Rayleigh–Taylor instability at spherical interfaces of incompressible fluids
Rayleigh–Taylor instability(RTI) of three incompressible fluids with two interfaces in spherical geometry is derived analytically. The growth rate on the two interfaces and the perturbation feedthrough coefficients between two spherical interfaces are derived. For low-mode perturbation, the feedthro...
Saved in:
Published in | Chinese physics B Vol. 27; no. 2; pp. 450 - 456 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.02.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rayleigh–Taylor instability(RTI) of three incompressible fluids with two interfaces in spherical geometry is derived analytically. The growth rate on the two interfaces and the perturbation feedthrough coefficients between two spherical interfaces are derived. For low-mode perturbation, the feedthrough effect from outer interface to inner interface is much more severe than the corresponding planar case, while the feedback from inner interface to the outer interface is smaller than that in planar geometry. The low-mode perturbations lead to the pronounced RTI growth on the inner interface of a spherical shell that are larger than the cylindrical and planar results. It is the low-mode perturbation that results in the difference between the RTI growth in spherical and cylindrical geometry. When the mode number of the perturbation is large enough, the results in cylindrical geometry are recovered. |
---|---|
AbstractList | Rayleigh–Taylor instability(RTI) of three incompressible fluids with two interfaces in spherical geometry is derived analytically. The growth rate on the two interfaces and the perturbation feedthrough coefficients between two spherical interfaces are derived. For low-mode perturbation, the feedthrough effect from outer interface to inner interface is much more severe than the corresponding planar case, while the feedback from inner interface to the outer interface is smaller than that in planar geometry. The low-mode perturbations lead to the pronounced RTI growth on the inner interface of a spherical shell that are larger than the cylindrical and planar results. It is the low-mode perturbation that results in the difference between the RTI growth in spherical and cylindrical geometry. When the mode number of the perturbation is large enough, the results in cylindrical geometry are recovered. |
Author | 郭宏宇;王立锋;叶文华;吴俊峰;李英骏;张维岩 |
AuthorAffiliation | Graduate School, China Academy of Engineering Physics, Bcijing 100088, China;Institute of Applied Physics and Computational Mathematics, Beijing 100094, China;HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100871, China;State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083, China |
Author_xml | – sequence: 1 fullname: 郭宏宇;王立锋;叶文华;吴俊峰;李英骏;张维岩 |
BookMark | eNqFkM1KAzEUhYNUsK0-gjC4H-cmmUkyuJLiHxQFqeuQzCRtZDqpSVx05zv4hj6JU1q6cOPq3ss534VzJmjU-94gdInhGoMQBWa8zDFUrCC8IAWQigA7QWMClcipoOUIjY-eMzSJ8R2AYSB0jJ5f1bYzbrn6-fpeDKsPmetjUtp1Lm0zlbK4WZngGtUNQjLBqsbEzNvhavx6E0yMTncms92na-M5OrWqi-biMKfo7f5uMXvM5y8PT7Pbed4QASlvNZgSc8WpZrquOWWKYlHq0lJDqbGaMA6N0YpYKgyvQZAWWlrXpNKt4IZO0c3-bxN8jMFY2bikkvN9Csp1EoPcVSN3seUutiRcErmvZqCrP_QmuLUK23-5qwO38v3yw_XLIzj4OSNVDfQXE8t3CA |
CitedBy_id | crossref_primary_10_1088_1674_1056_ac3390 crossref_primary_10_1063_5_0018601 |
Cites_doi | 10.1063/1.2813548 10.1063/1.3609773 10.1063/1.3372843 10.1063/1.1578638 10.1098/rspa.1950.0052 10.1063/1.4864331 10.1063/1.4894112 10.1063/1.872326 10.1063/1.4759161 10.1103/PhysRevA.28.1637 10.1063/1.4921648 10.1063/1.4984782 10.1103/PhysRevE.65.057401 10.1063/1.4940917 10.1103/PhysRevA.26.2140 10.1063/1.2991431 10.1103/PhysRevA.39.5812 10.1063/1.1927542 10.1063/1.4904363 10.1103/PhysRevLett.112.055002 10.1007/s11433-017-9016-x 10.1063/1.4872331 |
ContentType | Journal Article |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION |
DOI | 10.1088/1674-1056/27/2/025206 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库- 镜像站点 CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | Rayleigh–Taylor instability at spherical interfaces of incompressible fluids |
EISSN | 2058-3834 |
EndPage | 456 |
ExternalDocumentID | 10_1088_1674_1056_27_2_025206 674762590 |
GroupedDBID | 02O 1JI 1WK 29B 2RA 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q 92L AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFUIB AFYNE AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BBWZM CCEZO CCVFK CEBXE CHBEP CJUJL CQIGP CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN FA0 FEDTE HAK HVGLF IJHAN IOP IZVLO JCGBZ KNG KOT M45 N5L NT- NT. PJBAE Q02 RIN RNS ROL RPA RW3 SY9 TCJ TGP UCJ W28 ~WA -SA -S~ AAYXX ACARI ADEQX AERVB AGQPQ AOAED ARNYC CAJEA CITATION Q-- U1G U5K |
ID | FETCH-LOGICAL-c280t-db0e417a73b6b99736a3184b4f3e33efb2670ceba2f38e79082d0d39925bd87e3 |
ISSN | 1674-1056 |
IngestDate | Tue Jul 01 02:55:24 EDT 2025 Thu Apr 24 22:52:54 EDT 2025 Wed Feb 14 09:56:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | http://iopscience.iop.org/info/page/text-and-data-mining http://iopscience.iop.org/page/copyright |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c280t-db0e417a73b6b99736a3184b4f3e33efb2670ceba2f38e79082d0d39925bd87e3 |
Notes | Hong-Yu Guo1,2, Li-Feng Wang2,3, Wen-Hua Ye2,3, Jun-Feng Wu2, Ying-Jun Li4, and Wei-Yan Zhang2,3( 1 Graduate School, China Academy of Engineering Physics, Bcijing 100088, China 2Institute of Applied Physics and Computational Mathematics, Beijing 100094, China 3 HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100871, China 4State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083, China) Rayleigh–Taylor instability spherical geometry inertial confinement fusion Rayleigh–Taylor instability(RTI) of three incompressible fluids with two interfaces in spherical geometry is derived analytically. The growth rate on the two interfaces and the perturbation feedthrough coefficients between two spherical interfaces are derived. For low-mode perturbation, the feedthrough effect from outer interface to inner interface is much more severe than the corresponding planar case, while the feedback from inner interface to the outer interface is smaller than that in planar geometry. The low-mode perturbations lead to the pronounced RTI growth on the inner interface of a spherical shell that are larger than the cylindrical and planar results. It is the low-mode perturbation that results in the difference between the RTI growth in spherical and cylindrical geometry. When the mode number of the perturbation is large enough, the results in cylindrical geometry are recovered. 11-5639/O4 |
PageCount | 7 |
ParticipantIDs | crossref_citationtrail_10_1088_1674_1056_27_2_025206 crossref_primary_10_1088_1674_1056_27_2_025206 chongqing_primary_674762590 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-01 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Chinese physics B |
PublicationTitleAlternate | Chinese Physics |
PublicationYear | 2018 |
References | 22 23 24 25 26 27 Guo H Y (7) 2017; 34 Guo H Y (18) 2017; 26 10 11 12 Guo H Y (8) 2017; 34 13 14 15 16 17 19 Rayleigh L (1) 1883; 14 2 3 4 5 9 Guo H Y (6) 2014; 31 20 21 |
References_xml | – ident: 23 doi: 10.1063/1.2813548 – ident: 11 doi: 10.1063/1.3609773 – ident: 10 doi: 10.1063/1.3372843 – ident: 4 doi: 10.1063/1.1578638 – volume: 14 start-page: 170 issn: 0024-6115 year: 1883 ident: 1 publication-title: Proc. London Math. Soc. – ident: 2 doi: 10.1098/rspa.1950.0052 – ident: 24 doi: 10.1063/1.4864331 – ident: 25 doi: 10.1063/1.4894112 – volume: 34 issn: 0256-307X year: 2017 ident: 7 publication-title: Chin. Phys. Lett. – ident: 22 doi: 10.1063/1.872326 – volume: 34 issn: 0256-307X year: 2017 ident: 8 publication-title: Chin. Phys. Lett. – ident: 20 doi: 10.1063/1.4759161 – ident: 13 doi: 10.1103/PhysRevA.28.1637 – ident: 16 doi: 10.1063/1.4921648 – ident: 17 doi: 10.1063/1.4984782 – ident: 19 doi: 10.1103/PhysRevE.65.057401 – ident: 21 doi: 10.1063/1.4940917 – ident: 12 doi: 10.1103/PhysRevA.26.2140 – ident: 15 doi: 10.1063/1.2991431 – ident: 26 doi: 10.1103/PhysRevA.39.5812 – ident: 9 doi: 10.1063/1.1927542 – volume: 31 issn: 0256-307X year: 2014 ident: 6 publication-title: Chin. Phys. Lett. – volume: 26 issn: 1674-1056 year: 2017 ident: 18 publication-title: Chin. Phys. – ident: 14 doi: 10.1063/1.4904363 – ident: 27 doi: 10.1103/PhysRevLett.112.055002 – ident: 5 doi: 10.1007/s11433-017-9016-x – ident: 3 doi: 10.1063/1.4872331 |
SSID | ssj0061023 |
Score | 2.1261098 |
Snippet | Rayleigh–Taylor instability(RTI) of three incompressible fluids with two interfaces in spherical geometry is derived analytically. The growth rate on the two... |
SourceID | crossref chongqing |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 450 |
SubjectTerms | Rayleigh;外部接口;不可压缩;不稳定性;球形;液体;泰勒;几何学 |
Title | Rayleigh–Taylor instability at spherical interfaces of incompressible fluids |
URI | http://lib.cqvip.com/qk/85823A/201802/674762590.html |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWIiQuFU-xtCAfuLqb2FnbOSJUWFCBCrVSuRDZsdNWqrKlTQ7l1zNj59WCKsoliqx4Is18mngmM98Q8kYKr7XNPYOzsmPZ0qXMWCkZN3kpXeqdDcWYn7_I1WH26Wh5NJv9mFQttY3dKX_9ta_kf6wKa2BX7JK9g2UHobAA92BfuIKF4fpPNv4G4TamNlmMu7GwvIm821fYpHiJlAHBCEgKcVGF6qtAEYGF5KEAFvumqrP2NLb7DpQFJ2EwZZf2uBwnM39oQ2Z1ta6P2fd2TMZHh7F3ykA9x2MaNhTw-Zqt2tH5t7EXpB4f7XIOqe7LlAc3KVUGDjxSgvd-NPb4d3jhU6e45IFV4E93DS4OMwe9NOxOwT_IPNBd9Luuk2Tf-HgNJYXhZ7rWBQorUFjBVcGLKOYeuc8hjMAJFx-_7vdfaom0FRiQ9-_vO7y0XgxrC64WfBHFIP_GCWj4J5wqJueYyYHk4BHZ7CIJ-jbC4jGZ-foJebAfTfaU7N0AB52Ag5qGDuCgIzjouqLXwUEjOJ6Rw_e7B-9WrBudwUquk4Y5m_gsVUYJK22eKyENOO_MZpXwQvjKcqmS0lvDK6G9wrn3LnFIUry0TisvnpONel37F4QanhqRe2vz1GUmESZzAimCdFlC8O3LOdkalFKcR4qUArSnMLJO5iTr1VSUHes8Dj85K2412JzsDNt6mbdueHnXDVvk4YjsbbLRXLT-FZwvG_s6gOQ3HpZx7A |
linkProvider | IOP Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rayleigh-Taylor+instability+at+spherical+interfaces+of+incompressible+fluids&rft.jtitle=Chinese+physics+B&rft.au=Guo%2C+Hong-Yu&rft.au=Wang%2C+Li-Feng&rft.au=Ye%2C+Wen-Hua&rft.au=Wu%2C+Jun-Feng&rft.date=2018-02-01&rft.issn=1674-1056&rft.volume=27&rft.issue=2&rft.spage=25206&rft_id=info:doi/10.1088%2F1674-1056%2F27%2F2%2F025206&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1674_1056_27_2_025206 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg |