A Newton-CG based barrier-augmented Lagrangian method for general nonconvex conic optimization

In this paper we consider finding an approximate second-order stationary point (SOSP) of general nonconvex conic optimization that minimizes a twice differentiable function subject to nonlinear equality constraints and also a convex conic constraint. In particular, we propose a Newton-conjugate grad...

Full description

Saved in:
Bibliographic Details
Published inComputational optimization and applications Vol. 89; no. 3; pp. 843 - 894
Main Authors He, Chuan, Huang, Heng, Lu, Zhaosong
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper we consider finding an approximate second-order stationary point (SOSP) of general nonconvex conic optimization that minimizes a twice differentiable function subject to nonlinear equality constraints and also a convex conic constraint. In particular, we propose a Newton-conjugate gradient (Newton-CG) based barrier-augmented Lagrangian method for finding an approximate SOSP of this problem. Under some mild assumptions, we show that our method enjoys a total inner iteration complexity of O ~ ( ϵ - 11 / 2 ) and an operation complexity of O ~ ( ϵ - 11 / 2 min { n , ϵ - 5 / 4 } ) for finding an ( ϵ , ϵ ) -SOSP of general nonconvex conic optimization with high probability. Moreover, under a constraint qualification, these complexity bounds are improved to O ~ ( ϵ - 7 / 2 ) and O ~ ( ϵ - 7 / 2 min { n , ϵ - 3 / 4 } ) , respectively. To the best of our knowledge, this is the first study on the complexity of finding an approximate SOSP of general nonconvex conic optimization. Preliminary numerical results are presented to demonstrate superiority of the proposed method over first-order methods in terms of solution quality.
AbstractList In this paper we consider finding an approximate second-order stationary point (SOSP) of general nonconvex conic optimization that minimizes a twice differentiable function subject to nonlinear equality constraints and also a convex conic constraint. In particular, we propose a Newton-conjugate gradient (Newton-CG) based barrier-augmented Lagrangian method for finding an approximate SOSP of this problem. Under some mild assumptions, we show that our method enjoys a total inner iteration complexity of O ~ ( ϵ - 11 / 2 ) and an operation complexity of O ~ ( ϵ - 11 / 2 min { n , ϵ - 5 / 4 } ) for finding an ( ϵ , ϵ ) -SOSP of general nonconvex conic optimization with high probability. Moreover, under a constraint qualification, these complexity bounds are improved to O ~ ( ϵ - 7 / 2 ) and O ~ ( ϵ - 7 / 2 min { n , ϵ - 3 / 4 } ) , respectively. To the best of our knowledge, this is the first study on the complexity of finding an approximate SOSP of general nonconvex conic optimization. Preliminary numerical results are presented to demonstrate superiority of the proposed method over first-order methods in terms of solution quality.
In this paper we consider finding an approximate second-order stationary point (SOSP) of general nonconvex conic optimization that minimizes a twice differentiable function subject to nonlinear equality constraints and also a convex conic constraint. In particular, we propose a Newton-conjugate gradient (Newton-CG) based barrier-augmented Lagrangian method for finding an approximate SOSP of this problem. Under some mild assumptions, we show that our method enjoys a total inner iteration complexity of O(& varepsilon;(-11/2)) and an operation complexity of O(& varepsilon;(-11/2)min{n,& varepsilon;(-5/4)}) for finding an (& varepsilon;,root & varepsilon;)-SOSP of general nonconvex conic optimization with high probability. Moreover, under a constraint qualification, these complexity bounds are improved to O(& varepsilon;(-7/2)) and O(& varepsilon;(-7/2m)in{n,& varepsilon;(-3/4)}), respectively. To the best of our knowledge, this is the first study on the complexity of finding an approximate SOSP of general nonconvex conic optimization. Preliminary numerical results are presented to demonstrate superiority of the proposed method over first-order methods in terms of solution quality.
Author Lu, Zhaosong
He, Chuan
Huang, Heng
Author_xml – sequence: 1
  givenname: Chuan
  surname: He
  fullname: He, Chuan
  organization: Department of Computer Science and Engineering, University of Minnesota, Department of Mathematics, Linköping University
– sequence: 2
  givenname: Heng
  surname: Huang
  fullname: Huang, Heng
  organization: Department of Computer Science, University of Maryland
– sequence: 3
  givenname: Zhaosong
  orcidid: 0000-0003-3277-7853
  surname: Lu
  fullname: Lu, Zhaosong
  email: zhaosong@umn.edu
  organization: Department of Industrial and Systems Engineering, University of Minnesota
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-207432$$DView record from Swedish Publication Index
BookMark eNp9kE1OwzAQhS1UJErhAqxyAcPYSZxkWRUoSBVsgCWWnUyCq8au7IQCp8fQiiWbedLovfn5TsnEOouEXDC4ZADFVWCQlxUFnlEAASkVR2TK8iKlvKyyCZlCxQUVAOkJOQ1hDQBVkfIpeZ0nD7gbnKWLZaJVwCZW7w16qsauRzvEzkp1XtnOKJv0OLy5JmmdTzq06NUmiafUzr7jRxLF1InbDqY3X2owzp6R41ZtAp4fdEaeb2-eFnd09bi8X8xXtOYlDBSLpmpUJliRsRozxcoS8yqtGkCNuY5a6EJjwxqmmpqJkutSK8ixEiJvRZbOCN3PDTvcjlpuvemV_5ROGXltXubS-U5uzCg5FFnKo5_v_bV3IXhs_xIM5A9RuScqI1H5S1SKGEoPS6LZdujl2o3exr_-S30DL1985g
Cites_doi 10.1016/j.jco.2018.11.001
10.1109/TSP.2009.2016892
10.1023/A:1015451203254
10.1007/s10107-011-0452-4
10.1007/978-3-030-12767-1_2
10.1137/1.9781611973365
10.1007/s10107-009-0286-5
10.1137/060654797
10.1023/A:1008705028512
10.1023/A:1008677427361
10.1137/0613066
10.1007/s10107-019-01362-7
10.1137/16M110280X
10.1007/s10107-004-0560-5
10.1137/15M1031631
10.1137/130915546
10.1145/3055399.3055464
10.1007/s10107-006-0706-8
10.1007/s10957-017-1071-x
10.1137/18M1216146
10.1137/15M1052834
10.1007/s10898-016-0475-8
10.1137/0805038
10.1109/TGRS.2010.2068053
10.1090/S0025-5718-97-00777-1
10.1007/s10107-014-0753-5
10.1007/s00186-017-0625-x
10.1137/22M1489824
10.1137/17M1134329
10.1023/A:1013764800871
10.1007/s10107-018-1290-4
10.1137/17M1114296
10.1109/TGRS.2006.888466
10.1137/21M1457011
10.1137/16M1108650
10.1093/imanum/draa021
10.1080/10556788.2018.1528250
10.1007/s10589-017-9937-2
10.1093/imanum/drx011
10.1137/19M130563X
10.2307/j.ctvcm4hcj
10.1137/17M1113898
10.1093/imanum/drz074
10.1007/s12532-015-0082-6
10.1137/0724076
10.1109/TSP.2019.2937282
10.1137/120869687
10.1109/TGRS.2009.2038483
10.1109/ICASSP43922.2022.9747124
10.1007/s10107-012-0617-9
10.1007/s10107-002-0360-8
10.1137/080718206
10.1007/s10107-004-0559-y
10.1016/j.orl.2017.09.005
10.1137/1.9781611970791
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
ADTPV
AOWAS
DG8
DOI 10.1007/s10589-024-00603-6
DatabaseName CrossRef
SwePub
SwePub Articles
SWEPUB Linköpings universitet
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Mathematics
EISSN 1573-2894
EndPage 894
ExternalDocumentID oai_DiVA_org_liu_207432
10_1007_s10589_024_00603_6
GrantInformation_xml – fundername: National Science Foundation
  grantid: IIS-2211491; IIS-2211492
  funderid: http://dx.doi.org/10.13039/100000001
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
7WY
88I
8AO
8FE
8FG
8FL
8FW
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFEXP
AFGCZ
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHQJS
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EBU
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9R
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
ZL0
ZMTXR
ZWQNP
~8M
~EX
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
CITATION
ABRTQ
ADTPV
AOWAS
DG8
PQGLB
ID FETCH-LOGICAL-c280t-e7d9da461741ce4a188e5939d0ebe5b9d07b7bed1d1adc1682b8ba05e9665f643
IEDL.DBID U2A
ISSN 0926-6003
1573-2894
IngestDate Thu Aug 21 07:07:29 EDT 2025
Tue Jul 01 00:44:28 EDT 2025
Thu May 22 04:31:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Augmented Lagrangian method
68Q25
Operation complexity
90C26
Newton-conjugate gradient method
Iteration complexity
Barrier method
90C30
Nonconvex conic optimization
49M05
49M15
Second-order stationary point
90C60
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c280t-e7d9da461741ce4a188e5939d0ebe5b9d07b7bed1d1adc1682b8ba05e9665f643
ORCID 0000-0003-3277-7853
PageCount 52
ParticipantIDs swepub_primary_oai_DiVA_org_liu_207432
crossref_primary_10_1007_s10589_024_00603_6
springer_journals_10_1007_s10589_024_00603_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal
PublicationTitle Computational optimization and applications
PublicationTitleAbbrev Comput Optim Appl
PublicationYear 2024
Publisher Springer US
Publisher_xml – name: Springer US
References HeCLuZPongTKA Newton-CG based augmented Lagrangian method for finding a second-order stationary point of nonconvex equality constrained optimization with complexity guaranteesSIAM J. Optim.2023333173417664622416
RuszczynskiANonlinear optimization2011NJPrinceton University Press
MiaoLQiHEndmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorizationIEEE Trans. Geosci. Remote Sens.2007453765777
M. F. Sahin, A. Eftekhari, A. Alacaoglu, F. Latorre, and V. Cevher. An inexact augmented Lagrangian framework for nonconvex optimization with nonlinear constraints. Adv. Neural Info. Process. Syst. 32, 632–650 (2019)
MartínezJMRaydanMCubic-regularization counterpart of a variable-norm trust-region method for unconstrained minimizationJ. Glob. Optim.20176823673853649544
BianWChenXYeYComplexity analysis of interior point algorithms for non-Lipschitz and nonconvex minimizationMath. Program.201514913013273300465
RoyerCWO’NeillMWrightSJA Newton-CG algorithm with complexity guarantees for smooth unconstrained optimizationMath. Program.202018014514884062843
HaeserGLiuHYeYOptimality condition and complexity analysis for linearly-constrained optimization without differentiability on the boundaryMath. Program.201917812632994019951
Allen-Zhu, Z., Li, Y.: Neon2: finding local minima via first-order oracles. Adv. Neural Info. Process. Syst. 31, 3716–3726 (2018)
ArmandPOmheniRA mixed logarithmic barrier-augmented Lagrangian method for nonlinear optimizationJ. Optim. Theory Appl.201717325235473634802
Carmon,Y., Duchi, J.C., Hinder, O., Sidford, A.:“Convex until proven guilty": dimension-free acceleration of gradient descent on non-convex functions. In: International conference on machine learning, pp. 654–663. PMLR, (2017)
CartisCGouldNITointPLDemetriouI PardalosPEvaluation complexity bounds for smooth constrained nonlinear optimization using scaled KKT conditions, high-order models and the criticality measure χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}Approximation and Optimization: Algorithms, Complexity and Applications2019NYSpringer526
CartisC GouldNITointPLOptimality of orders one to three and beyond: characterization and evaluation complexity in constrained nonconvex optimizationJ. Complex.20195368943953087
O’NeillMWrightSJA log-barrier Newton-CG method for bound constrained optimization with complexity guaranteesIMA J. Numer. Anal.2021411841214205053
KuczyńskiJWoźniakowskiHEstimating the largest eigenvalue by the power and Lanczos algorithms with a random startSIAM J. Matrix Anal. Appl.1992134109411221182715
ArmandPTranNNRapid infeasibility detection in a mixed logarithmic barrier-augmented Lagrangian method for nonlinear optimizationOptim. Methods Softw.201934599110134002763
BonnansJFLaunayGSequential quadratic programming with penalization of the displacementSIAM J. Optim.1995547928121358805
