Multimodal Explainable Artificial Intelligence for Prognostic Stratification of Patients With Glioblastoma
Glioblastoma (GBM) is the most common and aggressive malignant adult tumor of the central nervous system, with a grim prognosis and heterogeneous morphologic and molecular profiles. Since the adoption of the current standard-of-care treatment in 2005, no substantial prognostic improvement has been n...
Saved in:
Published in | Modern pathology Vol. 38; no. 9; p. 100797 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.09.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Glioblastoma (GBM) is the most common and aggressive malignant adult tumor of the central nervous system, with a grim prognosis and heterogeneous morphologic and molecular profiles. Since the adoption of the current standard-of-care treatment in 2005, no substantial prognostic improvement has been noticed. In this study, we seek the identification of prognostically relevant GBM characteristics from routinely acquired hematoxylin and eosin–stained whole slide images (WSIs) and clinical data, which when integrated via advanced computational methods could yield improved patient prognostic stratification and hence optimize clinical decision making and patient management. The proposed WSI analysis capitalizes on a comprehensive curation of apparent artifactual content and an interpretability mechanism via a weakly supervised attention-based multiple-instance learning approach that further utilizes clustering to constrain the search space. Patterns automatically identified by our approach as of high prognostic value classify each WSI as representative of short or long survivors. Further assessments of the prognostic relevance of the associated clinical patient data are performed both in isolation and in an integrated manner, using XGBoost and SHapley Additive exPlanations. The multimodal integration of WSI with clinical data yields enhanced stratification performance when compared with using either one of the modalities. Identifying tumor morphologic and clinical patterns associated with short and long survival will enable the clinical neuropathologist to provide additional relevant prognostic information to the treating team and suggest avenues of biological investigation for further understanding and potentially treating GBM. |
---|---|
AbstractList | Glioblastoma (GBM) is the most common and aggressive malignant adult tumor of the central nervous system, with a grim prognosis and heterogeneous morphologic and molecular profiles. Since the adoption of the current standard-of-care treatment in 2005, no substantial prognostic improvement has been noticed. In this study, we seek the identification of prognostically relevant GBM characteristics from routinely acquired hematoxylin and eosin-stained whole slide images (WSIs) and clinical data, which when integrated via advanced computational methods could yield improved patient prognostic stratification and hence optimize clinical decision making and patient management. The proposed WSI analysis capitalizes on a comprehensive curation of apparent artifactual content and an interpretability mechanism via a weakly supervised attention-based multiple-instance learning approach that further utilizes clustering to constrain the search space. Patterns automatically identified by our approach as of high prognostic value classify each WSI as representative of short or long survivors. Further assessments of the prognostic relevance of the associated clinical patient data are performed both in isolation and in an integrated manner, using XGBoost and SHapley Additive exPlanations. The multimodal integration of WSI with clinical data yields enhanced stratification performance when compared with using either one of the modalities. Identifying tumor morphologic and clinical patterns associated with short and long survival will enable the clinical neuropathologist to provide additional relevant prognostic information to the treating team and suggest avenues of biological investigation for further understanding and potentially treating GBM. |
ArticleNumber | 100797 |
Author | Bakas, Spyridon Innani, Shubham Guntuku, Sharath Chandra Bell, William Robert Rai, Sunny Mehdiratta, Garv Baheti, Bhakti Nasrallah, MacLean P. |
