Gravitational-gauge vector interaction in the Hořava–Lifshitz framework
An anisotropic model describing gravity-vector gauge coupling at all energy scales is presented. The starting point is the 4+1 dimensional non–projectable Hořava–Lifshitz gravity theory subject to a geometrical restriction. Renormalizability arguments require all possible interactions in the potenti...
Saved in:
Published in | Classical and quantum gravity Vol. 40; no. 5; pp. 55008 - 55025 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
02.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An anisotropic model describing gravity-vector gauge coupling at all energy scales is presented. The starting point is the 4+1 dimensional non–projectable Hořava–Lifshitz gravity theory subject to a geometrical restriction. Renormalizability arguments require all possible interactions in the potential up to terms with
z
= 4 spatial derivatives on the geometrical tensor fields: the Riemann and Weyl tensors. The latter being necessary on a 4+1 dimensional formulation. The dimensional reduction to 3+1 dimensions gives rise to a model invariant under foliation-preserving diffeomorphisms (FDiff) and
U
(1) symmetry groups. The reduced theory on the kinetic conformal point (
λ
=
1
/
3
), propagates the same spectrum of the Einstein–Maxwell theory. Moreover, at low energies, on the IR point
α
= 0,
β
= 1, its field equations are exactly the Einstein–Maxwell ones in a particular gauge condition. The Minkowski ground state is stable provided several restrictions on the coupling parameters are satisfied, they are explicitly obtained. The quantum propagators of the physical degrees of freedom are obtained and after an analysis of the first and second class constraints the renormalizability by power counting is proved, provided that the aforementioned restrictions on the coupling parameters are satisfied. |
---|---|
AbstractList | An anisotropic model describing gravity-vector gauge coupling at all energy scales is presented. The starting point is the 4+1 dimensional non–projectable Hořava–Lifshitz gravity theory subject to a geometrical restriction. Renormalizability arguments require all possible interactions in the potential up to terms with
z
= 4 spatial derivatives on the geometrical tensor fields: the Riemann and Weyl tensors. The latter being necessary on a 4+1 dimensional formulation. The dimensional reduction to 3+1 dimensions gives rise to a model invariant under foliation-preserving diffeomorphisms (FDiff) and
U
(1) symmetry groups. The reduced theory on the kinetic conformal point (
λ
=
1
/
3
), propagates the same spectrum of the Einstein–Maxwell theory. Moreover, at low energies, on the IR point
α
= 0,
β
= 1, its field equations are exactly the Einstein–Maxwell ones in a particular gauge condition. The Minkowski ground state is stable provided several restrictions on the coupling parameters are satisfied, they are explicitly obtained. The quantum propagators of the physical degrees of freedom are obtained and after an analysis of the first and second class constraints the renormalizability by power counting is proved, provided that the aforementioned restrictions on the coupling parameters are satisfied. |
