Rayleigh–Taylor instability at spherical interfaces of incompressible fluids

Rayleigh–Taylor instability(RTI) of three incompressible fluids with two interfaces in spherical geometry is derived analytically. The growth rate on the two interfaces and the perturbation feedthrough coefficients between two spherical interfaces are derived. For low-mode perturbation, the feedthro...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 27; no. 2; pp. 450 - 456
Main Author 郭宏宇;王立锋;叶文华;吴俊峰;李英骏;张维岩
Format Journal Article
LanguageEnglish
Published 01.02.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rayleigh–Taylor instability(RTI) of three incompressible fluids with two interfaces in spherical geometry is derived analytically. The growth rate on the two interfaces and the perturbation feedthrough coefficients between two spherical interfaces are derived. For low-mode perturbation, the feedthrough effect from outer interface to inner interface is much more severe than the corresponding planar case, while the feedback from inner interface to the outer interface is smaller than that in planar geometry. The low-mode perturbations lead to the pronounced RTI growth on the inner interface of a spherical shell that are larger than the cylindrical and planar results. It is the low-mode perturbation that results in the difference between the RTI growth in spherical and cylindrical geometry. When the mode number of the perturbation is large enough, the results in cylindrical geometry are recovered.
AbstractList Rayleigh–Taylor instability(RTI) of three incompressible fluids with two interfaces in spherical geometry is derived analytically. The growth rate on the two interfaces and the perturbation feedthrough coefficients between two spherical interfaces are derived. For low-mode perturbation, the feedthrough effect from outer interface to inner interface is much more severe than the corresponding planar case, while the feedback from inner interface to the outer interface is smaller than that in planar geometry. The low-mode perturbations lead to the pronounced RTI growth on the inner interface of a spherical shell that are larger than the cylindrical and planar results. It is the low-mode perturbation that results in the difference between the RTI growth in spherical and cylindrical geometry. When the mode number of the perturbation is large enough, the results in cylindrical geometry are recovered.
Author 郭宏宇;王立锋;叶文华;吴俊峰;李英骏;张维岩
AuthorAffiliation Graduate School, China Academy of Engineering Physics, Bcijing 100088, China;Institute of Applied Physics and Computational Mathematics, Beijing 100094, China;HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100871, China;State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083, China
Author_xml – sequence: 1
  fullname: 郭宏宇;王立锋;叶文华;吴俊峰;李英骏;张维岩
BookMark eNqFkM1KAzEUhYNUsK0-gjC4H-cmmUkyuJLiHxQFqeuQzCRtZDqpSVx05zv4hj6JU1q6cOPq3ss534VzJmjU-94gdInhGoMQBWa8zDFUrCC8IAWQigA7QWMClcipoOUIjY-eMzSJ8R2AYSB0jJ5f1bYzbrn6-fpeDKsPmetjUtp1Lm0zlbK4WZngGtUNQjLBqsbEzNvhavx6E0yMTncms92na-M5OrWqi-biMKfo7f5uMXvM5y8PT7Pbed4QASlvNZgSc8WpZrquOWWKYlHq0lJDqbGaMA6N0YpYKgyvQZAWWlrXpNKt4IZO0c3-bxN8jMFY2bikkvN9Csp1EoPcVSN3seUutiRcErmvZqCrP_QmuLUK23-5qwO38v3yw_XLIzj4OSNVDfQXE8t3CA
CitedBy_id crossref_primary_10_1088_1674_1056_ac3390
crossref_primary_10_1063_5_0018601
Cites_doi 10.1063/1.2813548
10.1063/1.3609773
10.1063/1.3372843
10.1063/1.1578638
10.1098/rspa.1950.0052
10.1063/1.4864331
10.1063/1.4894112
10.1063/1.872326
10.1063/1.4759161
10.1103/PhysRevA.28.1637
10.1063/1.4921648
10.1063/1.4984782
10.1103/PhysRevE.65.057401
10.1063/1.4940917
10.1103/PhysRevA.26.2140
10.1063/1.2991431
10.1103/PhysRevA.39.5812
10.1063/1.1927542
10.1063/1.4904363
10.1103/PhysRevLett.112.055002
10.1007/s11433-017-9016-x
10.1063/1.4872331
ContentType Journal Article
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
DOI 10.1088/1674-1056/27/2/025206
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Rayleigh–Taylor instability at spherical interfaces of incompressible fluids
EISSN 2058-3834
EndPage 456
ExternalDocumentID 10_1088_1674_1056_27_2_025206
674762590
GroupedDBID 02O
1JI
1WK
29B
2RA
4.4
5B3
5GY
5VR
5VS
5ZH
6J9
7.M
7.Q
92L
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFUIB
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CQIGP
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FA0
FEDTE
HAK
HVGLF
IJHAN
IOP
IZVLO
JCGBZ
KNG
KOT
M45
N5L
NT-
NT.
PJBAE
Q02
RIN
RNS
ROL
RPA
RW3
SY9
TCJ
TGP
UCJ
W28
~WA
-SA
-S~
AAYXX
ACARI
ADEQX
AERVB
AGQPQ
AOAED
ARNYC
CAJEA
CITATION
Q--
U1G
U5K
ID FETCH-LOGICAL-c280t-db0e417a73b6b99736a3184b4f3e33efb2670ceba2f38e79082d0d39925bd87e3
ISSN 1674-1056
IngestDate Tue Jul 01 02:55:24 EDT 2025
Thu Apr 24 22:52:54 EDT 2025
Wed Feb 14 09:56:09 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://iopscience.iop.org/info/page/text-and-data-mining
http://iopscience.iop.org/page/copyright
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c280t-db0e417a73b6b99736a3184b4f3e33efb2670ceba2f38e79082d0d39925bd87e3
Notes Hong-Yu Guo1,2, Li-Feng Wang2,3, Wen-Hua Ye2,3, Jun-Feng Wu2, Ying-Jun Li4, and Wei-Yan Zhang2,3( 1 Graduate School, China Academy of Engineering Physics, Bcijing 100088, China 2Institute of Applied Physics and Computational Mathematics, Beijing 100094, China 3 HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100871, China 4State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083, China)
Rayleigh–Taylor instability spherical geometry inertial confinement fusion
Rayleigh–Taylor instability(RTI) of three incompressible fluids with two interfaces in spherical geometry is derived analytically. The growth rate on the two interfaces and the perturbation feedthrough coefficients between two spherical interfaces are derived. For low-mode perturbation, the feedthrough effect from outer interface to inner interface is much more severe than the corresponding planar case, while the feedback from inner interface to the outer interface is smaller than that in planar geometry. The low-mode perturbations lead to the pronounced RTI growth on the inner interface of a spherical shell that are larger than the cylindrical and planar results. It is the low-mode perturbation that results in the difference between the RTI growth in spherical and cylindrical geometry. When the mode number of the perturbation is large enough, the results in cylindrical geometry are recovered.
11-5639/O4
PageCount 7
ParticipantIDs crossref_citationtrail_10_1088_1674_1056_27_2_025206
crossref_primary_10_1088_1674_1056_27_2_025206
chongqing_primary_674762590
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-01
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-01
  day: 01
PublicationDecade 2010
PublicationTitle Chinese physics B
PublicationTitleAlternate Chinese Physics
PublicationYear 2018
References 22
23
24
25
26
27
Guo H Y (7) 2017; 34
Guo H Y (18) 2017; 26
10
11
12
Guo H Y (8) 2017; 34
13
14
15
16
17
19
Rayleigh L (1) 1883; 14
2
3
4
5
9
Guo H Y (6) 2014; 31
20
21
References_xml – ident: 23
  doi: 10.1063/1.2813548
– ident: 11
  doi: 10.1063/1.3609773
– ident: 10
  doi: 10.1063/1.3372843
– ident: 4
  doi: 10.1063/1.1578638
– volume: 14
  start-page: 170
  issn: 0024-6115
  year: 1883
  ident: 1
  publication-title: Proc. London Math. Soc.
– ident: 2
  doi: 10.1098/rspa.1950.0052
– ident: 24
  doi: 10.1063/1.4864331
– ident: 25
  doi: 10.1063/1.4894112
– volume: 34
  issn: 0256-307X
  year: 2017
  ident: 7
  publication-title: Chin. Phys. Lett.