Author_xml | – sequence: 1 givenname: Bhakti orcidid: 0000-0001-5475-3903 surname: Baheti fullname: Baheti, Bhakti organization: Division of Computational Pathology, Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana – sequence: 2 givenname: Sunny surname: Rai fullname: Rai, Sunny organization: Department of Computer and Information Science, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania – sequence: 3 givenname: Shubham surname: Innani fullname: Innani, Shubham organization: Division of Computational Pathology, Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana – sequence: 4 givenname: Garv surname: Mehdiratta fullname: Mehdiratta, Garv organization: School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania – sequence: 5 givenname: William Robert surname: Bell fullname: Bell, William Robert organization: Division of Computational Pathology, Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana – sequence: 6 givenname: Sharath Chandra surname: Guntuku fullname: Guntuku, Sharath Chandra organization: Department of Computer and Information Science, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania – sequence: 7 givenname: MacLean P. surname: Nasrallah fullname: Nasrallah, MacLean P. organization: Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania – sequence: 8 givenname: Spyridon surname: Bakas fullname: Bakas, Spyridon email: spbakas@iu.edu organization: Division of Computational Pathology, Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40419087$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kN1KAzEQhYMo9kffQCQvsDXJZje7N0IptRYqFlS8DNn81JR0U5JU9O3duuqlNzPD4cxh5huB09a3GoArjCYY4fJmO9l5tRdpQhApOgmxmp2AIS5ylCFSFadgiKo6z_K6IAMwinGLEKZFRc7BgCKKa1SxIdg-HFyyXZJwcP6xd8K2onEaTkOyxkrbycs2aefsRrdSQ-MDXAe_aX1MVsKnFMS3sau-hd7AdTfpNkX4atMbXDjrGydi8jtxAc6McFFf_vQxeLmbP8_us9XjYjmbrjJJKpQyZRSlShhDDRZSY1lSKYoCK6Z1U2JJmKqoQAYpXdZCiaYiSBHGGGlYjlmRj8F1n7s_NDut-D7YnQif_PfpzkB7gww-xqDNnwUjfmTLt7xny49sec-2W7vt13R3_LvVgUdpj1CUDVomrrz9P-ALRfaGlg |
Cites_doi | 10.1073/pnas.1219747110 10.3389/fnins.2024.1304191 10.1016/j.ccell.2022.07.004 10.1073/pnas.1717139115 10.1007/s10278-013-9622-7 10.1038/s41592-023-02150-0 10.1016/j.cell.2013.09.034 10.1038/s41598-021-92799-4 10.1038/s43856-023-00276-y 10.1016/j.media.2020.101789 10.1093/neuonc/noab106 10.1001/jama.2017.14585 10.1016/j.ccell.2022.09.012 10.1038/s41592-023-02151-z 10.1093/neuonc/noac209.465 10.1002/(SICI)1097-0142(19960315)77:6<1161::AID-CNCR24>3.0.CO;2-Z 10.1093/neuonc/nov127 10.1126/science.aaf2666 10.1016/S0169-7439(00)00122-2 10.1126/sciadv.adi0302 10.1007/s12031-024-02218-2 10.3389/fonc.2021.630597 10.3390/biomedicines10082030 10.1093/neuonc/noaa231 10.1038/s41551-020-00682-w 10.1016/j.trecan.2020.02.010 10.1016/j.compbiomed.2024.108635 10.1007/s11060-023-04341-3 10.1016/j.ccell.2024.06.004 10.3389/fncom.2020.00061 10.1016/j.ccr.2009.12.020 10.1093/bioinformatics/btx723 10.1016/j.canlet.2020.07.030 10.1371/journal.pmed.1002730 10.1093/braincomms/fcab264 10.1186/1748-717X-9-95 10.1038/s43586-024-00363-x 10.1016/j.media.2015.12.002 10.1186/s12885-020-06816-2 10.1038/s44303-024-00020-8 |
ContentType | Journal Article |
Copyright | 2025 United States & Canadian Academy of Pathology Copyright © 2025 United States & Canadian Academy of Pathology. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2025 United States & Canadian Academy of Pathology – notice: Copyright © 2025 United States & Canadian Academy of Pathology. Published by Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION NPM |
DOI | 10.1016/j.modpat.2025.100797 |
DatabaseName | CrossRef PubMed |
DatabaseTitle | CrossRef PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1530-0285 |
ExternalDocumentID | 40419087 10_1016_j_modpat_2025_100797 S0893395225000936 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIMHD NIH HHS grantid: R01 MD018340 – fundername: NCI NIH HHS grantid: U01 CA242871 – fundername: NCATS NIH HHS grantid: UL1 TR001878 |
GroupedDBID | --- -Q- .GJ 0R~ 123 29M 2WC 36B 39C 4.4 53G 5RE 70F 7RV 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8R4 8R5 AALRI AANZL AAQQT AASDW AAWTL AAXUO AAYWO ABAWZ ABJNI ABLJU ABUWG ACGFO ACGFS ACKTT ACPRK ACRQY ACVFH ADBBV ADCNI ADFRT ADVLN AEJRE AENEX AEUPX AEXYK AFJKZ AFKRA AFOSN AFPUW AFSHS AGAYW AGCQF AGHAI AHMBA AHSBF AIGII AILAN AITUG AJRNO AKBMS AKRWK AKYEP ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMRAJ AMYLF APXCP AXYYD BAWUL BBNVY BENPR BHPHI BKEYQ BKKNO BPHCQ BVXVI CAG CCPQU COF CS3 DIK DNIVK DU5 E3Z EBS EE. EFKBS EIOEI EJD EX3 F5P FDB FDQFY FERAY FIZPM FSGXE FYUFA GX1 HCIFZ HMCUK HZ~ IWAJR JSO JZLTJ KQ8 LK8 M1P M7P NAPCQ NQJWS O9- OK1 OWW P2P PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q2X RNS RNT RNTTT ROL SNYQT SOHCF SRMVM SWTZT TAOOD TBHMF TDRGL TR2 TSG UKHRP WOW YFH ZGI ZXP AAYXX CITATION NPM |
ID | FETCH-LOGICAL-c280t-dfd44daff4f1ace1c64ca551d7eeb61c27d84a0f0de69adab820d27772b731753 |
ISSN | 0893-3952 |
IngestDate | Mon Jul 21 06:03:34 EDT 2025 Thu Jul 03 08:36:27 EDT 2025 Tue Jul 29 20:20:15 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | histopathology interpretability multimodal glioblastoma prognosis XGBoost |
Language | English |
License | Copyright © 2025 United States & Canadian Academy of Pathology. Published by Elsevier Inc. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c280t-dfd44daff4f1ace1c64ca551d7eeb61c27d84a0f0de69adab820d27772b731753 |
ORCID | 0000-0001-5475-3903 |
PMID | 40419087 |
ParticipantIDs | pubmed_primary_40419087 crossref_primary_10_1016_j_modpat_2025_100797 elsevier_sciencedirect_doi_10_1016_j_modpat_2025_100797 |
PublicationCentury | 2000 |
PublicationDate | 2025-09-01 |
PublicationDateYYYYMMDD | 2025-09-01 |
PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Modern pathology |
PublicationTitleAlternate | Mod Pathol |
PublicationYear | 2025 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Lundberg, Lee (bib47) Preprint. Posted online May 22,2017 He, Zhang, Ren, Sun (bib44) 2016 Lou, Habes, Illenberger (bib21) 2021; 3 Clark, Vendt, Smith (bib36) 2013; 26 Barker, Davis, Chang, Prados (bib51) 1996; 77 Massey, Whitmire, Doyle (bib29) 2021; 498 Baheti, Innani, Nasrallah, Bakas (bib4) 2024; 18 Macyszyn, Akbari, Pisapia (bib8) 2016; 18 Liu, Cao, Imbach (bib53) 2024; 42 Kather, Krisam, Charoentong (bib18) 2019; 16 Pedano, Flanders, Scarpace (bib35) 2016 Lipkova, Chen, Chen (bib24) 2022; 40 Cheng, Mo, Wang, Parwani, Feng, Huang (bib14) 2018; 34 B Ehteshami Bejnordi, Veta, Johannes van Diest (bib42) 2017; 318 Bakas, Shukla, Akbari (bib6) 2020; 7 Sottoriva, Spiteri, Piccirillo (bib2) 2013; 110 Rathore, Bakas, Akbari, Shukla, Rozycki, Davatzikos (bib7) 2018 Adeberg, Bostel, König, Welzel, Debus, Combs (bib40) 2014; 9 Healy, McInnes (bib50) 2024; 4 Chunduru, Phillips, Molinaro (bib22) 2022; 4 Vale-Silva, Rohr (bib26) 2021; 11 Biswas, Salvucci, Connor (bib39) 2023; 163 Cioffi, Waite, Dmukauskas (bib28) 2024; 6 Louis, Perry, Wesseling (bib37) 2021; 23 Baheti, Nasrallah, Bakas (bib20) 2022; 24 Chen, Guestrin (bib46) 2016 Li, El Habib Daho, Conze (bib25) 2024; 177 Lu, Williamson, Chen, Chen, Barbieri, Mahmood (bib11) 2021; 5 Redlich, Feuerhake, Weis (bib5) 2024; 2 Baid, Rane, Talbar (bib10) 2020; 14 Maier-Hein, Reinke, Godau (bib49) 2024; 21 Szylberg, Sokal, Śledzińska (bib33) 2022; 10 Scarpace, Mikkelsen, Cha (bib34) 2016 Chen, Lu, Williamson (bib23) 2022; 40 Zhu, Yao, Zhu, Huang (bib16) 2017 Xu, Liang (bib41) 2001; 56 Mobadersany, Yousefi, Amgad (bib12) 2018; 115 Stabellini, Krebs, Patil, Waite, Barnholtz-Sloan (bib31) 2021; 11 Ruifrok, Johnston (bib43) 2001; 23 Verma, Alban, Parthasarathy (bib54) 2024; 10 Yao, Wang, Zhu, Huang (bib19) 2016 Steyaert, Qiu, Zheng, Mukherjee, Vogel, Gevaert (bib27) 2023; 3 Yang, Zeng, Wang (bib38) 2024; 74 Butler, Pongor, Su (bib32) 2020; 6 Yao, Zhu, Jonnagaddala, Hawkins, Huang (bib17) 2020; 65 Verhaak, Hoadley, Purdom (bib3) 2010; 17 Beig, Singh, Bera (bib9) 2021; 23 lse, Tomczak, Welling (bib45) 2018; 80 Puchalski, Shah, Miller (bib52) 2018; 360 Whitmire, Rickertsen, Hawkins-Daarud (bib30) 2020; 20 Zhu, Yao, Huang (bib15) 2016 Barker, Hoogi, Depeursinge, Rubin (bib13) 2016; 30 Reinke, Tizabi, Baumgartner (bib48) 2024; 21 Brennan, Verhaak, McKenna (bib1) 2013; 155 Liu (10.1016/j.modpat.2025.100797_bib53) 2024; 42 Pedano (10.1016/j.modpat.2025.100797_bib35) 2016 Vale-Silva (10.1016/j.modpat.2025.100797_bib26) 2021; 11 Steyaert (10.1016/j.modpat.2025.100797_bib27) 2023; 3 Yao (10.1016/j.modpat.2025.100797_bib17) 2020; 65 Louis (10.1016/j.modpat.2025.100797_bib37) 2021; 23 Chen (10.1016/j.modpat.2025.100797_bib46) 2016 Kather (10.1016/j.modpat.2025.100797_bib18) 2019; 16 Verhaak (10.1016/j.modpat.2025.100797_bib3) 2010; 17 Li (10.1016/j.modpat.2025.100797_bib25) 2024; 177 Yang (10.1016/j.modpat.2025.100797_bib38) 2024; 74 Zhu (10.1016/j.modpat.2025.100797_bib15) 2016 Lou (10.1016/j.modpat.2025.100797_bib21) 2021; 3 Chunduru (10.1016/j.modpat.2025.100797_bib22) 2022; 4 Macyszyn (10.1016/j.modpat.2025.100797_bib8) 2016; 18 Verma (10.1016/j.modpat.2025.100797_bib54) 2024; 10 Massey (10.1016/j.modpat.2025.100797_bib29) 2021; 498 Lipkova (10.1016/j.modpat.2025.100797_bib24) 2022; 40 Reinke (10.1016/j.modpat.2025.100797_bib48) 2024; 21 Maier-Hein (10.1016/j.modpat.2025.100797_bib49) 2024; 21 Chen (10.1016/j.modpat.2025.100797_bib23) 2022; 40 Baheti (10.1016/j.modpat.2025.100797_bib4) 2024; 18 Yao (10.1016/j.modpat.2025.100797_bib19) 2016 Xu (10.1016/j.modpat.2025.100797_bib41) 2001; 56 Barker (10.1016/j.modpat.2025.100797_bib13) 2016; 30 Brennan (10.1016/j.modpat.2025.100797_bib1) 2013; 155 Stabellini (10.1016/j.modpat.2025.100797_bib31) 2021; 11 Lundberg (10.1016/j.modpat.2025.100797_bib47) 222017 Barker (10.1016/j.modpat.2025.100797_bib51) 1996; 77 Adeberg (10.1016/j.modpat.2025.100797_bib40) 2014; 9 B Ehteshami Bejnordi (10.1016/j.modpat.2025.100797_bib42) 2017; 318 lse (10.1016/j.modpat.2025.100797_bib45) 2018; 80 Scarpace (10.1016/j.modpat.2025.100797_bib34) 2016 Biswas (10.1016/j.modpat.2025.100797_bib39) 2023; 163 Puchalski (10.1016/j.modpat.2025.100797_bib52) 2018; 360 Ruifrok (10.1016/j.modpat.2025.100797_bib43) 2001; 23 Sottoriva (10.1016/j.modpat.2025.100797_bib2) 2013; 110 Baid (10.1016/j.modpat.2025.100797_bib10) 2020; 14 Cheng (10.1016/j.modpat.2025.100797_bib14) 2018; 34 Butler (10.1016/j.modpat.2025.100797_bib32) 2020; 6 Bakas (10.1016/j.modpat.2025.100797_bib6) 2020; 7 Rathore (10.1016/j.modpat.2025.100797_bib7) 2018 Baheti (10.1016/j.modpat.2025.100797_bib20) 2022; 24 Whitmire (10.1016/j.modpat.2025.100797_bib30) 2020; 20 Lu (10.1016/j.modpat.2025.100797_bib11) 2021; 5 Szylberg (10.1016/j.modpat.2025.100797_bib33) 2022; 10 Healy (10.1016/j.modpat.2025.100797_bib50) 2024; 4 Mobadersany (10.1016/j.modpat.2025.100797_bib12) 2018; 115 Zhu (10.1016/j.modpat.2025.100797_bib16) 2017 Redlich (10.1016/j.modpat.2025.100797_bib5) 2024; 2 He (10.1016/j.modpat.2025.100797_bib44) 2016 Beig (10.1016/j.modpat.2025.100797_bib9) 2021; 23 Cioffi (10.1016/j.modpat.2025.100797_bib28) 2024; 6 Clark (10.1016/j.modpat.2025.100797_bib36) 2013; 26 |
