Nonlocal Kirchhoff diffusion problems: local existence and blow-up of solutions
In this paper, we study a diffusion model of Kirchhoff-type driven by a nonlocal integro-differential operator. As a particular case, we consider the following diffusion problem where [u]s is the Gagliardo seminorm of u, is a bounded domain with Lipschitz boundary, is the fractional Laplacian with ,...
Saved in:
Published in | Nonlinearity Vol. 31; no. 7; pp. 3228 - 3250 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.07.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0951-7715 1361-6544 |
DOI | 10.1088/1361-6544/aaba35 |
Cover
Loading…
Abstract | In this paper, we study a diffusion model of Kirchhoff-type driven by a nonlocal integro-differential operator. As a particular case, we consider the following diffusion problem where [u]s is the Gagliardo seminorm of u, is a bounded domain with Lipschitz boundary, is the fractional Laplacian with , is the initial function, and is continuous. Under some appropriate conditions, the local existence of nonnegative solutions is obtained by employing the Galerkin method. Then, by virtue of a differential inequality technique, we prove that the local nonnegative solutions blow-up in finite time with arbitrary negative initial energy and suitable initial values. Moreover, we give an estimate for the lower and upper bounds of the blow-up time. The main novelty is that our results cover the degenerate case, that is, the coefficient of could be zero at the origin. |
---|---|
AbstractList | In this paper, we study a diffusion model of Kirchhoff-type driven by a nonlocal integro-differential operator. As a particular case, we consider the following diffusion problem where [u]s is the Gagliardo seminorm of u, is a bounded domain with Lipschitz boundary, is the fractional Laplacian with , is the initial function, and is continuous. Under some appropriate conditions, the local existence of nonnegative solutions is obtained by employing the Galerkin method. Then, by virtue of a differential inequality technique, we prove that the local nonnegative solutions blow-up in finite time with arbitrary negative initial energy and suitable initial values. Moreover, we give an estimate for the lower and upper bounds of the blow-up time. The main novelty is that our results cover the degenerate case, that is, the coefficient of could be zero at the origin. |
Author | R dulescu, Vicen iu D Mingqi, Xiang Zhang, Binlin |
Author_xml | – sequence: 1 givenname: Xiang surname: Mingqi fullname: Mingqi, Xiang email: xiangmingqi_hit@163.com organization: Civil Aviation University of China College of Science, Tianjin 300300, People's Republic of China – sequence: 2 givenname: Vicen iu D orcidid: 0000-0003-4615-5537 surname: R dulescu fullname: R dulescu, Vicen iu D email: vicentiu.radulescu@imar.ro organization: University of Craiova Department of Mathematics, Street A.I. Cuza No. 13, 200585 Craiova, Romania – sequence: 3 givenname: Binlin surname: Zhang fullname: Zhang, Binlin email: zhangbinlin2012@163.com organization: Heilongjiang Institute of Technology Department of Mathematics, Harbin 150050, People's Republic of China |
BookMark | eNp9kE1LAzEYhINUsK3ePeYHuDaf26w3KX5hsRc9hySb0JRtsiS7qP_eXVY8CHp64WWeYWYWYBZisABcYnSNkRArTEtclJyxlVJaUX4C5j-vGZijiuNivcb8DCxyPiCEsSB0DnYvMTTRqAY--2T2--gcrL1zffYxwDZF3dhjvoGTxn743NlgLFShhrqJ70Xfwuhgjk3fDUQ-B6dONdlefN8leLu_e908Ftvdw9PmdlsYIlBXaESF1dwMES2jjBpBOa0oWzNVCmaJ0KgiGpNqkNVIaEuJUdxWpGZYcUbpEqDJ16SYc7JOtskfVfqUGMlxEDm2l2N7OQ0yIOUvxPhOjam7pHzzH3g1gT628hD7FIZmf8u_ALWadaU |
CODEN | NONLE5 |
CitedBy_id | crossref_primary_10_1111_sapm_12405 crossref_primary_10_47000_tjmcs_1260780 crossref_primary_10_58997_ejde_2020_125 crossref_primary_10_3934_dcdss_2021121 crossref_primary_10_1007_s41808_024_00307_2 crossref_primary_10_1088_1361_6544_ab5920 crossref_primary_10_3934_dcdss_2021125 crossref_primary_10_3934_dcdsb_2020354 crossref_primary_10_1016_j_aml_2023_108977 crossref_primary_10_1007_s10473_022_0323_5 crossref_primary_10_1080_17476933_2019_1652281 crossref_primary_10_1186_s13661_019_1154_8 crossref_primary_10_1186_s13661_019_1252_7 crossref_primary_10_11650_tjm_201204 crossref_primary_10_3934_era_2020034 crossref_primary_10_1007_s00009_024_02677_2 crossref_primary_10_1007_s40840_019_00740_w crossref_primary_10_1007_s12215_021_00698_4 crossref_primary_10_1186_s13661_019_1260_7 crossref_primary_10_1016_j_aml_2020_106969 crossref_primary_10_1016_j_jmaa_2023_127446 crossref_primary_10_3390_math12010005 crossref_primary_10_1007_s00245_020_09666_3 crossref_primary_10_1016_j_na_2019_111609 crossref_primary_10_1088_1361_6544_ac0f52 crossref_primary_10_1515_math_2023_0133 crossref_primary_10_1007_s11464_021_0019_5 crossref_primary_10_1007_s10957_023_02315_z crossref_primary_10_1016_j_jmaa_2023_127715 crossref_primary_10_1002_mma_9737 crossref_primary_10_3233_ASY_191590 crossref_primary_10_1080_00036811_2020_1829601 crossref_primary_10_1155_2019_1353961 crossref_primary_10_1016_j_jmaa_2019_123695 crossref_primary_10_3233_ASY_191527 crossref_primary_10_1002_mana_202000266 crossref_primary_10_1080_00036811_2022_2125387 crossref_primary_10_58997_ejde_2022_25 crossref_primary_10_3934_mbe_2021144 crossref_primary_10_1186_s13661_019_1231_z crossref_primary_10_58997_ejde_2021_53 crossref_primary_10_1515_anona_2021_0207 crossref_primary_10_1016_j_na_2019_02_028 crossref_primary_10_1016_j_nonrwa_2021_103346 crossref_primary_10_1007_s00245_019_09603_z crossref_primary_10_1016_j_na_2020_111791 crossref_primary_10_1007_s00245_020_09704_0 crossref_primary_10_1186_s13661_019_01296_1 crossref_primary_10_1186_s13661_021_01483_z crossref_primary_10_1108_AJMS_05_2021_0109 crossref_primary_10_1155_2020_3186135 crossref_primary_10_58997_ejde_2022_38 crossref_primary_10_1088_1361_6544_ab9f84 crossref_primary_10_1016_j_na_2019_06_019 crossref_primary_10_1016_j_jmaa_2019_04_020 crossref_primary_10_1016_j_jmaa_2024_128807 crossref_primary_10_1016_j_na_2020_111780 crossref_primary_10_1515_anona_2020_0103 crossref_primary_10_1007_s00032_021_00348_5 crossref_primary_10_1016_j_na_2020_111899 crossref_primary_10_1186_s13661_018_1089_5 crossref_primary_10_1016_j_na_2020_111810 crossref_primary_10_1186_s13661_020_01331_6 crossref_primary_10_1016_j_na_2020_111812 crossref_primary_10_1002_mma_6157 crossref_primary_10_1007_s10915_023_02241_2 crossref_primary_10_1002_mma_9668 crossref_primary_10_1002_mma_7525 crossref_primary_10_3934_dcdsb_2021091 crossref_primary_10_1063_5_0089480 crossref_primary_10_1007_s00526_019_1499_y crossref_primary_10_1016_j_aml_2024_109243 crossref_primary_10_1016_j_na_2020_111886 crossref_primary_10_1186_s13661_019_1183_3 crossref_primary_10_24193_subbmath_2020_4_05 crossref_primary_10_1002_mma_8689 crossref_primary_10_1007_s00009_020_01584_6 crossref_primary_10_1186_s13661_019_01311_5 crossref_primary_10_1007_s12220_023_01497_2 crossref_primary_10_3390_axioms13030169 crossref_primary_10_1007_s11868_024_00666_3 crossref_primary_10_1515_anona_2020_0127 crossref_primary_10_1016_j_na_2020_111873 crossref_primary_10_1515_anona_2020_0007 crossref_primary_10_3846_mma_2019_014 crossref_primary_10_1002_mana_202200319 crossref_primary_10_1007_s00245_021_09783_7 crossref_primary_10_14232_ejqtde_2020_1_7 crossref_primary_10_1016_j_cnsns_2024_108027 crossref_primary_10_1002_mma_10451 crossref_primary_10_3934_era_2021064 crossref_primary_10_3934_math_2021155 crossref_primary_10_1016_j_jmaa_2020_124516 crossref_primary_10_1007_s00033_020_01464_9 crossref_primary_10_3233_ASY_191564 crossref_primary_10_3233_ASY_211731 crossref_primary_10_3934_dcdss_2024089 crossref_primary_10_1080_00207160_2021_1939020 crossref_primary_10_1186_s13661_021_01555_0 crossref_primary_10_3934_math_2022922 crossref_primary_10_1007_s00245_020_09661_8 crossref_primary_10_1142_S021953052150038X crossref_primary_10_1186_s13661_020_01358_9 crossref_primary_10_1186_s13661_020_01355_y crossref_primary_10_1515_anona_2020_0141 crossref_primary_10_1007_s10883_020_09507_0 crossref_primary_10_1007_s13540_024_00360_7 crossref_primary_10_1186_s13660_019_2148_x |
Cites_doi | 10.1016/j.matpur.2006.04.005 10.1017/CBO9781316282397 10.1006/jdeq.1998.3477 10.1016/j.jmaa.2011.12.032 10.1017/S0308210512001783 10.1016/j.aml.2013.07.012 10.1016/j.na.2008.02.076 10.1016/j.bulsci.2011.12.004 10.1088/0951-7715/29/10/3186 10.1016/0022-0396(92)90091-Z 10.3934/dcdss.2014.7.857 10.1016/j.na.2013.08.011 10.1002/(SICI)1099-1476(19990325)22:5<375::AID-MMA26>3.0.CO;2-7 10.1016/j.na.2011.05.073 10.14232/ejqtde.2016.1.70 10.1016/j.na.2015.03.015 10.1016/j.jde.2006.12.002 10.1016/j.na.2016.04.012 10.1016/j.nonrwa.2017.02.004 10.1142/S0219199715500881 10.1007/s00526-015-0883-5 10.1007/s00205-009-0241-x 10.1016/j.camwa.2017.11.033 10.1016/j.na.2015.06.014 10.5565/PUBLMAT_58114_06 10.1137/080720991 10.3934/dcds.2013.33.2105 10.1515/anona-2015-0102 10.1080/17476933.2016.1177029 10.3934/dcds.2017171 10.1007/BF00263041 10.1017/S0308210508000802 10.1016/S0375-9601(00)00201-2 10.1007/978-3-642-25361-4_3 10.1016/j.aim.2010.07.017 10.1016/j.na.2007.09.035 |
ContentType | Journal Article |
Copyright | 2018 IOP Publishing Ltd & London Mathematical Society |
Copyright_xml | – notice: 2018 IOP Publishing Ltd & London Mathematical Society |
DBID | AAYXX CITATION |
DOI | 10.1088/1361-6544/aaba35 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics Physics |
DocumentTitleAlternate | Nonlocal Kirchhoff diffusion problems: local existence and blow-up of solutions |
EISSN | 1361-6544 |
EndPage | 3250 |
ExternalDocumentID | 10_1088_1361_6544_aaba35 nonaaba35 |
GroupedDBID | -~X .DC 123 1JI 4.4 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAGID AAJIO AAJKP AALHV AATNI ABCXL ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A NT- NT. P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TN5 W28 XPP YQT ZMT AAYXX ADEQX CITATION |
ID | FETCH-LOGICAL-c280t-b038eb5c136e4343c835393474a684e28b092b12938ed08be32ca5e92d41a5433 |
IEDL.DBID | IOP |
ISSN | 0951-7715 |
IngestDate | Tue Jul 01 02:43:38 EDT 2025 Thu Apr 24 23:03:38 EDT 2025 Wed Aug 21 03:32:04 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c280t-b038eb5c136e4343c835393474a684e28b092b12938ed08be32ca5e92d41a5433 |
Notes | NON-102187.R1 London Mathematical Society |
ORCID | 0000-0003-4615-5537 |
PageCount | 23 |
ParticipantIDs | crossref_primary_10_1088_1361_6544_aaba35 iop_journals_10_1088_1361_6544_aaba35 crossref_citationtrail_10_1088_1361_6544_aaba35 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-07-01 |
PublicationDateYYYYMMDD | 2018-07-01 |
PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Nonlinearity |
PublicationTitleAbbrev | Non |
PublicationTitleAlternate | Nonlinearity |
PublicationYear | 2018 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | 22 Valdinoci E (35) 2009; 49 44 23 Servadei R (37) 2013; 33 24 Pucci P (33) 2016; 5 25 26 27 28 Hartman P (19) 1982 30 31 10 32 11 12 34 13 36 15 16 38 17 39 Xiang M (43) 2016; 290 18 Kirchhoff G (20) 1883 Pedregal P (29) 1991 Adams R A (1) 2003 3 4 5 6 7 8 9 Applebaum D (2) 2004; 51 Showalter R E (40) 1996 41 Fife P (14) 2003 42 21 |
References_xml | – ident: 9 doi: 10.1016/j.matpur.2006.04.005 – ident: 25 doi: 10.1017/CBO9781316282397 – year: 1991 ident: 29 publication-title: Parametrized Measures and Variational Principles – ident: 30 doi: 10.1006/jdeq.1998.3477 – ident: 36 doi: 10.1016/j.jmaa.2011.12.032 – ident: 38 doi: 10.1017/S0308210512001783 – year: 2003 ident: 1 publication-title: Sobolev Spaces – ident: 6 doi: 10.1016/j.aml.2013.07.012 – ident: 34 doi: 10.1016/j.na.2008.02.076 – ident: 11 doi: 10.1016/j.bulsci.2011.12.004 – volume: 290 start-page: 3186 year: 2016 ident: 43 publication-title: Nonlinearity doi: 10.1088/0951-7715/29/10/3186 – ident: 15 doi: 10.1016/0022-0396(92)90091-Z – ident: 41 doi: 10.3934/dcdss.2014.7.857 – ident: 16 doi: 10.1016/j.na.2013.08.011 – volume: 51 start-page: 1336 year: 2004 ident: 2 publication-title: Not. Am. Math. Soc. – ident: 18 doi: 10.1002/(SICI)1099-1476(19990325)22:5<375::AID-MMA26>3.0.CO;2-7 – ident: 10 doi: 10.1016/j.na.2011.05.073 – ident: 17 doi: 10.14232/ejqtde.2016.1.70 – ident: 42 doi: 10.1016/j.na.2015.03.015 – ident: 12 doi: 10.1016/j.jde.2006.12.002 – year: 1883 ident: 20 publication-title: Vorlesungen über Mathematische Physik: Mechanik – ident: 44 doi: 10.1016/j.na.2016.04.012 – ident: 26 doi: 10.1016/j.nonrwa.2017.02.004 – ident: 24 doi: 10.1142/S0219199715500881 – ident: 31 doi: 10.1007/s00526-015-0883-5 – start-page: 153 year: 2003 ident: 14 publication-title: Some Nonclassical Trends in Parabolic and Parabolic-Like Evolutions – ident: 5 doi: 10.1007/s00205-009-0241-x – ident: 23 doi: 10.1016/j.camwa.2017.11.033 – ident: 4 doi: 10.1016/j.na.2015.06.014 – ident: 39 doi: 10.5565/PUBLMAT_58114_06 – ident: 3 doi: 10.1137/080720991 – volume: 33 start-page: 2105 issn: 1078-0947 year: 2013 ident: 37 publication-title: Discrete Contin. Dyn. Syst. doi: 