The control of near-wall turbulence through surface texturing

Certain surfaces that exhibit small textured features can interact with near-wall turbulence and reduce drag, which is of great interest to industries in the aerospace, naval, transport and energy sectors. This paper reviews and discusses the dynamic mechanisms at play in that interaction. General p...

Full description

Saved in:
Bibliographic Details
Published inFluid dynamics research Vol. 51; no. 1; pp. 11410 - 11441
Main Authors García-Mayoral, R, Gómez-de-Segura, G, Fairhall, C T
Format Journal Article
LanguageEnglish
Published IOP Publishing 17.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Certain surfaces that exhibit small textured features can interact with near-wall turbulence and reduce drag, which is of great interest to industries in the aerospace, naval, transport and energy sectors. This paper reviews and discusses the dynamic mechanisms at play in that interaction. General principles of application across different technologies are discussed, and the parameters of interest and relevance are identified. It is argued that the main effect of these surfaces can be expressed as an offset between the positions of the virtual, equivalent smooth walls perceived by different parts of the flow, namely by the mean velocity profile and by the background turbulence, which remains otherwise smooth-like. Individual technologies are also reviewed, including superhydrophobic surfaces, riblets and permeable substrates, with particular emphasis on physical mechanisms that are specific to each technology. We discuss the capillary waves that form in superhydrophobic surfaces and the spanwise-elongated rollers that form over riblets and permeable surfaces.
AbstractList Certain surfaces that exhibit small textured features can interact with near-wall turbulence and reduce drag, which is of great interest to industries in the aerospace, naval, transport and energy sectors. This paper reviews and discusses the dynamic mechanisms at play in that interaction. General principles of application across different technologies are discussed, and the parameters of interest and relevance are identified. It is argued that the main effect of these surfaces can be expressed as an offset between the positions of the virtual, equivalent smooth walls perceived by different parts of the flow, namely by the mean velocity profile and by the background turbulence, which remains otherwise smooth-like. Individual technologies are also reviewed, including superhydrophobic surfaces, riblets and permeable substrates, with particular emphasis on physical mechanisms that are specific to each technology. We discuss the capillary waves that form in superhydrophobic surfaces and the spanwise-elongated rollers that form over riblets and permeable surfaces.
Author García-Mayoral, R
Fairhall, C T
Gómez-de-Segura, G
Author_xml – sequence: 1
  givenname: R
  surname: García-Mayoral
  fullname: García-Mayoral, R
  email: r.gmayoral@eng.cam.ac.uk
  organization: University of Cambridge Department of Engineering, Cambridge CB2 1PZ, United Kingdom
– sequence: 2
  givenname: G
  surname: Gómez-de-Segura
  fullname: Gómez-de-Segura, G
  organization: University of Cambridge Department of Engineering, Cambridge CB2 1PZ, United Kingdom
– sequence: 3
  givenname: C T
  surname: Fairhall
  fullname: Fairhall, C T
  organization: University of Cambridge Department of Engineering, Cambridge CB2 1PZ, United Kingdom
BookMark eNp1jzFPwzAQhS1UJNLCzpgfQOg5bmJ7YEAVFKRKLGW2bOfcpAp25SQC_j2JgtiYTu_evaf7lmThg0dCbincUxBiTQVnGQco1lpXztoLkvytFiQBWsqskIJdkWXXnQCAj25CHg41pjb4PoY2DS71qGP2qds27Ydohha9xbSvYxiOddoN0elJ49foNv54TS6dbju8-Z0r8v78dNi-ZPu33ev2cZ_ZXECfaYllxQ01jleOmdyhySm1jBrOecmoKIBZkFBaySmUHCVIazRFuxG4AWQrAnOvjaHrIjp1js2Hjt-Kgprw1cSqJlY144-RuznShLM6hSH68cH_z38ATBtfbg
CODEN FDRSEH
CitedBy_id crossref_primary_10_1007_s10494_020_00224_z
crossref_primary_10_1017_jfm_2021_310
crossref_primary_10_1146_annurev_fluid_062520_115127
crossref_primary_10_1016_j_cja_2024_05_019
crossref_primary_10_1017_jfm_2023_1006
crossref_primary_10_1017_jfm_2020_1169
crossref_primary_10_1017_jfm_2020_722
crossref_primary_10_1017_jfm_2019_897
crossref_primary_10_1017_jfm_2022_432
crossref_primary_10_1017_jfm_2020_542
crossref_primary_10_1017_jfm_2022_796
crossref_primary_10_1017_jfm_2022_358
crossref_primary_10_1017_jfm_2022_897
crossref_primary_10_1063_5_0207628
crossref_primary_10_1016_j_rineng_2024_102118
crossref_primary_10_1088_1742_6596_1522_1_012015
crossref_primary_10_1017_jfm_2021_2
crossref_primary_10_1017_jfm_2024_198
crossref_primary_10_1088_1748_3190_ad0f32
crossref_primary_10_1017_jfm_2023_703
crossref_primary_10_1017_jfm_2021_13
crossref_primary_10_1016_j_ijheatfluidflow_2020_108675
crossref_primary_10_1017_jfm_2023_125
crossref_primary_10_1007_s10409_023_23075_x
crossref_primary_10_1016_j_ijheatfluidflow_2023_109160
crossref_primary_10_1017_jfm_2019_41
Cites_doi 10.1007/s11242-008-9308-7
10.1017/S0022112009992175
10.1063/1.3213607
10.1017/jfm.2013.284
10.1021/ie50320a024
10.1017/S0022112072000679
10.1146/annurev-fluid-121108-145558
10.1017/S0022112003004695
10.1017/S0022112001004888
10.1017/jfm.2014.151
10.1063/1.4757669
10.1017/jfm.2016.450
10.1017/S0022112071002088
10.1017/jfm.2017.733
10.1063/1.2970208
10.1063/1.4862918
10.1017/jfm.2013.647
10.1088/1742-6596/708/1/012009
10.2514/3.12174
10.1063/1.3626406
10.1063/1.2109867
10.1017/jfm.2012.139
10.1017/jfm.2015.573
10.1016/S0065-2156(08)70370-3
10.1063/1.868327
10.1063/1.4819144
10.1063/1.2205307
10.1109/JMEMS.2012.2184081
10.1007/978-3-540-45359-8_29
10.1098/rspa.1959.0195
10.1063/1.1896405
10.1063/1.4942474
10.2514/3.11947
10.1063/1.2162185
10.1063/1.2204849
10.1063/1.4941769
10.2514/6.1991-685
10.1063/1.4894064
10.1063/1.4791602
10.1063/1.858381
10.1017/jfm.2015.268
10.2514/3.11035
10.1103/PhysRevLett.106.014502
10.1063/1.3266945
10.1016/j.cirpj.2015.08.003
10.1017/S0022112099005066
10.1017/S0022112009006946
10.1103/PhysRevLett.100.246001
10.2514/3.25323
10.1098/rsta.2010.0369
10.1021/la104368v
10.1007/s003480000150
10.1021/la9047424
10.1017/jfm.2014.137
10.1126/science.305.5684.636
10.1007/s10494-018-9919-1
10.1017/jfm.2016.838
10.1063/1.1755723
10.1017/S0022112093002575
10.1063/1.869966
10.1017/S0022112093001363
10.1088/0508-3443/4/6/302
10.1017/jfm.2018.152
10.1016/j.ijengsci.2007.03.002
10.1016/S0169-5983(99)00030-1
10.1017/S0022112095004125
10.1063/1.4943671
10.1063/1.3207885
10.1017/jfm.2016.485
10.1103/PhysRevFluids.1.014401
10.1016/j.jfluidstructs.2005.03.003
10.2514/6.2010-4583
10.7551/mitpress/3014.001.0001
10.2514/6.1997-1960
10.1017/jfm.2016.66
10.1063/1.3432514
10.1016/S0376-0421(02)00048-9
10.1063/1.868303
10.1021/la901824d
10.1016/j.ijheatfluidflow.2016.03.006
10.1103/PhysRevFluids.2.114609
10.1146/annurev.fluid.36.050802.122103
10.1063/1.2815730
10.1146/annurev.fluid.32.1.519
10.1017/S0022112001006437
10.1017/S0022112098008921
10.1017/jfm.2015.266
10.1007/s00348-014-1828-z
10.1063/1.4719780
10.1103/PhysRevFluids.1.074003
10.1017/jfm.2018.210
10.1017/S0022112089002892
10.1007/s10494-018-9916-4
10.1017/jfm.2017.69
10.1017/S0022112089002247
10.1017/S0022112091002641
10.1007/s10404-010-0566-7
10.1017/S0022112008004916
10.1017/S0022112006000887
10.1017/jfm.2011.114
10.1098/rsta.2010.0359
10.1007/s00348-010-0936-7
10.1017/jfm.2017.278
10.1007/BF00120941
10.1243/095441003763031789
10.1017/jfm.2018.150
10.1123/jab.25.3.253
10.1017/S0022112096004673
10.1063/1.3537833
ContentType Journal Article
Copyright 2019 The Japan Society of Fluid Mechanics and IOP Publishing Ltd
Copyright_xml – notice: 2019 The Japan Society of Fluid Mechanics and IOP Publishing Ltd
DBID AAYXX
CITATION
DOI 10.1088/1873-7005/aadfcc
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
DocumentTitleAlternate The control of near-wall turbulence through surface texturing
EISSN 1873-7005
ExternalDocumentID 10_1088_1873_7005_aadfcc
fdraadfcc
GrantInformation_xml – fundername: Engineering and Physical Sciences Research Council
  funderid: https://doi.org/10.13039/501100000266
GroupedDBID -~X
0R~
1JI
4.4
5B3
5GY
5PX
5VS
7.M
AACTN
AAGCD
AAJIO
AATNI
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
ADWVK
AEFHF
AENEX
AFYNE
AKPSB
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
FDB
G-Q
HAK
IHE
IJHAN
IOP
IZVLO
KOT
M38
M41
M45
MV1
N5L
NQ-
NS0
O9-
P2P
PJBAE
RIN
RNS
ROL
RPA
RPZ
SDG
SDP
SY9
W28
ZMT
~02
AAYXX
CITATION
ID FETCH-LOGICAL-c280t-a9e6d7b1bf7df3b2feb211c31b7776318503c0906c971067e909cba1ec48e40e3
IEDL.DBID IOP
ISSN 0169-5983
1873-7005
IngestDate Fri Aug 23 02:16:08 EDT 2024
Wed Aug 21 03:34:00 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c280t-a9e6d7b1bf7df3b2feb211c31b7776318503c0906c971067e909cba1ec48e40e3
Notes FDR-100835.R1
The Japan Society of Fluid Mechanics
PageCount 32
ParticipantIDs crossref_primary_10_1088_1873_7005_aadfcc
iop_journals_10_1088_1873_7005_aadfcc
PublicationCentury 2000
PublicationDate 2019-01-17
PublicationDateYYYYMMDD 2019-01-17
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-17
  day: 17
PublicationDecade 2010
PublicationTitle Fluid dynamics research
PublicationTitleAbbrev FDR
PublicationTitleAlternate Fluid Dyn. Res
PublicationYear 2019
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 88
89
Choi K-S (18) 2000; 26
110
112
113
114
115
116
90
117
91
92
95
96
97
10
98
99
12
13
15
16
17
19
120
121
122
2
123
3
124
4
5
6
7
8
9
20
21
22
24
25
26
27
29
Luchini P (72) 2015
Luchini P (70) 1995; 14
30
31
32
33
34
35
36
39
Roskam J (94) 1987
40
41
42
43
44
García-Mayoral R (28) 2011
45
46
47
48
49
Robert J F (93) 1992
Walsh M J ed Bushnell D M (118) 1990
Abderrahaman-Elena N (1) 2016; 708
50
51
52
53
54
56
57
58
59
Squire H B (105) 1953; 4
Bruse M (11) 1993
60
61
62
63
64
Walsh M J (119) 1984; 84–0347
Gómez-de-Segura G (37) 2018; 1001
65
66
67
68
69
Luchini P (71) 1996
Kramer M O (55) 1937
Fairhall C T (23) 2018
Gómez-de-Segura G (38) 2019
Busse A (14) 2013
73
74
75
76
77
78
79
Tennekes H (111) 1972
100
101
102
104
106
80
107
81
108
82
Sha T (103) 2005; 83
109
83
84
85
86
87
References_xml – ident: 5
  doi: 10.1007/s11242-008-9308-7
– ident: 33
  doi: 10.1017/S0022112009992175
– ident: 121
  doi: 10.1063/1.3213607
– ident: 15
  doi: 10.1017/jfm.2013.284
– ident: 120
  doi: 10.1021/ie50320a024
– ident: 92
  doi: 10.1017/S0022112072000679
– start-page: 466
  year: 1996
  ident: 71
  publication-title: Computational Methods in Applied Sciences–Proc. 3rd ECCOMAS CFD Conf.
  contributor:
    fullname: Luchini P
– ident: 96
  doi: 10.1146/annurev-fluid-121108-145558
– ident: 59
  doi: 10.1017/S0022112003004695
– ident: 51
  doi: 10.1017/S0022112001004888
– ident: 87
  doi: 10.1017/jfm.2014.151
– ident: 31
  doi: 10.1063/1.4757669
– ident: 67
  doi: 10.1017/jfm.2016.450
– ident: 110
  doi: 10.1017/S0022112071002088
– ident: 101
  doi: 10.1017/jfm.2017.733
– ident: 80
  doi: 10.1063/1.2970208
– ident: 69
  doi: 10.1063/1.4862918
– ident: 99
  doi: 10.1017/jfm.2013.647
– volume: 708
  issn: 1742-6596
  year: 2016
  ident: 1
  publication-title: J. Phys.: Conf. Ser.
  doi: 10.1088/1742-6596/708/1/012009
  contributor:
    fullname: Abderrahaman-Elena N
– ident: 107
  doi: 10.2514/3.12174
– volume: 14
  start-page: 169
  issn: 0750-7240
  year: 1995
  ident: 70
  publication-title: Eur. J. Mech.
  contributor:
    fullname: Luchini P
– ident: 82
  doi: 10.1063/1.3626406
– ident: 85
  doi: 10.1063/1.2109867
– ident: 26
  doi: 10.1017/jfm.2012.139
– ident: 100
  doi: 10.1017/jfm.2015.573
– ident: 20
  doi: 10.1016/S0065-2156(08)70370-3
– ident: 48
  doi: 10.1063/1.868327
– ident: 86
  doi: 10.1063/1.4819144
– ident: 27
  doi: 10.1063/1.2205307
– volume: 1001
  issn: 1742-6596
  year: 2018
  ident: 37
  publication-title: J. Phys.: Conf. Ser.
  contributor:
    fullname: Gómez-de-Segura G
– ident: 63
  doi: 10.1109/JMEMS.2012.2184081
– ident: 42
  doi: 10.1007/978-3-540-45359-8_29
– ident: 109
  doi: 10.1098/rspa.1959.0195
– ident: 34
  doi: 10.1063/1.1896405
– ident: 9
  doi: 10.1063/1.4942474
– ident: 88
  doi: 10.2514/3.11947
– ident: 44
  doi: 10.1063/1.2162185
– ident: 46
  doi: 10.1063/1.2204849
– ident: 102
  doi: 10.1063/1.4941769
– ident: 108
  doi: 10.2514/6.1991-685
– ident: 47
  doi: 10.1063/1.4894064
– ident: 4
  doi: 10.1063/1.4791602
– ident: 52
  doi: 10.1063/1.858381
– ident: 64
  doi: 10.1017/jfm.2015.268
– year: 1987
  ident: 94
  publication-title: Airplane Design: VI. Preliminary Calculation of Aerodynamic, Thrust and Power Characteristics
  contributor:
    fullname: Roskam J
– year: 2015
  ident: 72
  publication-title: Proc. 2015 European Drag Reduction and Flow Control Meeting
  contributor:
    fullname: Luchini P
– start-page: 203
  year: 1990
  ident: 118
  publication-title: Viscous Drag Reduction in Boundary Layers
  contributor:
    fullname: Walsh M J ed Bushnell D M
– ident: 116
  doi: 10.2514/3.11035
– ident: 62
  doi: 10.1103/PhysRevLett.106.014502
– ident: 114
  doi: 10.1063/1.3266945
– ident: 53
  doi: 10.1016/j.cirpj.2015.08.003
– ident: 50
  doi: 10.1017/S0022112099005066
– ident: 79
  doi: 10.1017/S0022112009006946
– ident: 45
  doi: 10.1103/PhysRevLett.100.246001
– ident: 117
  doi: 10.2514/3.25323
– ident: 104
  doi: 10.1098/rsta.2010.0369
– ident: 61
  doi: 10.1021/la104368v
– start-page: 719
  year: 1993
  ident: 11
  publication-title: Near-Wall Turbulent Flows
  contributor:
    fullname: Bruse M
– ident: 66
  doi: 10.1007/s003480000150
– ident: 89
  doi: 10.1021/la9047424
– ident: 113
  doi: 10.1017/jfm.2014.137
– ident: 56
  doi: 10.1126/science.305.5684.636
– ident: 24
  doi: 10.1007/s10494-018-9919-1
– ident: 58
  doi: 10.1017/jfm.2016.838
– ident: 81
  doi: 10.1063/1.1755723
– ident: 16
  doi: 10.1017/S0022112093002575
– ident: 83
  doi: 10.1063/1.869966
– ident: 19
  doi: 10.1017/S0022112093001363
– volume: 4
  start-page: 167
  issn: 0508-3443
  year: 1953
  ident: 105
  publication-title: Br. J. Appl. Phys.
  doi: 10.1088/0508-3443/4/6/302
  contributor:
    fullname: Squire H B
– ident: 95
  doi: 10.1017/jfm.2018.152
– ident: 22
  doi: 10.1016/j.ijengsci.2007.03.002
– volume: 26
  start-page: 325
  issn: 1873-7005
  year: 2000
  ident: 18
  publication-title: Fluid Dyn. Res.
  doi: 10.1016/S0169-5983(99)00030-1
  contributor:
    fullname: Choi K-S
– ident: 35
  doi: 10.1017/S0022112095004125
– ident: 3
  doi: 10.1063/1.4943671
– ident: 21
  doi: 10.1063/1.3207885
– ident: 32
  doi: 10.1017/jfm.2016.485
– year: 2011
  ident: 28
  contributor:
    fullname: García-Mayoral R
– ident: 124
  doi: 10.1103/PhysRevFluids.1.014401
– year: 2018
  ident: 23
  publication-title: J. Fluid Mech.
  contributor:
    fullname: Fairhall C T
– ident: 65
  doi: 10.1016/j.jfluidstructs.2005.03.003
– ident: 54
  doi: 10.2514/6.2010-4583
– year: 2019
  ident: 38
  contributor:
    fullname: Gómez-de-Segura G
– volume: 84–0347
  year: 1984
  ident: 119
  publication-title: AIAA Pap.
  contributor:
    fullname: Walsh M J
– year: 1972
  ident: 111
  publication-title: A First Course in Turbulence
  doi: 10.7551/mitpress/3014.001.0001
  contributor:
    fullname: Tennekes H
– ident: 8
  doi: 10.2514/6.1997-1960
– ident: 123
  doi: 10.1017/jfm.2016.66
– ident: 78
  doi: 10.1063/1.3432514
– ident: 115
  doi: 10.1016/S0376-0421(02)00048-9
– ident: 84
  doi: 10.1063/1.868303
– ident: 60
  doi: 10.1021/la901824d
– ident: 57
  doi: 10.1016/j.ijheatfluidflow.2016.03.006
– ident: 2
  doi: 10.1103/PhysRevFluids.2.114609
– ident: 49
  doi: 10.1146/annurev.fluid.36.050802.122103
– ident: 122
  doi: 10.1063/1.2815730
– ident: 25
  doi: 10.1146/annurev.fluid.32.1.519
– ident: 43
  doi: 10.1017/S0022112001006437
– start-page: 2.1–5
  year: 1992
  ident: 93
  contributor:
    fullname: Robert J F
– ident: 36
  doi: 10.1017/S0022112098008921
– ident: 90
  doi: 10.1017/jfm.2015.266
– ident: 98
  doi: 10.1007/s00348-014-1828-z
– ident: 13
  doi: 10.1063/1.4719780
– ident: 68
  doi: 10.1103/PhysRevFluids.1.074003
– ident: 40
  doi: 10.1017/jfm.2018.210
– ident: 17
  doi: 10.1017/S0022112089002892
– ident: 39
  doi: 10.1007/s10494-018-9916-4
– ident: 74
  doi: 10.1017/jfm.2017.69
– ident: 6
  doi: 10.1017/S0022112089002247
– ident: 73
  doi: 10.1017/S0022112091002641
– ident: 112
  doi: 10.1007/s10404-010-0566-7
– ident: 77
  doi: 10.1017/S0022112008004916
– ident: 10
  doi: 10.1017/S0022112006000887
– ident: 30
  doi: 10.1017/jfm.2011.114
– ident: 29
  doi: 10.1098/rsta.2010.0359
– year: 1937
  ident: 55
  contributor:
    fullname: Kramer M O
– year: 2013
  ident: 14
  publication-title: 14th European Turbulence Conf.
  contributor:
    fullname: Busse A
– ident: 41
  doi: 10.1007/s00348-010-0936-7
– ident: 106
  doi: 10.1017/jfm.2017.278
– ident: 91
  doi: 10.1007/BF00120941
– ident: 12
  doi: 10.1243/095441003763031789
– ident: 75
  doi: 10.1017/jfm.2018.150
– volume: 83
  start-page: 207
  year: 2005
  ident: 103
  publication-title: Fluids Eng. Conf./Ryutai Kogaku Bumon Koenkai Koen Ronbunshu
  contributor:
    fullname: Sha T
– ident: 76
  doi: 10.1123/jab.25.3.253
– ident: 7
  doi: 10.1017/S0022112096004673
– ident: 97
  doi: 10.1063/1.3537833
SSID ssj0007873
Score 2.3589535
Snippet Certain surfaces that exhibit small textured features can interact with near-wall turbulence and reduce drag, which is of great interest to industries in the...
SourceID crossref
iop
SourceType Aggregation Database
Publisher
StartPage 11410
SubjectTerms flow control
permeable substrates
riblets
superhydrophobic surfaces
wall turbulence
Title The control of near-wall turbulence through surface texturing
URI https://iopscience.iop.org/article/10.1088/1873-7005/aadfcc
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5tvejBalWsL3LQg4e0mybdJHgSsVTBx8FCD8KSZJOLZVvaXQR_vcluWqooiLddGHbDMI8vzMw3AJxjqbTmxiKmYuXLjAQpRgxSnGqpqExNWYp5eIyHI3o_7o9r4Go1CzOdhdDfcY8VUXClwtAQx7uYM4KYs56ulKnVug42COfC93PdPT2vwrCzRFIRewvUF5yEGuVPX_iSk-ruv2spZtAEr8vDVZ0lb50iVx398Y238Z-n3wHbAXrC60p0F9RM1gLNAENhcPJFC2ytcRTulXvoYWhoh1MLM-ca6F1OJtAlK1WUM0swbPuBi2JupX93Ib-cf9wHo8Hty80QhZ0LSPd4lCMpTJwyhZVlqSWqZ93NG2NNsGLMhSKX3SOiIxHFWjDPPmdEJLSS2GjKDY0MOQCNbJqZQwAd1KMWW9pjIqWMU265u-xxj_kciDJxG1wutZ7MKmqNpCyJc554LSVeS0mlpTa4cApNgn8tfpU7-qPcMdh0yMd3iiHMTkAjnxfm1KGLXJ2VVvQJIfPJ3Q
link.rule.ids 315,786,790,27955,27956,38898,53875
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFA5aQfRgtSrWNQc9eEg7adJJ5ihqaV1qDxZ6G5NMcrG0pe0g-Ot9M5NKFQXB2ww8Zvl4yxfehtA5VdoYaR0ROtRZmpERLZglWnKjNFeJzVMxj92w3ed3g-bA7znNe2HGE-_6a3BZDAouIPQFcbJOpWBEgPbUlUqcMfVJ4lbRGliuyGr6Ok-9T1cM2siK4d4RaUaS-TzlT0_5EpdW4d1LYaZVRi-LDyyqS15r6VzXzPu32Y3_-INttOUpKL4qxHfQih1VUNnTUeyNfVZBm0uzCnfzffTYF7bjscMjMBHypoZDDEFLp3nvEvZbf_AsnTqV3YPrz_sg91C_dft83SZ-9wIxDRnMiYpsmAhNtROJY7rh4AROqWFUCwEuCaJ8wEwQBaGJRDaFzkZBZLSi1nBpeWDZPiqNxiN7gDBQPu6o4w0RJVxILp2EQ5_MuB-QKRtW0eUC-XhSjNiI89S4lHGGVJwhFRdIVdEFgBp7O5v9Knf4R7kztN67acUPne79EdoAMpQVjxEqjlFpPk3tCRCOuT7NleoDYyPPPQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+control+of+near-wall+turbulence+through+surface+texturing&rft.jtitle=Fluid+dynamics+research&rft.au=Garc%C3%ADa-Mayoral%2C+R&rft.au=G%C3%B3mez-de-Segura%2C+G&rft.au=Fairhall%2C+C+T&rft.date=2019-01-17&rft.pub=IOP+Publishing&rft.issn=0169-5983&rft.eissn=1873-7005&rft.volume=51&rft.issue=1&rft_id=info:doi/10.1088%2F1873-7005%2Faadfcc&rft.externalDocID=fdraadfcc
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-5983&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-5983&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-5983&client=summon