Analysis of a diffuse interface model of multispecies tumor growth

We consider a diffuse interface model for tumor growth recently proposed in Chen et al (2014 Int. J. Numer. Methods Biomed. Eng. 30 726-54). In this new approach sharp interfaces are replaced by narrow transition layers arising due to adhesive forces among the cell species. Hence, a continuum thermo...

Full description

Saved in:
Bibliographic Details
Published inNonlinearity Vol. 30; no. 4; pp. 1639 - 1658
Main Authors Dai, Mimi, Feireisl, Eduard, Rocca, Elisabetta, Schimperna, Giulio, Schonbek, Maria E
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.04.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We consider a diffuse interface model for tumor growth recently proposed in Chen et al (2014 Int. J. Numer. Methods Biomed. Eng. 30 726-54). In this new approach sharp interfaces are replaced by narrow transition layers arising due to adhesive forces among the cell species. Hence, a continuum thermodynamically consistent model is introduced. The resulting PDE system couples four different types of equations: a Cahn-Hilliard type equation for the tumor cells (which include proliferating and dead cells), a Darcy law for the tissue velocity field, whose divergence may be different from 0 and depend on the other variables, a transport equation for the proliferating (viable) tumor cells, and a quasi-static reaction diffusion equation for the nutrient concentration. We establish existence of weak solutions for the PDE system coupled with suitable initial and boundary conditions. In particular, the proliferation function at the boundary is supposed to be nonnegative on the set where the velocity u satisfies u⋅ν>0, where ν is the outer normal to the boundary of the domain.
AbstractList We consider a diffuse interface model for tumor growth recently proposed in Chen et al (2014 Int. J. Numer. Methods Biomed. Eng. 30 726-54). In this new approach sharp interfaces are replaced by narrow transition layers arising due to adhesive forces among the cell species. Hence, a continuum thermodynamically consistent model is introduced. The resulting PDE system couples four different types of equations: a Cahn-Hilliard type equation for the tumor cells (which include proliferating and dead cells), a Darcy law for the tissue velocity field, whose divergence may be different from 0 and depend on the other variables, a transport equation for the proliferating (viable) tumor cells, and a quasi-static reaction diffusion equation for the nutrient concentration. We establish existence of weak solutions for the PDE system coupled with suitable initial and boundary conditions. In particular, the proliferation function at the boundary is supposed to be nonnegative on the set where the velocity u satisfies u⋅ν>0, where ν is the outer normal to the boundary of the domain.
Author Dai, Mimi
Feireisl, Eduard
Schimperna, Giulio
Schonbek, Maria E
Rocca, Elisabetta
Author_xml – sequence: 1
  givenname: Mimi
  surname: Dai
  fullname: Dai, Mimi
  email: mdai@uic.edu
  organization: University of Illinois at Chicago Department of Mathematics, 851 S. Morgan Street, Chicago, IL 60607-7045, United States of America
– sequence: 2
  givenname: Eduard
  surname: Feireisl
  fullname: Feireisl, Eduard
  email: feireisl@math.cas.cz
  organization: Institute of Mathematics of the Academy of Sciences of the Czech Republic , itná 25, CZ-115 67 Praha 1, Czechia
– sequence: 3
  givenname: Elisabetta
  surname: Rocca
  fullname: Rocca, Elisabetta
  email: elisabetta.rocca@unipv.it
  organization: Università degli Studi di Pavia Dipartimento di Matematica 'F. Casorati', via Ferrata 1, Pavia I-27100, Italy
– sequence: 4
  givenname: Giulio
  surname: Schimperna
  fullname: Schimperna, Giulio
  email: giusch04@unipv.it
  organization: Università degli Studi di Pavia Dipartimento di Matematica 'F. Casorati', via Ferrata 1, Pavia I-27100, Italy
– sequence: 5
  givenname: Maria E
  surname: Schonbek
  fullname: Schonbek, Maria E
  email: schonbek@ucsc.edu
  organization: University of California Department of Mathematics, Santa Cruz, CA 95064, United States of America
BookMark eNp9kE1LxDAQhoOs4O7q3WN-gHUnaZO2x3XxCxa86Dmk6USztM2SpMj-e7eseBD0NDDzPgPvsyCzwQ9IyDWDWwZVtWK5ZJkURbHSWoLMz8j8ZzUjc6gFy8qSiQuyiHEHwFjF8zm5Ww-6O0QXqbdU09ZZO0akbkgYrDZIe99iNx37sUsu7tE4jDSNvQ_0PfjP9HFJzq3uIl59zyV5e7h_3Txl25fH5816mxleQcq0lWVRcs6NLVshOatMDRZZhcJayHnTgCgaRCiaQtcVFwKkNaw2rWSIJeZLIk9_TfAxBrTKuKST80MK2nWKgZpMqKm2mmqrk4kjCL_AfXC9Dof_kJsT4vxe7fwYjpbi3_EvxVZwcg
CODEN NONLE5
CitedBy_id crossref_primary_10_1007_s00245_017_9451_z
crossref_primary_10_1007_s00245_023_09976_2
crossref_primary_10_3934_dcdsb_2021140
crossref_primary_10_1007_s00245_017_9414_4
crossref_primary_10_1016_j_jde_2021_02_025
crossref_primary_10_1137_24M1644523
crossref_primary_10_1007_s00021_019_0467_9
crossref_primary_10_1016_j_jde_2019_03_028
crossref_primary_10_1051_m2an_2022064
crossref_primary_10_1007_s00021_021_00648_1
crossref_primary_10_1007_s00245_019_09555_4
crossref_primary_10_1016_j_apnum_2019_09_014
crossref_primary_10_1515_jnma_2021_0094
crossref_primary_10_3390_math7090792
crossref_primary_10_1142_S0218202519500519
crossref_primary_10_3233_ASY_191546
crossref_primary_10_1051_cocv_2021072
crossref_primary_10_1088_1361_6544_aa6e5f
crossref_primary_10_1016_j_jmps_2020_103936
crossref_primary_10_1142_S0218202521500585
crossref_primary_10_1016_j_anihpc_2017_10_002
crossref_primary_10_1142_S0218202518500148
crossref_primary_10_1007_s11538_023_01151_6
crossref_primary_10_1137_20M1376443
crossref_primary_10_1007_s00245_019_09562_5
crossref_primary_10_1088_1361_6544_aad52a
crossref_primary_10_1088_1361_6544_abc596
crossref_primary_10_1017_jfm_2022_1032
crossref_primary_10_1007_s10957_022_02000_7
crossref_primary_10_1017_S0956792521000012
crossref_primary_10_1080_03605302_2021_1966803
crossref_primary_10_1016_j_jde_2021_06_022
crossref_primary_10_3934_dcds_2020373
crossref_primary_10_1137_18M1228104
crossref_primary_10_1088_1361_6544_abe75d
crossref_primary_10_1002_mma_6403
crossref_primary_10_1016_j_jde_2022_10_026
crossref_primary_10_1017_jfm_2023_667
crossref_primary_10_1007_s00245_019_09618_6
crossref_primary_10_1051_cocv_2023084
crossref_primary_10_1093_imanum_drae006
crossref_primary_10_3233_ASY_191578
crossref_primary_10_1007_s00245_018_9538_1
Cites_doi 10.1088/1367-2630/13/11/115013
10.1007/s00285-008-0215-x
10.1142/S0218202507002467
10.1142/s0218202516500263
10.1017/s0956792516000292
10.1016/j.anihpc.2012.06.003
10.1007/88-470-0396-2_3
10.3233/ASY-2012-1092
10.1016/j.mcm.2010.07.007
10.1142/S0218202513500103
10.1002/cnm.1467
10.1098/rsta.2006.1786
10.4310/CMS.2015.v13.n6.a9
10.1016/j.bulm.2003.11.002
10.3934/dcdss.2017002
10.1016/j.jde.2015.04.009
10.1017/S0956792514000436
10.3934/dcds.2015.35.2423
10.1002/cnm.2597
10.1017/S0956792512000289
10.1007/s00285-012-0595-9
10.1007/978-3-642-61623-5
10.1142/S0218202510004313
10.1017/CBO9780511781452
10.1088/0951-7715/23/1/R01
10.1016/j.jtbi.2010.02.036
10.1016/j.jtbi.2008.03.027
10.1002/cnm.2624
10.1016/j.nonrwa.2015.05.002
ContentType Journal Article
Copyright 2017 IOP Publishing Ltd & London Mathematical Society
Copyright_xml – notice: 2017 IOP Publishing Ltd & London Mathematical Society
DBID AAYXX
CITATION
DOI 10.1088/1361-6544/aa6063
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Physics
DocumentTitleAlternate Analysis of a diffuse interface model of multispecies tumor growth
EISSN 1361-6544
EndPage 1658
ExternalDocumentID 10_1088_1361_6544_aa6063
nonaa6063
GrantInformation_xml – fundername: European Research Council
  grantid: 320078 MATHEF; FP7-IDEAS-ERCStG Grant #256872
  funderid: https://doi.org/10.13039/501100000781
GroupedDBID -~X
.DC
123
1JI
4.4
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AALHV
AATNI
ABCXL
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
NT-
NT.
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
W28
XPP
YQT
ZMT
AAYXX
ADEQX
CITATION
ID FETCH-LOGICAL-c280t-af6747222cf7d56218c90fe18e5ff032bb054bee04b4a9825506fc19cd61ee7e3
IEDL.DBID IOP
ISSN 0951-7715
IngestDate Tue Jul 01 02:43:37 EDT 2025
Thu Apr 24 23:08:14 EDT 2025
Wed Aug 21 03:32:04 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c280t-af6747222cf7d56218c90fe18e5ff032bb054bee04b4a9825506fc19cd61ee7e3
Notes London Mathematical Society
NON-101530
PageCount 20
ParticipantIDs iop_journals_10_1088_1361_6544_aa6063
crossref_primary_10_1088_1361_6544_aa6063
crossref_citationtrail_10_1088_1361_6544_aa6063
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-04-01
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-01
  day: 01
PublicationDecade 2010
PublicationTitle Nonlinearity
PublicationTitleAbbrev Non
PublicationTitleAlternate Nonlinearity
PublicationYear 2017
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Fasano A (12) 2006
22
23
24
Cristini V (10) 2010
26
27
28
29
Girault V (17) 1986
11
13
14
15
16
18
19
Wang X (25) 2012; 78
1
2
3
4
5
6
7
8
9
20
21
References_xml – ident: 4
  doi: 10.1088/1367-2630/13/11/115013
– ident: 9
  doi: 10.1007/s00285-008-0215-x
– ident: 13
  doi: 10.1142/S0218202507002467
– ident: 16
  doi: 10.1142/s0218202516500263
– ident: 15
  doi: 10.1017/s0956792516000292
– ident: 26
  doi: 10.1016/j.anihpc.2012.06.003
– start-page: 71
  year: 2006
  ident: 12
  publication-title: Complex Systems in Biomedicine
  doi: 10.1007/88-470-0396-2_3
– volume: 78
  start-page: 217
  year: 2012
  ident: 25
  publication-title: Asymptotic Anal.
  doi: 10.3233/ASY-2012-1092
– ident: 27
  doi: 10.1016/j.mcm.2010.07.007
– ident: 24
  doi: 10.1142/S0218202513500103
– ident: 19
  doi: 10.1002/cnm.1467
– ident: 3
  doi: 10.1098/rsta.2006.1786
– ident: 2
  doi: 10.4310/CMS.2015.v13.n6.a9
– ident: 1
  doi: 10.1016/j.bulm.2003.11.002
– ident: 8
  doi: 10.3934/dcdss.2017002
– ident: 20
  doi: 10.1016/j.jde.2015.04.009
– ident: 14
  doi: 10.1017/S0956792514000436
– ident: 6
  doi: 10.3934/dcds.2015.35.2423
– ident: 29
  doi: 10.1002/cnm.2597
– ident: 22
  doi: 10.1017/S0956792512000289
– ident: 18
  doi: 10.1007/s00285-012-0595-9
– year: 1986
  ident: 17
  publication-title: Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms
  doi: 10.1007/978-3-642-61623-5
– ident: 23
  doi: 10.1142/S0218202510004313
– year: 2010
  ident: 10
  publication-title: An Integrated Experimental and Mathematical Modeling Approach
  doi: 10.1017/CBO9780511781452
– ident: 21
  doi: 10.1088/0951-7715/23/1/R01
– ident: 11
  doi: 10.1016/j.jtbi.2010.02.036
– ident: 28
  doi: 10.1016/j.jtbi.2008.03.027
– ident: 5
  doi: 10.1002/cnm.2624
– ident: 7
  doi: 10.1016/j.nonrwa.2015.05.002
SSID ssj0011823
Score 2.4567912
Snippet We consider a diffuse interface model for tumor growth recently proposed in Chen et al (2014 Int. J. Numer. Methods Biomed. Eng. 30 726-54). In this new...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 1639
SubjectTerms Cahn-Hilliard equation
Darcy law
diffuse interface model
reaction-diffusion equation
singular limits
tumor growth
weak solution
Title Analysis of a diffuse interface model of multispecies tumor growth
URI https://iopscience.iop.org/article/10.1088/1361-6544/aa6063
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB3aiqAHP6pi_WIPevCQNptsNhs8qViqUPVgoQchZLezCmpb2vTir3c3SUMVFfGWkEmyzCaZN5nZ9wCOPQyQcpc5asClwwKlHSF86URoYqEXJFor-7-je8s7PXbTD_oVOCvXwozGxae_aTZzouDchUVDnGhRn1OHB4y1ksTAb78KS77g3MoXXN_dlyUEA5xLHfkwpEFRo_zuCp9iUtXcdyHEtNfhcT64vLPkpTlLZVO9f-Ft_OfoN2CtgJ7kPDfdhAoO67C6QEho9roli-u0DstZe6iabsHFnLuEjDRJiFVVmU2RWK6JiU4UkkxQxx7MGhTt8k2TgZN09jaakCeT6afP29BrXz1cdpxCfcFRnnBTJ9E8tEySntLhwKAkKlTkaqQCA61d35PSoD2J6DLJksgkmoHLtaKRmXSKGKK_A7XhaIi7QKRWvgFSYTiQETN4IULmSSqVUsLXA3Qb0Jr7P1YFNblVyHiNsxK5ELH1Wmy9Fudea8BpecY4p-X4xfbETEZcvJvTH-32_mi3Dyueje1Z-84B1NLJDA8NMknlUfYEfgBCutkN
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xCAQHdsSOD3DgkDaO7cQ5slUt-wEkbiF2xiABbdWmF74eO0krQICQuCXKZJtJMs-Z8XsAewEKpKHPPZ2FyuNCG09KprwYbS4MRGqMdv87Lq_C5h0_uxf3lc5pMRem060-_TW7WBIFly6sGuJknbKQeqHgvJ6mFn6zejcz4zApWMgceX7r-mZURrDgeaQlH0VUVHXK747yKS-N23N_SDONeXgYXmDZXfJcG-Sqpt--cDf-4w4WYK6CoOSwNF-EMWwvwewHYkK7djlic-0vwVTRJqr7y3A05DAhHUNS4tRVBn0kjnOiZ1KNpBDWcRuLRkU3jdOOxEk-eO30yKMd8edPK3DXOL09bnqVCoOnA-nnXmrCyDFKBtpEmUVLVOrYN0glCmN8FihlUZ9C9LniaWwHnMIPjaaxDT5FjJCtwkS708Y1IMpoZgFVFGUq5hY3xMgDRZXWWjKTob8O9WEMEl1RlDuljJekKJVLmTjPJc5zSem5dTgY7dEt6Tl-sd23AUmqd7T_o93GH-12YfrmpJFctK7ON2EmcOm-6OjZgom8N8BtC1ZytVM8kO_NRt5x
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+a+diffuse+interface+model+of+multispecies+tumor+growth&rft.jtitle=Nonlinearity&rft.au=Dai%2C+Mimi&rft.au=Feireisl%2C+Eduard&rft.au=Rocca%2C+Elisabetta&rft.au=Schimperna%2C+Giulio&rft.date=2017-04-01&rft.issn=0951-7715&rft.eissn=1361-6544&rft.volume=30&rft.issue=4&rft.spage=1639&rft.epage=1658&rft_id=info:doi/10.1088%2F1361-6544%2Faa6063&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6544_aa6063
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-7715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-7715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-7715&client=summon