Entropy-based link prediction in weighted networks

Information entropy has been proved to be an effective tool to quantify the structural importance of complex networks.In a previous work [Xu et al. Physica A, 456 294(2016)], we measure the contribution of a path in link prediction with information entropy. In this paper, we further quantify the con...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 26; no. 1; pp. 584 - 590
Main Author 许忠奇 濮存来 Rajput Ramiz Sharafat 李伦波 杨健
Format Journal Article
LanguageEnglish
Published 2017
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
DOI10.1088/1674-1056/26/1/018902

Cover

Abstract Information entropy has been proved to be an effective tool to quantify the structural importance of complex networks.In a previous work [Xu et al. Physica A, 456 294(2016)], we measure the contribution of a path in link prediction with information entropy. In this paper, we further quantify the contribution of a path with both path entropy and path weight,and propose a weighted prediction index based on the contributions of paths, namely weighted path entropy(WPE), to improve the prediction accuracy in weighted networks. Empirical experiments on six weighted real-world networks show that WPE achieves higher prediction accuracy than three other typical weighted indices.
AbstractList Information entropy has been proved to be an effective tool to quantify the structural importance of complex networks.In a previous work [Xu et al. Physica A, 456 294(2016)], we measure the contribution of a path in link prediction with information entropy. In this paper, we further quantify the contribution of a path with both path entropy and path weight,and propose a weighted prediction index based on the contributions of paths, namely weighted path entropy(WPE), to improve the prediction accuracy in weighted networks. Empirical experiments on six weighted real-world networks show that WPE achieves higher prediction accuracy than three other typical weighted indices.
Author 许忠奇 濮存来 Rajput Ramiz Sharafat 李伦波 杨健
AuthorAffiliation Department of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China Department of Industrial and Systems Engineering, University of Florida, Gainesville 32611, USA
Author_xml – sequence: 1
  fullname: 许忠奇 濮存来 Rajput Ramiz Sharafat 李伦波 杨健
BookMark eNqFj01LAzEURYNUsFV_gjC4H-flZeZNBldS6gcU3Og6pJOkja2ZmgmU_ns7tHThxtVdvHve5UzYKHTBMnbH4YGDlAWnusw5VFQgFbwALhvACzZGqGQupChHbHzuXLFJ338BEAcUY4azkGK33ecL3VuTbXxYZ9tojW-T70LmQ7azfrlKh1uwadfFdX_DLp3e9Pb2lNfs83n2MX3N5-8vb9Oned6ihJQ3pGvQFSKhRFdqZ0pHDaKgshZ1bSx3pHGBCERCOGgJKiONaRpquXRcXLPq-LeNXd9H69Q2-m8d94qDGsTVIKUGKYWkuDqKH7jHP1zrkx50UtR-8y99f6JXXVj--LA8z1LND50SSfwCfplqIg
CitedBy_id crossref_primary_10_1016_j_knosys_2022_108402
crossref_primary_10_1016_j_physa_2019_121397
crossref_primary_10_1016_j_knosys_2022_109713
crossref_primary_10_1002_itl2_409
crossref_primary_10_1016_j_physa_2017_04_106
crossref_primary_10_3390_bdcc7010031
crossref_primary_10_7498_aps_69_20191162
crossref_primary_10_1016_j_physa_2018_05_067
crossref_primary_10_1016_j_energy_2022_124684
crossref_primary_10_1016_j_physa_2018_02_189
crossref_primary_10_1016_j_physa_2020_124289
crossref_primary_10_1016_j_egyr_2021_11_270
crossref_primary_10_1016_j_energy_2021_122324
Cites_doi 10.1007/BF02289026
10.1016/j.physa.2013.08.063
10.1016/S1389-1286(00)00044-X
10.1016/j.physa.2014.10.011
10.1093/acprof:oso/9780199206650.001.0001
10.1007/978-3-540-44485-5_9
10.1103/PhysRevE.89.012806
10.1209/0295-5075/89/58007
10.1016/j.physa.2010.11.027
10.1103/PhysRevE.80.046122
10.1103/PhysRevE.80.045102
10.1126/science.286.5439.509
10.1016/j.physa.2016.02.002
10.1016/j.physleta.2015.04.040
10.17705/1jais.00423
10.1145/1117454.1117456
10.1016/j.physrep.2012.02.006
10.1140/epjb/e2009-00335-8
10.1209/0295-5075/89/18001
10.1073/pnas.98.2.404
10.1016/j.physa.2014.10.038
10.1038/30918
10.1007/s00446-005-0122-y
10.1016/j.socnet.2005.07.002
10.1103/PhysRevE.64.025102
10.1016/j.physa.2016.03.091
10.1371/journal.pone.0107056
10.1002/asi.20591
10.1016/j.physa.2016.03.041
10.1371/journal.pone.0148265
10.1093/bioinformatics/bts688
10.1109/WI.2007.52
10.1016/S0378-8733(03)00009-1
10.1145/775047.775126
10.1103/PhysRevE.73.026120
ContentType Journal Article
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
DOI 10.1088/1674-1056/26/1/018902
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Entropy-based link prediction in weighted networks
EISSN 2058-3834
EndPage 590
ExternalDocumentID 10_1088_1674_1056_26_1_018902
671189426
GroupedDBID 02O
1JI
1WK
29B
2RA
4.4
5B3
5GY
5VR
5VS
5ZH
6J9
7.M
7.Q
92L
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFUIB
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CQIGP
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FA0
FEDTE
HAK
HVGLF
IJHAN
IOP
IZVLO
JCGBZ
KNG
KOT
M45
N5L
NT-
NT.
