Convolutional sparse coding with periodic overlapped group sparsity for rolling element bearing fault diagnosis
To cope with the problem of detecting periodic impulses in rotating machines with certain bearing faults, this paper proposes a novel data-driven dictionary learning and sparse coding algorithm. In our approach, the signal is decomposed into one or several components with each one as a convolution o...
Saved in:
Published in | Measurement science & technology Vol. 29; no. 11; pp. 115103 - 115118 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.11.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To cope with the problem of detecting periodic impulses in rotating machines with certain bearing faults, this paper proposes a novel data-driven dictionary learning and sparse coding algorithm. In our approach, the signal is decomposed into one or several components with each one as a convolution of one atom with a sparse activation vector. This manner of signal decomposition is formulated as a convex problem subject to a constraint that the activation vector should have a structure with periodic group sparsity. The solution to such a problem is an alternative optimizing process, that is, with a given dictionary, a sparse coding problem is solved by a split variable augmented Lagrangian shrinkage algorithm (SALSA), and for a fixed activation vector, the dictionary updating is implemented by solving Lagrange dual problem. The advantages of the proposed model over several other approaches are demonstrated by the experiments on both simulated and real vibration signals. The experimental results indicate that the proposed method can effectively detect and extract the latent weak fault impulses even in the presence of heavy noise |
---|---|
AbstractList | To cope with the problem of detecting periodic impulses in rotating machines with certain bearing faults, this paper proposes a novel data-driven dictionary learning and sparse coding algorithm. In our approach, the signal is decomposed into one or several components with each one as a convolution of one atom with a sparse activation vector. This manner of signal decomposition is formulated as a convex problem subject to a constraint that the activation vector should have a structure with periodic group sparsity. The solution to such a problem is an alternative optimizing process, that is, with a given dictionary, a sparse coding problem is solved by a split variable augmented Lagrangian shrinkage algorithm (SALSA), and for a fixed activation vector, the dictionary updating is implemented by solving Lagrange dual problem. The advantages of the proposed model over several other approaches are demonstrated by the experiments on both simulated and real vibration signals. The experimental results indicate that the proposed method can effectively detect and extract the latent weak fault impulses even in the presence of heavy noise |
Author | Xia, Yi Lu, Siliang |
Author_xml | – sequence: 1 givenname: Yi orcidid: 0000-0003-4433-6502 surname: Xia fullname: Xia, Yi email: xiayi@ahu.edu.cn organization: Anhui University School of Electrical Engineering and Automation, Hefei 230601, People's Republic of China – sequence: 2 givenname: Siliang orcidid: 0000-0002-7101-7948 surname: Lu fullname: Lu, Siliang email: lusliang@mail.ustc.edu.cn organization: Anhui University School of Electrical Engineering and Automation, Hefei 230601, People's Republic of China |
BookMark | eNp9kE1LAzEQhoNUsK3ePeYHuHay2c-jFLVCwYuel2wyqSnpZkmylf57u6x4EPQ0vMP7DMyzILPOdUjILYN7BlW1YrxgSZEDWwmhtK4uyPxnNSNzqPMygZTzK7IIYQ8AJdT1nLi1647ODtG4TlgaeuEDUumU6Xb008QP2qM35yipO6K3ou9R0Z13Qz-VTTxR7Tz1ztqRQYsH7CJtUfgxazHYSJURu84FE67JpRY24M33XJL3p8e39SbZvj6_rB-2iUwriInSRQYayipvhcrrXOUcdaEqjlBLVvJSqBQkKtWytC0ZZAUoUStZ8yxDaDVfkmK6K70LwaNupIli_DJ6YWzDoBm1NaOjZnTUTNrOIPwCe28Owp_-Q-4mxLi-2bvBn02Gv-tfMhCFDg |
CODEN | MSTCEP |
CitedBy_id | crossref_primary_10_3390_su142416793 crossref_primary_10_1115_1_4042526 crossref_primary_10_1109_ACCESS_2019_2943191 crossref_primary_10_1109_JSEN_2023_3235537 |
Cites_doi | 10.1088/0957-0233/24/7/074019 10.1109/TIE.2017.2736510 10.1016/j.ymssp.2009.12.007 10.1016/j.ymssp.2010.07.017 10.1115/1.2748475 10.1109/TIA.2004.827797 10.1002/9780470978160 10.1016/j.measurement.2015.03.017 10.1016/j.ymssp.2011.11.022 10.1109/TIP.2010.2076294 10.1007/s11831-015-9145-0 10.1016/S0963-8695(03)00044-6 10.1016/j.ymssp.2009.06.015 10.1109/TSP.2017.2733447 10.1016/j.ymssp.2016.06.035 10.1016/j.jsv.2016.01.017 10.1016/j.ymssp.2015.11.022 10.1007/s11071-018-4314-y 10.1016/j.jsv.2005.03.007 10.1177/1077546317716315 10.1023/A:1012985802317 10.1016/j.ymssp.2006.02.005 10.1016/j.jsv.2003.08.007 10.1016/s0888-3270(03)00077-3 10.1016/j.jsv.2015.12.011 10.1109/TPEL.2017.2703819 10.1016/j.ymssp.2016.04.024 10.1016/j.ymssp.2013.01.017 10.1016/j.ymssp.2017.02.043 10.1016/j.dsp.2014.09.014 10.1109/TSP.2016.2518989 10.1016/j.jsv.2017.03.007 10.1016/j.ymssp.2016.12.036 10.1016/j.ymssp.2010.07.019 10.1016/j.ymssp.2013.10.007 10.1016/j.ymssp.2009.11.011 10.1109/TSP.2014.2329274 10.1109/ISFA.2016.7790126 10.21595/jve.2016.17817 10.1016/j.sigpro.2015.09.017 10.1016/j.ymssp.2012.06.010 10.1016/j.ymssp.2014.01.011 10.1016/j.ymssp.2015.11.027 10.1016/j.ymssp.2017.02.036 |
ContentType | Journal Article |
Copyright | 2018 IOP Publishing Ltd |
Copyright_xml | – notice: 2018 IOP Publishing Ltd |
DBID | AAYXX CITATION |
DOI | 10.1088/1361-6501/aadff8 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
DocumentTitleAlternate | Convolutional sparse coding with periodic overlapped group sparsity for rolling element bearing fault diagnosis |
EISSN | 1361-6501 |
ExternalDocumentID | 10_1088_1361_6501_aadff8 mstaadff8 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 51605002; 51637001 funderid: https://doi.org/10.13039/501100001809 – fundername: Natural Science Foundation of Anhui Province grantid: 1608085MF136 funderid: https://doi.org/10.13039/501100003995 |
GroupedDBID | -DZ -~X .DC 1JI 4.4 5B3 5GY 5PX 5VS 5ZH 7.M 7.Q AAGCD AAGID AAHTB AAJIO AAJKP AALHV AATNI ABCXL ABHWH ABJNI ABPEJ ABQJV ABVAM ACAFW ACBEA ACGFO ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A NT- NT. P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TAE TN5 TWZ W28 WH7 XPP YQT ZMT ~02 AAYXX ADEQX CITATION |
ID | FETCH-LOGICAL-c280t-df640f0785bad595d53ef6d83e09c1737ad20ceddb12b710460da9dc9344e0bf3 |
IEDL.DBID | IOP |
ISSN | 0957-0233 |
IngestDate | Tue Jul 01 03:54:12 EDT 2025 Thu Apr 24 23:12:47 EDT 2025 Wed Aug 21 03:41:10 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c280t-df640f0785bad595d53ef6d83e09c1737ad20ceddb12b710460da9dc9344e0bf3 |
Notes | MST-107384.R1 |
ORCID | 0000-0003-4433-6502 0000-0002-7101-7948 |
PageCount | 16 |
ParticipantIDs | crossref_citationtrail_10_1088_1361_6501_aadff8 crossref_primary_10_1088_1361_6501_aadff8 iop_journals_10_1088_1361_6501_aadff8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-11-01 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Measurement science & technology |
PublicationTitleAbbrev | MST |
PublicationTitleAlternate | Meas. Sci. Technol |
PublicationYear | 2018 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | 44 45 46 47 Marwala T (13) 2006 Bristow H (30) 2013 50 51 53 10 54 11 55 12 Schilling R J (52) 2011 56 14 15 16 17 18 19 Lee H (49) 2007 1 2 3 4 7 8 9 Gu X (5) 2016; 27 20 21 22 25 26 27 28 Rao T (43) 2015 31 32 33 34 35 36 37 38 39 Chen H (6) 2017; 28 Fernandez-Granda C (42) 2013 Mairal J (41) 2009 Qin Y (24) 2016; 27 Grosse R (29) 2007 40 Wohlberg B (48) 2014 Kafashan M (23) 2013; 24 |
References_xml | – volume: 24 start-page: 74019 issn: 0957-0233 year: 2013 ident: 23 publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/24/7/074019 – ident: 56 doi: 10.1109/TIE.2017.2736510 – ident: 37 doi: 10.1016/j.ymssp.2009.12.007 – ident: 4 doi: 10.1016/j.ymssp.2010.07.017 – ident: 18 doi: 10.1115/1.2748475 – volume: 27 issn: 0957-0233 year: 2016 ident: 24 publication-title: Meas. Sci. Technol. – year: 2011 ident: 52 publication-title: Fundamentals of Digital Signal Processing Using MATLAB – ident: 12 doi: 10.1109/TIA.2004.827797 – ident: 51 doi: 10.1002/9780470978160 – start-page: 149 year: 2007 ident: 29 publication-title: Proc. 23rd Conf. on Uncertainty in Artificial Intelligence – ident: 22 doi: 10.1016/j.measurement.2015.03.017 – ident: 11 doi: 10.1016/j.ymssp.2011.11.022 – start-page: 2272 year: 2009 ident: 41 publication-title: IEEE 12th Int. Conf. on Computer Vision – ident: 47 doi: 10.1109/TIP.2010.2076294 – start-page: 3336 year: 2013 ident: 42 publication-title: Proc. of the IEEE Int. Conf. on Computer Vision – start-page: 3237 year: 2006 ident: 13 publication-title: Int. Joint Conf. on Neural Networks – ident: 17 doi: 10.1007/s11831-015-9145-0 – ident: 14 doi: 10.1016/S0963-8695(03)00044-6 – ident: 20 doi: 10.1016/j.ymssp.2009.06.015 – start-page: 7173 year: 2014 ident: 48 publication-title: IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP) – ident: 31 doi: 10.1109/TSP.2017.2733447 – start-page: 391 year: 2013 ident: 30 publication-title: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition – ident: 39 doi: 10.1016/j.ymssp.2016.06.035 – ident: 26 doi: 10.1016/j.jsv.2016.01.017 – volume: 27 issn: 0957-0233 year: 2016 ident: 5 publication-title: Meas. Sci. Technol. – ident: 34 doi: 10.1016/j.ymssp.2015.11.022 – ident: 8 doi: 10.1007/s11071-018-4314-y – start-page: 301 year: 2015 ident: 43 publication-title: Int. Conf. on Signal Processing And Communication Engineering Systems (SPACES) – ident: 7 doi: 10.1016/j.jsv.2005.03.007 – ident: 3 doi: 10.1177/1077546317716315 – ident: 10 doi: 10.1023/A:1012985802317 – ident: 53 doi: 10.1016/j.ymssp.2006.02.005 – ident: 50 doi: 10.1016/j.jsv.2003.08.007 – ident: 54 doi: 10.1016/s0888-3270(03)00077-3 – ident: 1 doi: 10.1016/j.jsv.2015.12.011 – ident: 55 doi: 10.1109/TPEL.2017.2703819 – ident: 28 doi: 10.1016/j.ymssp.2016.04.024 – start-page: 801 year: 2007 ident: 49 publication-title: Proc. 19th International Conf. Neural Information Processing Systems – ident: 21 doi: 10.1016/j.ymssp.2013.01.017 – ident: 27 doi: 10.1016/j.ymssp.2017.02.043 – ident: 16 doi: 10.1016/j.dsp.2014.09.014 – ident: 46 doi: 10.1109/TSP.2016.2518989 – ident: 2 doi: 10.1016/j.jsv.2017.03.007 – ident: 38 doi: 10.1016/j.ymssp.2016.12.036 – ident: 32 doi: 10.1016/j.ymssp.2010.07.019 – ident: 9 doi: 10.1016/j.ymssp.2013.10.007 – ident: 19 doi: 10.1016/j.ymssp.2009.11.011 – ident: 44 doi: 10.1109/TSP.2014.2329274 – ident: 25 doi: 10.1109/ISFA.2016.7790126 – ident: 35 doi: 10.21595/jve.2016.17817 – ident: 45 doi: 10.1016/j.sigpro.2015.09.017 – ident: 40 doi: 10.1016/j.ymssp.2012.06.010 – ident: 33 doi: 10.1016/j.ymssp.2014.01.011 – volume: 28 issn: 0957-0233 year: 2017 ident: 6 publication-title: Meas. Sci. Technol. – ident: 36 doi: 10.1016/j.ymssp.2015.11.027 – ident: 15 doi: 10.1016/j.ymssp.2017.02.036 |
SSID | ssj0007099 |
Score | 2.277978 |
Snippet | To cope with the problem of detecting periodic impulses in rotating machines with certain bearing faults, this paper proposes a novel data-driven dictionary... |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 115103 |
SubjectTerms | convolutional sparse coding dictionary learning fault diagnosis group sparsity |
Title | Convolutional sparse coding with periodic overlapped group sparsity for rolling element bearing fault diagnosis |
URI | https://iopscience.iop.org/article/10.1088/1361-6501/aadff8 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB21RUi9QLtQUaCVD0VqD9m148RxxAmtqFoOhQMr7aFS5E8JdbVZbbIc-PWMY3cFVUGIWxyNE2vsmXnJjJ8BzozzluZaZBX3-IHiWJHpnPnMFpYJUzGm_cD2eSOuZsWneTnfgffbvTDtKrn-MV5GouCowlQQJyeMC5YhsGATpaz3cheecClEOL7g-vOXrRuuaJ2I9qoMAxNPOcrHnvBbTNrF9_4SYi6fw-394GJlyd140-ux-fGAt_E_R38AzxL0JB-i6CHsuOUIng4loKYbwWEy846cJy7qixfQTtvl97Q6sS-6n3XniGlDxCPhHy4JTMnYNCTUgi7UauUsGbaKRGEE-QRxMVlH8m_iYrk60Whhoe3VZtETGwv-vnUvYXb58ev0KktnNGQml7TPrBcF9YgzSq1sWZe25M4LK7mjtWEVr5TNqXHWapbrKiSUqVW1NTUvCke150ewt2yX7hUQqpWkxuBdURaFR2QpcqO8F97iGirLY5jcz1JjEoF5OEdj0QyJdCmboNsm6LaJuj2Gi22PVSTv-IvsO5yyJllw90e51_8o9wb2EVvJuG3xLez16407QfzS69Nhnf4E8Rzs4A |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoEYgLtIWK8mh9KBI9ZNeOYyc5osKqLaj0QKXegu2xpaqrTbTJ9tBfzzh2q4IAIXGLo3EeY8_Ml8z4MyH71nlguVFZKTx-oDheZCbnPoMCuLIl58aPbJ-n6ui8OLmQF2mf03EtTNsl1z_Bw0gUHFWYCuKqKReKZwgs-FRr8L6aduDXyEMplAjk-cdfz-5cccnqRLZXZhicRMpT_u4qP8WlNbz3vTAze0a-3z5grC65mqwGM7E3v3A3_scbbJCnCYLSD1F8kzxwiy3yaCwFtf0W2Uzm3tP3iZP64DlpD9vFdZql2Bfd0LJ31LYh8tHwL5cGxmRsWhpqQue66xzQcclIFEawTxEf02UkAaculq1Tg5YW2l6v5gOFWPh32b8g57NP3w6PsrRXQ2bzig0ZeFUwj3hDGg2yliCF8woq4VhteSlKDTmzDsDw3JQhscxA12BrURSOGS-2yfqiXbiXhDKjK2YtnlWyKDwiTJVb7b3ygHNJyh0yvR2pxiYi87CfxrwZE-pV1QT9NkG_TdTvDjm469FFEo-_yL7DYWuSJfd_lHv1j3J75PHZx1nz5fj082vyBOFWFVcyviHrw3Ll3iKkGczuOG1_AMtm8kQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convolutional+sparse+coding+with+periodic+overlapped+group+sparsity+for+rolling+element+bearing+fault+diagnosis&rft.jtitle=Measurement+science+%26+technology&rft.au=Xia%2C+Yi&rft.au=Lu%2C+Siliang&rft.date=2018-11-01&rft.issn=0957-0233&rft.eissn=1361-6501&rft.volume=29&rft.issue=11&rft.spage=115103&rft_id=info:doi/10.1088%2F1361-6501%2Faadff8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6501_aadff8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-0233&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-0233&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-0233&client=summon |