Entropy-based link prediction in weighted networks
Information entropy has been proved to be an effective tool to quantify the structural importance of complex networks.In a previous work [Xu et al. Physica A, 456 294(2016)], we measure the contribution of a path in link prediction with information entropy. In this paper, we further quantify the con...
Saved in:
Published in | Chinese physics B Vol. 26; no. 1; pp. 584 - 590 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 |
DOI | 10.1088/1674-1056/26/1/018902 |
Cover
Abstract | Information entropy has been proved to be an effective tool to quantify the structural importance of complex networks.In a previous work [Xu et al. Physica A, 456 294(2016)], we measure the contribution of a path in link prediction with information entropy. In this paper, we further quantify the contribution of a path with both path entropy and path weight,and propose a weighted prediction index based on the contributions of paths, namely weighted path entropy(WPE), to improve the prediction accuracy in weighted networks. Empirical experiments on six weighted real-world networks show that WPE achieves higher prediction accuracy than three other typical weighted indices. |
---|---|
AbstractList | Information entropy has been proved to be an effective tool to quantify the structural importance of complex networks.In a previous work [Xu et al. Physica A, 456 294(2016)], we measure the contribution of a path in link prediction with information entropy. In this paper, we further quantify the contribution of a path with both path entropy and path weight,and propose a weighted prediction index based on the contributions of paths, namely weighted path entropy(WPE), to improve the prediction accuracy in weighted networks. Empirical experiments on six weighted real-world networks show that WPE achieves higher prediction accuracy than three other typical weighted indices. |
Author | 许忠奇 濮存来 Rajput Ramiz Sharafat 李伦波 杨健 |
AuthorAffiliation | Department of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China Department of Industrial and Systems Engineering, University of Florida, Gainesville 32611, USA |
Author_xml | – sequence: 1 fullname: 许忠奇 濮存来 Rajput Ramiz Sharafat 李伦波 杨健 |
BookMark | eNqFj01LAzEURYNUsFV_gjC4H-flZeZNBldS6gcU3Og6pJOkja2ZmgmU_ns7tHThxtVdvHve5UzYKHTBMnbH4YGDlAWnusw5VFQgFbwALhvACzZGqGQupChHbHzuXLFJ338BEAcUY4azkGK33ecL3VuTbXxYZ9tojW-T70LmQ7azfrlKh1uwadfFdX_DLp3e9Pb2lNfs83n2MX3N5-8vb9Oned6ihJQ3pGvQFSKhRFdqZ0pHDaKgshZ1bSx3pHGBCERCOGgJKiONaRpquXRcXLPq-LeNXd9H69Q2-m8d94qDGsTVIKUGKYWkuDqKH7jHP1zrkx50UtR-8y99f6JXXVj--LA8z1LND50SSfwCfplqIg |
CitedBy_id | crossref_primary_10_1016_j_knosys_2022_108402 crossref_primary_10_1016_j_physa_2019_121397 crossref_primary_10_1016_j_knosys_2022_109713 crossref_primary_10_1002_itl2_409 crossref_primary_10_1016_j_physa_2017_04_106 crossref_primary_10_3390_bdcc7010031 crossref_primary_10_7498_aps_69_20191162 crossref_primary_10_1016_j_physa_2018_05_067 crossref_primary_10_1016_j_energy_2022_124684 crossref_primary_10_1016_j_physa_2018_02_189 crossref_primary_10_1016_j_physa_2020_124289 crossref_primary_10_1016_j_egyr_2021_11_270 crossref_primary_10_1016_j_energy_2021_122324 |
Cites_doi | 10.1007/BF02289026 10.1016/j.physa.2013.08.063 10.1016/S1389-1286(00)00044-X 10.1016/j.physa.2014.10.011 10.1093/acprof:oso/9780199206650.001.0001 10.1007/978-3-540-44485-5_9 10.1103/PhysRevE.89.012806 10.1209/0295-5075/89/58007 10.1016/j.physa.2010.11.027 10.1103/PhysRevE.80.046122 10.1103/PhysRevE.80.045102 10.1126/science.286.5439.509 10.1016/j.physa.2016.02.002 10.1016/j.physleta.2015.04.040 10.17705/1jais.00423 10.1145/1117454.1117456 10.1016/j.physrep.2012.02.006 10.1140/epjb/e2009-00335-8 10.1209/0295-5075/89/18001 10.1073/pnas.98.2.404 10.1016/j.physa.2014.10.038 10.1038/30918 10.1007/s00446-005-0122-y 10.1016/j.socnet.2005.07.002 10.1103/PhysRevE.64.025102 10.1016/j.physa.2016.03.091 10.1371/journal.pone.0107056 10.1002/asi.20591 10.1016/j.physa.2016.03.041 10.1371/journal.pone.0148265 10.1093/bioinformatics/bts688 10.1109/WI.2007.52 10.1016/S0378-8733(03)00009-1 10.1145/775047.775126 10.1103/PhysRevE.73.026120 |