PJBAE
Q02
RIN
RNS
ROL
RPA
RW3
SY9
TCJ
TGP
UCJ
W28
~WA
-SA
-S~
AAYXX
ACARI
ADEQX
AERVB
AGQPQ
AOAED
ARNYC
CAJEA
CITATION
Q--
U1G
U5K
ID FETCH-LOGICAL-c280t-96a70a5226282f4afd4f69223647377de1f6a2b2206633f0c605d8dd996c18f13
ISSN 1674-1056
IngestDate Thu Apr 24 23:03:06 EDT 2025
Tue Jul 01 02:55:19 EDT 2025
Wed Feb 14 10:05:29 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://iopscience.iop.org/info/page/text-and-data-mining
http://iopscience.iop.org/page/copyright
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c280t-96a70a5226282f4afd4f69223647377de1f6a2b2206633f0c605d8dd996c18f13
Notes link prediction; weighted networks; information entropy
Information entropy has been proved to be an effective tool to quantify the structural importance of complex networks.In a previous work [Xu et al. Physica A, 456 294(2016)], we measure the contribution of a path in link prediction with information entropy. In this paper, we further quantify the contribution of a path with both path entropy and path weight,and propose a weighted prediction index based on the contributions of paths, namely weighted path entropy(WPE), to improve the prediction accuracy in weighted networks. Empirical experiments on six weighted real-world networks show that WPE achieves higher prediction accuracy than three other typical weighted indices.
Zhongqi Xu1,Cunlai Pu1,2,Rajput Ramiz Sharafat1,Lunbo Li1,Jian Yang1(1. Department of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; 2.Department of Industrial and Systems Engineering, University of Florida, Gainesville 32611, USA)
11-5639/O4
PageCount 7
ParticipantIDs crossref_primary_10_1088_1674_1056_26_1_018902
crossref_citationtrail_10_1088_1674_1056_26_1_018902
chongqing_primary_671189426
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017
2017-01-00
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle Chinese physics B
PublicationTitleAlternate Chinese Physics
PublicationYear 2017
References Mohammad A H (12) 2006
22
44
23
46
25
47
26
48
27
Lü L Y (37) 2010; 89
29
Li Y J (16) 2016; 65
Barabási A L (1) 2016
30
31
10
32
11
33
34
13
35
14
Mayer-Schönberger V (4) 2013
15
38
17
39
18
19
Song H Q (42) 2015; 24
Wang P (7) 2015; 58
Bai M (36) 2011; 20
2
Abbasi A (5) 2016; 17
6
Chen G R (3) 2012
8
9
Liu W P (24) 2010; 89
Solé R V (28) 2004
40
41
20
21
43
Brian H (45) 2006; 94
References_xml – ident: 25
  doi: 10.1007/BF02289026
– ident: 34
  doi: 10.1016/j.physa.2013.08.063
– ident: 43
– ident: 13
  doi: 10.1016/S1389-1286(00)00044-X
– ident: 10
  doi: 10.1016/j.physa.2014.10.011
– ident: 2
  doi: 10.1093/acprof:oso/9780199206650.001.0001
– start-page: 189
  year: 2004
  ident: 28
  publication-title: Information Theory of Complex Networks: On Evolution and Architectural Constraints, in Complex Networks
  doi: 10.1007/978-3-540-44485-5_9
– volume: 24
  issn: 1674-1056
  year: 2015
  ident: 42
  publication-title: Chin. Phys.
– ident: 29
  doi: 10.1103/PhysRevE.89.012806
– volume: 89
  start-page: 58007
  issn: 0295-5075
  year: 2010
  ident: 24
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/89/58007
– ident: 6
  doi: 10.1016/j.physa.2010.11.027
– volume: 94
  start-page: 400
  year: 2006
  ident: 45
  publication-title: AmSci
– ident: 23
  doi: 10.1103/PhysRevE.80.046122
– ident: 30
  doi: 10.1103/PhysRevE.80.045102
– year: 2012
  ident: 3
  publication-title: Introduction to Complex Networks: Models, Structures and Dynamics
– ident: 17
  doi: 10.1126/science.286.5439.509
– ident: 41
  doi: 10.1016/j.physa.2016.02.002
– year: 2016
  ident: 1
  publication-title: Network Science
– ident: 39
  doi: 10.1016/j.physleta.2015.04.040
– volume: 17
  start-page: 3
  issn: 1536-9323
  year: 2016
  ident: 5
  publication-title: J. Assoc. Inf. Syst.
  doi: 10.17705/1jais.00423
– ident: 47
– ident: 14
  doi: 10.1145/1117454.1117456
– ident: 8
  doi: 10.1016/j.physrep.2012.02.006
– ident: 22
  doi: 10.1140/epjb/e2009-00335-8
– volume: 20
  issn: 1674-1056
  year: 2011
  ident: 36
  publication-title: Chin. Phys.
– volume: 89
  start-page: 18001
  issn: 0295-5075
  year: 2010
  ident: 37
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/89/18001
– ident: 11
  doi: 10.1073/pnas.98.2.404
– ident: 38
  doi: 10.1016/j.physa.2014.10.038
– year: 2006
  ident: 12
  publication-title: The Proceedings of the Fourth Workshop on Link Analysis, Counterterrorism and Security
– ident: 48
  doi: 10.1038/30918
– ident: 40
  doi: 10.1007/s00446-005-0122-y
– ident: 19
  doi: 10.1016/j.socnet.2005.07.002
– ident: 18
  doi: 10.1103/PhysRevE.64.025102
– year: 2013
  ident: 4
  publication-title: Big Data: A Revolution That Will Transform How We Live, Work, and Think
– ident: 32
  doi: 10.1016/j.physa.2016.03.091
– ident: 31
  doi: 10.1371/journal.pone.0107056
– ident: 20
  doi: 10.1002/asi.20591
– ident: 15
  doi: 10.1016/j.physa.2016.03.041
– ident: 33
  doi: 10.1371/journal.pone.0148265
– ident: 9
  doi: 10.1093/bioinformatics/bts688
– ident: 35
  doi: 10.1109/WI.2007.52
– ident: 46
– volume: 58
  start-page: 1
  year: 2015
  ident: 7
  publication-title: Sci. China-Inform. Sci.
– ident: 21
  doi: 10.1016/S0378-8733(03)00009-1
– ident: 27
  doi: 10.1145/775047.775126
– ident: 44
– ident: 26
  doi: 10.1103/PhysRevE.73.026120
– volume: 65
  issn: 0372-736X
  year: 2016
  ident: 16
  publication-title: Acta Phys. Sin.
SSID ssj0061023
Score 2.1679454
Snippet Information entropy has been proved to be an effective tool to quantify the structural importance of complex networks.In a previous work [Xu et al. Physica A,...
SourceID crossref
chongqing
SourceType Enrichment Source
Index Database
Publisher
StartPage 584
SubjectTerms 信息熵
加权指数
加权网络
复杂网络
路径
链路
预测指标
预测精度
Title Entropy-based link prediction in weighted networks
URI http://lib.cqvip.com/qk/85823A/201701/671189426.html
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQw0FqKkLggnmIpoBzwaZVu7CSOfUx2sypIPIRaqbcoiWNYBOlCt0L0R_hdZuw43QpUAZfI8mOceCb2zHgehLwQKk11UichM7EJEyNNWHMOCOmaVvMu4tpma3j9RhweJ69O0pPJ5OeO1dL5tjloL_7oV_I_WIU6wCt6yf4DZkegUAFlwC88AcPw_Cscl2hmvvkR4lGkZ3gXiz7_et16C8bvVvGJN_zO2vtslxelZUILSfMlLVOqClpAIaNS0VxhQUVUioKWK1osqMppKamEToyWgipBZTb0lqMxLHbJS4QJAIsVzSMs5Cn0neEorCpt1ZIqaeEsoXn2vv60Qevo-sv6wkWQNvV2NrTL0r7ngubCwohpzn1bbmeSDIDsai-cm-aw1YoMKCRKh0DYto5HqQxjr94c9mfnUX-FDt1mm7rkcsO5nbq0o78dCbCNonbCz4YeMFZdYX0f8Jb18iQc7RNFBnKXAublBrnJs4yhrejLt-_8ES8w3gVK8h6odw2Tcj7WzbmYs7mbAgN3fDztP3wFdmSHAdrhZI7ukjuDCBLkjp7ukUnX3ye3rClwe_aA8CtUFSBVBZdUFaz7wFNV4KnqITlelUeLw3DIrBG2XEbbUIk6i2pkvUHiNkltdGKE4jaZQJxlumNG1LzhGOs_jk3UgtCrpdYgHLdMGhY_Inv9ad89JkHbJFLBH53qliUtbxoVJZoBGw2_us4yMyX746dXGxdBpRrXd0oSvxhVOwSlx9wonytrHCFlhetZ4XpWXFSscus5JQfjMA_z2gFPrn2LfXIbadNp1p6Sve238-4Z8Jrb5rnF-y-l52CG
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Entropy-based+link+prediction+in+weighted+networks&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%89%A9%E7%90%86B%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E8%AE%B8%E5%BF%A0%E5%A5%87+%E6%BF%AE%E5%AD%98%E6%9D%A5+Rajput+Ramiz+Sharafat+%E6%9D%8E%E4%BC%A6%E6%B3%A2+%E6%9D%A8%E5%81%A5&rft.date=2017&rft.issn=1674-1056&rft.eissn=2058-3834&rft.volume=26&rft.issue=1&rft.spage=584&rft.epage=590&rft_id=info:doi/10.1088%2F1674-1056%2F26%2F1%2F018902&rft.externalDocID=671189426
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg