Doubly nonlinear parabolic equations for a general class of Forchheimer gas flows in porous media
This paper is focused on the generalized Forchheimer flows of compressible fluids in porous media. The gravity effect and other general nonlinear forms of the source term and boundary flux are integrated into the model. We derive a doubly nonlinear parabolic equation for the so-called pseudo-pressur...
Saved in:
Published in | Nonlinearity Vol. 31; no. 8; pp. 3617 - 3650 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.08.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0951-7715 1361-6544 |
DOI | 10.1088/1361-6544/aabf05 |
Cover
Abstract | This paper is focused on the generalized Forchheimer flows of compressible fluids in porous media. The gravity effect and other general nonlinear forms of the source term and boundary flux are integrated into the model. We derive a doubly nonlinear parabolic equation for the so-called pseudo-pressure, and study its initial value problem subject to a general nonlinear Robin boundary condition. The growth rates in the source term and the boundary condition are arbitrarily large. The maximum of the solution, for positive time, is estimated in terms of certain Lebesgue norms of the initial and boundary data. The gradient estimates are obtained under a theoretical condition which, indeed, is relevant to the fluid flows in applications. In dealing with the complexity and generality of the equation and boundary condition, suitable trace theorems and Sobolev's inequalities are utilized, and a well-adapted Moser's iteration is implemented. |
---|---|
AbstractList | This paper is focused on the generalized Forchheimer flows of compressible fluids in porous media. The gravity effect and other general nonlinear forms of the source term and boundary flux are integrated into the model. We derive a doubly nonlinear parabolic equation for the so-called pseudo-pressure, and study its initial value problem subject to a general nonlinear Robin boundary condition. The growth rates in the source term and the boundary condition are arbitrarily large. The maximum of the solution, for positive time, is estimated in terms of certain Lebesgue norms of the initial and boundary data. The gradient estimates are obtained under a theoretical condition which, indeed, is relevant to the fluid flows in applications. In dealing with the complexity and generality of the equation and boundary condition, suitable trace theorems and Sobolev's inequalities are utilized, and a well-adapted Moser's iteration is implemented. |
Author | Celik, Emine Hoang, Luan Kieu, Thinh |
Author_xml | – sequence: 1 givenname: Emine surname: Celik fullname: Celik, Emine email: ecelik@unr.edu organization: University of Nevada Department of Mathematics and Statistics, Reno, 1664 N. Virginia Street, Reno, NV 89557, United States of America – sequence: 2 givenname: Luan surname: Hoang fullname: Hoang, Luan email: luan.hoang@ttu.edu organization: Texas Tech University Department of Mathematics and Statistics, Box 41042, Lubbock, TX 79409-1042, United States of America – sequence: 3 givenname: Thinh surname: Kieu fullname: Kieu, Thinh email: thinh.kieu@ung.edu organization: University of North Georgia Department of Mathematics, Gainesville Campus, 3820 Mundy Mill Rd., Oakwood, GA 30566, United States of America |
BookMark | eNp9kEFLwzAYhoNMcJvePeYHWJcsbZoeZToVBl70HL6kyZaRNTVpkf17WyceBD198PE-L7zPDE2a0BiErim5pUSIBWWcZrzI8wWAsqQ4Q9Of1wRNSVXQrCxpcYFmKe0JoVQs2RTBfeiVP-KhzbvGQMQtRFDBO43New-dC03CNkQMeGsaE8Fj7SElHCxeh6h3O-MOJuItDDEfPhJ2DW5DDH3CB1M7uETnFnwyV993jt7WD6-rp2zz8vi8uttkeilIl1WqNLaq87zWjOVMgykEqxiQCoQh3NbcqsIQIKXgSuia16zgZcUFFQp0adkckVOvjiGlaKxsoztAPEpK5KhIjj7k6EOeFA0I_4Vo131N7iI4_x94cwJdaOU-9LEZlv0d_wSwdn2S |
CODEN | NONLE5 |
CitedBy_id | crossref_primary_10_1016_j_nonrwa_2024_104269 crossref_primary_10_1063_5_0047754 crossref_primary_10_1134_S096554252470074X crossref_primary_10_1063_5_0002265 crossref_primary_10_1063_5_0176467 |
Cites_doi | 10.1016/j.jde.2016.10.043 10.1007/s10958-015-2576-1 10.1007/BF02567072 10.57262/ade/1355703078 10.1016/j.jmaa.2012.12.055 10.1002/cpa.3160240507 10.1016/0022-247X(88)90053-4 10.1007/s10958-014-2045-2 10.1007/978-1-4614-5541-7 10.1002/num.21984 10.3934/dcdss.2014.7.737 10.1098/rspa.1999.0398 10.1063/1.4903002 10.1119/1.19408 10.1007/BF01176474 10.1063/1.3204977 10.1007/s00208-006-0053-3 10.1016/j.camwa.2016.06.029 10.1007/978-1-4612-0895-2 10.1002/num.20035 10.1007/s00021-016-0313-2 10.1137/S0036141091217731 10.1007/s00211-008-0157-7 10.1016/j.nonrwa.2012.07.003 10.1007/BF02673593 10.1088/0951-7715/29/3/1124 10.1088/0951-7715/24/1/001 10.1515/ans-2016-6027 10.1098/rspa.2003.1169 10.1007/s00028-009-0024-8 |
ContentType | Journal Article |
Copyright | 2018 IOP Publishing Ltd & London Mathematical Society |
Copyright_xml | – notice: 2018 IOP Publishing Ltd & London Mathematical Society |
DBID | AAYXX CITATION |
DOI | 10.1088/1361-6544/aabf05 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics Physics |
DocumentTitleAlternate | Doubly nonlinear parabolic equations for a general class of Forchheimer gas flows in porous media |
EISSN | 1361-6544 |
EndPage | 3650 |
ExternalDocumentID | 10_1088_1361_6544_aabf05 nonaabf05 |
GrantInformation_xml | – fundername: NSF grantid: DMS-1412796 |
GroupedDBID | -~X .DC 123 1JI 4.4 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAGID AAJIO AAJKP AALHV AATNI ABCXL ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A NT- NT. P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TN5 W28 XPP YQT ZMT AAYXX ADEQX CITATION |
ID | FETCH-LOGICAL-c280t-9b7ef9d44dc3343cae58393a09a8e06fd6fb5e0a0786b8cd6d356796818bac7f3 |
IEDL.DBID | IOP |
ISSN | 0951-7715 |
IngestDate | Tue Jul 01 02:43:38 EDT 2025 Thu Apr 24 22:52:14 EDT 2025 Wed Aug 21 03:32:04 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c280t-9b7ef9d44dc3343cae58393a09a8e06fd6fb5e0a0786b8cd6d356796818bac7f3 |
Notes | NON-102010.R1 London Mathematical Society |
PageCount | 34 |
ParticipantIDs | crossref_citationtrail_10_1088_1361_6544_aabf05 crossref_primary_10_1088_1361_6544_aabf05 iop_journals_10_1088_1361_6544_aabf05 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-08-01 |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Nonlinearity |
PublicationTitleAbbrev | Non |
PublicationTitleAlternate | Nonlinearity |
PublicationYear | 2018 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | 22 44 23 24 25 26 Darcy H (7) 1856 Muskat M (35) 1937 Manfredi J J (33) 1994; 2 Ivanov A V (27) 1982; 160 Vázquez J L (43) 2007 Celik E (4) 2016; 29 30 31 10 32 34 Bear J (3) 1988 14 36 15 37 16 Hoang L (19) 2012; 17 38 17 39 Hoang L (18) 2011; 24 Surnachëv M D (41) 2012; 278 1 2 Ivanov A V (29) 1997; 28 Straughan B (40) 2008 5 Ivanov A V (28) 1997; 243 6 Douglas J J (11) 1993 8 Forchheimer P (12) 1901; 45 9 Ward J C (45) 1964; 90 Hoang L (21) 2015 Yaws C L (46) 2001 20 42 Forchheimer P (13) 1930 |
References_xml | – year: 2007 ident: 43 publication-title: Oxford Mathematical Monographs – ident: 5 doi: 10.1016/j.jde.2016.10.043 – ident: 20 doi: 10.1007/s10958-015-2576-1 – ident: 44 doi: 10.1007/BF02567072 – volume: 17 start-page: 511 issn: 1079-9389 year: 2012 ident: 19 publication-title: Adv. Differ. Equ. doi: 10.57262/ade/1355703078 – ident: 23 doi: 10.1016/j.jmaa.2012.12.055 – year: 1937 ident: 35 publication-title: The Flow of Homogeneous Fluids Through Porous Media – year: 1988 ident: 3 publication-title: Dynamics of Fluids in Porous Media – start-page: 99 year: 1993 ident: 11 publication-title: Boundary Value Problems for Partial Differential Equations and Applications – ident: 34 doi: 10.1002/cpa.3160240507 – ident: 42 doi: 10.1016/0022-247X(88)90053-4 – ident: 25 doi: 10.1007/s10958-014-2045-2 – volume: 243 year: 1997 ident: 28 publication-title: Z. Nauchn. Sem. S.-Peterburg. Otd. Mat. Inst. Steklova – ident: 36 doi: 10.1007/978-1-4614-5541-7 – ident: 31 doi: 10.1002/num.21984 – ident: 14 doi: 10.3934/dcdss.2014.7.737 – ident: 38 doi: 10.1098/rspa.1999.0398 – volume: 90 start-page: 1 year: 1964 ident: 45 publication-title: J. Hydraul. Div., Proc. Am. Soc. Civ. Eng. – volume: 278 start-page: 250 issn: 0371-9685 year: 2012 ident: 41 publication-title: Tr. Mat. Inst. Steklova – year: 2001 ident: 46 publication-title: Matheson Gas Data Book – ident: 24 doi: 10.1063/1.4903002 – ident: 8 doi: 10.1119/1.19408 – ident: 1 doi: 10.1007/BF01176474 – ident: 2 doi: 10.1063/1.3204977 – year: 2015 ident: 21 publication-title: J. d’Anal. Math. – ident: 32 doi: 10.1007/s00208-006-0053-3 – ident: 26 doi: 10.1016/j.camwa.2016.06.029 – volume: 45 start-page: 1781 issn: 0341-7255 year: 1901 ident: 12 publication-title: Z. Ver. Dtsch. Ing. – ident: 10 doi: 10.1007/978-1-4612-0895-2 – ident: 37 doi: 10.1002/num.20035 – volume: 2 start-page: 1 issn: 1072-6691 year: 1994 ident: 33 publication-title: Electron. J. Differ. Equ. – ident: 6 doi: 10.1007/s00021-016-0313-2 – ident: 9 doi: 10.1137/S0036141091217731 – ident: 17 doi: 10.1007/s00211-008-0157-7 – volume: 160 start-page: 285 issn: 0371-9685 year: 1982 ident: 27 publication-title: Tr. Mat. Inst. Steklova – ident: 16 doi: 10.1016/j.nonrwa.2012.07.003 – ident: 30 doi: 10.1007/BF02673593 – year: 2008 ident: 40 publication-title: Stability and Wave Motion in Porous Media – year: 1930 ident: 13 publication-title: Hydraulik – volume: 29 start-page: 1124 issn: 0951-7715 year: 2016 ident: 4 publication-title: Nonlinearity doi: 10.1088/0951-7715/29/3/1124 – volume: 24 start-page: 1 issn: 0951-7715 year: 2011 ident: 18 publication-title: Nonlinearity doi: 10.1088/0951-7715/24/1/001 – ident: 22 doi: 10.1515/ans-2016-6027 – year: 1856 ident: 7 publication-title: Les Fontaines Publiques de la Ville de Dijon – ident: 15 doi: 10.1098/rspa.2003.1169 – volume: 28 start-page: 87 year: 1997 ident: 29 publication-title: Kraev. Zadachi Mat. Fiz. Smezh. Vopr. Teor. Funktsii. – ident: 39 doi: 10.1007/s00028-009-0024-8 |
SSID | ssj0011823 |
Score | 2.2254481 |
Snippet | This paper is focused on the generalized Forchheimer flows of compressible fluids in porous media. The gravity effect and other general nonlinear forms of the... |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 3617 |
SubjectTerms | compressible fluids doubly nonlinear equation Forchheimer flows Moser iteration nonlinear Robin condition porous media |
Title | Doubly nonlinear parabolic equations for a general class of Forchheimer gas flows in porous media |
URI | https://iopscience.iop.org/article/10.1088/1361-6544/aabf05 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60IujBR1WsL_agBw9pk2aTbPAkYqlC1YOFHoSwz1qsTW1aRH-9s900VFERbwlMssPs65ud2W8QOgZIoUNJIkdwTsBBkczhmoGXQqiIYC2U9jCndRM22-S6E3QW0FlxFyYd5kt_FR4tUbA1YZ4QR2ueH3pOGBBSY4xrw1-6ZApXmuF9dXtXhBAAOBd15KHVII9RfveHT3vSIrQ7t8U01tHDTDmbWfJUnYx5Vbx_4W38p_YbaC2Hnvjcim6iBTUoo9U5QkJ4axUsrlkZLU_TQ0W2hRjgbN5_wwNLrMFG2FCGc8MpjNWLZQvPMOBfzHDXElljYXA5TjVupDCXHlXvWY1wl4FYP33NcG-AAfqnkwxPL69so3bj8v6i6eTFGRxRp-7YiXmkdCwJkcL3iS-YCgBr-cyNGVVuqGWoeaBcBhAk5FTIUPqBObMCgMCZiLS_g0qgtNpFWGhPSiJlLDkhygOfGfxAwYUXR25dRLSCarPuSUTOXG4KaPSTaQSd0sQYNTFGTaxRK-i0-GJoWTt-kT2BvkryqZv9KLf3R7l9tAKgitokwQNUGo8m6hCAy5gfTQfoB-j85vc |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLYYCAQHHgPEmxzgwKFbS9M2PSJgGq_BASRuJU9AjHWsmxD8etymTIAAIXFrJbdJncb5HDufAbYQUphQ0ciRQlB0UBR3hOHopVAmI7SFym7mnLXC5hU9vg6uyzqnxVmYtFua_hpeWqJgq8IyIY7VPT_0nDCgtM65MG5Q7ypTgbEATXGe03V0fjEMIyB4HtaSx5aDMk753Vs-rUsVbPvDMtOYgZv3DtrskofaoC9q8vULd-M_vmAWpksISvas-ByM6E4Vpj4QE-Ld2ZDNNavCeJEmKrN54Ii3RfuFdCzBBu-RnDpc5NzCRD9Z1vCMIA4mnNxaQmsic3xOUkMaKc6pO33_qHvklqNYO33OyH2HoAuQDjJSHGJZgKvG4eV-0ymLNDhyl7l9JxaRNrGiVEnfp77kOkDM5XM35ky7oVGhEYF2OUKRUDCpQuUH-d4VAgXBZWT8RRjFTuslINJ4SlGlYiUo1R76zugPSiG9OHJ3ZcSWof4-RIksGczzQhrtpIikM5bkik1yxSZWscuwM3yia9k7fpHdxvFKyimc_Si38ke5TZi4OGgkp0etk1WYRJzFbN7gGoz2ewO9jlimLzaK__UNaNvsWw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Doubly+nonlinear+parabolic+equations+for+a+general+class+of+Forchheimer+gas+flows+in+porous+media&rft.jtitle=Nonlinearity&rft.au=Celik%2C+Emine&rft.au=Hoang%2C+Luan&rft.au=Kieu%2C+Thinh&rft.date=2018-08-01&rft.issn=0951-7715&rft.eissn=1361-6544&rft.volume=31&rft.issue=8&rft.spage=3617&rft.epage=3650&rft_id=info:doi/10.1088%2F1361-6544%2Faabf05&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6544_aabf05 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-7715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-7715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-7715&client=summon |