ContentType | Journal Article |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION |
DOI | 10.1088/1674-1056/26/1/018902 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库- 镜像站点 CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | Entropy-based link prediction in weighted networks |
EISSN | 2058-3834 |
EndPage | 590 |
ExternalDocumentID | 10_1088_1674_1056_26_1_018902 671189426 |
GroupedDBID | 02O 1JI 1WK 29B 2RA 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q 92L AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFUIB AFYNE AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BBWZM CCEZO CCVFK CEBXE CHBEP CJUJL CQIGP CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN FA0 FEDTE HAK HVGLF IJHAN IOP IZVLO JCGBZ KNG KOT M45 N5L NT- NT. PJBAE Q02 RIN RNS ROL RPA RW3 SY9 TCJ TGP UCJ W28 ~WA -SA -S~ AAYXX ACARI ADEQX AERVB AGQPQ AOAED ARNYC CAJEA CITATION Q-- U1G U5K |
ID | FETCH-LOGICAL-c280t-96a70a5226282f4afd4f69223647377de1f6a2b2206633f0c605d8dd996c18f13 |
ISSN | 1674-1056 |
IngestDate | Thu Apr 24 23:03:06 EDT 2025 Tue Jul 01 02:55:19 EDT 2025 Wed Feb 14 10:05:29 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://iopscience.iop.org/info/page/text-and-data-mining http://iopscience.iop.org/page/copyright |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c280t-96a70a5226282f4afd4f69223647377de1f6a2b2206633f0c605d8dd996c18f13 |
Notes | link prediction; weighted networks; information entropy Information entropy has been proved to be an effective tool to quantify the structural importance of complex networks.In a previous work [Xu et al. Physica A, 456 294(2016)], we measure the contribution of a path in link prediction with information entropy. In this paper, we further quantify the contribution of a path with both path entropy and path weight,and propose a weighted prediction index based on the contributions of paths, namely weighted path entropy(WPE), to improve the prediction accuracy in weighted networks. Empirical experiments on six weighted real-world networks show that WPE achieves higher prediction accuracy than three other typical weighted indices. Zhongqi Xu1,Cunlai Pu1,2,Rajput Ramiz Sharafat1,Lunbo Li1,Jian Yang1(1. Department of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; 2.Department of Industrial and Systems Engineering, University of Florida, Gainesville 32611, USA) 11-5639/O4 |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_1088_1674_1056_26_1_018902 crossref_citationtrail_10_1088_1674_1056_26_1_018902 chongqing_primary_671189426 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017 2017-01-00 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 2017 |
PublicationDecade | 2010 |
PublicationTitle | Chinese physics B |
PublicationTitleAlternate | Chinese Physics |
PublicationYear | 2017 |
References | Mohammad A H (12) 2006 22 44 23 46 25 47 26 48 27 Lü L Y (37) 2010; 89 29 Li Y J (16) 2016; 65 Barabási A L (1) 2016 30 31 10 32 11 33 34 13 35 14 Mayer-Schönberger V (4) 2013 15 38 17 39 18 19 Song H Q (42) 2015; 24 Wang P (7) 2015; 58 Bai M (36) 2011; 20 2 Abbasi A (5) 2016; 17 6 Chen G R (3) 2012 8 9 Liu W P (24) 2010; 89 Solé R V (28) 2004 40 41 20 21 43 Brian H (45) 2006; 94 |
References_xml | – ident: 25 doi: 10.1007/BF02289026 – ident: 34 doi: 10.1016/j.physa.2013.08.063 – ident: 43 – ident: 13 doi: 10.1016/S1389-1286(00)00044-X – ident: 10 doi: 10.1016/j.physa.2014.10.011 – ident: 2 doi: 10.1093/acprof:oso/9780199206650.001.0001 – start-page: 189 year: 2004 ident: 28 publication-title: Information Theory of Complex Networks: On Evolution and Architectural Constraints, in Complex Networks doi: 10.1007/978-3-540-44485-5_9 – volume: 24 issn: 1674-1056 year: 2015 ident: 42 publication-title: Chin. Phys. – ident: 29 doi: 10.1103/PhysRevE.89.012806 – volume: 89 start-page: 58007 issn: 0295-5075 year: 2010 ident: 24 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/89/58007 – ident: 6 doi: 10.1016/j.physa.2010.11.027 – volume: 94 start-page: 400 year: 2006 ident: 45 publication-title: AmSci – ident: 23 doi: 10.1103/PhysRevE.80.046122 – ident: 30 doi: 10.1103/PhysRevE.80.045102 – year: 2012 ident: 3 publication-title: Introduction to Complex Networks: Models, Structures and Dynamics – ident: 17 doi: 10.1126/science.286.5439.509 – ident: 41 doi: 10.1016/j.physa.2016.02.002 – year: 2016 ident: 1 publication-title: Network Science – ident: 39 doi: 10.1016/j.physleta.2015.04.040 – volume: 17 start-page: 3 issn: 1536-9323 year: 2016 ident: 5 publication-title: J. Assoc. Inf. Syst. doi: 10.17705/1jais.00423 – ident: 47 – ident: 14 doi: 10.1145/1117454.1117456 – ident: 8 doi: 10.1016/j.physrep.2012.02.006 – ident: 22 doi: 10.1140/epjb/e2009-00335-8 – volume: 20 issn: 1674-1056 year: 2011 ident: 36 publication-title: Chin. Phys. – volume: 89 start-page: 18001 issn: 0295-5075 year: 2010 ident: 37 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/89/18001 – ident: 11 doi: 10.1073/pnas.98.2.404 – ident: 38 doi: 10.1016/j.physa.2014.10.038 – year: 2006 ident: 12 publication-title: The Proceedings of the Fourth Workshop on Link Analysis, Counterterrorism and Security – ident: 48 doi: 10.1038/30918 – ident: 40 doi: 10.1007/s00446-005-0122-y – ident: 19 doi: 10.1016/j.socnet.2005.07.002 – ident: 18 doi: 10.1103/PhysRevE.64.025102 – year: 2013 ident: 4 publication-title: Big Data: A Revolution That Will Transform How We Live, Work, and Think – ident: 32 doi: 10.1016/j.physa.2016.03.091 – ident: 31 doi: 10.1371/journal.pone.0107056 – ident: 20 doi: 10.1002/asi.20591 – ident: 15 doi: 10.1016/j.physa.2016.03.041 – ident: 33 doi: 10.1371/journal.pone.0148265 – ident: 9 doi: 10.1093/bioinformatics/bts688 – ident: 35 doi: 10.1109/WI.2007.52 – ident: 46 – volume: 58 start-page: 1 year: 2015 ident: 7 publication-title: Sci. China-Inform. Sci. – ident: 21 doi: 10.1016/S0378-8733(03)00009-1 – ident: 27 doi: 10.1145/775047.775126 – ident: 44 – ident: 26 doi: 10.1103/PhysRevE.73.026120 – volume: 65 issn: 0372-736X year: 2016 ident: 16 publication-title: Acta Phys. Sin. |
SSID | ssj0061023 |
Score | 2.1679454 |
Snippet | Information entropy has been proved to be an effective tool to quantify the structural importance of complex networks.In a previous work [Xu et al. Physica A,... |
SourceID | crossref chongqing |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 584 |
SubjectTerms | 信息熵 加权指数 加权网络 复杂网络 路径 链路 预测指标 预测精度 |
Title | Entropy-based link prediction in weighted networks |
URI | http://lib.cqvip.com/qk/85823A/201701/671189426.html |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQw0FqKkLggnmIpoBzwaZVu7CSOfUx2sypIPIRaqbcoiWNYBOlCt0L0R_hdZuw43QpUAZfI8mOceCb2zHgehLwQKk11UichM7EJEyNNWHMOCOmaVvMu4tpma3j9RhweJ69O0pPJ5OeO1dL5tjloL_7oV_I_WIU6wCt6yf4DZkegUAFlwC88AcPw_Cscl2hmvvkR4lGkZ3gXiz7_et16C8bvVvGJN_zO2vtslxelZUILSfMlLVOqClpAIaNS0VxhQUVUioKWK1osqMppKamEToyWgipBZTb0lqMxLHbJS4QJAIsVzSMs5Cn0neEorCpt1ZIqaeEsoXn2vv60Qevo-sv6wkWQNvV2NrTL0r7ngubCwohpzn1bbmeSDIDsai-cm-aw1YoMKCRKh0DYto5HqQxjr94c9mfnUX-FDt1mm7rkcsO5nbq0o78dCbCNonbCz4YeMFZdYX0f8Jb18iQc7RNFBnKXAublBrnJs4yhrejLt-_8ES8w3gVK8h6odw2Tcj7WzbmYs7mbAgN3fDztP3wFdmSHAdrhZI7ukjuDCBLkjp7ukUnX3ye3rClwe_aA8CtUFSBVBZdUFaz7wFNV4KnqITlelUeLw3DIrBG2XEbbUIk6i2pkvUHiNkltdGKE4jaZQJxlumNG1LzhGOs_jk3UgtCrpdYgHLdMGhY_Inv9ad89JkHbJFLBH53qliUtbxoVJZoBGw2_us4yMyX746dXGxdBpRrXd0oSvxhVOwSlx9wonytrHCFlhetZ4XpWXFSscus5JQfjMA_z2gFPrn2LfXIbadNp1p6Sve238-4Z8Jrb5rnF-y-l52CG |
linkProvider | IOP Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Entropy-based+link+prediction+in+weighted+networks&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%89%A9%E7%90%86B%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E8%AE%B8%E5%BF%A0%E5%A5%87+%E6%BF%AE%E5%AD%98%E6%9D%A5+Rajput+Ramiz+Sharafat+%E6%9D%8E%E4%BC%A6%E6%B3%A2+%E6%9D%A8%E5%81%A5&rft.date=2017&rft.issn=1674-1056&rft.eissn=2058-3834&rft.volume=26&rft.issue=1&rft.spage=584&rft.epage=590&rft_id=info:doi/10.1088%2F1674-1056%2F26%2F1%2F018902&rft.externalDocID=671189426 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg |