Convolutional sparse coding with periodic overlapped group sparsity for rolling element bearing fault diagnosis

To cope with the problem of detecting periodic impulses in rotating machines with certain bearing faults, this paper proposes a novel data-driven dictionary learning and sparse coding algorithm. In our approach, the signal is decomposed into one or several components with each one as a convolution o...

Full description

Saved in:
Bibliographic Details
Published inMeasurement science & technology Vol. 29; no. 11; pp. 115103 - 115118
Main Authors Xia, Yi, Lu, Siliang
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.11.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To cope with the problem of detecting periodic impulses in rotating machines with certain bearing faults, this paper proposes a novel data-driven dictionary learning and sparse coding algorithm. In our approach, the signal is decomposed into one or several components with each one as a convolution of one atom with a sparse activation vector. This manner of signal decomposition is formulated as a convex problem subject to a constraint that the activation vector should have a structure with periodic group sparsity. The solution to such a problem is an alternative optimizing process, that is, with a given dictionary, a sparse coding problem is solved by a split variable augmented Lagrangian shrinkage algorithm (SALSA), and for a fixed activation vector, the dictionary updating is implemented by solving Lagrange dual problem. The advantages of the proposed model over several other approaches are demonstrated by the experiments on both simulated and real vibration signals. The experimental results indicate that the proposed method can effectively detect and extract the latent weak fault impulses even in the presence of heavy noise
AbstractList To cope with the problem of detecting periodic impulses in rotating machines with certain bearing faults, this paper proposes a novel data-driven dictionary learning and sparse coding algorithm. In our approach, the signal is decomposed into one or several components with each one as a convolution of one atom with a sparse activation vector. This manner of signal decomposition is formulated as a convex problem subject to a constraint that the activation vector should have a structure with periodic group sparsity. The solution to such a problem is an alternative optimizing process, that is, with a given dictionary, a sparse coding problem is solved by a split variable augmented Lagrangian shrinkage algorithm (SALSA), and for a fixed activation vector, the dictionary updating is implemented by solving Lagrange dual problem. The advantages of the proposed model over several other approaches are demonstrated by the experiments on both simulated and real vibration signals. The experimental results indicate that the proposed method can effectively detect and extract the latent weak fault impulses even in the presence of heavy noise
Author Xia, Yi
Lu, Siliang
Author_xml – sequence: 1
  givenname: Yi
  orcidid: 0000-0003-4433-6502
  surname: Xia
  fullname: Xia, Yi
  email: xiayi@ahu.edu.cn
  organization: Anhui University School of Electrical Engineering and Automation, Hefei 230601, People's Republic of China
– sequence: 2
  givenname: Siliang
  orcidid: 0000-0002-7101-7948
  surname: Lu
  fullname: Lu, Siliang
  email: lusliang@mail.ustc.edu.cn
  organization: Anhui University School of Electrical Engineering and Automation, Hefei 230601, People's Republic of China
BookMark eNp9kE1LAzEQhoNUsK3ePeYHuHay2c-jFLVCwYuel2wyqSnpZkmylf57u6x4EPQ0vMP7DMyzILPOdUjILYN7BlW1YrxgSZEDWwmhtK4uyPxnNSNzqPMygZTzK7IIYQ8AJdT1nLi1647ODtG4TlgaeuEDUumU6Xb008QP2qM35yipO6K3ou9R0Z13Qz-VTTxR7Tz1ztqRQYsH7CJtUfgxazHYSJURu84FE67JpRY24M33XJL3p8e39SbZvj6_rB-2iUwriInSRQYayipvhcrrXOUcdaEqjlBLVvJSqBQkKtWytC0ZZAUoUStZ8yxDaDVfkmK6K70LwaNupIli_DJ6YWzDoBm1NaOjZnTUTNrOIPwCe28Owp_-Q-4mxLi-2bvBn02Gv-tfMhCFDg
CODEN MSTCEP
CitedBy_id crossref_primary_10_3390_su142416793
crossref_primary_10_1115_1_4042526
crossref_primary_10_1109_ACCESS_2019_2943191
crossref_primary_10_1109_JSEN_2023_3235537
Cites_doi 10.1088/0957-0233/24/7/074019
10.1109/TIE.2017.2736510
10.1016/j.ymssp.2009.12.007
10.1016/j.ymssp.2010.07.017
10.1115/1.2748475
10.1109/TIA.2004.827797
10.1002/9780470978160
10.1016/j.measurement.2015.03.017
10.1016/j.ymssp.2011.11.022
10.1109/TIP.2010.2076294
10.1007/s11831-015-9145-0
10.1016/S0963-8695(03)00044-6
10.1016/j.ymssp.2009.06.015
10.1109/TSP.2017.2733447
10.1016/j.ymssp.2016.06.035
10.1016/j.jsv.2016.01.017
10.1016/j.ymssp.2015.11.022
10.1007/s11071-018-4314-y
10.1016/j.jsv.2005.03.007
10.1177/1077546317716315
10.1023/A:1012985802317
10.1016/j.ymssp.2006.02.005
10.1016/j.jsv.2003.08.007
10.1016/s0888-3270(03)00077-3
10.1016/j.jsv.2015.12.011
10.1109/TPEL.2017.2703819
10.1016/j.ymssp.2016.04.024
10.1016/j.ymssp.2013.01.017
10.1016/j.ymssp.2017.02.043
10.1016/j.dsp.2014.09.014
10.1109/TSP.2016.2518989
10.1016/j.jsv.2017.03.007
10.1016/j.ymssp.2016.12.036
10.1016/j.ymssp.2010.07.019
10.1016/j.ymssp.2013.10.007
10.1016/j.ymssp.2009.11.011
10.1109/TSP.2014.2329274
10.1109/ISFA.2016.7790126
10.21595/jve.2016.17817
10.1016/j.sigpro.2015.09.017
10.1016/j.ymssp.2012.06.010
10.1016/j.ymssp.2014.01.011
10.1016/j.ymssp.2015.11.027
10.1016/j.ymssp.2017.02.036
ContentType Journal Article
Copyright 2018 IOP Publishing Ltd
Copyright_xml – notice: 2018 IOP Publishing Ltd
DBID AAYXX
CITATION
DOI 10.1088/1361-6501/aadff8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
DocumentTitleAlternate Convolutional sparse coding with periodic overlapped group sparsity for rolling element bearing fault diagnosis
EISSN 1361-6501
ExternalDocumentID 10_1088_1361_6501_aadff8
mstaadff8
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51605002; 51637001
  funderid: https://doi.org/10.13039/501100001809
– fundername: Natural Science Foundation of Anhui Province
  grantid: 1608085MF136
  funderid: https://doi.org/10.13039/501100003995
GroupedDBID -DZ
-~X
.DC
1JI
4.4
5B3
5GY
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAHTB
AAJIO
AAJKP
AALHV
AATNI
ABCXL
ABHWH
ABJNI
ABPEJ
ABQJV
ABVAM
ACAFW
ACBEA
ACGFO
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
NT-
NT.
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TAE
TN5
TWZ
W28
WH7
XPP
YQT
ZMT
~02
AAYXX
ADEQX
CITATION
ID FETCH-LOGICAL-c280t-df640f0785bad595d53ef6d83e09c1737ad20ceddb12b710460da9dc9344e0bf3
IEDL.DBID IOP
ISSN 0957-0233
IngestDate Tue Jul 01 03:54:12 EDT 2025
Thu Apr 24 23:12:47 EDT 2025
Wed Aug 21 03:41:10 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c280t-df640f0785bad595d53ef6d83e09c1737ad20ceddb12b710460da9dc9344e0bf3
Notes MST-107384.R1
ORCID 0000-0003-4433-6502
0000-0002-7101-7948
PageCount 16
ParticipantIDs crossref_citationtrail_10_1088_1361_6501_aadff8
crossref_primary_10_1088_1361_6501_aadff8
iop_journals_10_1088_1361_6501_aadff8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-01
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationTitle Measurement science & technology
PublicationTitleAbbrev MST
PublicationTitleAlternate Meas. Sci. Technol
PublicationYear 2018
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 44
45
46
47
Marwala T (13) 2006
Bristow H (30) 2013
50
51
53
10
54
11
55
12
Schilling R J (52) 2011
56
14
15
16
17
18
19
Lee H (49) 2007
1
2
3
4
7
8
9
Gu X (5) 2016; 27
20
21
22
25
26
27
28
Rao T (43) 2015
31
32
33
34
35
36
37
38
39
Chen H (6) 2017; 28
Fernandez-Granda C (42) 2013
Mairal J (41) 2009
Qin Y (24) 2016; 27
Grosse R (29) 2007
40
Wohlberg B (48) 2014
Kafashan M (23) 2013; 24
References_xml – volume: 24
  start-page: 74019
  issn: 0957-0233
  year: 2013
  ident: 23
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/24/7/074019
– ident: 56
  doi: 10.1109/TIE.2017.2736510
– ident: 37
  doi: 10.1016/j.ymssp.2009.12.007
– ident: 4
  doi: 10.1016/j.ymssp.2010.07.017
– ident: 18
  doi: 10.1115/1.2748475
– volume: 27
  issn: 0957-0233
  year: 2016
  ident: 24
  publication-title: Meas. Sci. Technol.
– year: 2011
  ident: 52
  publication-title: Fundamentals of Digital Signal Processing Using MATLAB
– ident: 12
  doi: 10.1109/TIA.2004.827797
– ident: 51
  doi: 10.1002/9780470978160
– start-page: 149
  year: 2007
  ident: 29
  publication-title: Proc. 23rd Conf. on Uncertainty in Artificial Intelligence
– ident: 22
  doi: 10.1016/j.measurement.2015.03.017
– ident: 11
  doi: 10.1016/j.ymssp.2011.11.022
– start-page: 2272
  year: 2009
  ident: 41
  publication-title: IEEE 12th Int. Conf. on Computer Vision
– ident: 47
  doi: 10.1109/TIP.2010.2076294
– start-page: 3336
  year: 2013
  ident: 42
  publication-title: Proc. of the IEEE Int. Conf. on Computer Vision
– start-page: 3237
  year: 2006
  ident: 13
  publication-title: Int. Joint Conf. on Neural Networks
– ident: 17
  doi: 10.1007/s11831-015-9145-0
– ident: 14
  doi: 10.1016/S0963-8695(03)00044-6
– ident: 20
  doi: 10.1016/j.ymssp.2009.06.015
– start-page: 7173
  year: 2014
  ident: 48
  publication-title: IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP)
– ident: 31
  doi: 10.1109/TSP.2017.2733447
– start-page: 391
  year: 2013
  ident: 30
  publication-title: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition
– ident: 39
  doi: 10.1016/j.ymssp.2016.06.035
– ident: 26
  doi: 10.1016/j.jsv.2016.01.017
– volume: 27
  issn: 0957-0233
  year: 2016
  ident: 5
  publication-title: Meas. Sci. Technol.
– ident: 34
  doi: 10.1016/j.ymssp.2015.11.022
– ident: 8
  doi: 10.1007/s11071-018-4314-y
– start-page: 301
  year: 2015
  ident: 43
  publication-title: Int. Conf. on Signal Processing And Communication Engineering Systems (SPACES)
– ident: 7
  doi: 10.1016/j.jsv.2005.03.007
– ident: 3
  doi: 10.1177/1077546317716315
– ident: 10
  doi: 10.1023/A:1012985802317
– ident: 53
  doi: 10.1016/j.ymssp.2006.02.005
– ident: 50
  doi: 10.1016/j.jsv.2003.08.007
– ident: 54
  doi: 10.1016/s0888-3270(03)00077-3
– ident: 1
  doi: 10.1016/j.jsv.2015.12.011
– ident: 55
  doi: 10.1109/TPEL.2017.2703819
– ident: 28
  doi: 10.1016/j.ymssp.2016.04.024
– start-page: 801
  year: 2007
  ident: 49
  publication-title: Proc. 19th International Conf. Neural Information Processing Systems
– ident: 21
  doi: 10.1016/j.ymssp.2013.01.017
– ident: 27
  doi: 10.1016/j.ymssp.2017.02.043
– ident: 16
  doi: 10.1016/j.dsp.2014.09.014
– ident: 46
  doi: 10.1109/TSP.2016.2518989
– ident: 2
  doi: 10.1016/j.jsv.2017.03.007
– ident: 38
  doi: 10.1016/j.ymssp.2016.12.036
– ident: 32
  doi: 10.1016/j.ymssp.2010.07.019
– ident: 9
  doi: 10.1016/j.ymssp.2013.10.007
– ident: 19
  doi: 10.1016/j.ymssp.2009.11.011
– ident: 44
  doi: 10.1109/TSP.2014.2329274
– ident: 25
  doi: 10.1109/ISFA.2016.7790126
– ident: 35
  doi: 10.21595/jve.2016.17817
– ident: 45
  doi: 10.1016/j.sigpro.2015.09.017
– ident: 40
  doi: 10.1016/j.ymssp.2012.06.010
– ident: 33
  doi: 10.1016/j.ymssp.2014.01.011
– volume: 28
  issn: 0957-0233
  year: 2017
  ident: 6
  publication-title: Meas. Sci. Technol.
– ident: 36
  doi: 10.1016/j.ymssp.2015.11.027
– ident: 15
  doi: 10.1016/j.ymssp.2017.02.036
SSID ssj0007099
Score 2.277978
Snippet To cope with the problem of detecting periodic impulses in rotating machines with certain bearing faults, this paper proposes a novel data-driven dictionary...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 115103
SubjectTerms convolutional sparse coding
dictionary learning
fault diagnosis
group sparsity
Title Convolutional sparse coding with periodic overlapped group sparsity for rolling element bearing fault diagnosis
URI https://iopscience.iop.org/article/10.1088/1361-6501/aadff8
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB21RUi9QLtQUaCVD0VqD9m148RxxAmtqFoOhQMr7aFS5E8JdbVZbbIc-PWMY3cFVUGIWxyNE2vsmXnJjJ8BzozzluZaZBX3-IHiWJHpnPnMFpYJUzGm_cD2eSOuZsWneTnfgffbvTDtKrn-MV5GouCowlQQJyeMC5YhsGATpaz3cheecClEOL7g-vOXrRuuaJ2I9qoMAxNPOcrHnvBbTNrF9_4SYi6fw-394GJlyd140-ux-fGAt_E_R38AzxL0JB-i6CHsuOUIng4loKYbwWEy846cJy7qixfQTtvl97Q6sS-6n3XniGlDxCPhHy4JTMnYNCTUgi7UauUsGbaKRGEE-QRxMVlH8m_iYrk60Whhoe3VZtETGwv-vnUvYXb58ev0KktnNGQml7TPrBcF9YgzSq1sWZe25M4LK7mjtWEVr5TNqXHWapbrKiSUqVW1NTUvCke150ewt2yX7hUQqpWkxuBdURaFR2QpcqO8F97iGirLY5jcz1JjEoF5OEdj0QyJdCmboNsm6LaJuj2Gi22PVSTv-IvsO5yyJllw90e51_8o9wb2EVvJuG3xLez16407QfzS69Nhnf4E8Rzs4A
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoEYgLtIWK8mh9KBI9ZNeOYyc5osKqLaj0QKXegu2xpaqrTbTJ9tBfzzh2q4IAIXGLo3EeY8_Ml8z4MyH71nlguVFZKTx-oDheZCbnPoMCuLIl58aPbJ-n6ui8OLmQF2mf03EtTNsl1z_Bw0gUHFWYCuKqKReKZwgs-FRr8L6aduDXyEMplAjk-cdfz-5cccnqRLZXZhicRMpT_u4qP8WlNbz3vTAze0a-3z5grC65mqwGM7E3v3A3_scbbJCnCYLSD1F8kzxwiy3yaCwFtf0W2Uzm3tP3iZP64DlpD9vFdZql2Bfd0LJ31LYh8tHwL5cGxmRsWhpqQue66xzQcclIFEawTxEf02UkAaculq1Tg5YW2l6v5gOFWPh32b8g57NP3w6PsrRXQ2bzig0ZeFUwj3hDGg2yliCF8woq4VhteSlKDTmzDsDw3JQhscxA12BrURSOGS-2yfqiXbiXhDKjK2YtnlWyKDwiTJVb7b3ygHNJyh0yvR2pxiYi87CfxrwZE-pV1QT9NkG_TdTvDjm469FFEo-_yL7DYWuSJfd_lHv1j3J75PHZx1nz5fj082vyBOFWFVcyviHrw3Ll3iKkGczuOG1_AMtm8kQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convolutional+sparse+coding+with+periodic+overlapped+group+sparsity+for+rolling+element+bearing+fault+diagnosis&rft.jtitle=Measurement+science+%26+technology&rft.au=Xia%2C+Yi&rft.au=Lu%2C+Siliang&rft.date=2018-11-01&rft.issn=0957-0233&rft.eissn=1361-6501&rft.volume=29&rft.issue=11&rft.spage=115103&rft_id=info:doi/10.1088%2F1361-6501%2Faadff8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6501_aadff8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-0233&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-0233&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-0233&client=summon