10.3934/dcds.2013.33.2105 – volume: 5 start-page: 27 year: 2016 ident: 33 publication-title: Adv. Nonlinear Anal. doi: 10.1515/anona-2015-0102 – ident: 8 doi: 10.1080/17476933.2016.1177029 – ident: 32 doi: 10.3934/dcds.2017171 – ident: 22 doi: 10.1007/BF00263041 – year: 1982 ident: 19 publication-title: Ordinary Differential Equations – volume: 49 start-page: 33 issn: 1575-9822 year: 2009 ident: 35 publication-title: Bol. Soc. Esp. Mat. Apl. – year: 1996 ident: 40 publication-title: Monotone Operators in Banach Spaces and Nonlinear Partial Differential Equations – ident: 28 doi: 10.1017/S0308210508000802 – ident: 21 doi: 10.1016/S0375-9601(00)00201-2 – ident: 7 doi: 10.1007/978-3-642-25361-4_3 – ident: 13 doi: 10.1016/j.aim.2010.07.017 – ident: 27 doi: 10.1016/j.na.2007.09.035 |
SSID | ssj0011823 |
Score | 2.5221019 |
Snippet | In this paper, we study a diffusion model of Kirchhoff-type driven by a nonlocal integro-differential operator. As a particular case, we consider the following... |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 3228 |
SubjectTerms | blow-up fractional Laplacian Galerkin method Kirchhoff-type diffusion problem local existence |
Title | Nonlocal Kirchhoff diffusion problems: local existence and blow-up of solutions |
URI | https://iopscience.iop.org/article/10.1088/1361-6544/aaba35 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7MiaAHf0zF-Ysc9OChW9skbaonEcdUtnlwsINQkjRFcbTDrQj-9SZtV6aoiLeWvraP95LmS_PyfQAnuplo0M-pZbjoLGK2yTBhigBorDwfc0pysYle3-sOye2IjmpwUe2FSSflp7-lDwui4CKEZUEcazvYcyyPEtLmXHBMl2AZM88z8gU3g_tqCUED50pH3vcdWq5RfveET2PSkn7vwhDT2YDHuXNFZclLK5uJlnz_wtv4T-83Yb2EnuiyMN2CmkoasLZASKjPehWL67QBK3l5qJxuw6CfJvmoh-6edcd4SuMYGWmVzPxrQ6UozfQcFTaGXTOH4ognERLj9M3KJiiNUdXOd2DYuX646lqlFIMlXWbPLGFjpgSV2ntl9qJKDdxwgIlPuMeIcpmwA1cY7MBUZDOhsCs5VYEbEUfnG-NdqCdpovYA6Umf9PVFTBUnKlKCB9ILdAIjH4s4ipvQnicjlCVPuZHLGIf5ejljoQlhaEIYFiFswll1x6Tg6PjF9lRnJiw76vRHu_0_2h3AqoZQrCjgPYT67DVTRxqmzMRx3hw_AKkM3jc |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1REAgOLAXEjg9w4JAu8RKHGwKqlqVwoFJvwXYcgaiSirZC4uuxExMBAoTELVEmi2fG8Us8fg_gwKSJAf2CepaLziN2mQyXtgiAJpoFWFCSi01cd1m7Ry76tO90TvO1MNnQvfprZrMgCi5c6ArieL2JWdNjlJC6EFJgWh_GSQVmKGbYkud3bm7LaQQDnkst-SBoUjdP-d1VPo1LFXPvD8NMawnu3x-wqC55qk3GsqZev3A3_qMFy7DoICg6KcxXYEqnVVj4QExo9q5LNtdRFWbzMlE1WoWbbpbmox-6fDQd5CFLEmQlVib2nxty4jSjY1TYWJbNHJIjkcZIDrIXbzJEWYLKfF-DXuv87rTtOUkGT_m8MfZkA3MtqTIt0HZNqjIADoeYBEQwTrTPZSP0pcUQXMcNLjX2laA69GPSNHHHeB2m0yzVG4DMx58KzEFMtSA61lKEioWcsTjAMomTTai_ByRSjq_cymYMonzenPPIujGybowKN27CUXnGsODq-MX20EQnch129KPd1h_t9mHu9qwVXXW6l9swb1AVL2p6d2B6_DzRuwa5jOVenp1vik_jmw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlocal+Kirchhoff+diffusion+problems%3A+local+existence+and+blow-up+of+solutions&rft.jtitle=Nonlinearity&rft.au=Mingqi%2C+Xiang&rft.au=R+dulescu%2C+Vicen+iu+D&rft.au=Zhang%2C+Binlin&rft.date=2018-07-01&rft.pub=IOP+Publishing&rft.issn=0951-7715&rft.eissn=1361-6544&rft.volume=31&rft.issue=7&rft.spage=3228&rft.epage=3250&rft_id=info:doi/10.1088%2F1361-6544%2Faaba35&rft.externalDocID=nonaaba35 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-7715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-7715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-7715&client=summon |