– ident: 22
  doi: 10.1063/1.872326
– volume: 34
  issn: 0256-307X
  year: 2017
  ident: 8
  publication-title: Chin. Phys. Lett.
– ident: 20
  doi: 10.1063/1.4759161
– ident: 13
  doi: 10.1103/PhysRevA.28.1637
– ident: 16
  doi: 10.1063/1.4921648
– ident: 17
  doi: 10.1063/1.4984782
– ident: 19
  doi: 10.1103/PhysRevE.65.057401
– ident: 21
  doi: 10.1063/1.4940917
– ident: 12
  doi: 10.1103/PhysRevA.26.2140
– ident: 15
  doi: 10.1063/1.2991431
– ident: 26
  doi: 10.1103/PhysRevA.39.5812
– ident: 9
  doi: 10.1063/1.1927542
– volume: 31
  issn: 0256-307X
  year: 2014
  ident: 6
  publication-title: Chin. Phys. Lett.
– volume: 26
  issn: 1674-1056
  year: 2017
  ident: 18
  publication-title: Chin. Phys.
– ident: 14
  doi: 10.1063/1.4904363
– ident: 27
  doi: 10.1103/PhysRevLett.112.055002
– ident: 5
  doi: 10.1007/s11433-017-9016-x
– ident: 3
  doi: 10.1063/1.4872331
SSID ssj0061023
Score 2.1261098
Snippet Rayleigh–Taylor instability(RTI) of three incompressible fluids with two interfaces in spherical geometry is derived analytically. The growth rate on the two...
SourceID crossref
chongqing
SourceType Enrichment Source
Index Database
Publisher
StartPage 450
SubjectTerms Rayleigh;外部接口;不可压缩;不稳定性;球形;液体;泰勒;几何学
Title Rayleigh–Taylor instability at spherical interfaces of incompressible fluids
URI http://lib.cqvip.com/qk/85823A/201802/674762590.html
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWIiQuFU-xtCAfuLqb2FnbOSJUWFCBCrVSuRDZsdNWqrKlTQ7l1zNj59WCKsoliqx4Is18mngmM98Q8kYKr7XNPYOzsmPZ0qXMWCkZN3kpXeqdDcWYn7_I1WH26Wh5NJv9mFQttY3dKX_9ta_kf6wKa2BX7JK9g2UHobAA92BfuIKF4fpPNv4G4TamNlmMu7GwvIm821fYpHiJlAHBCEgKcVGF6qtAEYGF5KEAFvumqrP2NLb7DpQFJ2EwZZf2uBwnM39oQ2Z1ta6P2fd2TMZHh7F3ykA9x2MaNhTw-Zqt2tH5t7EXpB4f7XIOqe7LlAc3KVUGDjxSgvd-NPb4d3jhU6e45IFV4E93DS4OMwe9NOxOwT_IPNBd9Luuk2Tf-HgNJYXhZ7rWBQorUFjBVcGLKOYeuc8hjMAJFx-_7vdfaom0FRiQ9-_vO7y0XgxrC64WfBHFIP_GCWj4J5wqJueYyYHk4BHZ7CIJ-jbC4jGZ-foJebAfTfaU7N0AB52Ag5qGDuCgIzjouqLXwUEjOJ6Rw_e7B-9WrBudwUquk4Y5m_gsVUYJK22eKyENOO_MZpXwQvjKcqmS0lvDK6G9wrn3LnFIUry0TisvnpONel37F4QanhqRe2vz1GUmESZzAimCdFlC8O3LOdkalFKcR4qUArSnMLJO5iTr1VSUHes8Dj85K2412JzsDNt6mbdueHnXDVvk4YjsbbLRXLT-FZwvG_s6gOQ3HpZx7A
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rayleigh-Taylor+instability+at+spherical+interfaces+of+incompressible+fluids&rft.jtitle=Chinese+physics+B&rft.au=Guo%2C+Hong-Yu&rft.au=Wang%2C+Li-Feng&rft.au=Ye%2C+Wen-Hua&rft.au=Wu%2C+Jun-Feng&rft.date=2018-02-01&rft.issn=1674-1056&rft.volume=27&rft.issue=2&rft.spage=25206&rft_id=info:doi/10.1088%2F1674-1056%2F27%2F2%2F025206&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1674_1056_27_2_025206
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg