Multimodal Explainable Artificial Intelligence for Prognostic Stratification of Patients With Glioblastoma

Glioblastoma (GBM) is the most common and aggressive malignant adult tumor of the central nervous system, with a grim prognosis and heterogeneous morphologic and molecular profiles. Since the adoption of the current standard-of-care treatment in 2005, no substantial prognostic improvement has been n...

Full description

Saved in:
Bibliographic Details
Published inModern pathology Vol. 38; no. 9; p. 100797
Main Authors Baheti, Bhakti, Rai, Sunny, Innani, Shubham, Mehdiratta, Garv, Bell, William Robert, Guntuku, Sharath Chandra, Nasrallah, MacLean P., Bakas, Spyridon
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.09.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Glioblastoma (GBM) is the most common and aggressive malignant adult tumor of the central nervous system, with a grim prognosis and heterogeneous morphologic and molecular profiles. Since the adoption of the current standard-of-care treatment in 2005, no substantial prognostic improvement has been noticed. In this study, we seek the identification of prognostically relevant GBM characteristics from routinely acquired hematoxylin and eosin–stained whole slide images (WSIs) and clinical data, which when integrated via advanced computational methods could yield improved patient prognostic stratification and hence optimize clinical decision making and patient management. The proposed WSI analysis capitalizes on a comprehensive curation of apparent artifactual content and an interpretability mechanism via a weakly supervised attention-based multiple-instance learning approach that further utilizes clustering to constrain the search space. Patterns automatically identified by our approach as of high prognostic value classify each WSI as representative of short or long survivors. Further assessments of the prognostic relevance of the associated clinical patient data are performed both in isolation and in an integrated manner, using XGBoost and SHapley Additive exPlanations. The multimodal integration of WSI with clinical data yields enhanced stratification performance when compared with using either one of the modalities. Identifying tumor morphologic and clinical patterns associated with short and long survival will enable the clinical neuropathologist to provide additional relevant prognostic information to the treating team and suggest avenues of biological investigation for further understanding and potentially treating GBM.
AbstractList Glioblastoma (GBM) is the most common and aggressive malignant adult tumor of the central nervous system, with a grim prognosis and heterogeneous morphologic and molecular profiles. Since the adoption of the current standard-of-care treatment in 2005, no substantial prognostic improvement has been noticed. In this study, we seek the identification of prognostically relevant GBM characteristics from routinely acquired hematoxylin and eosin-stained whole slide images (WSIs) and clinical data, which when integrated via advanced computational methods could yield improved patient prognostic stratification and hence optimize clinical decision making and patient management. The proposed WSI analysis capitalizes on a comprehensive curation of apparent artifactual content and an interpretability mechanism via a weakly supervised attention-based multiple-instance learning approach that further utilizes clustering to constrain the search space. Patterns automatically identified by our approach as of high prognostic value classify each WSI as representative of short or long survivors. Further assessments of the prognostic relevance of the associated clinical patient data are performed both in isolation and in an integrated manner, using XGBoost and SHapley Additive exPlanations. The multimodal integration of WSI with clinical data yields enhanced stratification performance when compared with using either one of the modalities. Identifying tumor morphologic and clinical patterns associated with short and long survival will enable the clinical neuropathologist to provide additional relevant prognostic information to the treating team and suggest avenues of biological investigation for further understanding and potentially treating GBM.
ArticleNumber 100797
Author Bakas, Spyridon
Innani, Shubham
Guntuku, Sharath Chandra
Bell, William Robert
Rai, Sunny
Mehdiratta, Garv
Baheti, Bhakti
Nasrallah, MacLean P.
Author_xml – sequence: 1
  givenname: Bhakti
  orcidid: 0000-0001-5475-3903
  surname: Baheti
  fullname: Baheti, Bhakti
  organization: Division of Computational Pathology, Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
– sequence: 2
  givenname: Sunny
  surname: Rai
  fullname: Rai, Sunny
  organization: Department of Computer and Information Science, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania
– sequence: 3
  givenname: Shubham
  surname: Innani
  fullname: Innani, Shubham
  organization: Division of Computational Pathology, Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
– sequence: 4
  givenname: Garv
  surname: Mehdiratta
  fullname: Mehdiratta, Garv
  organization: School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania
– sequence: 5
  givenname: William Robert
  surname: Bell
  fullname: Bell, William Robert
  organization: Division of Computational Pathology, Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
– sequence: 6
  givenname: Sharath Chandra
  surname: Guntuku
  fullname: Guntuku, Sharath Chandra
  organization: Department of Computer and Information Science, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania
– sequence: 7
  givenname: MacLean P.
  surname: Nasrallah
  fullname: Nasrallah, MacLean P.
