Gravitational-gauge vector interaction in the Hořava–Lifshitz framework

An anisotropic model describing gravity-vector gauge coupling at all energy scales is presented. The starting point is the 4+1 dimensional non–projectable Hořava–Lifshitz gravity theory subject to a geometrical restriction. Renormalizability arguments require all possible interactions in the potenti...

Full description

Saved in:
Bibliographic Details
Published inClassical and quantum gravity Vol. 40; no. 5; pp. 55008 - 55025
Main Authors Restuccia, Alvaro, Tello-Ortiz, Francisco
Format Journal Article
LanguageEnglish
Published IOP Publishing 02.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An anisotropic model describing gravity-vector gauge coupling at all energy scales is presented. The starting point is the 4+1 dimensional non–projectable Hořava–Lifshitz gravity theory subject to a geometrical restriction. Renormalizability arguments require all possible interactions in the potential up to terms with z  = 4 spatial derivatives on the geometrical tensor fields: the Riemann and Weyl tensors. The latter being necessary on a 4+1 dimensional formulation. The dimensional reduction to 3+1 dimensions gives rise to a model invariant under foliation-preserving diffeomorphisms (FDiff) and U (1) symmetry groups. The reduced theory on the kinetic conformal point ( λ = 1 / 3 ), propagates the same spectrum of the Einstein–Maxwell theory. Moreover, at low energies, on the IR point α  = 0, β  = 1, its field equations are exactly the Einstein–Maxwell ones in a particular gauge condition. The Minkowski ground state is stable provided several restrictions on the coupling parameters are satisfied, they are explicitly obtained. The quantum propagators of the physical degrees of freedom are obtained and after an analysis of the first and second class constraints the renormalizability by power counting is proved, provided that the aforementioned restrictions on the coupling parameters are satisfied.
AbstractList An anisotropic model describing gravity-vector gauge coupling at all energy scales is presented. The starting point is the 4+1 dimensional non–projectable Hořava–Lifshitz gravity theory subject to a geometrical restriction. Renormalizability arguments require all possible interactions in the potential up to terms with z  = 4 spatial derivatives on the geometrical tensor fields: the Riemann and Weyl tensors. The latter being necessary on a 4+1 dimensional formulation. The dimensional reduction to 3+1 dimensions gives rise to a model invariant under foliation-preserving diffeomorphisms (FDiff) and U (1) symmetry groups. The reduced theory on the kinetic conformal point ( λ = 1 / 3 ), propagates the same spectrum of the Einstein–Maxwell theory. Moreover, at low energies, on the IR point α  = 0, β  = 1, its field equations are exactly the Einstein–Maxwell ones in a particular gauge condition. The Minkowski ground state is stable provided several restrictions on the coupling parameters are satisfied, they are explicitly obtained. The quantum propagators of the physical degrees of freedom are obtained and after an analysis of the first and second class constraints the renormalizability by power counting is proved, provided that the aforementioned restrictions on the coupling parameters are satisfied.
Author Restuccia, Alvaro
Tello-Ortiz, Francisco
Author_xml – sequence: 1
  givenname: Alvaro
  surname: Restuccia
  fullname: Restuccia, Alvaro
  organization: Universidad de Antofagasta Departamento de Física, Facultad de Ciencias Básicas, Casilla 170, Antofagasta, Chile
– sequence: 2
  givenname: Francisco
  orcidid: 0000-0002-7104-5746
  surname: Tello-Ortiz
  fullname: Tello-Ortiz, Francisco
  organization: Universidad de Antofagasta Departamento de Física, Facultad de Ciencias Básicas, Casilla 170, Antofagasta, Chile
BookMark eNp9kE1OwzAQhS1UJNrCnmUOQKh_UsdZogpaUCQ2sLYmjt26tHFlu0Ww4g6sOBAX4SQkasUCCVYzmnnfaN4boF7jGo3QOcGXBAsxIoyTlDNBR6AqTs0R6v-MeqiPKc_SgglyggYhLDEmRBDaR3dTDzsbIVrXwCqdw3auk51W0fnENlF7UN2q7ZO40MnMfX7ADr7e3ktrwsLG18R4WOtn559O0bGBVdBnhzpEjzfXD5NZWt5PbydXZaqowLF7gtOa1bTmNCOgsal4VlfjQgNwTUWV12PBjCgMUZjpLM9bQVGMVV5poXLKhgjv7yrvQvDayI23a_AvkmDZZSE747IzLvdZtAj_haiD5-jBrv4DL_agdRu5dFvfhhT-ln8DFhx3EQ
CODEN CQGRDG
CitedBy_id crossref_primary_10_1016_j_jheap_2023_07_003
Cites_doi 10.1103/PhysRevD.64.024028
10.1103/PhysRevD.101.084061
10.1088/1126-6708/2008/02/051
10.1103/PhysRevD.85.124060
10.1016/j.physletb.2010.01.054
10.1016/0003-4916(74)90404-7
10.3847/2041-8213/aa91c9
10.1007/JHEP07(2010)038
10.1007/JHEP04(2013)133
10.1103/PhysRevLett.119.161101
10.1140/epjc/s10052-020-7674-7
10.1016/j.physletb.2010.03.073
10.3390/universe7110445
10.1142/S0218271812500290
10.1103/PhysRevD.84.104019
10.1142/S0218271817501747
10.1088/1361-6382/aaf1fd
10.1103/PhysRevLett.119.211301
10.1103/PhysRevD.99.024034
10.1103/PhysRevD.100.084022
10.1103/PhysRevD.82.064027
10.1007/s10714-008-0661-1
10.1103/PhysRevD.92.104043
10.1103/PhysRevD.89.081501
10.1103/PhysRevD.90.044009
10.1103/PhysRevD.82.044004
10.1140/epjc/s10052-020-8100-x
10.1103/PhysRevD.98.104018
10.3842/SIGMA.2007.091
10.1103/PhysRevD.92.064037
10.1103/PhysRevD.16.953
10.1103/PhysRevLett.104.181302
10.1103/PhysRevD.100.084053
10.1088/1475-7516/2017/12/033
10.1140/epjc/s10052-021-09251-0
10.1016/j.physleta.2007.12.014
10.1103/PhysRevD.97.024032
10.3847/2041-8213/aa920c
10.3390/sym13010100
10.1103/PhysRevD.87.084020
10.12942/lrr-2006-3
10.1016/j.aop.2008.12.005
10.1103/PhysRevD.100.026012
10.1103/PhysRevD.76.125011
10.1103/PhysRevD.94.064041
10.1103/PhysRevD.91.044021
10.1016/j.physletb.2010.12.066
10.1103/PhysRevD.80.025011
10.1103/PhysRevD.93.064022
10.1007/JHEP07(2015)155
10.1140/epjc/s10052-020-08626-z
10.1088/0264-9381/33/22/225014
10.1103/PhysRevD.79.084008
10.1103/PhysRevD.84.104037
10.1103/PhysRevD.83.044049
10.1088/1126-6708/2009/08/070
10.1103/PhysRevD.81.101502
10.1140/epjc/s10052-019-7236-z
10.1103/PhysRevD.85.105001
10.1142/S021827180600956X
ContentType Journal Article
Copyright 2023 IOP Publishing Ltd
Copyright_xml – notice: 2023 IOP Publishing Ltd
DBID AAYXX
CITATION
DOI 10.1088/1361-6382/acb62f
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Physics
EISSN 1361-6382
ExternalDocumentID 10_1088_1361_6382_acb62f
cqgacb62f
GroupedDBID -DZ
-~X
1JI
29B
4.4
5B3
5GY
5PX
5VS
5ZH
6J9
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AATNI
ABCXL
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFO
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
UCJ
W28
XPP
ZMT
AAYXX
ADEQX
CITATION
ID FETCH-LOGICAL-c280t-93862d3d2d6241ae0fb64db59eaa6e28b7d583f89f1c03e477fb6995c7be8c723
IEDL.DBID IOP
ISSN 0264-9381
IngestDate Thu Apr 24 23:08:14 EDT 2025
Tue Jul 01 00:32:39 EDT 2025
Wed Aug 21 03:34:50 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c280t-93862d3d2d6241ae0fb64db59eaa6e28b7d583f89f1c03e477fb6995c7be8c723
Notes CQG-109617.R1
ORCID 0000-0002-7104-5746
PageCount 18
ParticipantIDs crossref_citationtrail_10_1088_1361_6382_acb62f
crossref_primary_10_1088_1361_6382_acb62f
iop_journals_10_1088_1361_6382_acb62f
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-02
PublicationDateYYYYMMDD 2023-03-02
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-02
  day: 02
PublicationDecade 2020
PublicationTitle Classical and quantum gravity
PublicationTitleAbbrev CQG
PublicationTitleAlternate Class. Quantum Grav
PublicationYear 2023
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Kimpton (cqgacb62fbib42) 2013
Abbott (cqgacb62fbib51) 2017; 119
Kluson (cqgacb62fbib26) 2010
Bellorín (cqgacb62fbib29) 2012; 85
Restuccia (cqgacb62fbib47) 2021; 81
Abbott (cqgacb62fbib50) 2017; 848
Zadeh (cqgacb62fbib22) 2020
Weinberg (cqgacb62fbib61) 1995
Casalino (cqgacb62fbib14) 2019; 3
Leon (cqgacb62fbib21) 2019; 79
Jackiw (cqgacb62fbib63) 2007; 3
Jacobson (cqgacb62fbib18) 2014; 89
Grumiller (cqgacb62fbib62) 2006; 15
Colombo (cqgacb62fbib44) 2015; 92
Jacobson (cqgacb62fbib17) 2010; 81
Will (cqgacb62fbib49) 2005; 9
Stelle (cqgacb62fbib5) 1977; 16
Koh (cqgacb62fbib32) 2011; 696
Blas (cqgacb62fbib9) 2010; 688
Visser (cqgacb62fbib57) 2009
Pospelov (cqgacb62fbib41) 2012; 85
Grumiller (cqgacb62fbib64) 2008; 372
Barausse (cqgacb62fbib11) 2019; 100
Kluson (cqgacb62fbib30) 2011; 83
Hartong (cqgacb62fbib19) 2015
Zhang (cqgacb62fbib55) 2020; 80
Barvinsky (cqgacb62fbib38) 2017; 119
Bellorín (cqgacb62fbib15) 2018; 27
Anselmi (cqgacb62fbib60) 2009; 324
Anselmi (cqgacb62fbib59) 2008
Hořava (cqgacb62fbib1) 2009; 79
Bellorín (cqgacb62fbib6) 2013; 87
Bellorín (cqgacb62fbib7) 2012; 21
Lifshitz (cqgacb62fbib2) 1941; 11
Barvinsky (cqgacb62fbib35) 2016; 93
Bellorín (cqgacb62fbib34) 2016; 94
Bellorín (cqgacb62fbib39) 2020; 101
Blas (cqgacb62fbib3) 2010; 104
Gumrukcuoglu (cqgacb62fbib53) 2018; 97
Gomes (cqgacb62fbib25) 2020; 80
Regge (cqgacb62fbib65) 1974; 88
Charmousis (cqgacb62fbib8) 2009
Shu (cqgacb62fbib37) 2021; 13
Hořava (cqgacb62fbib12) 2010; 82
Visser (cqgacb62fbib56) 2009; 80
Gao (cqgacb62fbib23) 2021; 7
Barvinsky (cqgacb62fbib36) 2019; 100
Abbott (cqgacb62fbib52) 2017; 848
Chaichian (cqgacb62fbib33) 2015; 92
Arnowitt (cqgacb62fbib4) 2008; 40
Bellorín (cqgacb62fbib28) 2011; 84
Restuccia (cqgacb62fbib46) 2020; 80
Bluhm (cqgacb62fbib24) 2019; 100
Bellorín (cqgacb62fbib45) 2018; 98
Anselmi (cqgacb62fbib58) 2007; 76
Kluson (cqgacb62fbib31) 2010; 82
Papazoglou (cqgacb62fbib10) 2010; 685
Cognola (cqgacb62fbib13) 2016; 33
Donnelly (cqgacb62fbib27) 2011; 84
Jacobson (cqgacb62fbib16) 2001; 64
t’Hooft (cqgacb62fbib40) 1974; 20
Bellorín (cqgacb62fbib48) 2014; 90
Shin (cqgacb62fbib20) 2017
Ramos (cqgacb62fbib54) 2019; 99
Colombo (cqgacb62fbib43) 2015; 91
References_xml – volume: 64
  year: 2001
  ident: cqgacb62fbib16
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.64.024028
– volume: 101
  year: 2020
  ident: cqgacb62fbib39
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.084061
– start-page: JHE02(2008)051
  year: 2008
  ident: cqgacb62fbib59
  publication-title: J. High Energy Phys.
  doi: 10.1088/1126-6708/2008/02/051
– volume: 85
  year: 2012
  ident: cqgacb62fbib29
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.85.124060
– volume: 685
  start-page: 197
  year: 2010
  ident: cqgacb62fbib10
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2010.01.054
– volume: 88
  start-page: 286
  year: 1974
  ident: cqgacb62fbib65
  publication-title: Ann. Phys.
  doi: 10.1016/0003-4916(74)90404-7
– volume: 848
  start-page: L12
  year: 2017
  ident: cqgacb62fbib50
  publication-title: Astrophys. J.
  doi: 10.3847/2041-8213/aa91c9
– volume: 11
  start-page: 255
  year: 1941
  ident: cqgacb62fbib2
  publication-title: Zh. Eksp. Teor. Fiz.
– start-page: JHE07(2010)038
  year: 2010
  ident: cqgacb62fbib26
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP07(2010)038
– start-page: JHE04(2013)133
  year: 2013
  ident: cqgacb62fbib42
  publication-title: J. High Energ. Phys.
  doi: 10.1007/JHEP04(2013)133
– volume: 119
  year: 2017
  ident: cqgacb62fbib51
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.161101
– volume: 80
  start-page: 86
  year: 2020
  ident: cqgacb62fbib46
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-020-7674-7
– volume: 688
  start-page: 350
  year: 2010
  ident: cqgacb62fbib9
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2010.03.073
– year: 2020
  ident: cqgacb62fbib22
– volume: 7
  start-page: 445
  year: 2021
  ident: cqgacb62fbib23
  publication-title: Universe
  doi: 10.3390/universe7110445
– volume: 21
  year: 2012
  ident: cqgacb62fbib7
  publication-title: Int. J. Mod. Phys. D
  doi: 10.1142/S0218271812500290
– volume: 84
  year: 2011
  ident: cqgacb62fbib27
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.84.104019
– volume: 27
  year: 2018
  ident: cqgacb62fbib15
  publication-title: Int. J. Mod. Phys. D
  doi: 10.1142/S0218271817501747
– volume: 3
  year: 2019
  ident: cqgacb62fbib14
  publication-title: Class. Quantum Grav.
  doi: 10.1088/1361-6382/aaf1fd
– volume: 119
  year: 2017
  ident: cqgacb62fbib38
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.211301
– year: 1995
  ident: cqgacb62fbib61
– volume: 99
  year: 2019
  ident: cqgacb62fbib54
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.99.024034
– volume: 100
  year: 2019
  ident: cqgacb62fbib24
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.100.084022
– volume: 20
  start-page: 69
  year: 1974
  ident: cqgacb62fbib40
  publication-title: Ann. Inst. H. Poincare Phys. Theor. A
– volume: 82
  year: 2010
  ident: cqgacb62fbib12
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.82.064027
– volume: 40
  start-page: 1997
  year: 2008
  ident: cqgacb62fbib4
  publication-title: Gen. Relativ. Gravit.
  doi: 10.1007/s10714-008-0661-1
– volume: 92
  year: 2015
  ident: cqgacb62fbib33
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.92.104043
– year: 2009
  ident: cqgacb62fbib57
– volume: 89
  year: 2014
  ident: cqgacb62fbib18
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.89.081501
– volume: 90
  year: 2014
  ident: cqgacb62fbib48
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.90.044009
– volume: 82
  year: 2010
  ident: cqgacb62fbib31
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.82.044004
– volume: 80
  start-page: 518
  year: 2020
  ident: cqgacb62fbib25
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-020-8100-x
– volume: 98
  year: 2018
  ident: cqgacb62fbib45
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.98.104018
– volume: 3
  start-page: 091
  year: 2007
  ident: cqgacb62fbib63
  publication-title: SIGMA
  doi: 10.3842/SIGMA.2007.091
– volume: 92
  year: 2015
  ident: cqgacb62fbib44
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.92.064037
– volume: 16
  start-page: 953
  year: 1977
  ident: cqgacb62fbib5
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.16.953
– volume: 104
  year: 2010
  ident: cqgacb62fbib3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.181302
– volume: 100
  year: 2019
  ident: cqgacb62fbib11
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.100.084053
– start-page: JCA12(2017)033
  year: 2017
  ident: cqgacb62fbib20
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2017/12/033
– volume: 81
  start-page: 447
  year: 2021
  ident: cqgacb62fbib47
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-021-09251-0
– volume: 372
  start-page: 2547
  year: 2008
  ident: cqgacb62fbib64
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2007.12.014
– volume: 97
  year: 2018
  ident: cqgacb62fbib53
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.97.024032
– volume: 848
  start-page: L13
  year: 2017
  ident: cqgacb62fbib52
  publication-title: Astrophys. J.
  doi: 10.3847/2041-8213/aa920c
– volume: 13
  start-page: 100
  year: 2021
  ident: cqgacb62fbib37
  publication-title: Symmetry
  doi: 10.3390/sym13010100
– volume: 87
  year: 2013
  ident: cqgacb62fbib6
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.87.084020
– volume: 9
  start-page: 3
  year: 2005
  ident: cqgacb62fbib49
  publication-title: Living Rev. Relativ.
  doi: 10.12942/lrr-2006-3
– volume: 324
  start-page: 874
  year: 2009
  ident: cqgacb62fbib60
  publication-title: Ann. Phys., NY
  doi: 10.1016/j.aop.2008.12.005
– volume: 100
  year: 2019
  ident: cqgacb62fbib36
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.100.026012
– volume: 76
  year: 2007
  ident: cqgacb62fbib58
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.76.125011
– volume: 94
  year: 2016
  ident: cqgacb62fbib34
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.94.064041
– volume: 91
  year: 2015
  ident: cqgacb62fbib43
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.91.044021
– volume: 696
  start-page: 426
  year: 2011
  ident: cqgacb62fbib32
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2010.12.066
– volume: 80
  year: 2009
  ident: cqgacb62fbib56
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.80.025011
– volume: 93
  year: 2016
  ident: cqgacb62fbib35
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.93.064022
– start-page: JHE07(2015)155
  year: 2015
  ident: cqgacb62fbib19
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP07(2015)155
– volume: 80
  start-page: 1062
  year: 2020
  ident: cqgacb62fbib55
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-020-08626-z
– volume: 33
  year: 2016
  ident: cqgacb62fbib13
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/33/22/225014
– volume: 79
  year: 2009
  ident: cqgacb62fbib1
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.79.084008
– volume: 84
  year: 2011
  ident: cqgacb62fbib28
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.84.104037
– volume: 83
  year: 2011
  ident: cqgacb62fbib30
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.83.044049
– start-page: JHE08(2009)070
  year: 2009
  ident: cqgacb62fbib8
  publication-title: J. High Energy Phys.
  doi: 10.1088/1126-6708/2009/08/070
– volume: 81
  year: 2010
  ident: cqgacb62fbib17
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.81.101502
– volume: 79
  start-page: 746
  year: 2019
  ident: cqgacb62fbib21
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-019-7236-z
– volume: 85
  year: 2012
  ident: cqgacb62fbib41
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.85.105001
– volume: 15
  start-page: 2075
  year: 2006
  ident: cqgacb62fbib62
  publication-title: Int. J. Mod. Phys. D
  doi: 10.1142/S021827180600956X
SSID ssj0011812
Score 2.4001348
Snippet An anisotropic model describing gravity-vector gauge coupling at all energy scales is presented. The starting point is the 4+1 dimensional non–projectable...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 55008
SubjectTerms dimensional reduction
power-counting renormalizability
quantum gravity
Title Gravitational-gauge vector interaction in the Hořava–Lifshitz framework
URI https://iopscience.iop.org/article/10.1088/1361-6382/acb62f
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFL2CIiQYeCPeygADg9vESRxHTAgBBfEaQGJAinz9KAjUojbt0Il_YOKD-BG-BOfRChAgxObh2nGOnRzLPj4XYFNGfmyJQxCkriKB4S5BhRFRPDae9AxTuRjz9IzVr4Lj6_B6BHaGd2Faj-Wvv2qLhVFwAWEpiOM1z2cesdOG1oRERs0ojPmcsSx9wdH5xfAIIaOuYoMlILHlpfKM8rsWPnHSqH3uB4o5mIabQecKZcl9tZtiVfa_-Db-s_czMFUuPZ3dInQWRnRzDiZPh76tnTkYzwWhsjMPx4dt0Sv9u8UDaYhuQzu9fIvfySwm2sWFCFt2bH2n3np9ET3x9vR8cmc6t3dp3zED2dcCXB3sX-7VSZl3gUjK3TRDi1HlK6qY5XehXYMsUBjGWgimKcdIhdw3-Wi6vg6iyAbEcSgj1FxG1F-ESrPV1EvgeNxgiFxzrTCILTGGkulYofJRGkS6DLUB8oksXyrLjfGQ5IfjnCcZXkmGV1LgtQzbwxqPhSHHL7FbdhiS8qvs_Bi38se4VZjIss3nEjS6BpW03dXrdk2S4kY-994BFTTc5Q
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9swGH41QEzsMAYbWhljOWwHDm4TO3GcIxrryjcHkLhlfv3B0FBbtWkPPe0_cOIH8Uf4JXMSt2KIoUncfHjtxI-dPJb9-HkBPquUZY44JEEaahJbERLUmBItMhupyHJdiTEPj3jnLN47T859ntPqLkyv73_9TVesjYJrCL0gTrQixiPipg1tSYWc2lZf2zlYSBhnpXn-7vHJ7BihpK96kyUmmeMmf075WCt_8dKce_Y9mmkvw4_pC9bqkl_NUYFNNXng3fiMHryB134JGmzX4SvwwnRX4dXhzL91uAqLlTBUDd_C3veBHHsfb3lFLuTowgTjaqs_KK0mBvXFCFcOXP2g07u9kWN59_v64NIOf14Wk8BO5V_v4Kz97fRrh_j8C0RRERYlYpxqpqnmjuelCS3yWGOSGSm5oQJTnQhmq1ENmYnT1AVkWaJSNEKllK3BfLfXNe8hiITFBIURRmOcOYJMFDeZRs1QWUTagNYU_Vz5TpU5Mq7y6pBciLzELC8xy2vMGrA1q9GvjTmeiP3ihiL3X-fwn3Hr_xn3CV6e7LTzg92j_Q-wVCagr1RpdAPmi8HIfHTLlAI3q6n4B77d4kk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gravitational-gauge+vector+interaction+in+the+Ho%C5%99ava%E2%80%93Lifshitz+framework&rft.jtitle=Classical+and+quantum+gravity&rft.au=Restuccia%2C+Alvaro&rft.au=Tello-Ortiz%2C+Francisco&rft.date=2023-03-02&rft.issn=0264-9381&rft.eissn=1361-6382&rft.volume=40&rft.issue=5&rft.spage=55008&rft_id=info:doi/10.1088%2F1361-6382%2Facb62f&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6382_acb62f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-9381&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-9381&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-9381&client=summon