Nonlocal Kirchhoff diffusion problems: local existence and blow-up of solutions

In this paper, we study a diffusion model of Kirchhoff-type driven by a nonlocal integro-differential operator. As a particular case, we consider the following diffusion problem where [u]s is the Gagliardo seminorm of u, is a bounded domain with Lipschitz boundary, is the fractional Laplacian with ,...

Full description

Saved in:
Bibliographic Details
Published inNonlinearity Vol. 31; no. 7; pp. 3228 - 3250
Main Authors Mingqi, Xiang, R dulescu, Vicen iu D, Zhang, Binlin
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.07.2018
Subjects
Online AccessGet full text
ISSN0951-7715
1361-6544
DOI10.1088/1361-6544/aaba35

Cover

Loading…
Abstract In this paper, we study a diffusion model of Kirchhoff-type driven by a nonlocal integro-differential operator. As a particular case, we consider the following diffusion problem where [u]s is the Gagliardo seminorm of u, is a bounded domain with Lipschitz boundary, is the fractional Laplacian with , is the initial function, and is continuous. Under some appropriate conditions, the local existence of nonnegative solutions is obtained by employing the Galerkin method. Then, by virtue of a differential inequality technique, we prove that the local nonnegative solutions blow-up in finite time with arbitrary negative initial energy and suitable initial values. Moreover, we give an estimate for the lower and upper bounds of the blow-up time. The main novelty is that our results cover the degenerate case, that is, the coefficient of could be zero at the origin.
AbstractList In this paper, we study a diffusion model of Kirchhoff-type driven by a nonlocal integro-differential operator. As a particular case, we consider the following diffusion problem where [u]s is the Gagliardo seminorm of u, is a bounded domain with Lipschitz boundary, is the fractional Laplacian with , is the initial function, and is continuous. Under some appropriate conditions, the local existence of nonnegative solutions is obtained by employing the Galerkin method. Then, by virtue of a differential inequality technique, we prove that the local nonnegative solutions blow-up in finite time with arbitrary negative initial energy and suitable initial values. Moreover, we give an estimate for the lower and upper bounds of the blow-up time. The main novelty is that our results cover the degenerate case, that is, the coefficient of could be zero at the origin.
Author R dulescu, Vicen iu D
Mingqi, Xiang
Zhang, Binlin
Author_xml – sequence: 1
  givenname: Xiang
  surname: Mingqi
  fullname: Mingqi, Xiang
  email: xiangmingqi_hit@163.com
  organization: Civil Aviation University of China College of Science, Tianjin 300300, People's Republic of China
– sequence: 2
  givenname: Vicen iu D
  orcidid: 0000-0003-4615-5537
  surname: R dulescu
  fullname: R dulescu, Vicen iu D
  email: vicentiu.radulescu@imar.ro
  organization: University of Craiova Department of Mathematics, Street A.I. Cuza No. 13, 200585 Craiova, Romania
– sequence: 3
  givenname: Binlin
  surname: Zhang
  fullname: Zhang, Binlin
  email: zhangbinlin2012@163.com
  organization: Heilongjiang Institute of Technology Department of Mathematics, Harbin 150050, People's Republic of China
BookMark eNp9kE1LAzEYhINUsK3ePeYHuDaf26w3KX5hsRc9hySb0JRtsiS7qP_eXVY8CHp64WWeYWYWYBZisABcYnSNkRArTEtclJyxlVJaUX4C5j-vGZijiuNivcb8DCxyPiCEsSB0DnYvMTTRqAY--2T2--gcrL1zffYxwDZF3dhjvoGTxn743NlgLFShhrqJ70Xfwuhgjk3fDUQ-B6dONdlefN8leLu_e908Ftvdw9PmdlsYIlBXaESF1dwMES2jjBpBOa0oWzNVCmaJ0KgiGpNqkNVIaEuJUdxWpGZYcUbpEqDJ16SYc7JOtskfVfqUGMlxEDm2l2N7OQ0yIOUvxPhOjam7pHzzH3g1gT628hD7FIZmf8u_ALWadaU
CODEN NONLE5
CitedBy_id crossref_primary_10_1111_sapm_12405
crossref_primary_10_47000_tjmcs_1260780
crossref_primary_10_58997_ejde_2020_125
crossref_primary_10_3934_dcdss_2021121
crossref_primary_10_1007_s41808_024_00307_2
crossref_primary_10_1088_1361_6544_ab5920
crossref_primary_10_3934_dcdss_2021125
crossref_primary_10_3934_dcdsb_2020354
crossref_primary_10_1016_j_aml_2023_108977
crossref_primary_10_1007_s10473_022_0323_5
crossref_primary_10_1080_17476933_2019_1652281
crossref_primary_10_1186_s13661_019_1154_8
crossref_primary_10_1186_s13661_019_1252_7
crossref_primary_10_11650_tjm_201204
crossref_primary_10_3934_era_2020034
crossref_primary_10_1007_s00009_024_02677_2
crossref_primary_10_1007_s40840_019_00740_w
crossref_primary_10_1007_s12215_021_00698_4
crossref_primary_10_1186_s13661_019_1260_7
crossref_primary_10_1016_j_aml_2020_106969
crossref_primary_10_1016_j_jmaa_2023_127446
crossref_primary_10_3390_math12010005
crossref_primary_10_1007_s00245_020_09666_3
crossref_primary_10_1016_j_na_2019_111609
crossref_primary_10_1088_1361_6544_ac0f52
crossref_primary_10_1515_math_2023_0133
crossref_primary_10_1007_s11464_021_0019_5
crossref_primary_10_1007_s10957_023_02315_z
crossref_primary_10_1016_j_jmaa_2023_127715
crossref_primary_10_1002_mma_9737
crossref_primary_10_3233_ASY_191590
crossref_primary_10_1080_00036811_2020_1829601
crossref_primary_10_1155_2019_1353961
crossref_primary_10_1016_j_jmaa_2019_123695
crossref_primary_10_3233_ASY_191527
crossref_primary_10_1002_mana_202000266
crossref_primary_10_1080_00036811_2022_2125387
crossref_primary_10_58997_ejde_2022_25
crossref_primary_10_3934_mbe_2021144
crossref_primary_10_1186_s13661_019_1231_z
crossref_primary_10_58997_ejde_2021_53
crossref_primary_10_1515_anona_2021_0207
crossref_primary_10_1016_j_na_2019_02_028
crossref_primary_10_1016_j_nonrwa_2021_103346
crossref_primary_10_1007_s00245_019_09603_z
crossref_primary_10_1016_j_na_2020_111791
crossref_primary_10_1007_s00245_020_09704_0
crossref_primary_10_1186_s13661_019_01296_1
crossref_primary_10_1186_s13661_021_01483_z
crossref_primary_10_1108_AJMS_05_2021_0109
crossref_primary_10_1155_2020_3186135
crossref_primary_10_58997_ejde_2022_38
crossref_primary_10_1088_1361_6544_ab9f84
crossref_primary_10_1016_j_na_2019_06_019
crossref_primary_10_1016_j_jmaa_2019_04_020
crossref_primary_10_1016_j_jmaa_2024_128807
crossref_primary_10_1016_j_na_2020_111780
crossref_primary_10_1515_anona_2020_0103
crossref_primary_10_1007_s00032_021_00348_5
crossref_primary_10_1016_j_na_2020_111899
crossref_primary_10_1186_s13661_018_1089_5
crossref_primary_10_1016_j_na_2020_111810
crossref_primary_10_1186_s13661_020_01331_6
crossref_primary_10_1016_j_na_2020_111812
crossref_primary_10_1002_mma_6157
crossref_primary_10_1007_s10915_023_02241_2
crossref_primary_10_1002_mma_9668
crossref_primary_10_1002_mma_7525
crossref_primary_10_3934_dcdsb_2021091
crossref_primary_10_1063_5_0089480
crossref_primary_10_1007_s00526_019_1499_y
crossref_primary_10_1016_j_aml_2024_109243
crossref_primary_10_1016_j_na_2020_111886
crossref_primary_10_1186_s13661_019_1183_3
crossref_primary_10_24193_subbmath_2020_4_05
crossref_primary_10_1002_mma_8689
crossref_primary_10_1007_s00009_020_01584_6
crossref_primary_10_1186_s13661_019_01311_5
crossref_primary_10_1007_s12220_023_01497_2
crossref_primary_10_3390_axioms13030169
crossref_primary_10_1007_s11868_024_00666_3
crossref_primary_10_1515_anona_2020_0127
crossref_primary_10_1016_j_na_2020_111873
crossref_primary_10_1515_anona_2020_0007
crossref_primary_10_3846_mma_2019_014
crossref_primary_10_1002_mana_202200319
crossref_primary_10_1007_s00245_021_09783_7
crossref_primary_10_14232_ejqtde_2020_1_7
crossref_primary_10_1016_j_cnsns_2024_108027
crossref_primary_10_1002_mma_10451
crossref_primary_10_3934_era_2021064
crossref_primary_10_3934_math_2021155
crossref_primary_10_1016_j_jmaa_2020_124516
crossref_primary_10_1007_s00033_020_01464_9
crossref_primary_10_3233_ASY_191564
crossref_primary_10_3233_ASY_211731
crossref_primary_10_3934_dcdss_2024089
crossref_primary_10_1080_00207160_2021_1939020
crossref_primary_10_1186_s13661_021_01555_0
crossref_primary_10_3934_math_2022922
crossref_primary_10_1007_s00245_020_09661_8
crossref_primary_10_1142_S021953052150038X
crossref_primary_10_1186_s13661_020_01358_9
crossref_primary_10_1186_s13661_020_01355_y
crossref_primary_10_1515_anona_2020_0141
crossref_primary_10_1007_s10883_020_09507_0
crossref_primary_10_1007_s13540_024_00360_7
crossref_primary_10_1186_s13660_019_2148_x
Cites_doi 10.1016/j.matpur.2006.04.005
10.1017/CBO9781316282397
10.1006/jdeq.1998.3477
10.1016/j.jmaa.2011.12.032
10.1017/S0308210512001783
10.1016/j.aml.2013.07.012
10.1016/j.na.2008.02.076
10.1016/j.bulsci.2011.12.004
10.1088/0951-7715/29/10/3186
10.1016/0022-0396(92)90091-Z
10.3934/dcdss.2014.7.857
10.1016/j.na.2013.08.011
10.1002/(SICI)1099-1476(19990325)22:5<375::AID-MMA26>3.0.CO;2-7
10.1016/j.na.2011.05.073
10.14232/ejqtde.2016.1.70
10.1016/j.na.2015.03.015
10.1016/j.jde.2006.12.002
10.1016/j.na.2016.04.012
10.1016/j.nonrwa.2017.02.004
10.1142/S0219199715500881
10.1007/s00526-015-0883-5
10.1007/s00205-009-0241-x
10.1016/j.camwa.2017.11.033
10.1016/j.na.2015.06.014
10.5565/PUBLMAT_58114_06
10.1137/080720991
10.3934/dcds.2013.33.2105
10.1515/anona-2015-0102
10.1080/17476933.2016.1177029
10.3934/dcds.2017171
10.1007/BF00263041
10.1017/S0308210508000802
10.1016/S0375-9601(00)00201-2
10.1007/978-3-642-25361-4_3
10.1016/j.aim.2010.07.017
10.1016/j.na.2007.09.035
ContentType Journal Article
Copyright 2018 IOP Publishing Ltd & London Mathematical Society
Copyright_xml – notice: 2018 IOP Publishing Ltd & London Mathematical Society
DBID AAYXX
CITATION
DOI 10.1088/1361-6544/aaba35
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Physics
DocumentTitleAlternate Nonlocal Kirchhoff diffusion problems: local existence and blow-up of solutions
EISSN 1361-6544
EndPage 3250
ExternalDocumentID 10_1088_1361_6544_aaba35
nonaaba35
GroupedDBID -~X
.DC
123
1JI
4.4
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AALHV
AATNI
ABCXL
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
NT-
NT.
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
W28
XPP
YQT
ZMT
AAYXX
ADEQX
CITATION
ID FETCH-LOGICAL-c280t-b038eb5c136e4343c835393474a684e28b092b12938ed08be32ca5e92d41a5433
IEDL.DBID IOP
ISSN 0951-7715
IngestDate Tue Jul 01 02:43:38 EDT 2025
Thu Apr 24 23:03:38 EDT 2025
Wed Aug 21 03:32:04 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c280t-b038eb5c136e4343c835393474a684e28b092b12938ed08be32ca5e92d41a5433
Notes NON-102187.R1
London Mathematical Society
ORCID 0000-0003-4615-5537
PageCount 23
ParticipantIDs crossref_primary_10_1088_1361_6544_aaba35
iop_journals_10_1088_1361_6544_aaba35
crossref_citationtrail_10_1088_1361_6544_aaba35
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-07-01
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-01
  day: 01
PublicationDecade 2010
PublicationTitle Nonlinearity
PublicationTitleAbbrev Non
PublicationTitleAlternate Nonlinearity
PublicationYear 2018
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 22
Valdinoci E (35) 2009; 49
44
23
Servadei R (37) 2013; 33
24
Pucci P (33) 2016; 5
25
26
27
28
Hartman P (19) 1982
30
31
10
32
11
12
34
13
36
15
16
38
17
39
Xiang M (43) 2016; 290
18
Kirchhoff G (20) 1883
Pedregal P (29) 1991
Adams R A (1) 2003
3
4
5
6
7
8
9
Applebaum D (2) 2004; 51
Showalter R E (40) 1996
41
Fife P (14) 2003
42
21
References_xml – ident: 9
  doi: 10.1016/j.matpur.2006.04.005
– ident: 25
  doi: 10.1017/CBO9781316282397
– year: 1991
  ident: 29
  publication-title: Parametrized Measures and Variational Principles
– ident: 30
  doi: 10.1006/jdeq.1998.3477
– ident: 36
  doi: 10.1016/j.jmaa.2011.12.032
– ident: 38
  doi: 10.1017/S0308210512001783
– year: 2003
  ident: 1
  publication-title: Sobolev Spaces
– ident: 6
  doi: 10.1016/j.aml.2013.07.012
– ident: 34
  doi: 10.1016/j.na.2008.02.076
– ident: 11
  doi: 10.1016/j.bulsci.2011.12.004
– volume: 290
  start-page: 3186
  year: 2016
  ident: 43
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/29/10/3186
– ident: 15
  doi: 10.1016/0022-0396(92)90091-Z
– ident: 41
  doi: 10.3934/dcdss.2014.7.857
– ident: 16
  doi: 10.1016/j.na.2013.08.011
– volume: 51
  start-page: 1336
  year: 2004
  ident: 2
  publication-title: Not. Am. Math. Soc.
– ident: 18
  doi: 10.1002/(SICI)1099-1476(19990325)22:5<375::AID-MMA26>3.0.CO;2-7
– ident: 10
  doi: 10.1016/j.na.2011.05.073
– ident: 17
  doi: 10.14232/ejqtde.2016.1.70
– ident: 42
  doi: 10.1016/j.na.2015.03.015
– ident: 12
  doi: 10.1016/j.jde.2006.12.002
– year: 1883
  ident: 20
  publication-title: Vorlesungen über Mathematische Physik: Mechanik
– ident: 44
  doi: 10.1016/j.na.2016.04.012
– ident: 26
  doi: 10.1016/j.nonrwa.2017.02.004
– ident: 24
  doi: 10.1142/S0219199715500881
– ident: 31
  doi: 10.1007/s00526-015-0883-5
– start-page: 153
  year: 2003
  ident: 14
  publication-title: Some Nonclassical Trends in Parabolic and Parabolic-Like Evolutions
– ident: 5
  doi: 10.1007/s00205-009-0241-x
– ident: 23
  doi: 10.1016/j.camwa.2017.11.033
– ident: 4
  doi: 10.1016/j.na.2015.06.014
– ident: 39
  doi: 10.5565/PUBLMAT_58114_06
– ident: 3
  doi: 10.1137/080720991
– volume: 33
  start-page: 2105
  issn: 1078-0947
  year: 2013
  ident: 37
  publication-title: Discrete Contin. Dyn. Syst.
  doi: 10.3934/dcds.2013.33.2105
– volume: 5
  start-page: 27
  year: 2016
  ident: 33
  publication-title: Adv. Nonlinear Anal.
  doi: 10.1515/anona-2015-0102
– ident: 8
  doi: 10.1080/17476933.2016.1177029
– ident: 32
  doi: 10.3934/dcds.2017171
– ident: 22
  doi: 10.1007/BF00263041
– year: 1982
  ident: 19
  publication-title: Ordinary Differential Equations
– volume: 49
  start-page: 33
  issn: 1575-9822
  year: 2009
  ident: 35
  publication-title: Bol. Soc. Esp. Mat. Apl.
– year: 1996
  ident: 40
  publication-title: Monotone Operators in Banach Spaces and Nonlinear Partial Differential Equations
– ident: 28
  doi: 10.1017/S0308210508000802
– ident: 21
  doi: 10.1016/S0375-9601(00)00201-2
– ident: 7
  doi: 10.1007/978-3-642-25361-4_3
– ident: 13
  doi: 10.1016/j.aim.2010.07.017
– ident: 27
  doi: 10.1016/j.na.2007.09.035
SSID ssj0011823
Score 2.5221019
Snippet In this paper, we study a diffusion model of Kirchhoff-type driven by a nonlocal integro-differential operator. As a particular case, we consider the following...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 3228
SubjectTerms blow-up
fractional Laplacian
Galerkin method
Kirchhoff-type diffusion problem
local existence
Title Nonlocal Kirchhoff diffusion problems: local existence and blow-up of solutions
URI https://iopscience.iop.org/article/10.1088/1361-6544/aaba35
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7MiaAHf0zF-Ysc9OChW9skbaonEcdUtnlwsINQkjRFcbTDrQj-9SZtV6aoiLeWvraP95LmS_PyfQAnuplo0M-pZbjoLGK2yTBhigBorDwfc0pysYle3-sOye2IjmpwUe2FSSflp7-lDwui4CKEZUEcazvYcyyPEtLmXHBMl2AZM88z8gU3g_tqCUED50pH3vcdWq5RfveET2PSkn7vwhDT2YDHuXNFZclLK5uJlnz_wtv4T-83Yb2EnuiyMN2CmkoasLZASKjPehWL67QBK3l5qJxuw6CfJvmoh-6edcd4SuMYGWmVzPxrQ6UozfQcFTaGXTOH4ognERLj9M3KJiiNUdXOd2DYuX646lqlFIMlXWbPLGFjpgSV2ntl9qJKDdxwgIlPuMeIcpmwA1cY7MBUZDOhsCs5VYEbEUfnG-NdqCdpovYA6Umf9PVFTBUnKlKCB9ILdAIjH4s4ipvQnicjlCVPuZHLGIf5ejljoQlhaEIYFiFswll1x6Tg6PjF9lRnJiw76vRHu_0_2h3AqoZQrCjgPYT67DVTRxqmzMRx3hw_AKkM3jc
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1REAgOLAXEjg9w4JAu8RKHGwKqlqVwoFJvwXYcgaiSirZC4uuxExMBAoTELVEmi2fG8Us8fg_gwKSJAf2CepaLziN2mQyXtgiAJpoFWFCSi01cd1m7Ry76tO90TvO1MNnQvfprZrMgCi5c6ArieL2JWdNjlJC6EFJgWh_GSQVmKGbYkud3bm7LaQQDnkst-SBoUjdP-d1VPo1LFXPvD8NMawnu3x-wqC55qk3GsqZev3A3_qMFy7DoICg6KcxXYEqnVVj4QExo9q5LNtdRFWbzMlE1WoWbbpbmox-6fDQd5CFLEmQlVib2nxty4jSjY1TYWJbNHJIjkcZIDrIXbzJEWYLKfF-DXuv87rTtOUkGT_m8MfZkA3MtqTIt0HZNqjIADoeYBEQwTrTPZSP0pcUQXMcNLjX2laA69GPSNHHHeB2m0yzVG4DMx58KzEFMtSA61lKEioWcsTjAMomTTai_ByRSjq_cymYMonzenPPIujGybowKN27CUXnGsODq-MX20EQnch129KPd1h_t9mHu9qwVXXW6l9swb1AVL2p6d2B6_DzRuwa5jOVenp1vik_jmw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlocal+Kirchhoff+diffusion+problems%3A+local+existence+and+blow-up+of+solutions&rft.jtitle=Nonlinearity&rft.au=Mingqi%2C+Xiang&rft.au=R+dulescu%2C+Vicen+iu+D&rft.au=Zhang%2C+Binlin&rft.date=2018-07-01&rft.pub=IOP+Publishing&rft.issn=0951-7715&rft.eissn=1361-6544&rft.volume=31&rft.issue=7&rft.spage=3228&rft.epage=3250&rft_id=info:doi/10.1088%2F1361-6544%2Faaba35&rft.externalDocID=nonaaba35
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-7715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-7715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-7715&client=summon