References_xml | – volume: 155 start-page: 462 year: 2013 end-page: 477 ident: bib1 article-title: The somatic genomic landscape of glioblastoma cell publication-title: Cell – volume: 23 start-page: 291 year: 2001 end-page: 299 ident: bib43 article-title: Quantification of histochemical staining by color deconvolution publication-title: Anal Quant Cytol Histol – year: 2016 ident: bib44 article-title: Deep residual learning for image recognition. Paper presented at New York, June 27–30, 2016 – volume: 163 start-page: 327 year: 2023 end-page: 338 ident: bib39 article-title: Comparative analysis of deeply phenotyped GBM cohorts of ‘short-term’ and ‘long-term’ survivors publication-title: J Neuro-oncol – volume: 21 start-page: 195 year: 2024 end-page: 212 ident: bib49 article-title: Metrics reloaded: recommendations for image analysis validation publication-title: Nat Methods – year: 2016 ident: bib46 article-title: Xgboost: a scalable tree boosting system. Paper presented at New York, August 13–17, 2016 – volume: 9 start-page: 1 year: 2014 end-page: 6 ident: bib40 article-title: A comparison of long-term survivors and short-term survivors with glioblastoma, subventricular zone involvement: a predictive factor for survival? publication-title: Radiat Oncol – volume: 11 year: 2021 ident: bib31 article-title: Sex differences in time to treat and outcomes for gliomas publication-title: Front Oncol – volume: 40 start-page: 1095 year: 2022 end-page: 1110 ident: bib24 article-title: Artificial intelligence for multimodal data integration in oncology publication-title: Cancer Cell – volume: 26 start-page: 1045 year: 2013 end-page: 1057 ident: bib36 article-title: The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository publication-title: J Digit Imaging – volume: 177 year: 2024 ident: bib25 article-title: A review of deep learning-based information fusion techniques for multimodal medical image classification publication-title: Comput Biol Med – volume: 4 year: 2022 ident: bib22 article-title: Prognostic risk stratification of gliomas using deep learning in digital pathology images publication-title: Neuro Oncol Adv – year: 2018 ident: bib7 article-title: Deriving stable multi-parametric MRI radiomic signatures in the presence of inter-scanner variations: survival prediction of glioblastoma via imaging pattern analysis and machine learning techniques. Paper presented at Houston, Texas, United States, February 27, 2018 – year: 2017 ident: bib16 article-title: Wsisa: making survival prediction from whole slide histopathological images. Paper presented at New York, July 21 to July 26, 2017 – volume: 18 year: 2024 ident: bib4 article-title: Prognostic stratification of glioblastoma patients by unsupervised clustering of morphology patterns on whole slide images furthering our disease understanding publication-title: Front Neurosci – volume: 42 start-page: 1217 year: 2024 end-page: 1238.e19 ident: bib53 article-title: Multi-scale signaling and tumor evolution in high-grade gliomas publication-title: Cancer Cell – volume: 14 start-page: 61 year: 2020 ident: bib10 article-title: Overall survival prediction in glioblastoma with radiomic features using machine learning publication-title: Front Comput Neurosci – volume: 360 start-page: 660 year: 2018 end-page: 663 ident: bib52 article-title: An anatomic transcriptional atlas of human glioblastoma publication-title: Science – volume: 115 start-page: E2970 year: 2018 end-page: E2979 ident: bib12 article-title: Predicting cancer outcomes from histology and genomics using convolutional networks publication-title: Proc Natl Acad Sci – volume: 3 year: 2021 ident: bib21 article-title: Leveraging machine learning predictive biomarkers to augment the statistical power of clinical trials with baseline magnetic resonance imaging publication-title: Brain Commun – volume: 20 start-page: 447 year: 2020 ident: bib30 article-title: Sex-specific impact of patterns of imageable tumor growth on survival of primary glioblastoma patients publication-title: BMC Cancer – volume: 30 start-page: 60 year: 2016 end-page: 71 ident: bib13 article-title: Automated classification of brain tumor type in whole-slide digital pathology images using local representative tiles publication-title: Med Image Anal – volume: 16 year: 2019 ident: bib18 article-title: Predicting survival from colorectal cancer histology slides using deep learning: a retrospective multicenter study publication-title: PLoS Med – volume: 6 year: 2024 ident: bib28 article-title: Sex differences in glioblastoma response to treatment: impact of MGMT methylation publication-title: Neurooncol Adv – volume: 18 start-page: 417 year: 2016 end-page: 425 ident: bib8 article-title: Imaging patterns predict patient survival and molecular subtype in glioblastoma via machine learning techniques publication-title: Neuro Oncol – volume: 4 start-page: 82 year: 2024 ident: bib50 article-title: Uniform manifold approximation and projection publication-title: Nat Rev Methods Primers – volume: 23 start-page: 1231 year: 2021 end-page: 1251 ident: bib37 article-title: The 2021 WHO classification of tumors of the central nervous system: a summary publication-title: Neuro Oncol – volume: 10 year: 2024 ident: bib54 article-title: Sexually dimorphic computational histopathological signatures prognostic of overall survival in high-grade gliomas via deep learning publication-title: Sci Adv – volume: 11 year: 2021 ident: bib26 article-title: Long-term cancer survival prediction using multimodal deep learning publication-title: Sci Rep – volume: 23 start-page: 251 year: 2021 end-page: 263 ident: bib9 article-title: Sexually dimorphic radiogenomic models identify distinct imaging and biological pathways that are prognostic of overall survival in glioblastoma publication-title: Neuro Oncol – year: 2016 ident: bib15 article-title: Deep convolutional neural network for survival analysis with pathological images. Paper presented at Shenzhen, China, December 15–18, 2016 – volume: 77 start-page: 1161 year: 1996 end-page: 1166 ident: bib51 article-title: Necrosis as a prognostic factor in glioblastoma multiforme publication-title: Cancer – volume: 3 start-page: 44 year: 2023 ident: bib27 article-title: Multimodal deep learning to predict prognosis in adult and pediatric brain tumors publication-title: Commun Med (Lond) – volume: 10 start-page: 2030 year: 2022 ident: bib33 article-title: MGMT promoter methylation as a prognostic factor in primary glioblastoma: a single-institution observational study publication-title: Biomedicines – year: 2016 ident: bib34 article-title: The cancer genome atlas glioblastoma multiforme collection (TCGA-GBM) – volume: 2 start-page: 16 year: 2024 ident: bib5 article-title: Applications of artificial intelligence in the analysis of histopathology images of gliomas: a review publication-title: Npj Imaging – volume: 65 year: 2020 ident: bib17 article-title: Whole slide images based cancer survival prediction using attention guided deep multiple instance learning networks publication-title: Med Image Anal – volume: 74 start-page: 48 year: 2024 ident: bib38 article-title: Predictive model to identify the long time survivor in patients with glioblastoma: a cohort study integrating machine learning algorithms publication-title: J Mol Neurosci – volume: 318 start-page: 2199 year: 2017 end-page: 2210 ident: bib42 article-title: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer publication-title: JAMA – volume: 498 start-page: 178 year: 2021 end-page: 187 ident: bib29 article-title: Sex differences in health and disease: a review of biological sex differences relevant to cancer with a spotlight on glioma publication-title: Cancer Lett – volume: 56 start-page: 1 year: 2001 end-page: 11 ident: bib41 article-title: Monte Carlo cross validation publication-title: Chemometr Intell Lab Syst – volume: 24 start-page: vii122 year: 2022 ident: bib20 article-title: AI-based prognostic stratification of gliosblatoma using H&E-stained whole slide images publication-title: Neuro Oncol – volume: 6 start-page: 380 year: 2020 end-page: 391 ident: bib32 article-title: MGMT status as a clinical biomarker in glioblastoma publication-title: Trends Cancer – volume: 7 year: 2020 ident: bib6 article-title: Overall survival prediction in glioblastoma patients using structural magnetic resonance imaging (MRI): advanced radiomic features may compensate for lack of advanced MRI modalities publication-title: J Med Imaging (Bellingham) – volume: 40 start-page: 865 year: 2022 end-page: 878.e6 ident: bib23 article-title: Pan-cancer integrative histology-genomic analysis via multimodal deep learning publication-title: Cancer Cell – volume: 110 start-page: 4009 year: 2013 end-page: 4014 ident: bib2 article-title: Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics publication-title: Proc Natl Acad Sci U S A – volume: 21 start-page: 182 year: 2024 end-page: 194 ident: bib48 article-title: Understanding metric-related pitfalls in image analysis validation publication-title: Nat Methods – year: 2016 ident: bib35 article-title: The cancer genome atlas low grade glioma collection (TCGA-LGG) – volume: 5 start-page: 555 year: 2021 end-page: 570 ident: bib11 article-title: Data-efficient and weakly supervised computational pathology on whole-slide images publication-title: Nat Biomed Eng – start-page: 649 year: 2016 end-page: 657 ident: bib19 article-title: Imaging biomarker discovery for lung cancer survival prediction publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 80 start-page: 2127 year: 2018 end-page: 2136 ident: bib45 article-title: Attention-based deep multiple instance learning. Paper presented at – year: Preprint. Posted online May 22,2017 ident: bib47 article-title: A unified approach to interpreting model predictions publication-title: Advances in neural information processing systems – volume: 17 start-page: 98 year: 2010 end-page: 110 ident: bib3 article-title: Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1 publication-title: Cancer Cell – volume: 34 start-page: 1024 year: 2018 end-page: 1030 ident: bib14 article-title: Identification of topological features in renal tumor microenvironment associated with patient survival publication-title: Bioinformatics – volume: 110 start-page: 4009 year: 2013 ident: 10.1016/j.modpat.2025.100797_bib2 article-title: Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1219747110 – volume: 6 year: 2024 ident: 10.1016/j.modpat.2025.100797_bib28 article-title: Sex differences in glioblastoma response to treatment: impact of MGMT methylation publication-title: Neurooncol Adv – volume: 18 year: 2024 ident: 10.1016/j.modpat.2025.100797_bib4 article-title: Prognostic stratification of glioblastoma patients by unsupervised clustering of morphology patterns on whole slide images furthering our disease understanding publication-title: Front Neurosci doi: 10.3389/fnins.2024.1304191 – volume: 40 start-page: 865 year: 2022 ident: 10.1016/j.modpat.2025.100797_bib23 article-title: Pan-cancer integrative histology-genomic analysis via multimodal deep learning publication-title: Cancer Cell doi: 10.1016/j.ccell.2022.07.004 – year: 2016 ident: 10.1016/j.modpat.2025.100797_bib34 – volume: 115 start-page: E2970 year: 2018 ident: 10.1016/j.modpat.2025.100797_bib12 article-title: Predicting cancer outcomes from histology and genomics using convolutional networks publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1717139115 – volume: 26 start-page: 1045 year: 2013 ident: 10.1016/j.modpat.2025.100797_bib36 article-title: The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository publication-title: J Digit Imaging doi: 10.1007/s10278-013-9622-7 – volume: 21 start-page: 182 year: 2024 ident: 10.1016/j.modpat.2025.100797_bib48 article-title: Understanding metric-related pitfalls in image analysis validation publication-title: Nat Methods doi: 10.1038/s41592-023-02150-0 – volume: 155 start-page: 462 year: 2013 ident: 10.1016/j.modpat.2025.100797_bib1 article-title: The somatic genomic landscape of glioblastoma cell publication-title: Cell doi: 10.1016/j.cell.2013.09.034 – volume: 4 year: 2022 ident: 10.1016/j.modpat.2025.100797_bib22 article-title: Prognostic risk stratification of gliomas using deep learning in digital pathology images publication-title: Neuro Oncol Adv – volume: 11 year: 2021 ident: 10.1016/j.modpat.2025.100797_bib26 article-title: Long-term cancer survival prediction using multimodal deep learning publication-title: Sci Rep doi: 10.1038/s41598-021-92799-4 – start-page: 649 year: 2016 ident: 10.1016/j.modpat.2025.100797_bib19 article-title: Imaging biomarker discovery for lung cancer survival prediction – volume: 3 start-page: 44 year: 2023 ident: 10.1016/j.modpat.2025.100797_bib27 article-title: Multimodal deep learning to predict prognosis in adult and pediatric brain tumors publication-title: Commun Med (Lond) doi: 10.1038/s43856-023-00276-y – volume: 65 year: 2020 ident: 10.1016/j.modpat.2025.100797_bib17 article-title: Whole slide images based cancer survival prediction using attention guided deep multiple instance learning networks publication-title: Med Image Anal doi: 10.1016/j.media.2020.101789 – volume: 23 start-page: 1231 year: 2021 ident: 10.1016/j.modpat.2025.100797_bib37 article-title: The 2021 WHO classification of tumors of the central nervous system: a summary publication-title: Neuro Oncol doi: 10.1093/neuonc/noab106 – year: 2016 ident: 10.1016/j.modpat.2025.100797_bib46 – volume: 318 start-page: 2199 year: 2017 ident: 10.1016/j.modpat.2025.100797_bib42 article-title: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer publication-title: JAMA doi: 10.1001/jama.2017.14585 – volume: 40 start-page: 1095 year: 2022 ident: 10.1016/j.modpat.2025.100797_bib24 article-title: Artificial intelligence for multimodal data integration in oncology publication-title: Cancer Cell doi: 10.1016/j.ccell.2022.09.012 – year: 2018 ident: 10.1016/j.modpat.2025.100797_bib7 – volume: 21 start-page: 195 year: 2024 ident: 10.1016/j.modpat.2025.100797_bib49 article-title: Metrics reloaded: recommendations for image analysis validationNature publication-title: Nat Methods doi: 10.1038/s41592-023-02151-z – volume: 24 start-page: vii122 issue: Supplement_7 year: 2022 ident: 10.1016/j.modpat.2025.100797_bib20 article-title: AI-based prognostic stratification of gliosblatoma using H&E-stained whole slide images publication-title: Neuro Oncol doi: 10.1093/neuonc/noac209.465 – volume: 77 start-page: 1161 year: 1996 ident: 10.1016/j.modpat.2025.100797_bib51 article-title: Necrosis as a prognostic factor in glioblastoma multiforme publication-title: Cancer doi: 10.1002/(SICI)1097-0142(19960315)77:6<1161::AID-CNCR24>3.0.CO;2-Z – volume: 7 year: 2020 ident: 10.1016/j.modpat.2025.100797_bib6 article-title: Overall survival prediction in glioblastoma patients using structural magnetic resonance imaging (MRI): advanced radiomic features may compensate for lack of advanced MRI modalities publication-title: J Med Imaging (Bellingham) – volume: 18 start-page: 417 year: 2016 ident: 10.1016/j.modpat.2025.100797_bib8 article-title: Imaging patterns predict patient survival and molecular subtype in glioblastoma via machine learning techniques publication-title: Neuro Oncol doi: 10.1093/neuonc/nov127 – volume: 360 start-page: 660 year: 2018 ident: 10.1016/j.modpat.2025.100797_bib52 article-title: An anatomic transcriptional atlas of human glioblastoma publication-title: Science doi: 10.1126/science.aaf2666 – volume: 56 start-page: 1 year: 2001 ident: 10.1016/j.modpat.2025.100797_bib41 article-title: Monte Carlo cross validation publication-title: Chemometr Intell Lab Syst doi: 10.1016/S0169-7439(00)00122-2 – volume: 10 year: 2024 ident: 10.1016/j.modpat.2025.100797_bib54 article-title: Sexually dimorphic computational histopathological signatures prognostic of overall survival in high-grade gliomas via deep learning publication-title: Sci Adv doi: 10.1126/sciadv.adi0302 – volume: 74 start-page: 48 year: 2024 ident: 10.1016/j.modpat.2025.100797_bib38 article-title: Predictive model to identify the long time survivor in patients with glioblastoma: a cohort study integrating machine learning algorithms publication-title: J Mol Neurosci doi: 10.1007/s12031-024-02218-2 – year: 2017 ident: 10.1016/j.modpat.2025.100797_bib16 – volume: 11 year: 2021 ident: 10.1016/j.modpat.2025.100797_bib31 article-title: Sex differences in time to treat and outcomes for gliomas publication-title: Front Oncol doi: 10.3389/fonc.2021.630597 – year: 2016 ident: 10.1016/j.modpat.2025.100797_bib44 – volume: 10 start-page: 2030 year: 2022 ident: 10.1016/j.modpat.2025.100797_bib33 article-title: MGMT promoter methylation as a prognostic factor in primary glioblastoma: a single-institution observational study publication-title: Biomedicines doi: 10.3390/biomedicines10082030 – year: 2016 ident: 10.1016/j.modpat.2025.100797_bib15 – volume: 23 start-page: 251 year: 2021 ident: 10.1016/j.modpat.2025.100797_bib9 article-title: Sexually dimorphic radiogenomic models identify distinct imaging and biological pathways that are prognostic of overall survival in glioblastoma publication-title: Neuro Oncol doi: 10.1093/neuonc/noaa231 – volume: 23 start-page: 291 year: 2001 ident: 10.1016/j.modpat.2025.100797_bib43 article-title: Quantification of histochemical staining by color deconvolution publication-title: Anal Quant Cytol Histol – volume: 5 start-page: 555 year: 2021 ident: 10.1016/j.modpat.2025.100797_bib11 article-title: Data-efficient and weakly supervised computational pathology on whole-slide images publication-title: Nat Biomed Eng doi: 10.1038/s41551-020-00682-w – volume: 6 start-page: 380 year: 2020 ident: 10.1016/j.modpat.2025.100797_bib32 article-title: MGMT status as a clinical biomarker in glioblastoma publication-title: Trends Cancer doi: 10.1016/j.trecan.2020.02.010 – volume: 177 year: 2024 ident: 10.1016/j.modpat.2025.100797_bib25 article-title: A review of deep learning-based information fusion techniques for multimodal medical image classification publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2024.108635 – volume: 163 start-page: 327 year: 2023 ident: 10.1016/j.modpat.2025.100797_bib39 article-title: Comparative analysis of deeply phenotyped GBM cohorts of ‘short-term’ and ‘long-term’ survivors publication-title: J Neuro-oncol doi: 10.1007/s11060-023-04341-3 – volume: 42 start-page: 1217 year: 2024 ident: 10.1016/j.modpat.2025.100797_bib53 article-title: Multi-scale signaling and tumor evolution in high-grade gliomas publication-title: Cancer Cell doi: 10.1016/j.ccell.2024.06.004 – volume: 14 start-page: 61 year: 2020 ident: 10.1016/j.modpat.2025.100797_bib10 article-title: Overall survival prediction in glioblastoma with radiomic features using machine learning publication-title: Front Comput Neurosci doi: 10.3389/fncom.2020.00061 – volume: 17 start-page: 98 year: 2010 ident: 10.1016/j.modpat.2025.100797_bib3 