Doubly nonlinear parabolic equations for a general class of Forchheimer gas flows in porous media

This paper is focused on the generalized Forchheimer flows of compressible fluids in porous media. The gravity effect and other general nonlinear forms of the source term and boundary flux are integrated into the model. We derive a doubly nonlinear parabolic equation for the so-called pseudo-pressur...

Full description

Saved in:
Bibliographic Details
Published inNonlinearity Vol. 31; no. 8; pp. 3617 - 3650
Main Authors Celik, Emine, Hoang, Luan, Kieu, Thinh
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.08.2018
Subjects
Online AccessGet full text
ISSN0951-7715
1361-6544
DOI10.1088/1361-6544/aabf05

Cover

Abstract This paper is focused on the generalized Forchheimer flows of compressible fluids in porous media. The gravity effect and other general nonlinear forms of the source term and boundary flux are integrated into the model. We derive a doubly nonlinear parabolic equation for the so-called pseudo-pressure, and study its initial value problem subject to a general nonlinear Robin boundary condition. The growth rates in the source term and the boundary condition are arbitrarily large. The maximum of the solution, for positive time, is estimated in terms of certain Lebesgue norms of the initial and boundary data. The gradient estimates are obtained under a theoretical condition which, indeed, is relevant to the fluid flows in applications. In dealing with the complexity and generality of the equation and boundary condition, suitable trace theorems and Sobolev's inequalities are utilized, and a well-adapted Moser's iteration is implemented.
AbstractList This paper is focused on the generalized Forchheimer flows of compressible fluids in porous media. The gravity effect and other general nonlinear forms of the source term and boundary flux are integrated into the model. We derive a doubly nonlinear parabolic equation for the so-called pseudo-pressure, and study its initial value problem subject to a general nonlinear Robin boundary condition. The growth rates in the source term and the boundary condition are arbitrarily large. The maximum of the solution, for positive time, is estimated in terms of certain Lebesgue norms of the initial and boundary data. The gradient estimates are obtained under a theoretical condition which, indeed, is relevant to the fluid flows in applications. In dealing with the complexity and generality of the equation and boundary condition, suitable trace theorems and Sobolev's inequalities are utilized, and a well-adapted Moser's iteration is implemented.
Author Celik, Emine
Hoang, Luan
Kieu, Thinh
Author_xml – sequence: 1
  givenname: Emine
  surname: Celik
  fullname: Celik, Emine
  email: ecelik@unr.edu
  organization: University of Nevada Department of Mathematics and Statistics, Reno, 1664 N. Virginia Street, Reno, NV 89557, United States of America
– sequence: 2
  givenname: Luan
  surname: Hoang
  fullname: Hoang, Luan
  email: luan.hoang@ttu.edu
  organization: Texas Tech University Department of Mathematics and Statistics, Box 41042, Lubbock, TX 79409-1042, United States of America
– sequence: 3
  givenname: Thinh
  surname: Kieu
  fullname: Kieu, Thinh
  email: thinh.kieu@ung.edu
  organization: University of North Georgia Department of Mathematics, Gainesville Campus, 3820 Mundy Mill Rd., Oakwood, GA 30566, United States of America