Author | Restuccia, Alvaro Tello-Ortiz, Francisco |
Author_xml | – sequence: 1 givenname: Alvaro surname: Restuccia fullname: Restuccia, Alvaro organization: Universidad de Antofagasta Departamento de Física, Facultad de Ciencias Básicas, Casilla 170, Antofagasta, Chile – sequence: 2 givenname: Francisco orcidid: 0000-0002-7104-5746 surname: Tello-Ortiz fullname: Tello-Ortiz, Francisco organization: Universidad de Antofagasta Departamento de Física, Facultad de Ciencias Básicas, Casilla 170, Antofagasta, Chile |
BookMark | eNp9kE1OwzAQhS1UJNrCnmUOQKh_UsdZogpaUCQ2sLYmjt26tHFlu0Ww4g6sOBAX4SQkasUCCVYzmnnfaN4boF7jGo3QOcGXBAsxIoyTlDNBR6AqTs0R6v-MeqiPKc_SgglyggYhLDEmRBDaR3dTDzsbIVrXwCqdw3auk51W0fnENlF7UN2q7ZO40MnMfX7ADr7e3ktrwsLG18R4WOtn559O0bGBVdBnhzpEjzfXD5NZWt5PbydXZaqowLF7gtOa1bTmNCOgsal4VlfjQgNwTUWV12PBjCgMUZjpLM9bQVGMVV5poXLKhgjv7yrvQvDayI23a_AvkmDZZSE747IzLvdZtAj_haiD5-jBrv4DL_agdRu5dFvfhhT-ln8DFhx3EQ |
CODEN | CQGRDG |
CitedBy_id | crossref_primary_10_1016_j_jheap_2023_07_003 |
Cites_doi | 10.1103/PhysRevD.64.024028 10.1103/PhysRevD.101.084061 10.1088/1126-6708/2008/02/051 10.1103/PhysRevD.85.124060 10.1016/j.physletb.2010.01.054 10.1016/0003-4916(74)90404-7 10.3847/2041-8213/aa91c9 10.1007/JHEP07(2010)038 10.1007/JHEP04(2013)133 10.1103/PhysRevLett.119.161101 10.1140/epjc/s10052-020-7674-7 10.1016/j.physletb.2010.03.073 10.3390/universe7110445 10.1142/S0218271812500290 10.1103/PhysRevD.84.104019 10.1142/S0218271817501747 10.1088/1361-6382/aaf1fd 10.1103/PhysRevLett.119.211301 10.1103/PhysRevD.99.024034 10.1103/PhysRevD.100.084022 10.1103/PhysRevD.82.064027 10.1007/s10714-008-0661-1 10.1103/PhysRevD.92.104043 10.1103/PhysRevD.89.081501 10.1103/PhysRevD.90.044009 10.1103/PhysRevD.82.044004 10.1140/epjc/s10052-020-8100-x 10.1103/PhysRevD.98.104018 10.3842/SIGMA.2007.091 10.1103/PhysRevD.92.064037 10.1103/PhysRevD.16.953 10.1103/PhysRevLett.104.181302 10.1103/PhysRevD.100.084053 10.1088/1475-7516/2017/12/033 10.1140/epjc/s10052-021-09251-0 10.1016/j.physleta.2007.12.014 10.1103/PhysRevD.97.024032 10.3847/2041-8213/aa920c 10.3390/sym13010100 10.1103/PhysRevD.87.084020 10.12942/lrr-2006-3 10.1016/j.aop.2008.12.005 10.1103/PhysRevD.100.026012 10.1103/PhysRevD.76.125011 10.1103/PhysRevD.94.064041 10.1103/PhysRevD.91.044021 10.1016/j.physletb.2010.12.066 10.1103/PhysRevD.80.025011 10.1103/PhysRevD.93.064022 10.1007/JHEP07(2015)155 10.1140/epjc/s10052-020-08626-z 10.1088/0264-9381/33/22/225014 10.1103/PhysRevD.79.084008 10.1103/PhysRevD.84.104037 10.1103/PhysRevD.83.044049 10.1088/1126-6708/2009/08/070 10.1103/PhysRevD.81.101502 10.1140/epjc/s10052-019-7236-z 10.1103/PhysRevD.85.105001 10.1142/S021827180600956X |
ContentType | Journal Article |
Copyright | 2023 IOP Publishing Ltd |
Copyright_xml | – notice: 2023 IOP Publishing Ltd |
DBID | AAYXX CITATION |
DOI | 10.1088/1361-6382/acb62f |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Physics |
EISSN | 1361-6382 |
ExternalDocumentID | 10_1088_1361_6382_acb62f cqgacb62f |
GroupedDBID | -DZ -~X 1JI 29B 4.4 5B3 5GY 5PX 5VS 5ZH 6J9 7.M 7.Q AAGCD AAGID AAJIO AAJKP AATNI ABCXL ABHWH ABJNI ABQJV ABVAM ACAFW ACGFO ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN HAK IHE IJHAN IOP IZVLO KOT LAP N5L N9A P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TN5 UCJ W28 XPP ZMT AAYXX ADEQX CITATION |
ID | FETCH-LOGICAL-c280t-93862d3d2d6241ae0fb64db59eaa6e28b7d583f89f1c03e477fb6995c7be8c723 |
IEDL.DBID | IOP |
ISSN | 0264-9381 |
IngestDate | Thu Apr 24 23:08:14 EDT 2025 Tue Jul 01 00:32:39 EDT 2025 Wed Aug 21 03:34:50 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c280t-93862d3d2d6241ae0fb64db59eaa6e28b7d583f89f1c03e477fb6995c7be8c723 |
Notes | CQG-109617.R1 |
ORCID | 0000-0002-7104-5746 |
PageCount | 18 |
ParticipantIDs | crossref_citationtrail_10_1088_1361_6382_acb62f crossref_primary_10_1088_1361_6382_acb62f iop_journals_10_1088_1361_6382_acb62f |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-02 |
PublicationDateYYYYMMDD | 2023-03-02 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-02 day: 02 |
PublicationDecade | 2020 |
PublicationTitle | Classical and quantum gravity |
PublicationTitleAbbrev | CQG |
PublicationTitleAlternate | Class. Quantum Grav |
PublicationYear | 2023 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Kimpton (cqgacb62fbib42) 2013 Abbott (cqgacb62fbib51) 2017; 119 Kluson (cqgacb62fbib26) 2010 Bellorín (cqgacb62fbib29) 2012; 85 Restuccia (cqgacb62fbib47) 2021; 81 Abbott (cqgacb62fbib50) 2017; 848 Zadeh (cqgacb62fbib22) 2020 Weinberg (cqgacb62fbib61) 1995 Casalino (cqgacb62fbib14) 2019; 3 Leon (cqgacb62fbib21) 2019; 79 Jackiw (cqgacb62fbib63) 2007; 3 Jacobson (cqgacb62fbib18) 2014; 89 Grumiller (cqgacb62fbib62) 2006; 15 Colombo (cqgacb62fbib44) 2015; 92 Jacobson (cqgacb62fbib17) 2010; 81 Will (cqgacb62fbib49) 2005; 9 Stelle (cqgacb62fbib5) 1977; 16 Koh (cqgacb62fbib32) 2011; 696 Blas (cqgacb62fbib9) 2010; 688 Visser (cqgacb62fbib57) 2009 Pospelov (cqgacb62fbib41) 2012; 85 Grumiller (cqgacb62fbib64) 2008; 372 Barausse (cqgacb62fbib11) 2019; 100 Kluson (cqgacb62fbib30) 2011; 83 Hartong (cqgacb62fbib19) 2015 Zhang (cqgacb62fbib55) 2020; 80 Barvinsky (cqgacb62fbib38) 2017; 119 Bellorín (cqgacb62fbib15) 2018; 27 Anselmi (cqgacb62fbib60) 2009; 324 Anselmi (cqgacb62fbib59) 2008 Hořava (cqgacb62fbib1) 2009; 79 Bellorín (cqgacb62fbib6) 2013; 87 Bellorín (cqgacb62fbib7) 2012; 21 Lifshitz (cqgacb62fbib2) 1941; 11 Barvinsky (cqgacb62fbib35) 2016; 93 Bellorín (cqgacb62fbib34) 2016; 94 Bellorín (cqgacb62fbib39) 2020; 101 Blas (cqgacb62fbib3) 2010; 104 Gumrukcuoglu (cqgacb62fbib53) 2018; 97 Gomes (cqgacb62fbib25) 2020; 80 Regge (cqgacb62fbib65) 1974; 88 Charmousis (cqgacb62fbib8) 2009 Shu (cqgacb62fbib37) 2021; 13 Hořava (cqgacb62fbib12) 2010; 82 Visser (cqgacb62fbib56) 2009; 80 Gao (cqgacb62fbib23) 2021; 7 Barvinsky (cqgacb62fbib36) 2019; 100 Abbott (cqgacb62fbib52) 2017; 848 Chaichian (cqgacb62fbib33) 2015; 92 Arnowitt (cqgacb62fbib4) 2008; 40 Bellorín (cqgacb62fbib28) 2011; 84 Restuccia (cqgacb62fbib46) 2020; 80 Bluhm (cqgacb62fbib24) 2019; 100 Bellorín (cqgacb62fbib45) 2018; 98 Anselmi (cqgacb62fbib58) 2007; 76 Kluson (cqgacb62fbib31) 2010; 82 Papazoglou (cqgacb62fbib10) 2010; 685 Cognola (cqgacb62fbib13) 2016; 33 Donnelly (cqgacb62fbib27) 2011; 84 Jacobson (cqgacb62fbib16) 2001; 64 t’Hooft (cqgacb62fbib40) 1974; 20 Bellorín (cqgacb62fbib48) 2014; 90 Shin (cqgacb62fbib20) 2017 Ramos (cqgacb62fbib54) 2019; 99 Colombo (cqgacb62fbib43) 2015; 91 |
References_xml | – volume: 64 year: 2001 ident: cqgacb62fbib16 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.64.024028 – volume: 101 year: 2020 ident: cqgacb62fbib39 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.101.084061 – start-page: JHE02(2008)051 year: 2008 ident: cqgacb62fbib59 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2008/02/051 – volume: 85 year: 2012 ident: cqgacb62fbib29 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.85.124060 – volume: 685 start-page: 197 year: 2010 ident: cqgacb62fbib10 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2010.01.054 – volume: 88 start-page: 286 year: 1974 ident: cqgacb62fbib65 publication-title: Ann. Phys. doi: 10.1016/0003-4916(74)90404-7 – volume: 848 start-page: L12 year: 2017 ident: cqgacb62fbib50 publication-title: Astrophys. J. doi: 10.3847/2041-8213/aa91c9 – volume: 11 start-page: 255 year: 1941 ident: cqgacb62fbib2 publication-title: Zh. Eksp. Teor. Fiz. – start-page: JHE07(2010)038 year: 2010 ident: cqgacb62fbib26 publication-title: J. High Energy Phys. doi: 10.1007/JHEP07(2010)038 – start-page: JHE04(2013)133 year: 2013 ident: cqgacb62fbib42 publication-title: J. High Energ. Phys. doi: 10.1007/JHEP04(2013)133 – volume: 119 year: 2017 ident: cqgacb62fbib51 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.161101 – volume: 80 start-page: 86 year: 2020 ident: cqgacb62fbib46 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-020-7674-7 – volume: 688 start-page: 350 year: 2010 ident: cqgacb62fbib9 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2010.03.073 – year: 2020 ident: cqgacb62fbib22 – volume: 7 start-page: 445 year: 2021 ident: cqgacb62fbib23 publication-title: Universe doi: 10.3390/universe7110445 – volume: 21 year: 2012 ident: cqgacb62fbib7 publication-title: Int. J. Mod. Phys. D doi: 10.1142/S0218271812500290 – volume: 84 year: 2011 ident: cqgacb62fbib27 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.84.104019 – volume: 27 year: 2018 ident: cqgacb62fbib15 publication-title: Int. J. Mod. Phys. D doi: 10.1142/S0218271817501747 – volume: 3 year: 2019 ident: cqgacb62fbib14 publication-title: Class. Quantum Grav. doi: 10.1088/1361-6382/aaf1fd – volume: 119 year: 2017 ident: cqgacb62fbib38 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.211301 – year: 1995 ident: cqgacb62fbib61 – volume: 99 year: 2019 ident: cqgacb62fbib54 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.99.024034 – volume: 100 year: 2019 ident: cqgacb62fbib24 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.100.084022 – volume: 20 start-page: 69 year: 1974 ident: cqgacb62fbib40 publication-title: Ann. Inst. H. Poincare Phys. Theor. A – volume: 82 year: 2010 ident: cqgacb62fbib12 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.82.064027 – volume: 40 start-page: 1997 year: 2008 ident: cqgacb62fbib4 publication-title: Gen. Relativ. Gravit. doi: 10.1007/s10714-008-0661-1 – volume: 92 year: 2015 ident: cqgacb62fbib33 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.92.104043 – year: 2009 ident: cqgacb62fbib57 – volume: 89 year: 2014 ident: cqgacb62fbib18 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.89.081501 – volume: 90 year: 2014 ident: cqgacb62fbib48 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.90.044009 – volume: 82 year: 2010 ident: cqgacb62fbib31 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.82.044004 – volume: 80 start-page: 518 year: 2020 ident: cqgacb62fbib25 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-020-8100-x – volume: 98 year: 2018 ident: cqgacb62fbib45 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.98.104018 – volume: 3 start-page: 091 year: 2007 ident: cqgacb62fbib63 publication-title: SIGMA doi: 10.3842/SIGMA.2007.091 – volume: 92 year: 2015 ident: cqgacb62fbib44 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.92.064037 – volume: 16 start-page: 953 year: 1977 ident: cqgacb62fbib5 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.16.953 – volume: 104 year: 2010 ident: cqgacb62fbib3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.181302 – volume: 100 year: 2019 ident: cqgacb62fbib11 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.100.084053 – start-page: JCA12(2017)033 year: 2017 ident: cqgacb62fbib20 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2017/12/033 – volume: 81 start-page: 447 year: 2021 ident: cqgacb62fbib47 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-021-09251-0 – volume: 372 start-page: 2547 year: 2008 ident: cqgacb62fbib64 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2007.12.014 – volume: 97 year: 2018 ident: cqgacb62fbib53 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.97.024032 – volume: 848 start-page: L13 year: 2017 ident: cqgacb62fbib52 publication-title: Astrophys. J. doi: 10.3847/2041-8213/aa920c – volume: 13 start-page: 100 year: 2021 ident: cqgacb62fbib37 publication-title: Symmetry doi: 10.3390/sym13010100 – volume: 87 year: 2013 ident: cqgacb62fbib6 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.87.084020 – volume: 9 start-page: 3 year: 2005 ident: cqgacb62fbib49 publication-title: Living Rev. Relativ. doi: 10.12942/lrr-2006-3 – volume: 324 start-page: 874 year: 2009 ident: cqgacb62fbib60 publication-title: Ann. Phys., NY doi: 10.1016/j.aop.2008.12.005 – volume: 100 year: 2019 ident: cqgacb62fbib36 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.100.026012 – volume: 76 year: 2007 ident: cqgacb62fbib58 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.76.125011 – volume: 94 year: 2016 ident: cqgacb62fbib34 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.94.064041 – volume: 91 year: 2015 ident: cqgacb62fbib43 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.91.044021 – volume: 696 start-page: 426 year: 2011 ident: cqgacb62fbib32 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2010.12.066 – volume: 80 year: 2009 ident: cqgacb62fbib56 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.80.025011 – volume: 93 year: 2016 ident: cqgacb62fbib35 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.93.064022 – start-page: JHE07(2015)155 year: 2015 ident: cqgacb62fbib19 publication-title: J. High Energy Phys. doi: 10.1007/JHEP07(2015)155 – volume: 80 start-page: 1062 year: 2020 ident: cqgacb62fbib55 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-020-08626-z – volume: 33 year: 2016 ident: cqgacb62fbib13 publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/33/22/225014 – volume: 79 year: 2009 ident: cqgacb62fbib1 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.79.084008 – volume: 84 year: 2011 ident: cqgacb62fbib28 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.84.104037 – volume: 83 year: 2011 ident: cqgacb62fbib30 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.83.044049 – start-page: JHE08(2009)070 year: 2009 ident: cqgacb62fbib8 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2009/08/070 – volume: 81 year: 2010 ident: cqgacb62fbib17 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.81.101502 – volume: 79 start-page: 746 year: 2019 ident: cqgacb62fbib21 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-019-7236-z – volume: 85 year: 2012 ident: cqgacb62fbib41 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.85.105001 – volume: 15 start-page: 2075 year: 2006 ident: cqgacb62fbib62 publication-title: Int. J. Mod. Phys. D doi: 10.1142/S021827180600956X |
SSID | ssj0011812 |
Score | 2.4001348 |
Snippet | An anisotropic model describing gravity-vector gauge coupling at all energy scales is presented. The starting point is the 4+1 dimensional non–projectable... |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 55008 |
SubjectTerms | dimensional reduction power-counting renormalizability quantum gravity |
Title | Gravitational-gauge vector interaction in the Hořava–Lifshitz framework |
URI | https://iopscience.iop.org/article/10.1088/1361-6382/acb62f |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFL2CIiQYeCPeygADg9vESRxHTAgBBfEaQGJAinz9KAjUojbt0Il_YOKD-BG-BOfRChAgxObh2nGOnRzLPj4XYFNGfmyJQxCkriKB4S5BhRFRPDae9AxTuRjz9IzVr4Lj6_B6BHaGd2Faj-Wvv2qLhVFwAWEpiOM1z2cesdOG1oRERs0ojPmcsSx9wdH5xfAIIaOuYoMlILHlpfKM8rsWPnHSqH3uB4o5mIabQecKZcl9tZtiVfa_-Db-s_czMFUuPZ3dInQWRnRzDiZPh76tnTkYzwWhsjMPx4dt0Sv9u8UDaYhuQzu9fIvfySwm2sWFCFt2bH2n3np9ET3x9vR8cmc6t3dp3zED2dcCXB3sX-7VSZl3gUjK3TRDi1HlK6qY5XehXYMsUBjGWgimKcdIhdw3-Wi6vg6iyAbEcSgj1FxG1F-ESrPV1EvgeNxgiFxzrTCILTGGkulYofJRGkS6DLUB8oksXyrLjfGQ5IfjnCcZXkmGV1LgtQzbwxqPhSHHL7FbdhiS8qvs_Bi38se4VZjIss3nEjS6BpW03dXrdk2S4kY-994BFTTc5Q |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9swGH41QEzsMAYbWhljOWwHDm4TO3GcIxrryjcHkLhlfv3B0FBbtWkPPe0_cOIH8Uf4JXMSt2KIoUncfHjtxI-dPJb9-HkBPquUZY44JEEaahJbERLUmBItMhupyHJdiTEPj3jnLN47T859ntPqLkyv73_9TVesjYJrCL0gTrQixiPipg1tSYWc2lZf2zlYSBhnpXn-7vHJ7BihpK96kyUmmeMmf075WCt_8dKce_Y9mmkvw4_pC9bqkl_NUYFNNXng3fiMHryB134JGmzX4SvwwnRX4dXhzL91uAqLlTBUDd_C3veBHHsfb3lFLuTowgTjaqs_KK0mBvXFCFcOXP2g07u9kWN59_v64NIOf14Wk8BO5V_v4Kz97fRrh_j8C0RRERYlYpxqpqnmjuelCS3yWGOSGSm5oQJTnQhmq1ENmYnT1AVkWaJSNEKllK3BfLfXNe8hiITFBIURRmOcOYJMFDeZRs1QWUTagNYU_Vz5TpU5Mq7y6pBciLzELC8xy2vMGrA1q9GvjTmeiP3ihiL3X-fwn3Hr_xn3CV6e7LTzg92j_Q-wVCagr1RpdAPmi8HIfHTLlAI3q6n4B77d4kk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gravitational-gauge+vector+interaction+in+the+Ho%C5%99ava%E2%80%93Lifshitz+framework&rft.jtitle=Classical+and+quantum+gravity&rft.au=Restuccia%2C+Alvaro&rft.au=Tello-Ortiz%2C+Francisco&rft.date=2023-03-02&rft.issn=0264-9381&rft.eissn=1361-6382&rft.volume=40&rft.issue=5&rft.spage=55008&rft_id=info:doi/10.1088%2F1361-6382%2Facb62f&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6382_acb62f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-9381&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-9381&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-9381&client=summon |