GrapigliaGNYuanY-XOn the complexity of an augmented Lagrangian method for nonconvex optimizationIMA J. Numer. Anal.2021412154615684246883
NesterovYPolyakBTCubic regularization of Newton method and its global performanceMath. Program.200610811772052229459
ZhaoXSunDTohKCA Newton-CG augmented Lagrangian method for semidefinite programmingSIAM J. Optim.2010204173717652600237
CartisCGouldNITointPLOn the evaluation complexity of constrained nonlinear least-squares and general constrained nonlinear optimization using second-order methodsSIAM J. Numer. Anal.20155328368513325759
LuSRazaviyaynMYangBHuangKHongMFinding second-order stationary points efficiently in smooth nonconvex linearly constrained optimization problemsAdv. Neural Info. Process. Syst.20203328112822
AndreaniRHaeserGRamosASilvaPJA second-order sequential optimality condition associated to the convergence of optimization algorithmsIMA J. Numer. Anal.2017374190219293712179
CartisCGouldNITointPLOn the evaluation complexity of cubic regularization methods for potentially rank-deficient nonlinear least-squares problems and its relevance to constrained nonlinear optimizationSIAM J. Optim.2013233155315743084179
ColemanTFLiuJYuanWA new trust-region algorithm for equality constrained optimizationComput. Optim. Appl.20022121771991883753
GoldfarbDPolyakRScheinbergKYuzefovichIA modified barrier-augmented Lagrangian method for constrained minimizationComput. Optim. Appl.199914155741704946
YangLSunDTohKCSDPNAL+: a majorized semismooth Newton-CG augmented Lagrangian method for semidefinite programming with nonnegative constraintsMath. Program. Comput.2015733313663384939
KuhlmannRBüskensCA primal-dual augmented Lagrangian penalty-interior-point filter line search algorithmMath. Method Oper. Res.20188734514833814593
CurtisFE RobinsonDPSamadiMComplexity analysis of a trust funnel algorithm for equality constrained optimizationSIAM J. Optim.2018282153315633799074
P. Dvurechensky and M. Staudigl. Hessian barrier algorithms for non-convex conic optimization. (2021) arXiv:2111.00100
Xu, Y., Jin, R., Yang, Y.: NEON+: Accelerated gradient methods for extracting negative curvature for non-convex optimization. (2017) arXiv:1712.01033
MoguerzaJMPrietoFJAn augmented Lagrangian interior-point method using directions of negative curvatureMath. Program.20039535736161969766
AndreaniRBirginEGMartínezJMSchuverdtMLOn augmented Lagrangian methods with general lower-level constraintsSIAM J. Optim.2008184128613092373302
RoyerCWWrightSJComplexity analysis of second-order line-search algorithms for smooth nonconvex optimizationSIAM J. Optim.2018282144814773799071
BirginEGGardenghiJMartínezJMSantosSATointPLEvaluation complexity for nonlinear constrained optimization using unscaled KKT conditions and high-order modelsSIAM J. Optim.20162629519673484405
Bhojanapalli, S., Neyshabur, B., Srebro, N.: Global optimality of local search for low rank matrix recovery. Adv. Neural Info. Process. Syst. 29, 3873–3881 (2016)
KanzowCSteckDAn example comparing the standard and safeguarded augmented Lagrangian methodsOper. Res. Lett.20174565986033724190
VanderbeiRJShannoDFAn interior-point algorithm for nonconvex nonlinear programmingComput. Optim. Appl.19991312312521704122
WaltzRAMoralesJLNocedalJOrbanDAn interior algorithm for nonlinear optimization that combines line search and trust region stepsMath. Program.200610733914082221821
WrightSJNowakRDFigueiredoMASparse reconstruction by separable approximationIEEE Trans. Signal Process.2009577247924932650165
BirginEGHaeserGRamosAAugmented Lagrangians with constrained subproblems and convergence to second-order stationary pointsComput. Optim. and Appl.201869151753742299
Park, D., Kyrillidis, A., Carmanis, C., Sanghavi, S.: Non-square matrix sensing without spurious local minima via the burer-monteiro approach. In Artificial intelligence and statistics, pp. 65–74. PMLR, (2017)
Bertsekas, D.P.: Nonlinear Programming. Athena Scientific. (1995)
HuckAGuillaumeMBlanc-TalonJMinimum dispersion constrained nonnegative matrix factorization to unmix hyperspectral dataIEEE Trans. Geosci. Remote Sens.201048625902602
CartisCGouldNITointPLAdaptive cubic regularisation methods for unconstrained optimization. Part I: motivation, convergence and numerical resultsMath. Program.201112722452952776701
C. Jin, P. Netrapalli, and M. I. Jordan. Accelerated gradient descent escapes saddle points faster than gradient descent. In: Conference on learning theory, pp. 1042–1085. (2018)
LiuXXiaWWangBZhangLAn approach based on constrained nonnegative matrix factorization to unmix hyperspectral dataIEEE Trans. Geosci. Remote Sens.2010492757772
BuenoLFMartínezJMOn the complexity of an inexact restoration method for constrained optimizationSIAM J. Optim.2020301801014046784
ConnARGouldNITointPLA globally convergent Lagrangian barrier algorithm for optimization with general inequality constraints and simple boundsMath. Comput.1997662172612881370850
Agarwal, N., Allen-Zhu, Z., Bullins, B., Hazan, E., Ma, T.: Finding approximate local minima faster than gradient descent. In: Proceedings of the 49th annual ACM SIGACT symposium on theory of computing, pp. 1195–1199 (2017)
Birgin, E. G., Martínez, J.M.: Practical augmented Lagrangian methods for constrained optimization. SIAM (2014)
CartisCGouldNITointPLOn the complexity of finding first-order critical points in constrained nonlinear optimizationMath. Program.20141441931063179956
LuZZhangYAn augmented Lagrangian approach for sparse principal component analysisMath. Program.201213511491932968253
CurtisFERobinsonDPRoyerCWWrightSJTrust-region Newton-CG with strong second-order complexity guarantees for nonconvex optimizationSIAM J. Optim.20213115185444211955
ChiYLuYMChenYNonconvex optimization meets low-rank matrix factorization: an overviewIEEE Trans. Signal Process.20196720523952694016283
CarmonYDuchiJGradient descent finds the cubic-regularized nonconvex newton stepSIAM J. Optim.2019293214621784000224
Xie, P., Wright, S.J.: Complexity of projected Newton methods for bound-constrained optimization. (2021) arXiv:2103.15989
Cifuentes, D., Moitra, A.: Polynomial time guarantees for the Burer-Monteiro method. (2019) arXiv:1912.01745
F. Goyens, A. Eftekhari, and N. Boumal. Computing second-order points under equality constraints: revisiting Fletcher’s augmented Lagrangian. (2022) arXiv:2204.01448
CurtisFERobinsonDPSamadiMA trust region algorithm with a worst-case iteration complexity of O(ϵ-3/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{O} (\epsilon ^{-3/2})$$\end{document} for nonconvex optimizationMath. Program.201611621323612930
ByrdRHSchnabelRBShultzGAA trust region algorithm for nonlinearly constrained optimizationSIAM J. Numer. Anal.198724511521170909071
NesterovYNemirovskiiAInterior-point polynomial algorit
JM Martínez (603_CR53) 2017; 68
R Andreani (603_CR4) 2017; 37
GN Grapiglia (603_CR41) 2021; 41
603_CR19
P Armand (603_CR7) 2019; 34
Y Carmon (603_CR20) 2018; 28
C He (603_CR44) 2023; 33
603_CR59
A Wächter (603_CR66) 2006; 106
603_CR13
J Kuczyński (603_CR48) 1992; 13
C Cartis (603_CR25) 2015; 53
Z Lu (603_CR52) 2012; 135
P Armand (603_CR6) 2017; 173
G Haeser (603_CR42) 2019; 178
LF Bueno (603_CR16) 2020; 30
Y Nesterov (603_CR56) 1994
RA Waltz (603_CR67) 2006; 107
C Cartis (603_CR27) 2019; 53
A Ruszczynski (603_CR62) 2011
EP De Carvalho (603_CR37) 2008; 200
M O’Neill (603_CR58) 2021; 41
JF Bonnans (603_CR15) 1995; 5
R Andreani (603_CR3) 2008; 18
L Miao (603_CR54) 2007; 45
M Argáez (603_CR5) 2002; 114
C Kanzow (603_CR47) 2017; 45
603_CR69
C Cartis (603_CR22) 2013; 23
D Goldfarb (603_CR39) 1999; 14
Y Chi (603_CR29) 2019; 67
SJ Wright (603_CR68) 2009; 57
Y Carmon (603_CR18) 2019; 29
S Lu (603_CR51) 2020; 33
RH Byrd (603_CR17) 1987; 24
CW Royer (603_CR60) 2020; 180
EG Birgin (603_CR12) 2018; 69
FE Curtis (603_CR34) 2021; 31
RJ Vanderbei (603_CR65) 1999; 13
603_CR63
603_CR64
EG Birgin (603_CR11) 2016; 26
603_CR71
Y Nesterov (603_CR57) 2006; 108
L Yang (603_CR72) 2015; 7
Y Xie (603_CR70) 2021; 86
TF Coleman (603_CR31) 2002; 21
AR Conn (603_CR33) 1997; 66
603_CR9
R Kuhlmann (603_CR49) 2018; 87
JM Moguerza (603_CR55) 2003; 95
C Cartis (603_CR23) 2014; 144
603_CR38
603_CR8
FE Curtis (603_CR35) 2016; 1
603_CR30
C Cartis (603_CR21) 2011; 127
X Zhao (603_CR73) 2010; 20
C Cartis (603_CR24) 2014; 144
CW Royer (603_CR61) 2018; 28
603_CR1
X Chen (603_CR28) 2017; 55
603_CR2
AR Conn (603_CR32) 2013
C He (603_CR43) 2023; 33
W Bian (603_CR10) 2015; 149
FE Curtis (603_CR36) 2018; 28
A Huck (603_CR45) 2010; 48
603_CR46
X Liu (603_CR50) 2010; 49
EG Birgin (603_CR14) 2017; 27
603_CR40
C Cartis (603_CR26) 2019
References_xml – reference: MartínezJMRaydanMCubic-regularization counterpart of a variable-norm trust-region method for unconstrained minimizationJ. Glob. Optim.20176823673853649544
– reference: YangLSunDTohKCSDPNAL+: a majorized semismooth Newton-CG augmented Lagrangian method for semidefinite programming with nonnegative constraintsMath. Program. Comput.2015733313663384939
– reference: ChiYLuYMChenYNonconvex optimization meets low-rank matrix factorization: an overviewIEEE Trans. Signal Process.20196720523952694016283
– reference: MiaoLQiHEndmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorizationIEEE Trans. Geosci. Remote Sens.2007453765777
– reference: CarmonYDuchiJGradient descent finds the cubic-regularized nonconvex newton stepSIAM J. Optim.2019293214621784000224
– reference: P. Dvurechensky and M. Staudigl. Hessian barrier algorithms for non-convex conic optimization. (2021) arXiv:2111.00100
– reference: O’NeillMWrightSJA log-barrier Newton-CG method for bound constrained optimization with complexity guaranteesIMA J. Numer. Anal.2021411841214205053
– reference: HeCLuZA Newton-CG based barrier method for finding a second-order stationary point of nonconvex conic optimization with complexity guaranteesSIAM J. Optim.2023332119112224605926
– reference: VanderbeiRJShannoDFAn interior-point algorithm for nonconvex nonlinear programmingComput. Optim. Appl.19991312312521704122
– reference: AndreaniRBirginEGMartínezJMSchuverdtMLOn augmented Lagrangian methods with general lower-level constraintsSIAM J. Optim.2008184128613092373302
– reference: BuenoLFMartínezJMOn the complexity of an inexact restoration method for constrained optimizationSIAM J. Optim.2020301801014046784
– reference: CurtisFE RobinsonDPSamadiMComplexity analysis of a trust funnel algorithm for equality constrained optimizationSIAM J. Optim.2018282153315633799074
– reference: WrightSJNowakRDFigueiredoMASparse reconstruction by separable approximationIEEE Trans. Signal Process.2009577247924932650165
– reference: Agarwal, N., Allen-Zhu, Z., Bullins, B., Hazan, E., Ma, T.: Finding approximate local minima faster than gradient descent. In: Proceedings of the 49th annual ACM SIGACT symposium on theory of computing, pp. 1195–1199 (2017)
– reference: CurtisFERobinsonDPRoyerCWWrightSJTrust-region Newton-CG with strong second-order complexity guarantees for nonconvex optimizationSIAM J. Optim.20213115185444211955
– reference: ArgáezMTapiaROn the global convergence of a modified augmented Lagrangian linesearch interior-point Newton method for nonlinear programmingJ. Optim. Theory Appl200211411251910852
– reference: Cifuentes, D., Moitra, A.: Polynomial time guarantees for the Burer-Monteiro method. (2019) arXiv:1912.01745
– reference: CartisCGouldNITointPLAdaptive cubic regularisation methods for unconstrained optimization. Part I: motivation, convergence and numerical resultsMath. Program.201112722452952776701
– reference: Birgin, E. G., Martínez, J.M.: Practical augmented Lagrangian methods for constrained optimization. SIAM (2014)
– reference: Allen-Zhu, Z., Li, Y.: Neon2: finding local minima via first-order oracles. Adv. Neural Info. Process. Syst. 31, 3716–3726 (2018)
– reference: Bertsekas, D.P.: Nonlinear Programming. Athena Scientific. (1995)
– reference: KuczyńskiJWoźniakowskiHEstimating the largest eigenvalue by the power and Lanczos algorithms with a random startSIAM J. Matrix Anal. Appl.1992134109411221182715
– reference: Park, D., Kyrillidis, A., Carmanis, C., Sanghavi, S.: Non-square matrix sensing without spurious local minima via the burer-monteiro approach. In Artificial intelligence and statistics, pp. 65–74. PMLR, (2017)
– reference: NesterovYPolyakBTCubic regularization of Newton method and its global performanceMath. Program.200610811772052229459
– reference: BirginEGMartínezJMThe use of quadratic regularization with a cubic descent condition for unconstrained optimizationSIAM J. Optim.2017272104910743659959
– reference: KuhlmannRBüskensCA primal-dual augmented Lagrangian penalty-interior-point filter line search algorithmMath. Method Oper. Res.20188734514833814593
– reference: WaltzRAMoralesJLNocedalJOrbanDAn interior algorithm for nonlinear optimization that combines line search and trust region stepsMath. Program.200610733914082221821
– reference: CartisCGouldNITointPLOn the evaluation complexity of constrained nonlinear least-squares and general constrained nonlinear optimization using second-order methodsSIAM J. Numer. Anal.20155328368513325759
– reference: ArmandPOmheniRA mixed logarithmic barrier-augmented Lagrangian method for nonlinear optimizationJ. Optim. Theory Appl.201717325235473634802
– reference: HaeserGLiuHYeYOptimality condition and complexity analysis for linearly-constrained optimization without differentiability on the boundaryMath. Program.201917812632994019951
– reference: RuszczynskiANonlinear optimization2011NJPrinceton University Press
– reference: BianWChenXYeYComplexity analysis of interior point algorithms for non-Lipschitz and nonconvex minimizationMath. Program.201514913013273300465
– reference: CarmonYDuchiJCHinderOSidfordAAccelerated methods for nonconvex optimizationSIAM J. Optim.2018282175117723814027
– reference: BirginEGGardenghiJMartínezJMSantosSATointPLEvaluation complexity for nonlinear constrained optimization using unscaled KKT conditions and high-order modelsSIAM J. Optim.20162629519673484405
– reference: CartisCGouldNITointPLDemetriouI PardalosPEvaluation complexity bounds for smooth constrained nonlinear optimization using scaled KKT conditions, high-order models and the criticality measure χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}Approximation and Optimization: Algorithms, Complexity and Applications2019NYSpringer526
– reference: M. F. Sahin, A. Eftekhari, A. Alacaoglu, F. Latorre, and V. Cevher. An inexact augmented Lagrangian framework for nonconvex optimization with nonlinear constraints. Adv. Neural Info. Process. Syst. 32, 632–650 (2019)
– reference: ArmandPTranNNRapid infeasibility detection in a mixed logarithmic barrier-augmented Lagrangian method for nonlinear optimizationOptim. Methods Softw.201934599110134002763
– reference: Thanh, O. V., Gillis, N., Lecron, F.: Bounded simplex-structured matrix factorization. In ICASSP 2022-2022 IEEE International conference on acoustics, speech and signal processing (ICASSP), pp. 9062–9066. IEEE, (2022)
– reference: KanzowCSteckDAn example comparing the standard and safeguarded augmented Lagrangian methodsOper. Res. Lett.20174565986033724190
– reference: ColemanTFLiuJYuanWA new trust-region algorithm for equality constrained optimizationComput. Optim. Appl.20022121771991883753
– reference: CurtisFERobinsonDPSamadiMA trust region algorithm with a worst-case iteration complexity of O(ϵ-3/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{O} (\epsilon ^{-3/2})$$\end{document} for nonconvex optimizationMath. Program.201611621323612930
– reference: GrapigliaGNYuanY-XOn the complexity of an augmented Lagrangian method for nonconvex optimizationIMA J. Numer. Anal.2021412154615684246883
– reference: LuSRazaviyaynMYangBHuangKHongMFinding second-order stationary points efficiently in smooth nonconvex linearly constrained optimization problemsAdv. Neural Info. Process. Syst.20203328112822
– reference: AndreaniRHaeserGRamosASilvaPJA second-order sequential optimality condition associated to the convergence of optimization algorithmsIMA J. Numer. Anal.2017374190219293712179
– reference: BirginEGHaeserGRamosAAugmented Lagrangians with constrained subproblems and convergence to second-order stationary pointsComput. Optim. and Appl.201869151753742299
– reference: CartisC GouldNITointPLOptimality of orders one to three and beyond: characterization and evaluation complexity in constrained nonconvex optimizationJ. Complex.20195368943953087
– reference: RoyerCWWrightSJComplexity analysis of second-order line-search algorithms for smooth nonconvex optimizationSIAM J. Optim.2018282144814773799071
– reference: WächterABieglerLTOn the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programmingMath. Program.2006106125572195616
– reference: ConnARGouldNITointPLA globally convergent Lagrangian barrier algorithm for optimization with general inequality constraints and simple boundsMath. Comput.1997662172612881370850
– reference: GoldfarbDPolyakRScheinbergKYuzefovichIA modified barrier-augmented Lagrangian method for constrained minimizationComput. Optim. Appl.199914155741704946
– reference: ByrdRHSchnabelRBShultzGAA trust region algorithm for nonlinearly constrained optimizationSIAM J. Numer. Anal.198724511521170909071
– reference: HeCLuZPongTKA Newton-CG based augmented Lagrangian method for finding a second-order stationary point of nonconvex equality constrained optimization with complexity guaranteesSIAM J. Optim.2023333173417664622416
– reference: Xu, Y., Jin, R., Yang, Y.: NEON+: Accelerated gradient methods for extracting negative curvature for non-convex optimization. (2017) arXiv:1712.01033
– reference: ConnARGouldGTointPLLANCELOT: a Fortran package for large-scale nonlinear optimization2013NYSpringer Science & Business Media
– reference: NesterovYNemirovskiiAInterior-point polynomial algorithms in convex programming1994PhiladelphiaSIAM
– reference: XieYWrightSJComplexity of proximal augmented Lagrangian for nonconvex optimization with nonlinear equality constraintsJ. Sci. Comput.20218631304213011
– reference: LuZZhangYAn augmented Lagrangian approach for sparse principal component analysisMath. Program.201213511491932968253
– reference: F. Goyens, A. Eftekhari, and N. Boumal. Computing second-order points under equality constraints: revisiting Fletcher’s augmented Lagrangian. (2022) arXiv:2204.01448
– reference: MoguerzaJMPrietoFJAn augmented Lagrangian interior-point method using directions of negative curvatureMath. Program.20039535736161969766
– reference: C. Jin, P. Netrapalli, and M. I. Jordan. Accelerated gradient descent escapes saddle points faster than gradient descent. In: Conference on learning theory, pp. 1042–1085. (2018)
– reference: Carmon,Y., Duchi, J.C., Hinder, O., Sidford, A.:“Convex until proven guilty": dimension-free acceleration of gradient descent on non-convex functions. In: International conference on machine learning, pp. 654–663. PMLR, (2017)
– reference: CartisCGouldNITointPLOn the evaluation complexity of cubic regularization methods for potentially rank-deficient nonlinear least-squares problems and its relevance to constrained nonlinear optimizationSIAM J. Optim.2013233155315743084179
– reference: ZhaoXSunDTohKCA Newton-CG augmented Lagrangian method for semidefinite programmingSIAM J. Optim.2010204173717652600237
– reference: ChenXGuoLLuZYeJJAn augmented Lagrangian method for non-Lipschitz nonconvex programmingSIAM J. Numer. Anal.20175511681933600369
– reference: RoyerCWO’NeillMWrightSJA Newton-CG algorithm with complexity guarantees for smooth unconstrained optimizationMath. Program.202018014514884062843
– reference: De CarvalhoEPdos Santos JúniorAMaTFReduced gradient method combined with augmented Lagrangian and barrier for the optimal power flow problemAppl. Math. Comput.200820025295362426585
– reference: BonnansJFLaunayGSequential quadratic programming with penalization of the displacementSIAM J. Optim.1995547928121358805
– reference: HuckAGuillaumeMBlanc-TalonJMinimum dispersion constrained nonnegative matrix factorization to unmix hyperspectral dataIEEE Trans. Geosci. Remote Sens.201048625902602
– reference: LiuXXiaWWangBZhangLAn approach based on constrained nonnegative matrix factorization to unmix hyperspectral dataIEEE Trans. Geosci. Remote Sens.2010492757772
– reference: Bhojanapalli, S., Neyshabur, B., Srebro, N.: Global optimality of local search for low rank matrix recovery. Adv. Neural Info. Process. Syst. 29, 3873–3881 (2016)
– reference: CartisCGouldNITointPLOn the complexity of finding first-order critical points in constrained nonlinear optimizationMath. Program.20141441931063179956
– reference: Xie, P., Wright, S.J.: Complexity of projected Newton methods for bound-constrained optimization. (2021) arXiv:2103.15989
– volume: 53
  start-page: 68
  year: 2019
  ident: 603_CR27
  publication-title: J. Complex.
  doi: 10.1016/j.jco.2018.11.001
– ident: 603_CR8
– volume: 57
  start-page: 2479
  issue: 7
  year: 2009
  ident: 603_CR68
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2009.2016892
– ident: 603_CR38
– ident: 603_CR63
– volume: 114
  start-page: 1
  issue: 1
  year: 2002
  ident: 603_CR5
  publication-title: J. Optim. Theory Appl
  doi: 10.1023/A:1015451203254
– ident: 603_CR30
– ident: 603_CR19
– volume: 135
  start-page: 149
  issue: 1
  year: 2012
  ident: 603_CR52
  publication-title: Math. Program.
  doi: 10.1007/s10107-011-0452-4
– start-page: 5
  volume-title: Approximation and Optimization: Algorithms, Complexity and Applications
  year: 2019
  ident: 603_CR26
  doi: 10.1007/978-3-030-12767-1_2
– ident: 603_CR13
  doi: 10.1137/1.9781611973365
– volume: 127
  start-page: 245
  issue: 2
  year: 2011
  ident: 603_CR21
  publication-title: Math. Program.
  doi: 10.1007/s10107-009-0286-5
– volume: 18
  start-page: 1286
  issue: 4
  year: 2008
  ident: 603_CR3
  publication-title: SIAM J. Optim.
  doi: 10.1137/060654797
– volume: 14
  start-page: 55
  issue: 1
  year: 1999
  ident: 603_CR39
  publication-title: Comput. Optim. Appl.
  doi: 10.1023/A:1008705028512
– volume: 13
  start-page: 231
  issue: 1
  year: 1999
  ident: 603_CR65
  publication-title: Comput. Optim. Appl.
  doi: 10.1023/A:1008677427361
– volume: 13
  start-page: 1094
  issue: 4
  year: 1992
  ident: 603_CR48
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/0613066
– volume: 180
  start-page: 451
  issue: 1
  year: 2020
  ident: 603_CR60
  publication-title: Math. Program.
  doi: 10.1007/s10107-019-01362-7
– volume: 27
  start-page: 1049
  issue: 2
  year: 2017
  ident: 603_CR14
  publication-title: SIAM J. Optim.
  doi: 10.1137/16M110280X
– volume: 107
  start-page: 391
  issue: 3
  year: 2006
  ident: 603_CR67
  publication-title: Math. Program.
  doi: 10.1007/s10107-004-0560-5
– volume: 26
  start-page: 951
  issue: 2
  year: 2016
  ident: 603_CR11
  publication-title: SIAM J. Optim.
  doi: 10.1137/15M1031631
– volume: 53
  start-page: 836
  issue: 2
  year: 2015
  ident: 603_CR25
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/130915546
– ident: 603_CR1
  doi: 10.1145/3055399.3055464
– volume: 108
  start-page: 177
  issue: 1
  year: 2006
  ident: 603_CR57
  publication-title: Math. Program.
  doi: 10.1007/s10107-006-0706-8
– volume: 173
  start-page: 523
  issue: 2
  year: 2017
  ident: 603_CR6
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-017-1071-x
– ident: 603_CR9
– volume: 30
  start-page: 80
  issue: 1
  year: 2020
  ident: 603_CR16
  publication-title: SIAM J. Optim.
  doi: 10.1137/18M1216146
– volume: 55
  start-page: 168
  issue: 1
  year: 2017
  ident: 603_CR28
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/15M1052834
– volume: 68
  start-page: 367
  issue: 2
  year: 2017
  ident: 603_CR53
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-016-0475-8
– volume: 5
  start-page: 792
  issue: 4
  year: 1995
  ident: 603_CR15
  publication-title: SIAM J. Optim.
  doi: 10.1137/0805038
– volume: 49
  start-page: 757
  issue: 2
  year: 2010
  ident: 603_CR50
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2010.2068053
– volume: 66
  start-page: 261
  issue: 217
  year: 1997
  ident: 603_CR33
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-97-00777-1
– volume: 149
  start-page: 301
  issue: 1
  year: 2015
  ident: 603_CR10
  publication-title: Math. Program.
  doi: 10.1007/s10107-014-0753-5
– volume: 87
  start-page: 451
  issue: 3
  year: 2018
  ident: 603_CR49
  publication-title: Math. Method Oper. Res.
  doi: 10.1007/s00186-017-0625-x
– volume: 33
  start-page: 1734
  issue: 3
  year: 2023
  ident: 603_CR44
  publication-title: SIAM J. Optim.
  doi: 10.1137/22M1489824
– volume: 28
  start-page: 1448
  issue: 2
  year: 2018
  ident: 603_CR61
  publication-title: SIAM J. Optim.
  doi: 10.1137/17M1134329
– volume: 21
  start-page: 177
  issue: 2
  year: 2002
  ident: 603_CR31
  publication-title: Comput. Optim. Appl.
  doi: 10.1023/A:1013764800871
– volume: 178
  start-page: 263
  issue: 1
  year: 2019
  ident: 603_CR42
  publication-title: Math. Program.
  doi: 10.1007/s10107-018-1290-4
– ident: 603_CR69
– ident: 603_CR71
– volume: 33
  start-page: 2811
  year: 2020
  ident: 603_CR51
  publication-title: Adv. Neural Info. Process. Syst.
– ident: 603_CR40
– volume: 28
  start-page: 1751
  issue: 2
  year: 2018
  ident: 603_CR20
  publication-title: SIAM J. Optim.
  doi: 10.1137/17M1114296
– volume: 45
  start-page: 765
  issue: 3
  year: 2007
  ident: 603_CR54
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2006.888466
– ident: 603_CR59
– volume: 33
  start-page: 1191
  issue: 2
  year: 2023
  ident: 603_CR43
  publication-title: SIAM J. Optim.
  doi: 10.1137/21M1457011
– ident: 603_CR2
– volume: 28
  start-page: 1533
  issue: 2
  year: 2018
  ident: 603_CR36
  publication-title: SIAM J. Optim.
  doi: 10.1137/16M1108650
– volume: 41
  start-page: 1546
  issue: 2
  year: 2021
  ident: 603_CR41
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/draa021
– volume: 34
  start-page: 991
  issue: 5
  year: 2019
  ident: 603_CR7
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556788.2018.1528250
– volume: 69
  start-page: 51
  issue: 1
  year: 2018
  ident: 603_CR12
  publication-title: Comput. Optim. and Appl.
  doi: 10.1007/s10589-017-9937-2
– volume: 37
  start-page: 1902
  issue: 4
  year: 2017
  ident: 603_CR4
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/drx011
– volume: 31
  start-page: 518
  issue: 1
  year: 2021
  ident: 603_CR34
  publication-title: SIAM J. Optim.
  doi: 10.1137/19M130563X
– volume-title: Nonlinear optimization
  year: 2011
  ident: 603_CR62
  doi: 10.2307/j.ctvcm4hcj
– volume: 29
  start-page: 2146
  issue: 3
  year: 2019
  ident: 603_CR18
  publication-title: SIAM J. Optim.
  doi: 10.1137/17M1113898
– volume: 41
  start-page: 84
  issue: 1
  year: 2021
  ident: 603_CR58
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/drz074
– volume: 86
  start-page: 1
  issue: 3
  year: 2021
  ident: 603_CR70
  publication-title: J. Sci. Comput.
– volume: 7
  start-page: 331
  issue: 3
  year: 2015
  ident: 603_CR72
  publication-title: Math. Program. Comput.
  doi: 10.1007/s12532-015-0082-6
– volume: 24
  start-page: 1152
  issue: 5
  year: 1987
  ident: 603_CR17
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0724076
– volume: 67
  start-page: 5239
  issue: 20
  year: 2019
  ident: 603_CR29
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2019.2937282
– volume: 1
  start-page: 1
  issue: 162
  year: 2016
  ident: 603_CR35
  publication-title: Math. Program.
– volume: 200
  start-page: 529
  issue: 2
  year: 2008
  ident: 603_CR37
  publication-title: Appl. Math. Comput.
– volume: 23
  start-page: 1553
  issue: 3
  year: 2013
  ident: 603_CR22
  publication-title: SIAM J. Optim.
  doi: 10.1137/120869687
– volume: 48
  start-page: 2590
  issue: 6
  year: 2010
  ident: 603_CR45
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2009.2038483
– ident: 603_CR64
  doi: 10.1109/ICASSP43922.2022.9747124
– volume: 144
  start-page: 93
  issue: 1
  year: 2014
  ident: 603_CR23
  publication-title: Math. Program.
  doi: 10.1007/s10107-012-0617-9
– volume: 95
  start-page: 573
  issue: 3
  year: 2003
  ident: 603_CR55
  publication-title: Math. Program.
  doi: 10.1007/s10107-002-0360-8
– volume: 144
  start-page: 93
  issue: 1
  year: 2014
  ident: 603_CR24
  publication-title: Math. Program.
  doi: 10.1007/s10107-012-0617-9
– volume-title: LANCELOT: a Fortran package for large-scale nonlinear optimization
  year: 2013
  ident: 603_CR32
– ident: 603_CR46
– volume: 20
  start-page: 1737
  issue: 4
  year: 2010
  ident: 603_CR73
  publication-title: SIAM J. Optim.
  doi: 10.1137/080718206
– volume: 106
  start-page: 25
  issue: 1
  year: 2006
  ident: 603_CR66
  publication-title: Math. Program.
  doi: 10.1007/s10107-004-0559-y
– volume: 45
  start-page: 598
  issue: 6
  year: 2017
  ident: 603_CR47
  publication-title: Oper. Res. Lett.
  doi: 10.1016/j.orl.2017.09.005
– volume-title: Interior-point polynomial algorithms in convex programming
  year: 1994
  ident: 603_CR56
  doi: 10.1137/1.9781611970791
SSID ssj0009732
Score 2.3958466
Snippet In this paper we consider finding an approximate second-order stationary point (SOSP) of general nonconvex conic optimization that minimizes a twice...
SourceID swepub
crossref
springer
SourceType Open Access Repository
Index Database
Publisher
StartPage 843
SubjectTerms Convex and Discrete Geometry
Management Science
Mathematics
Mathematics and Statistics
Operations Research
Operations Research/Decision Theory
Optimization
Statistics
Title A Newton-CG based barrier-augmented Lagrangian method for general nonconvex conic optimization
URI https://link.springer.com/article/10.1007/s10589-024-00603-6
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-207432
Volume 89
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA7aXupBtCrWR8lBvGhgN82-jtvaB2p7slIvhmySLgVtpQ_w5zvJ7rZVRPCyYWF3AjOTzBcy8w1CVxLWTKRkg0SOEISpsSZiHETEC6WC-KAg6Jkb3f7A7w3Z_cgb5UVhiyLbvbiStDv1VrGbZ9J7KCOGRKRB_F1U9szZHbx4SOMN1W5g25I5EfUJhPNGXirzu4zv4aiY-AdvqI01nQO0n4NEHGdWPUQ7elpFe1vUgfDWX_OtLqqoYjBjRrl8hF5jDFuXaQ3c6mITpRQ856YzHRGr1JJwKvwoUohSKTgHzppIY0CvOM1IqPF0NrXp6J9YGupcPION5T2v2DxGw077qdUjeRsFImnoLIkOwBqCAVRhrtRMuGGovagRKQcM6CUwBkmQaOUqVyjp-iFNwkQ4noaTkDcGxHKCSjCtPkVY0YgmvsOEDgF5BUnINMA9JkGOhL9lDd0U2uQfGVsG3_AiG91z0D23uud-Dd0WCuf5yln8-fl1ZpS1aEONfTd5jvlsnvK3yYpTA4jo2f_knqMKNR5hc1QuUGk5X-lLQBrLpI7KcafZHJix-_LQrltH-wK2uM8u
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86D86D6FScnzmIFw20adqmxzKdU7edNtnJkCZZGegm-wD_fF_6sU0RwUtLoX2B95L8fiXv_R5CVwrWTKSVRyJHSsL00BA5DCPic6UBHzSAnj3R7XSDVp89DfxBURQ2K7PdyyPJbKdeK3bzbXoPZcSKiHgk2ERbQAa4TeTq03gltRtmbcmciAYE4NwrSmV-t_EdjsqBf-iGZljT3EO7BUnEcR7VfbRhxjW0syYdCE-dpd7qrIaqljPmkssH6DXGsHXZ1sCNB2xRSsN1ajvTEblIMxFOjdsyBZRKYXLgvIk0BvaK01yEGo8n4ywd_RMrK52LJ7CxvBcVm4eo37zvNVqkaKNAFOXOnJgQoiEZUBXmKsOky7nxIy_SDgTQT-AeJmFitKtdqZUbcJrwRDq-gT8hfwiM5QhVYFhzjLCmEU0Ch0nDgXmFCWcG6B5TYEfB16qObkpvio9cLUOsdJGt7wX4XmS-F0Ed3ZYOF8XKmf35-nUelKVpK419N3qJxWSairfRQlBLiOjJ_-xeou1Wr9MW7cfu8ymqUjs7snyVM1SZTxfmHFjHPLnIJtkXo9HPEQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60gtSDaFWszz2IF12abDavY2mtVdviwUpPLpvdTShoWvoAf76zSfpQRPCSEEgmYWZ25gs78w1CVxLWTKikQ0JLCMJUrImI_ZC4gVSQHxQkPbOj2-157T57HLiDtS7-rNp9sSWZ9zQYlqZ0VhuruLbW-OaaUh_KiCEUcYi3ibYgHNvGr_u0vqLd9bMRZVZIPQKp3SnaZn6X8T01LT7iB4dolndae2i3AIy4nlt4H23otIJ21mgE4aq75F6dVlDZ4MecfvkAvdUxhDEzJrhxj03GUnCcmCl1RMyTjJBT4Y5IIGMl4Cg4HyiNAcniJCekxukozUrTP7E0NLp4BEHmo-jePET91t1Lo02KkQpE0sCaEe2DZQQD2MJsqZmwg0C7oRMqC4zpRnD2Iz_Syla2UNL2AhoFkbBcDX9Fbgzo5QiV4LX6GGFFQxp5FhM6ABTmRwHTAP2YBDkSnpZVdLPQJh_nzBl8xZFsdM9B9zzTPfeq6HahcF6soumft1_nRlmKNjTZzeFrnY8mCX8fzjk14Iie_E_uJdp-brZ456H3dIrK1DhHVrpyhkqzyVyfAwCZRReZj30Bu2_TTQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Newton-CG+based+barrier-augmented+Lagrangian+method+for+general+nonconvex+conic+optimization&rft.jtitle=Computational+optimization+and+applications&rft.au=He%2C+Chuan&rft.au=Huang%2C+Heng&rft.au=Lu%2C+Zhaosong&rft.date=2024-12-01&rft.pub=Springer+US&rft.issn=0926-6003&rft.eissn=1573-2894&rft.volume=89&rft.issue=3&rft.spage=843&rft.epage=894&rft_id=info:doi/10.1007%2Fs10589-024-00603-6&rft.externalDocID=10_1007_s10589_024_00603_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-6003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-6003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-6003&client=summon