BookMark eNp9kEFLwzAYhoNMcJvePeYHWJcsbZoeZToVBl70HL6kyZaRNTVpkf17WyceBD198PE-L7zPDE2a0BiErim5pUSIBWWcZrzI8wWAsqQ4Q9Of1wRNSVXQrCxpcYFmKe0JoVQs2RTBfeiVP-KhzbvGQMQtRFDBO43New-dC03CNkQMeGsaE8Fj7SElHCxeh6h3O-MOJuItDDEfPhJ2DW5DDH3CB1M7uETnFnwyV993jt7WD6-rp2zz8vi8uttkeilIl1WqNLaq87zWjOVMgykEqxiQCoQh3NbcqsIQIKXgSuia16zgZcUFFQp0adkckVOvjiGlaKxsoztAPEpK5KhIjj7k6EOeFA0I_4Vo131N7iI4_x94cwJdaOU-9LEZlv0d_wSwdn2S
CODEN NONLE5
CitedBy_id crossref_primary_10_1016_j_nonrwa_2024_104269
crossref_primary_10_1063_5_0047754
crossref_primary_10_1134_S096554252470074X
crossref_primary_10_1063_5_0002265
crossref_primary_10_1063_5_0176467
Cites_doi 10.1016/j.jde.2016.10.043
10.1007/s10958-015-2576-1
10.1007/BF02567072
10.57262/ade/1355703078
10.1016/j.jmaa.2012.12.055
10.1002/cpa.3160240507
10.1016/0022-247X(88)90053-4
10.1007/s10958-014-2045-2
10.1007/978-1-4614-5541-7
10.1002/num.21984
10.3934/dcdss.2014.7.737
10.1098/rspa.1999.0398
10.1063/1.4903002
10.1119/1.19408
10.1007/BF01176474
10.1063/1.3204977
10.1007/s00208-006-0053-3
10.1016/j.camwa.2016.06.029
10.1007/978-1-4612-0895-2
10.1002/num.20035
10.1007/s00021-016-0313-2
10.1137/S0036141091217731
10.1007/s00211-008-0157-7
10.1016/j.nonrwa.2012.07.003
10.1007/BF02673593
10.1088/0951-7715/29/3/1124
10.1088/0951-7715/24/1/001
10.1515/ans-2016-6027
10.1098/rspa.2003.1169
10.1007/s00028-009-0024-8
ContentType Journal Article
Copyright 2018 IOP Publishing Ltd & London Mathematical Society
Copyright_xml – notice: 2018 IOP Publishing Ltd & London Mathematical Society
DBID AAYXX
CITATION
DOI 10.1088/1361-6544/aabf05
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Physics
DocumentTitleAlternate Doubly nonlinear parabolic equations for a general class of Forchheimer gas flows in porous media
EISSN 1361-6544
EndPage 3650
ExternalDocumentID 10_1088_1361_6544_aabf05
nonaabf05
GrantInformation_xml – fundername: NSF
  grantid: DMS-1412796
GroupedDBID -~X
.DC
123
1JI
4.4
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AALHV
AATNI
ABCXL
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
NT-
NT.
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
W28
XPP
YQT
ZMT
AAYXX
ADEQX
CITATION
ID FETCH-LOGICAL-c280t-9b7ef9d44dc3343cae58393a09a8e06fd6fb5e0a0786b8cd6d356796818bac7f3
IEDL.DBID IOP
ISSN 0951-7715
IngestDate Tue Jul 01 02:43:38 EDT 2025
Thu Apr 24 22:52:14 EDT 2025
Wed Aug 21 03:32:04 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c280t-9b7ef9d44dc3343cae58393a09a8e06fd6fb5e0a0786b8cd6d356796818bac7f3
Notes NON-102010.R1
London Mathematical Society
PageCount 34
ParticipantIDs crossref_citationtrail_10_1088_1361_6544_aabf05
crossref_primary_10_1088_1361_6544_aabf05
iop_journals_10_1088_1361_6544_aabf05
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-08-01
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-01
  day: 01
PublicationDecade 2010
PublicationTitle Nonlinearity
PublicationTitleAbbrev Non
PublicationTitleAlternate Nonlinearity
PublicationYear 2018
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 22
44
23
24
25
26
Darcy H (7) 1856
Muskat M (35) 1937
Manfredi J J (33) 1994; 2
Ivanov A V (27) 1982; 160
Vázquez J L (43) 2007
Celik E (4) 2016; 29
30
31
10
32
34
Bear J (3) 1988
14
36
15
37
16
Hoang L (19) 2012; 17
38
17
39
Hoang L (18) 2011; 24
Surnachëv M D (41) 2012; 278
1
2
Ivanov A V (29) 1997; 28
Straughan B (40) 2008
5
Ivanov A V (28) 1997; 243
6
Douglas J J (11) 1993
8
Forchheimer P (12) 1901; 45
9
Ward J C (45) 1964; 90
Hoang L (21) 2015
Yaws C L (46) 2001
20
42
Forchheimer P (13) 1930
References_xml – year: 2007
  ident: 43
  publication-title: Oxford Mathematical Monographs
– ident: 5
  doi: 10.1016/j.jde.2016.10.043
– ident: 20
  doi: 10.1007/s10958-015-2576-1
– ident: 44
  doi: 10.1007/BF02567072
– volume: 17
  start-page: 511
  issn: 1079-9389
  year: 2012
  ident: 19
  publication-title: Adv. Differ. Equ.
  doi: 10.57262/ade/1355703078
– ident: 23
  doi: 10.1016/j.jmaa.2012.12.055
– year: 1937
  ident: 35
  publication-title: The Flow of Homogeneous Fluids Through Porous Media
– year: 1988
  ident: 3
  publication-title: Dynamics of Fluids in Porous Media
– start-page: 99
  year: 1993
  ident: 11
  publication-title: Boundary Value Problems for Partial Differential Equations and Applications
– ident: 34
  doi: 10.1002/cpa.3160240507
– ident: 42
  doi: 10.1016/0022-247X(88)90053-4
– ident: 25
  doi: 10.1007/s10958-014-2045-2
– volume: 243
  year: 1997
  ident: 28
  publication-title: Z. Nauchn. Sem. S.-Peterburg. Otd. Mat. Inst. Steklova
– ident: 36
  doi: 10.1007/978-1-4614-5541-7
– ident: 31
  doi: 10.1002/num.21984
– ident: 14
  doi: 10.3934/dcdss.2014.7.737
– ident: 38
  doi: 10.1098/rspa.1999.0398
– volume: 90
  start-page: 1
  year: 1964
  ident: 45
  publication-title: J. Hydraul. Div., Proc. Am. Soc. Civ. Eng.
– volume: 278
  start-page: 250
  issn: 0371-9685
  year: 2012
  ident: 41
  publication-title: Tr. Mat. Inst. Steklova
– year: 2001
  ident: 46
  publication-title: Matheson Gas Data Book
– ident: 24
  doi: 10.1063/1.4903002
– ident: 8
  doi: 10.1119/1.19408
– ident: 1
  doi: 10.1007/BF01176474
– ident: 2
  doi: 10.1063/1.3204977
– year: 2015
  ident: 21
  publication-title: J. d’Anal. Math.
– ident: 32
  doi: 10.1007/s00208-006-0053-3
– ident: 26
  doi: 10.1016/j.camwa.2016.06.029
– volume: 45
  start-page: 1781
  issn: 0341-7255
  year: 1901
  ident: 12
  publication-title: Z. Ver. Dtsch. Ing.
– ident: 10
  doi: 10.1007/978-1-4612-0895-2
– ident: 37
  doi: 10.1002/num.20035
– volume: 2
  start-page: 1
  issn: 1072-6691
  year: 1994
  ident: 33
  publication-title: Electron. J. Differ. Equ.
– ident: 6
  doi: 10.1007/s00021-016-0313-2
– ident: 9
  doi: 10.1137/S0036141091217731
– ident: 17
  doi: 10.1007/s00211-008-0157-7
– volume: 160
  start-page: 285
  issn: 0371-9685
  year: 1982
  ident: 27
  publication-title: Tr. Mat. Inst. Steklova
– ident: 16
  doi: 10.1016/j.nonrwa.2012.07.003
– ident: 30
  doi: 10.1007/BF02673593
– year: 2008
  ident: 40
  publication-title: Stability and Wave Motion in Porous Media
– year: 1930
  ident: 13
  publication-title: Hydraulik
– volume: 29
  start-page: 1124
  issn: 0951-7715
  year: 2016
  ident: 4
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/29/3/1124
– volume: 24
  start-page: 1
  issn: 0951-7715
  year: 2011
  ident: 18
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/24/1/001
– ident: 22
  doi: 10.1515/ans-2016-6027
– year: 1856
  ident: 7
  publication-title: Les Fontaines Publiques de la Ville de Dijon
– ident: 15
  doi: 10.1098/rspa.2003.1169
– volume: 28
  start-page: 87
  year: 1997
  ident: 29
  publication-title: Kraev. Zadachi Mat. Fiz. Smezh. Vopr. Teor. Funktsii.
– ident: 39
  doi: 10.1007/s00028-009-0024-8
SSID ssj0011823
Score 2.2254481
Snippet This paper is focused on the generalized Forchheimer flows of compressible fluids in porous media. The gravity effect and other general nonlinear forms of the...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 3617
SubjectTerms compressible fluids
doubly nonlinear equation
Forchheimer flows
Moser iteration
nonlinear Robin condition
porous media
Title Doubly nonlinear parabolic equations for a general class of Forchheimer gas flows in porous media
URI https://iopscience.iop.org/article/10.1088/1361-6544/aabf05
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60IujBR1WsL_agBw9pk2aTbPAkYqlC1YOFHoSwz1qsTW1aRH-9s900VFERbwlMssPs65ud2W8QOgZIoUNJIkdwTsBBkczhmoGXQqiIYC2U9jCndRM22-S6E3QW0FlxFyYd5kt_FR4tUbA1YZ4QR2ueH3pOGBBSY4xrw1-6ZApXmuF9dXtXhBAAOBd15KHVII9RfveHT3vSIrQ7t8U01tHDTDmbWfJUnYx5Vbx_4W38p_YbaC2Hnvjcim6iBTUoo9U5QkJ4axUsrlkZLU_TQ0W2hRjgbN5_wwNLrMFG2FCGc8MpjNWLZQvPMOBfzHDXElljYXA5TjVupDCXHlXvWY1wl4FYP33NcG-AAfqnkwxPL69so3bj8v6i6eTFGRxRp-7YiXmkdCwJkcL3iS-YCgBr-cyNGVVuqGWoeaBcBhAk5FTIUPqBObMCgMCZiLS_g0qgtNpFWGhPSiJlLDkhygOfGfxAwYUXR25dRLSCarPuSUTOXG4KaPSTaQSd0sQYNTFGTaxRK-i0-GJoWTt-kT2BvkryqZv9KLf3R7l9tAKgitokwQNUGo8m6hCAy5gfTQfoB-j85vc
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLYYCAQHHgPEmxzgwKFbS9M2PSJgGq_BASRuJU9AjHWsmxD8etymTIAAIXFrJbdJncb5HDufAbYQUphQ0ciRQlB0UBR3hOHopVAmI7SFym7mnLXC5hU9vg6uyzqnxVmYtFua_hpeWqJgq8IyIY7VPT_0nDCgtM65MG5Q7ypTgbEATXGe03V0fjEMIyB4HtaSx5aDMk753Vs-rUsVbPvDMtOYgZv3DtrskofaoC9q8vULd-M_vmAWpksISvas-ByM6E4Vpj4QE-Ld2ZDNNavCeJEmKrN54Ii3RfuFdCzBBu-RnDpc5NzCRD9Z1vCMIA4mnNxaQmsic3xOUkMaKc6pO33_qHvklqNYO33OyH2HoAuQDjJSHGJZgKvG4eV-0ymLNDhyl7l9JxaRNrGiVEnfp77kOkDM5XM35ky7oVGhEYF2OUKRUDCpQuUH-d4VAgXBZWT8RRjFTuslINJ4SlGlYiUo1R76zugPSiG9OHJ3ZcSWof4-RIksGczzQhrtpIikM5bkik1yxSZWscuwM3yia9k7fpHdxvFKyimc_Si38ke5TZi4OGgkp0etk1WYRJzFbN7gGoz2ewO9jlimLzaK__UNaNvsWw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Doubly+nonlinear+parabolic+equations+for+a+general+class+of+Forchheimer+gas+flows+in+porous+media&rft.jtitle=Nonlinearity&rft.au=Celik%2C+Emine&rft.au=Hoang%2C+Luan&rft.au=Kieu%2C+Thinh&rft.date=2018-08-01&rft.issn=0951-7715&rft.eissn=1361-6544&rft.volume=31&rft.issue=8&rft.spage=3617&rft.epage=3650&rft_id=info:doi/10.1088%2F1361-6544%2Faabf05&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6544_aabf05
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-7715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-7715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-7715&client=summon