Theory
Atomic
Configurations
Coupling
Molecular
Optical and Plasma Physics
Physical Chemistry
Physics
Physics and Astronomy
Pumping
Quantum Information Technology
Quantum Physics
Rabi frequency
Regular Article - Atomic Physics
Spectroscopy/Spectrometry
Spintronics
Title Antiferromagnet phase of a square Rydberg lattice in the ladder configuration
URI https://link.springer.com/article/10.1140/epjd/s10053-021-00264-8
https://www.proquest.com/docview/2574778124
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BKyQW3ohCqTywpiRuHNtjiygIBAOiEp0s23F4FNLSpgP8euw8QIAEgjGKYinnL3ff-b67ABxgFUWGYuMprG2CQhPpsdg6w1gSHgbS1X1dv_PFZXQ6CM9uyM0CsPeji3TUriqSuaMuxtn6h2byELuGNwsaz8kKXPIQemwR6sRN_apBvXsyPD9-98KYlJ1FndCzJN0vtV0_LPU5Mn3QzS8V0jzw9FdhWLXvFHqTUXueqbZ-_T7N8c_vtAYrJRtF3QI-67Bg0g1YylWherYJF10nJTLT6fhJ3qYmQ5M7G_TQOEESzZ4tuAy6eomdQgw9yszJ6NB9iiyltJduMgmyyXZyfzsvULYFg_7x9dGpV_5_wdOY-ZlnOKbMZjRRwgxniYyDUHNCYqYiG9RCSSIax4EiHU54pJVWfiT9hDrGwzWWqrMNtXScmh1AnFEpO1gG7tBE0UApmxlJE_iaM66CsAF-ZXsxKcZsiKJl2hfOSqKwkrBWErmVBGtAs9ojUX53M2EdUEipIy0NCCqbf9z-ZcndfzyzB8s43zsnO2tCLZvOzb7lKZlqWUj2e73LVgnNFiwOcPcN8bLfcg
link.rule.ids 315,786,790,27955,27956,41114,41556,42183,42625,52144,52267
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BEYILO6KsPnANJK4T28cKAWUpB9RKhYtlOw57Wtr0AF-PnYWlB5A4RlGs5Hk88yZ-MwbYxyqKDMXGU1jbBIUm0mOxdYaxDDkJpNv3dfXO7auo1SXnvbD3_agvp3avtiRzT130s_UPzeAxdhVv1mo8pytw2QPx2DTMEBfmazDTPL25OP50wzgsS4saxLMs3S_FXb8M9TM0ffHNiS3SPPKcLMJt9c6F4OTpYJypA_0-0c7xXx-1BAslH0XNwoCWYcqkKzCb60L1aBXaTScmMsNh_0XepSZDg3sb9lA_QRKNXq15GXT9FjuNGHqWmRPSoYcUWVJpL11vEmTT7eThblzY2Rp0T447Ry2vPIHB05j5mWc4pszmNFHCDGeJjAOieRjGTEU2rBEZRjSOAxU2eMgjrbTyI-kn1HEerrFUjXWopf3UbADijErZwDJwv00UDZSyuZE0ga854yogdfAr8MWgaLQhiqJpXziURIGSsCiJHCXB6rBdTZIoV95IWBdEKHW0pQ5BhfnX7T-G3PzHM3sw1-q0L8Xl2dXFFszjfB6dCG0batlwbHYsa8nUbmmfH9-24OE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2xCMQFsYqy-sA1InEW28cKqMoqhKjEzbJjB4ogDW164O_xZKGCA0gcoyg-PE9m3sTvTQCOqU4Sy6j1NE1dg8Iy5XHjkqFRsYgChee-6He-uU36g-jyMX6cg_PWC1Op3dsjydrTgFOa8vKkMFkz29Y_scWLQfebiyAPNQbYSUQen4dFrI8Y6APa_UrING5MRmHkOb7uNzKvXxb6XqRmzPPHYWlVg3prsNqQR9Ktd3sd5my-AUuViDOdbMJNF5U_djwevamn3JakeHY1iowyosjk3cWCJfcfBgVd5FWVqHojw5w4BugucZAIcSBkw6dpHRRbMOidP5z2veZ3CV5KuV96VlDGXQOSZNwKnikTRKmIY8N14mpQpOKEGRPoOBSxSFKdaj9RfsaQoIiUKh1uw0I-yu0OEMGZUiFVAX7j0CzQ2jUyygZ-KrjQQdQBv8VHFvVUDFk7nH2JkMoaUukglRWkkndgv8VRNq_JRLp8ETGGHKMDQYvt7PYfS-7-45kjWL4768nri9urPVih1Z6jYGwfFsrx1B44hlHqwyp-PgHJycZp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antiferromagnet+phase+of+a+square+Rydberg+lattice+in+the+ladder+configuration&rft.jtitle=The+European+physical+journal.+D%2C+Atomic%2C+molecular%2C+and+optical+physics&rft.au=Zhai%2C+Shang-Yu&rft.au=Liu%2C+Yi-Mou&rft.au=Wu%2C+Jin-Hui&rft.date=2021-09-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1434-6060&rft.eissn=1434-6079&rft.volume=75&rft.issue=9&rft_id=info:doi/10.1140%2Fepjd%2Fs10053-021-00264-8&rft.externalDocID=10_1140_epjd_s10053_021_00264_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-6060&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-6060&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-6060&client=summon