  organization: Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
– sequence: 8
  givenname: Spyridon
  surname: Bakas
  fullname: Bakas, Spyridon
  email: spbakas@iu.edu
  organization: Division of Computational Pathology, Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40419087$$D View this record in MEDLINE/PubMed
BookMark eNp9kN1KAzEQhYMo9kffQCQvsDXJZje7N0IptRYqFlS8DNn81JR0U5JU9O3duuqlNzPD4cxh5huB09a3GoArjCYY4fJmO9l5tRdpQhApOgmxmp2AIS5ylCFSFadgiKo6z_K6IAMwinGLEKZFRc7BgCKKa1SxIdg-HFyyXZJwcP6xd8K2onEaTkOyxkrbycs2aefsRrdSQ-MDXAe_aX1MVsKnFMS3sau-hd7AdTfpNkX4atMbXDjrGydi8jtxAc6McFFf_vQxeLmbP8_us9XjYjmbrjJJKpQyZRSlShhDDRZSY1lSKYoCK6Z1U2JJmKqoQAYpXdZCiaYiSBHGGGlYjlmRj8F1n7s_NDut-D7YnQif_PfpzkB7gww-xqDNnwUjfmTLt7xny49sec-2W7vt13R3_LvVgUdpj1CUDVomrrz9P-ALRfaGlg
Cites_doi 10.1073/pnas.1219747110
10.3389/fnins.2024.1304191
10.1016/j.ccell.2022.07.004
10.1073/pnas.1717139115
10.1007/s10278-013-9622-7
10.1038/s41592-023-02150-0
10.1016/j.cell.2013.09.034
10.1038/s41598-021-92799-4
10.1038/s43856-023-00276-y
10.1016/j.media.2020.101789
10.1093/neuonc/noab106
10.1001/jama.2017.14585
10.1016/j.ccell.2022.09.012
10.1038/s41592-023-02151-z
10.1093/neuonc/noac209.465
10.1002/(SICI)1097-0142(19960315)77:6<1161::AID-CNCR24>3.0.CO;2-Z
10.1093/neuonc/nov127
10.1126/science.aaf2666
10.1016/S0169-7439(00)00122-2
10.1126/sciadv.adi0302
10.1007/s12031-024-02218-2
10.3389/fonc.2021.630597
10.3390/biomedicines10082030
10.1093/neuonc/noaa231
10.1038/s41551-020-00682-w
10.1016/j.trecan.2020.02.010
10.1016/j.compbiomed.2024.108635
10.1007/s11060-023-04341-3
10.1016/j.ccell.2024.06.004
10.3389/fncom.2020.00061
10.1016/j.ccr.2009.12.020
10.1093/bioinformatics/btx723
10.1016/j.canlet.2020.07.030
10.1371/journal.pmed.1002730
10.1093/braincomms/fcab264
10.1186/1748-717X-9-95
10.1038/s43586-024-00363-x
10.1016/j.media.2015.12.002
10.1186/s12885-020-06816-2
10.1038/s44303-024-00020-8
ContentType Journal Article
Copyright 2025 United States & Canadian Academy of Pathology
Copyright © 2025 United States & Canadian Academy of Pathology. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2025 United States & Canadian Academy of Pathology
– notice: Copyright © 2025 United States & Canadian Academy of Pathology. Published by Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
NPM
DOI 10.1016/j.modpat.2025.100797
DatabaseName CrossRef
PubMed
DatabaseTitle CrossRef
PubMed
DatabaseTitleList PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1530-0285
ExternalDocumentID 40419087
10_1016_j_modpat_2025_100797
S0893395225000936
Genre Journal Article
GrantInformation_xml – fundername: NIMHD NIH HHS
  grantid: R01 MD018340
– fundername: NCI NIH HHS
  grantid: U01 CA242871
– fundername: NCATS NIH HHS
  grantid: UL1 TR001878
GroupedDBID ---
-Q-
.GJ
0R~
123
29M
2WC
36B
39C
4.4
53G
5RE
70F
7RV
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8R4
8R5
AALRI
AANZL
AAQQT
AASDW
AAWTL
AAXUO
AAYWO
ABAWZ
ABJNI
ABLJU
ABUWG
ACGFO
ACGFS
ACKTT
ACPRK
ACRQY
ACVFH
ADBBV
ADCNI
ADFRT
ADVLN
AEJRE
AENEX
AEUPX
AEXYK
AFJKZ
AFKRA
AFOSN
AFPUW
AFSHS
AGAYW
AGCQF
AGHAI
AHMBA
AHSBF
AIGII
AILAN
AITUG
AJRNO
AKBMS
AKRWK
AKYEP
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AMYLF
APXCP
AXYYD
BAWUL
BBNVY
BENPR
BHPHI
BKEYQ
BKKNO
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DIK
DNIVK
DU5
E3Z
EBS
EE.
EFKBS
EIOEI
EJD
EX3
F5P
FDB
FDQFY
FERAY
FIZPM
FSGXE
FYUFA
GX1
HCIFZ
HMCUK
HZ~
IWAJR
JSO
JZLTJ
KQ8
LK8
M1P
M7P
NAPCQ
NQJWS
O9-
OK1
OWW
P2P
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q2X
RNS
RNT
RNTTT
ROL
SNYQT
SOHCF
SRMVM
SWTZT
TAOOD
TBHMF
TDRGL
TR2
TSG
UKHRP
WOW
YFH
ZGI
ZXP
AAYXX
CITATION
NPM
ID FETCH-LOGICAL-c280t-dfd44daff4f1ace1c64ca551d7eeb61c27d84a0f0de69adab820d27772b731753
ISSN 0893-3952
IngestDate Mon Jul 21 06:03:34 EDT 2025
Thu Jul 03 08:36:27 EDT 2025
Tue Jul 29 20:20:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords histopathology
interpretability
multimodal
glioblastoma
prognosis
XGBoost
Language English
License Copyright © 2025 United States & Canadian Academy of Pathology. Published by Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c280t-dfd44daff4f1ace1c64ca551d7eeb61c27d84a0f0de69adab820d27772b731753
ORCID 0000-0001-5475-3903
PMID 40419087
ParticipantIDs pubmed_primary_40419087
crossref_primary_10_1016_j_modpat_2025_100797
elsevier_sciencedirect_doi_10_1016_j_modpat_2025_100797
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Modern pathology
PublicationTitleAlternate Mod Pathol
PublicationYear 2025
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Lundberg, Lee (bib47) Preprint. Posted online May 22,2017
He, Zhang, Ren, Sun (bib44) 2016
Lou, Habes, Illenberger (bib21) 2021; 3
Clark, Vendt, Smith (bib36) 2013; 26
Barker, Davis, Chang, Prados (bib51) 1996; 77
Massey, Whitmire, Doyle (bib29) 2021; 498
Baheti, Innani, Nasrallah, Bakas (bib4) 2024; 18
Macyszyn, Akbari, Pisapia (bib8) 2016; 18
Liu, Cao, Imbach (bib53) 2024; 42
Kather, Krisam, Charoentong (bib18) 2019; 16
Pedano, Flanders, Scarpace (bib35) 2016
Lipkova, Chen, Chen (bib24) 2022; 40
Cheng, Mo, Wang, Parwani, Feng, Huang (bib14) 2018; 34
B Ehteshami Bejnordi, Veta, Johannes van Diest (bib42) 2017; 318
Bakas, Shukla, Akbari (bib6) 2020; 7
Sottoriva, Spiteri, Piccirillo (bib2) 2013; 110
Rathore, Bakas, Akbari, Shukla, Rozycki, Davatzikos (bib7) 2018
Adeberg, Bostel, König, Welzel, Debus, Combs (bib40) 2014; 9
Healy, McInnes (bib50) 2024; 4
Chunduru, Phillips, Molinaro (bib22) 2022; 4
Vale-Silva, Rohr (bib26) 2021; 11
Biswas, Salvucci, Connor (bib39) 2023; 163
Cioffi, Waite, Dmukauskas (bib28) 2024; 6
Louis, Perry, Wesseling (bib37) 2021; 23
Baheti, Nasrallah, Bakas (bib20) 2022; 24
Chen, Guestrin (bib46) 2016
Li, El Habib Daho, Conze (bib25) 2024; 177
Lu, Williamson, Chen, Chen, Barbieri, Mahmood (bib11) 2021; 5
Redlich, Feuerhake, Weis (bib5) 2024; 2
Baid, Rane, Talbar (bib10) 2020; 14
Maier-Hein, Reinke, Godau (bib49) 2024; 21
Szylberg, Sokal, Śledzińska (bib33) 2022; 10
Scarpace, Mikkelsen, Cha (bib34) 2016
Chen, Lu, Williamson (bib23) 2022; 40
Zhu, Yao, Zhu, Huang (bib16) 2017
Xu, Liang (bib41) 2001; 56
Mobadersany, Yousefi, Amgad (bib12) 2018; 115
Stabellini, Krebs, Patil, Waite, Barnholtz-Sloan (bib31) 2021; 11
Ruifrok, Johnston (bib43) 2001; 23
Verma, Alban, Parthasarathy (bib54) 2024; 10
Yao, Wang, Zhu, Huang (bib19) 2016
Steyaert, Qiu, Zheng, Mukherjee, Vogel, Gevaert (bib27) 2023; 3
Yang, Zeng, Wang (bib38) 2024; 74
Butler, Pongor, Su (bib32) 2020; 6
Yao, Zhu, Jonnagaddala, Hawkins, Huang (bib17) 2020; 65
Verhaak, Hoadley, Purdom (bib3) 2010; 17
Beig, Singh, Bera (bib9) 2021; 23
lse, Tomczak, Welling (bib45) 2018; 80
Puchalski, Shah, Miller (bib52) 2018; 360
Whitmire, Rickertsen, Hawkins-Daarud (bib30) 2020; 20
Zhu, Yao, Huang (bib15) 2016
Barker, Hoogi, Depeursinge, Rubin (bib13) 2016; 30
Reinke, Tizabi, Baumgartner (bib48) 2024; 21
Brennan, Verhaak, McKenna (bib1) 2013; 155
Liu (10.1016/j.modpat.2025.100797_bib53) 2024; 42
Pedano (10.1016/j.modpat.2025.100797_bib35) 2016
Vale-Silva (10.1016/j.modpat.2025.100797_bib26) 2021; 11
Steyaert (10.1016/j.modpat.2025.100797_bib27) 2023; 3
Yao (10.1016/j.modpat.2025.100797_bib17) 2020; 65
Louis (10.1016/j.modpat.2025.100797_bib37) 2021; 23
Chen (10.1016/j.modpat.2025.100797_bib46) 2016
Kather (10.1016/j.modpat.2025.100797_bib18) 2019; 16
Verhaak (10.1016/j.modpat.2025.100797_bib3) 2010; 17
Li (10.1016/j.modpat.2025.100797_bib25) 2024; 177
Yang (10.1016/j.modpat.2025.100797_bib38) 2024; 74
Zhu (10.1016/j.modpat.2025.100797_bib15) 2016
Lou (10.1016/j.modpat.2025.100797_bib21) 2021; 3
Chunduru (10.1016/j.modpat.2025.100797_bib22) 2022; 4
Macyszyn (10.1016/j.modpat.2025.100797_bib8) 2016; 18
Verma (10.1016/j.modpat.2025.100797_bib54) 2024; 10
Massey (10.1016/j.modpat.2025.100797_bib29) 2021; 498
Lipkova (10.1016/j.modpat.2025.100797_bib24) 2022; 40
Reinke (10.1016/j.modpat.2025.100797_bib48) 2024; 21
Maier-Hein (10.1016/j.modpat.2025.100797_bib49) 2024; 21
Chen (10.1016/j.modpat.2025.100797_bib23) 2022; 40
Baheti (10.1016/j.modpat.2025.100797_bib4) 2024; 18
Yao (10.1016/j.modpat.2025.100797_bib19) 2016
Xu (10.1016/j.modpat.2025.100797_bib41) 2001; 56
Barker (10.1016/j.modpat.2025.100797_bib13) 2016; 30
Brennan (10.1016/j.modpat.2025.100797_bib1) 2013; 155
Stabellini (10.1016/j.modpat.2025.100797_bib31) 2021; 11
Lundberg (10.1016/j.modpat.2025.100797_bib47) 222017
Barker (10.1016/j.modpat.2025.100797_bib51) 1996; 77
Adeberg (10.1016/j.modpat.2025.100797_bib40) 2014; 9
B Ehteshami Bejnordi (10.1016/j.modpat.2025.100797_bib42) 2017; 318
lse (10.1016/j.modpat.2025.100797_bib45) 2018; 80
Scarpace (10.1016/j.modpat.2025.100797_bib34) 2016
Biswas (10.1016/j.modpat.2025.100797_bib39) 2023; 163
Puchalski (10.1016/j.modpat.2025.100797_bib52) 2018; 360
Ruifrok (10.1016/j.modpat.2025.100797_bib43) 2001; 23
Sottoriva (10.1016/j.modpat.2025.100797_bib2) 2013; 110
Baid (10.1016/j.modpat.2025.100797_bib10) 2020; 14
Cheng (10.1016/j.modpat.2025.100797_bib14) 2018; 34
Butler (10.1016/j.modpat.2025.100797_bib32) 2020; 6
Bakas (10.1016/j.modpat.2025.100797_bib6) 2020; 7
Rathore (10.1016/j.modpat.2025.100797_bib7) 2018
Baheti (10.1016/j.modpat.2025.100797_bib20) 2022; 24
Whitmire (10.1016/j.modpat.2025.100797_bib30) 2020; 20
Lu (10.1016/j.modpat.2025.100797_bib11) 2021; 5
Szylberg (10.1016/j.modpat.2025.100797_bib33) 2022; 10
Healy (10.1016/j.modpat.2025.100797_bib50) 2024; 4
Mobadersany (10.1016/j.modpat.2025.100797_bib12) 2018; 115
Zhu (10.1016/j.modpat.2025.100797_bib16) 2017
Redlich (10.1016/j.modpat.2025.100797_bib5) 2024; 2
He (10.1016/j.modpat.2025.100797_bib44) 2016
Beig (10.1016/j.modpat.2025.100797_bib9) 2021; 23
Cioffi (10.1016/j.modpat.2025.100797_bib28) 2024; 6
Clark (10.1016/j.modpat.2025.100797_bib36) 2013; 26
References_xml – volume: 155
  start-page: 462
  year: 2013
  end-page: 477
  ident: bib1
  article-title: The somatic genomic landscape of glioblastoma cell
  publication-title: Cell
– volume: 23
  start-page: 291
  year: 2001
  end-page: 299
  ident: bib43
  article-title: Quantification of histochemical staining by color deconvolution
  publication-title: Anal Quant Cytol Histol
– year: 2016
  ident: bib44
  article-title: Deep residual learning for image recognition. Paper presented at New York, June 27–30, 2016
– volume: 163
  start-page: 327
  year: 2023
  end-page: 338
  ident: bib39
  article-title: Comparative analysis of deeply phenotyped GBM cohorts of ‘short-term’ and ‘long-term’ survivors
  publication-title: J Neuro-oncol
– volume: 21
  start-page: 195
  year: 2024
  end-page: 212
  ident: bib49
  article-title: Metrics reloaded: recommendations for image analysis validation
  publication-title: Nat Methods
– year: 2016
  ident: bib46
  article-title: Xgboost: a scalable tree boosting system. Paper presented at New York, August 13–17, 2016
– volume: 9
  start-page: 1
  year: 2014
  end-page: 6
  ident: bib40
  article-title: A comparison of long-term survivors and short-term survivors with glioblastoma, subventricular zone involvement: a predictive factor for survival?
  publication-title: Radiat Oncol
– volume: 11
  year: 2021
  ident: bib31
  article-title: Sex differences in time to treat and outcomes for gliomas
  publication-title: Front Oncol
– volume: 40
  start-page: 1095
  year: 2022
  end-page: 1110
  ident: bib24
  article-title: Artificial intelligence for multimodal data integration in oncology
  publication-title: Cancer Cell
– volume: 26
  start-page: 1045
  year: 2013
  end-page: 1057
  ident: bib36
  article-title: The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository
  publication-title: J Digit Imaging
– volume: 177
  year: 2024
  ident: bib25
  article-title: A review of deep learning-based information fusion techniques for multimodal medical image classification
  publication-title: Comput Biol Med
– volume: 4
  year: 2022
  ident: bib22
  article-title: Prognostic risk stratification of gliomas using deep learning in digital pathology images
  publication-title: Neuro Oncol Adv
– year: 2018
  ident: bib7
  article-title: Deriving stable multi-parametric MRI radiomic signatures in the presence of inter-scanner variations: survival prediction of glioblastoma via imaging pattern analysis and machine learning techniques. Paper presented at Houston, Texas, United States, February 27, 2018
– year: 2017
  ident: bib16
  article-title: Wsisa: making survival prediction from whole slide histopathological images. Paper presented at New York, July 21 to July 26, 2017
– volume: 18
  year: 2024
  ident: bib4
  article-title: Prognostic stratification of glioblastoma patients by unsupervised clustering of morphology patterns on whole slide images furthering our disease understanding
  publication-title: Front Neurosci
– volume: 42
  start-page: 1217
  year: 2024
  end-page: 1238.e19
  ident: bib53
  article-title: Multi-scale signaling and tumor evolution in high-grade gliomas
  publication-title: Cancer Cell
– volume: 14
  start-page: 61
  year: 2020
  ident: bib10
  article-title: Overall survival prediction in glioblastoma with radiomic features using machine learning
  publication-title: Front Comput Neurosci
– volume: 360
  start-page: 660
  year: 2018
  end-page: 663
  ident: bib52
  article-title: An anatomic transcriptional atlas of human glioblastoma
  publication-title: Science
– volume: 115
  start-page: E2970
  year: 2018
  end-page: E2979
  ident: bib12
  article-title: Predicting cancer outcomes from histology and genomics using convolutional networks
  publication-title: Proc Natl Acad Sci
– volume: 3
  year: 2021
  ident: bib21
  article-title: Leveraging machine learning predictive biomarkers to augment the statistical power of clinical trials with baseline magnetic resonance imaging
  publication-title: Brain Commun
– volume: 20
  start-page: 447
  year: 2020
  ident: bib30
  article-title: Sex-specific impact of patterns of imageable tumor growth on survival of primary glioblastoma patients
  publication-title: BMC Cancer
– volume: 30
  start-page: 60
  year: 2016
  end-page: 71
  ident: bib13
  article-title: Automated classification of brain tumor type in whole-slide digital pathology images using local representative tiles
  publication-title: Med Image Anal
– volume: 16
  year: 2019
  ident: bib18
  article-title: Predicting survival from colorectal cancer histology slides using deep learning: a retrospective multicenter study
  publication-title: PLoS Med
– volume: 6
  year: 2024
  ident: bib28
  article-title: Sex differences in glioblastoma response to treatment: impact of MGMT methylation
  publication-title: Neurooncol Adv
– volume: 18
  start-page: 417
  year: 2016
  end-page: 425
  ident: bib8
  article-title: Imaging patterns predict patient survival and molecular subtype in glioblastoma via machine learning techniques
  publication-title: Neuro Oncol
– volume: 4
  start-page: 82
  year: 2024
  ident: bib50
  article-title: Uniform manifold approximation and projection
  publication-title: Nat Rev Methods Primers
– volume: 23
  start-page: 1231
  year: 2021
  end-page: 1251
  ident: bib37
  article-title: The 2021 WHO classification of tumors of the central nervous system: a summary
  publication-title: Neuro Oncol
– volume: 10
  year: 2024
  ident: bib54
  article-title: Sexually dimorphic computational histopathological signatures prognostic of overall survival in high-grade gliomas via deep learning
  publication-title: Sci Adv
– volume: 11
  year: 2021
  ident: bib26
  article-title: Long-term cancer survival prediction using multimodal deep learning
  publication-title: Sci Rep
– volume: 23
  start-page: 251
  year: 2021
  end-page: 263
  ident: bib9
  article-title: Sexually dimorphic radiogenomic models identify distinct imaging and biological pathways that are prognostic of overall survival in glioblastoma
  publication-title: Neuro Oncol
– year: 2016
  ident: bib15
  article-title: Deep convolutional neural network for survival analysis with pathological images. Paper presented at Shenzhen, China, December 15–18, 2016
– volume: 77
  start-page: 1161
  year: 1996
  end-page: 1166
  ident: bib51
  article-title: Necrosis as a prognostic factor in glioblastoma multiforme
  publication-title: Cancer
– volume: 3
  start-page: 44
  year: 2023
  ident: bib27
  article-title: Multimodal deep learning to predict prognosis in adult and pediatric brain tumors
  publication-title: Commun Med (Lond)
– volume: 10
  start-page: 2030
  year: 2022
  ident: bib33
  article-title: MGMT promoter methylation as a prognostic factor in primary glioblastoma: a single-institution observational study
  publication-title: Biomedicines
– year: 2016
  ident: bib34
  article-title: The cancer genome atlas glioblastoma multiforme collection (TCGA-GBM)
– volume: 2
  start-page: 16
  year: 2024
  ident: bib5
  article-title: Applications of artificial intelligence in the analysis of histopathology images of gliomas: a review
  publication-title: Npj Imaging
– volume: 65
  year: 2020
  ident: bib17
  article-title: Whole slide images based cancer survival prediction using attention guided deep multiple instance learning networks
  publication-title: Med Image Anal
– volume: 74
  start-page: 48
  year: 2024
  ident: bib38
  article-title: Predictive model to identify the long time survivor in patients with glioblastoma: a cohort study integrating machine learning algorithms
  publication-title: J Mol Neurosci
– volume: 318
  start-page: 2199
  year: 2017
  end-page: 2210
  ident: bib42
  article-title: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer
  publication-title: JAMA
– volume: 498
  start-page: 178
  year: 2021
  end-page: 187
  ident: bib29
  article-title: Sex differences in health and disease: a review of biological sex differences relevant to cancer with a spotlight on glioma
  publication-title: Cancer Lett
– volume: 56
  start-page: 1
  year: 2001
  end-page: 11
  ident: bib41
  article-title: Monte Carlo cross validation
  publication-title: Chemometr Intell Lab Syst
– volume: 24
  start-page: vii122
  year: 2022
  ident: bib20
  article-title: AI-based prognostic stratification of gliosblatoma using H&E-stained whole slide images
  publication-title: Neuro Oncol
– volume: 6
  start-page: 380
  year: 2020
  end-page: 391
  ident: bib32
  article-title: MGMT status as a clinical biomarker in glioblastoma
  publication-title: Trends Cancer
– volume: 7
  year: 2020
  ident: bib6
  article-title: Overall survival prediction in glioblastoma patients using structural magnetic resonance imaging (MRI): advanced radiomic features may compensate for lack of advanced MRI modalities
  publication-title: J Med Imaging (Bellingham)
– volume: 40
  start-page: 865
  year: 2022
  end-page: 878.e6
  ident: bib23
  article-title: Pan-cancer integrative histology-genomic analysis via multimodal deep learning
  publication-title: Cancer Cell
– volume: 110
  start-page: 4009
  year: 2013
  end-page: 4014
  ident: bib2
  article-title: Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics
  publication-title: Proc Natl Acad Sci U S A
– volume: 21
  start-page: 182
  year: 2024
  end-page: 194
  ident: bib48
  article-title: Understanding metric-related pitfalls in image analysis validation
  publication-title: Nat Methods
– year: 2016
  ident: bib35
  article-title: The cancer genome atlas low grade glioma collection (TCGA-LGG)
– volume: 5
  start-page: 555
  year: 2021
  end-page: 570
  ident: bib11
  article-title: Data-efficient and weakly supervised computational pathology on whole-slide images
  publication-title: Nat Biomed Eng
– start-page: 649
  year: 2016
  end-page: 657
  ident: bib19
  article-title: Imaging biomarker discovery for lung cancer survival prediction
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 80
  start-page: 2127
  year: 2018
  end-page: 2136
  ident: bib45
  article-title: Attention-based deep multiple instance learning. Paper presented at
– year: Preprint. Posted online May 22,2017
  ident: bib47
  article-title: A unified approach to interpreting model predictions
  publication-title: Advances in neural information processing systems
– volume: 17
  start-page: 98
  year: 2010
  end-page: 110
  ident: bib3
  article-title: Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1
  publication-title: Cancer Cell
– volume: 34
  start-page: 1024
  year: 2018
  end-page: 1030
  ident: bib14
  article-title: Identification of topological features in renal tumor microenvironment associated with patient survival
  publication-title: Bioinformatics
– volume: 110
  start-page: 4009
  year: 2013
  ident: 10.1016/j.modpat.2025.100797_bib2
  article-title: Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1219747110
– volume: 6
  year: 2024
  ident: 10.1016/j.modpat.2025.100797_bib28
  article-title: Sex differences in glioblastoma response to treatment: impact of MGMT methylation
  publication-title: Neurooncol Adv
– volume: 18
  year: 2024
  ident: 10.1016/j.modpat.2025.100797_bib4
  article-title: Prognostic stratification of glioblastoma patients by unsupervised clustering of morphology patterns on whole slide images furthering our disease understanding
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2024.1304191
– volume: 40
  start-page: 865
  year: 2022
  ident: 10.1016/j.modpat.2025.100797_bib23
  article-title: Pan-cancer integrative histology-genomic analysis via multimodal deep learning
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2022.07.004
– year: 2016
  ident: 10.1016/j.modpat.2025.100797_bib34
– volume: 115
  start-page: E2970
  year: 2018
  ident: 10.1016/j.modpat.2025.100797_bib12
  article-title: Predicting cancer outcomes from histology and genomics using convolutional networks
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1717139115
– volume: 26
  start-page: 1045
  year: 2013
  ident: 10.1016/j.modpat.2025.100797_bib36
  article-title: The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-013-9622-7
– volume: 21
  start-page: 182
  year: 2024
  ident: 10.1016/j.modpat.2025.100797_bib48
  article-title: Understanding metric-related pitfalls in image analysis validation
  publication-title: Nat Methods
  doi: 10.1038/s41592-023-02150-0
– volume: 155
  start-page: 462
  year: 2013
  ident: 10.1016/j.modpat.2025.100797_bib1
  article-title: The somatic genomic landscape of glioblastoma cell
  publication-title: Cell
  doi: 10.1016/j.cell.2013.09.034
– volume: 4
  year: 2022
  ident: 10.1016/j.modpat.2025.100797_bib22
  article-title: Prognostic risk stratification of gliomas using deep learning in digital pathology images
  publication-title: Neuro Oncol Adv
– volume: 11
  year: 2021
  ident: 10.1016/j.modpat.2025.100797_bib26
  article-title: Long-term cancer survival prediction using multimodal deep learning
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-92799-4
– start-page: 649
  year: 2016
  ident: 10.1016/j.modpat.2025.100797_bib19
  article-title: Imaging biomarker discovery for lung cancer survival prediction
– volume: 3
  start-page: 44
  year: 2023
  ident: 10.1016/j.modpat.2025.100797_bib27
  article-title: Multimodal deep learning to predict prognosis in adult and pediatric brain tumors
  publication-title: Commun Med (Lond)
  doi: 10.1038/s43856-023-00276-y
– volume: 65
  year: 2020
  ident: 10.1016/j.modpat.2025.100797_bib17
  article-title: Whole slide images based cancer survival prediction using attention guided deep multiple instance learning networks
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2020.101789
– volume: 23
  start-page: 1231
  year: 2021
  ident: 10.1016/j.modpat.2025.100797_bib37
  article-title: The 2021 WHO classification of tumors of the central nervous system: a summary
  publication-title: Neuro Oncol
  doi: 10.1093/neuonc/noab106
– year: 2016
  ident: 10.1016/j.modpat.2025.100797_bib46
– volume: 318
  start-page: 2199
  year: 2017
  ident: 10.1016/j.modpat.2025.100797_bib42
  article-title: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer
  publication-title: JAMA
  doi: 10.1001/jama.2017.14585
– volume: 40
  start-page: 1095
  year: 2022
  ident: 10.1016/j.modpat.2025.100797_bib24
  article-title: Artificial intelligence for multimodal data integration in oncology
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2022.09.012
– year: 2018
  ident: 10.1016/j.modpat.2025.100797_bib7
– volume: 21
  start-page: 195
  year: 2024
  ident: 10.1016/j.modpat.2025.100797_bib49
  article-title: Metrics reloaded: recommendations for image analysis validationNature
  publication-title: Nat Methods
  doi: 10.1038/s41592-023-02151-z
– volume: 24
  start-page: vii122
  issue: Supplement_7
  year: 2022
  ident: 10.1016/j.modpat.2025.100797_bib20
  article-title: AI-based prognostic stratification of gliosblatoma using H&E-stained whole slide images
  publication-title: Neuro Oncol
  doi: 10.1093/neuonc/noac209.465
– volume: 77
  start-page: 1161
  year: 1996
  ident: 10.1016/j.modpat.2025.100797_bib51
  article-title: Necrosis as a prognostic factor in glioblastoma multiforme
  publication-title: Cancer
  doi: 10.1002/(SICI)1097-0142(19960315)77:6<1161::AID-CNCR24>3.0.CO;2-Z
– volume: 7
  year: 2020
  ident: 10.1016/j.modpat.2025.100797_bib6
  article-title: Overall survival prediction in glioblastoma patients using structural magnetic resonance imaging (MRI): advanced radiomic features may compensate for lack of advanced MRI modalities
  publication-title: J Med Imaging (Bellingham)
– volume: 18
  start-page: 417
  year: 2016
  ident: 10.1016/j.modpat.2025.100797_bib8
  article-title: Imaging patterns predict patient survival and molecular subtype in glioblastoma via machine learning techniques
  publication-title: Neuro Oncol
  doi: 10.1093/neuonc/nov127
– volume: 360
  start-page: 660
  year: 2018
  ident: 10.1016/j.modpat.2025.100797_bib52
  article-title: An anatomic transcriptional atlas of human glioblastoma
  publication-title: Science
  doi: 10.1126/science.aaf2666
– volume: 56
  start-page: 1
  year: 2001
  ident: 10.1016/j.modpat.2025.100797_bib41
  article-title: Monte Carlo cross validation
  publication-title: Chemometr Intell Lab Syst
  doi: 10.1016/S0169-7439(00)00122-2
– volume: 10
  year: 2024
  ident: 10.1016/j.modpat.2025.100797_bib54
  article-title: Sexually dimorphic computational histopathological signatures prognostic of overall survival in high-grade gliomas via deep learning
  publication-title: Sci Adv
  doi: 10.1126/sciadv.adi0302
– volume: 74
  start-page: 48
  year: 2024
  ident: 10.1016/j.modpat.2025.100797_bib38
  article-title: Predictive model to identify the long time survivor in patients with glioblastoma: a cohort study integrating machine learning algorithms
  publication-title: J Mol Neurosci
  doi: 10.1007/s12031-024-02218-2
– year: 2017
  ident: 10.1016/j.modpat.2025.100797_bib16
– volume: 11
  year: 2021
  ident: 10.1016/j.modpat.2025.100797_bib31
  article-title: Sex differences in time to treat and outcomes for gliomas
  publication-title: Front Oncol
  doi: 10.3389/fonc.2021.630597
– year: 2016
  ident: 10.1016/j.modpat.2025.100797_bib44
– volume: 10
  start-page: 2030
  year: 2022
  ident: 10.1016/j.modpat.2025.100797_bib33
  article-title: MGMT promoter methylation as a prognostic factor in primary glioblastoma: a single-institution observational study
  publication-title: Biomedicines
  doi: 10.3390/biomedicines10082030
– year: 2016
  ident: 10.1016/j.modpat.2025.100797_bib15
– volume: 23
  start-page: 251
  year: 2021
  ident: 10.1016/j.modpat.2025.100797_bib9
  article-title: Sexually dimorphic radiogenomic models identify distinct imaging and biological pathways that are prognostic of overall survival in glioblastoma
  publication-title: Neuro Oncol
  doi: 10.1093/neuonc/noaa231
– volume: 23
  start-page: 291
  year: 2001
  ident: 10.1016/j.modpat.2025.100797_bib43
  article-title: Quantification of histochemical staining by color deconvolution
  publication-title: Anal Quant Cytol Histol
– volume: 5
  start-page: 555
  year: 2021
  ident: 10.1016/j.modpat.2025.100797_bib11
  article-title: Data-efficient and weakly supervised computational pathology on whole-slide images
  publication-title: Nat Biomed Eng
  doi: 10.1038/s41551-020-00682-w
– volume: 6
  start-page: 380
  year: 2020
  ident: 10.1016/j.modpat.2025.100797_bib32
  article-title: MGMT status as a clinical biomarker in glioblastoma
  publication-title: Trends Cancer
  doi: 10.1016/j.trecan.2020.02.010
– volume: 177
  year: 2024
  ident: 10.1016/j.modpat.2025.100797_bib25
  article-title: A review of deep learning-based information fusion techniques for multimodal medical image classification
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2024.108635
– volume: 163
  start-page: 327
  year: 2023
  ident: 10.1016/j.modpat.2025.100797_bib39
  article-title: Comparative analysis of deeply phenotyped GBM cohorts of ‘short-term’ and ‘long-term’ survivors
  publication-title: J Neuro-oncol
  doi: 10.1007/s11060-023-04341-3
– volume: 42
  start-page: 1217
  year: 2024
  ident: 10.1016/j.modpat.2025.100797_bib53
  article-title: Multi-scale signaling and tumor evolution in high-grade gliomas
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2024.06.004
– volume: 14
  start-page: 61
  year: 2020
  ident: 10.1016/j.modpat.2025.100797_bib10
  article-title: Overall survival prediction in glioblastoma with radiomic features using machine learning
  publication-title: Front Comput Neurosci
  doi: 10.3389/fncom.2020.00061
– volume: 17
  start-page: 98
  year: 2010
  ident: 10.1016/j.modpat.2025.100797_bib3
  article-title: Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2009.12.020
– year: 222017
  ident: 10.1016/j.modpat.2025.100797_bib47
  article-title: A unified approach to interpreting model predictions
  publication-title: Advances in neural information processing systems
– volume: 34
  start-page: 1024
  year: 2018
  ident: 10.1016/j.modpat.2025.100797_bib14
  article-title: Identification of topological features in renal tumor microenvironment associated with patient survival
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx723
– year: 2016
  ident: 10.1016/j.modpat.2025.100797_bib35
– volume: 80
  start-page: 2127
  year: 2018
  ident: 10.1016/j.modpat.2025.100797_bib45
– volume: 498
  start-page: 178
  year: 2021
  ident: 10.1016/j.modpat.2025.100797_bib29
  article-title: Sex differences in health and disease: a review of biological sex differences relevant to cancer with a spotlight on glioma
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2020.07.030
– volume: 16
  year: 2019
  ident: 10.1016/j.modpat.2025.100797_bib18
  article-title: Predicting survival from colorectal cancer histology slides using deep learning: a retrospective multicenter study
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1002730
– volume: 3
  year: 2021
  ident: 10.1016/j.modpat.2025.100797_bib21
  article-title: Leveraging machine learning predictive biomarkers to augment the statistical power of clinical trials with baseline magnetic resonance imaging
  publication-title: Brain Commun
  doi: 10.1093/braincomms/fcab264
– volume: 9
  start-page: 1
  year: 2014
  ident: 10.1016/j.modpat.2025.100797_bib40
  article-title: A comparison of long-term survivors and short-term survivors with glioblastoma, subventricular zone involvement: a predictive factor for survival?
  publication-title: Radiat Oncol
  doi: 10.1186/1748-717X-9-95
– volume: 4
  start-page: 82
  year: 2024
  ident: 10.1016/j.modpat.2025.100797_bib50
  article-title: Uniform manifold approximation and projection
  publication-title: Nat Rev Methods Primers
  doi: 10.1038/s43586-024-00363-x
– volume: 30
  start-page: 60
  year: 2016
  ident: 10.1016/j.modpat.2025.100797_bib13
  article-title: Automated classification of brain tumor type in whole-slide digital pathology images using local representative tiles
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2015.12.002
– volume: 20
  start-page: 447
  year: 2020
  ident: 10.1016/j.modpat.2025.100797_bib30
  article-title: Sex-specific impact of patterns of imageable tumor growth on survival of primary glioblastoma patients
  publication-title: BMC Cancer
  doi: 10.1186/s12885-020-06816-2
– volume: 2
  start-page: 16
  year: 2024
  ident: 10.1016/j.modpat.2025.100797_bib5
  article-title: Applications of artificial intelligence in the analysis of histopathology images of gliomas: a review
  publication-title: Npj Imaging
  doi: 10.1038/s44303-024-00020-8
SSID ssj0014582
Score 2.4730532
Snippet Glioblastoma (GBM) is the most common and aggressive malignant adult tumor of the central nervous system, with a grim prognosis and heterogeneous morphologic...
SourceID pubmed
crossref
elsevier
SourceType Index Database
Publisher
StartPage 100797
SubjectTerms glioblastoma
histopathology
interpretability
multimodal
prognosis
XGBoost
Title Multimodal Explainable Artificial Intelligence for Prognostic Stratification of Patients With Glioblastoma
URI https://dx.doi.org/10.1016/j.modpat.2025.100797
https://www.ncbi.nlm.nih.gov/pubmed/40419087
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgFYgLggKlfMkHbpVXSezEyXGLoIWqqKKt6C0ax7bSpU2qVYqAX884ztdCpUIv0SpKMtmZJ-fZfjNDyFuIIwMhD5nOTMGEtBED_HAybvFblaaJDQOXjXzwOdk7EZ9O49NRyttmlzRqVvy6Nq_kNlHFcxhXlyX7H5EdHoon8DfGF48YYTz-U4zb7NmLWrvawD8uz_tEqPmyFQD5MhqTiptOUXi4rJ20zpVpbQvTugsH1njoi6w6TWxTbu-en9UKyXVTd2N33_jJt09zvYxX1uR3oDReHLBTwrfmbLKF5PU_VTVc-7GqfDOp7aPySpVwMQTelNpt_XtSuwvL79N1iSgehFfdYlmfMLOi5wyQHjGexSsDME8nQMuuHdf9EsNihi7Ffzdz9lp9h9f2_lEx-8hZcUaittsDT-6S9QhnETgMrs_3v3zdH7aZ3KZhO83o3qrPrWwFgH_buoG7TIjJ8SPysJtR0LmHx2Nyx1Qb5J7vMfpzg9w_6NQTT8hixAud4IWOeKFTvFDECx3xQlfxQmtLe7xQhxc6xctTcvLh_fG7Pdb12mBFlAYN01YLocFaYUMoTFgkogBk01oao5KwiKROBQQ20CbJQINC5qjRqTJS0lFQ_oysVXVlnhMKGd5rUhBgkSJFoLQIuOUKuJQcIN4irPdifulLquS91nCRe6_nzuu59_oWkb2r844WerqXIzpuuHPTR2awIwKBDDiVL279zJfkwYj2V2StWV6Z18hLG_WmQ9dvwZqUEw
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multimodal+Explainable+Artificial+Intelligence+for+Prognostic+Stratification+of+Patients+With+Glioblastoma&rft.jtitle=Modern+pathology&rft.au=Baheti%2C+Bhakti&rft.au=Rai%2C+Sunny&rft.au=Innani%2C+Shubham&rft.au=Mehdiratta%2C+Garv&rft.date=2025-09-01&rft.pub=Elsevier+Inc&rft.issn=0893-3952&rft.volume=38&rft.issue=9&rft_id=info:doi/10.1016%2Fj.modpat.2025.100797&rft.externalDocID=S0893395225000936
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-3952&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-3952&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-3952&client=summon