article-title: Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1 publication-title: Cancer Cell doi: 10.1016/j.ccr.2009.12.020 – year: 222017 ident: 10.1016/j.modpat.2025.100797_bib47 article-title: A unified approach to interpreting model predictions publication-title: Advances in neural information processing systems – volume: 34 start-page: 1024 year: 2018 ident: 10.1016/j.modpat.2025.100797_bib14 article-title: Identification of topological features in renal tumor microenvironment associated with patient survival publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx723 – year: 2016 ident: 10.1016/j.modpat.2025.100797_bib35 – volume: 80 start-page: 2127 year: 2018 ident: 10.1016/j.modpat.2025.100797_bib45 – volume: 498 start-page: 178 year: 2021 ident: 10.1016/j.modpat.2025.100797_bib29 article-title: Sex differences in health and disease: a review of biological sex differences relevant to cancer with a spotlight on glioma publication-title: Cancer Lett doi: 10.1016/j.canlet.2020.07.030 – volume: 16 year: 2019 ident: 10.1016/j.modpat.2025.100797_bib18 article-title: Predicting survival from colorectal cancer histology slides using deep learning: a retrospective multicenter study publication-title: PLoS Med doi: 10.1371/journal.pmed.1002730 – volume: 3 year: 2021 ident: 10.1016/j.modpat.2025.100797_bib21 article-title: Leveraging machine learning predictive biomarkers to augment the statistical power of clinical trials with baseline magnetic resonance imaging publication-title: Brain Commun doi: 10.1093/braincomms/fcab264 – volume: 9 start-page: 1 year: 2014 ident: 10.1016/j.modpat.2025.100797_bib40 article-title: A comparison of long-term survivors and short-term survivors with glioblastoma, subventricular zone involvement: a predictive factor for survival? publication-title: Radiat Oncol doi: 10.1186/1748-717X-9-95 – volume: 4 start-page: 82 year: 2024 ident: 10.1016/j.modpat.2025.100797_bib50 article-title: Uniform manifold approximation and projection publication-title: Nat Rev Methods Primers doi: 10.1038/s43586-024-00363-x – volume: 30 start-page: 60 year: 2016 ident: 10.1016/j.modpat.2025.100797_bib13 article-title: Automated classification of brain tumor type in whole-slide digital pathology images using local representative tiles publication-title: Med Image Anal doi: 10.1016/j.media.2015.12.002 – volume: 20 start-page: 447 year: 2020 ident: 10.1016/j.modpat.2025.100797_bib30 article-title: Sex-specific impact of patterns of imageable tumor growth on survival of primary glioblastoma patients publication-title: BMC Cancer doi: 10.1186/s12885-020-06816-2 – volume: 2 start-page: 16 year: 2024 ident: 10.1016/j.modpat.2025.100797_bib5 article-title: Applications of artificial intelligence in the analysis of histopathology images of gliomas: a review publication-title: Npj Imaging doi: 10.1038/s44303-024-00020-8 |
SSID | ssj0014582 |
Score | 2.4730532 |
Snippet | Glioblastoma (GBM) is the most common and aggressive malignant adult tumor of the central nervous system, with a grim prognosis and heterogeneous morphologic... |
SourceID | pubmed crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 100797 |
SubjectTerms | glioblastoma histopathology interpretability multimodal prognosis XGBoost |
Title | Multimodal Explainable Artificial Intelligence for Prognostic Stratification of Patients With Glioblastoma |
URI | https://dx.doi.org/10.1016/j.modpat.2025.100797 https://www.ncbi.nlm.nih.gov/pubmed/40419087 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgFYgLggKlfMkHbpVXSezEyXGLoIWqqKKt6C0ax7bSpU2qVYqAX884ztdCpUIv0SpKMtmZJ-fZfjNDyFuIIwMhD5nOTMGEtBED_HAybvFblaaJDQOXjXzwOdk7EZ9O49NRyttmlzRqVvy6Nq_kNlHFcxhXlyX7H5EdHoon8DfGF48YYTz-U4zb7NmLWrvawD8uz_tEqPmyFQD5MhqTiptOUXi4rJ20zpVpbQvTugsH1njoi6w6TWxTbu-en9UKyXVTd2N33_jJt09zvYxX1uR3oDReHLBTwrfmbLKF5PU_VTVc-7GqfDOp7aPySpVwMQTelNpt_XtSuwvL79N1iSgehFfdYlmfMLOi5wyQHjGexSsDME8nQMuuHdf9EsNihi7Ffzdz9lp9h9f2_lEx-8hZcUaittsDT-6S9QhnETgMrs_3v3zdH7aZ3KZhO83o3qrPrWwFgH_buoG7TIjJ8SPysJtR0LmHx2Nyx1Qb5J7vMfpzg9w_6NQTT8hixAud4IWOeKFTvFDECx3xQlfxQmtLe7xQhxc6xctTcvLh_fG7Pdb12mBFlAYN01YLocFaYUMoTFgkogBk01oao5KwiKROBQQ20CbJQINC5qjRqTJS0lFQ_oysVXVlnhMKGd5rUhBgkSJFoLQIuOUKuJQcIN4irPdifulLquS91nCRe6_nzuu59_oWkb2r844WerqXIzpuuHPTR2awIwKBDDiVL279zJfkwYj2V2StWV6Z18hLG_WmQ9dvwZqUEw |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multimodal+Explainable+Artificial+Intelligence+for+Prognostic+Stratification+of+Patients+With+Glioblastoma&rft.jtitle=Modern+pathology&rft.au=Baheti%2C+Bhakti&rft.au=Rai%2C+Sunny&rft.au=Innani%2C+Shubham&rft.au=Mehdiratta%2C+Garv&rft.date=2025-09-01&rft.pub=Elsevier+Inc&rft.issn=0893-3952&rft.volume=38&rft.issue=9&rft_id=info:doi/10.1016%2Fj.modpat.2025.100797&rft.externalDocID=S0893395225000936 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-3952&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-3952&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-3952&client=summon |