Improving Accuracy of Estimating Two-Qubit States with Hedged Maximum Likelihood

As a widely used reconstruction algorithm in quantum state tomography, maximum likelihood estimation tends to assign a rank-deficient matrix, which decreases estimation accuracy for certain quantum states. Fortunately, hedged maximum likelihood estimation (HMLE) [Phys. Rev. Lett. 105 (2010)200504] w...

Full description

Saved in:
Bibliographic Details
Published inChinese physics letters Vol. 34; no. 3; pp. 1 - 5
Main Author 殷琪 项国勇 李传锋 郭光灿
Format Journal Article
LanguageEnglish
Published 01.03.2017
Online AccessGet full text
ISSN0256-307X
1741-3540
DOI10.1088/0256-307X/34/3/030301

Cover

Abstract As a widely used reconstruction algorithm in quantum state tomography, maximum likelihood estimation tends to assign a rank-deficient matrix, which decreases estimation accuracy for certain quantum states. Fortunately, hedged maximum likelihood estimation (HMLE) [Phys. Rev. Lett. 105 (2010)200504] was proposed to avoid this problem. Here we study more details about this proposal in the two-qubit case and further improve its performance. We ameliorate the HMLE method by updating the hedging function based on the purity of the estimated state. Both performances of HMLE and ameliorated HMLE are demonstrated by numerical simulation and experimental implementation on the Werner states of polarization-entangled photons.
AbstractList As a widely used reconstruction algorithm in quantum state tomography, maximum likelihood estimation tends to assign a rank-deficient matrix, which decreases estimation accuracy for certain quantum states. Fortunately, hedged maximum likelihood estimation (HMLE) [Phys. Rev. Lett. 105 (2010)200504] was proposed to avoid this problem. Here we study more details about this proposal in the two-qubit case and further improve its performance. We ameliorate the HMLE method by updating the hedging function based on the purity of the estimated state. Both performances of HMLE and ameliorated HMLE are demonstrated by numerical simulation and experimental implementation on the Werner states of polarization-entangled photons.
Author 殷琪 项国勇 李传锋 郭光灿
AuthorAffiliation Key Laboratory of Quantum Information, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026 Synergetic Innovation Center of Quantum Information and Quantum Physics,University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026
Author_xml – sequence: 1
  fullname: 殷琪 项国勇 李传锋 郭光灿
BookMark eNqFkFFLwzAQx4NMcJt-BCH4Xps0aZPg0xjTDSYqTvAtpGmyRddmtplz396WjT34IvdwcNzvuP9vAHqVrwwA1xjdYsR5jJI0iwhi7zGhMYkRaQufgT5mFEckpagH-qedCzBomg-EMOYY98HzrNzU_ttVSzjSelsrvYfewkkTXKlCN17sfPSyzV2Ar0EF08CdCys4NcXSFPBR_bhyW8K5-zRrt_K-uATnVq0bc3XsQ_B2P1mMp9H86WE2Hs0jnXAUIl5kmBiNEousSAWjTCBLOdXMipxmVtiC5rpAJNOG5TjBBjORC5UpnTNmczIEd4e7uvZNUxsrtWv_c74KtXJriZHs5MguuOyCS0IlkQc5LZ3-oTd1G7je_8vdHLmVr5ZfrZ8TmDGcMsExJ78gbHZx
CitedBy_id crossref_primary_10_1088_1674_1056_ac401d
crossref_primary_10_1039_D1CP05255A
crossref_primary_10_1088_1674_1056_acdc11
Cites_doi 10.1103/PhysRevLett.93.240501
10.1103/PhysRevA.64.014305
10.1103/PhysRevLett.105.200504
10.1038/nature14270
10.1016/0378-3758(94)90153-8
10.1103/PhysRevLett.97.220407
10.1103/PhysRevA.71.052323
10.1103/PhysRevA.51.2738
10.1103/PhysRevA.55.R1561
10.1103/PhysRevLett.111.183601
10.1038/nature04279
10.1088/1367-2630/12/4/043034
10.1103/PhysRevA.64.052312
10.1088/1367-2630/15/12/125004
10.1103/PhysRevX.5.041006
10.1103/PhysRevLett.105.030406
10.1038/srep03496
10.1126/science.1130886
10.1109/18.850709
10.1103/PhysRevA.60.R773
10.1038/npjqi.2016.1
ContentType Journal Article
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
DOI 10.1088/0256-307X/34/3/030301
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库- 镜像站点
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Improving Accuracy of Estimating Two-Qubit States with Hedged Maximum Likelihood
EISSN 1741-3540
EndPage 5
ExternalDocumentID 10_1088_0256_307X_34_3_030301
671579818
GroupedDBID 02O
042
1JI
1PV
1WK
29B
2RA
4.4
5B3
5GY
5VR
5VS
5ZH
7.M
7.Q
92L
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFUIB
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CEBXE
CJUJL
CQIGP
CRLBU
CS3
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FEDTE
HAK
HVGLF
IHE
IJHAN
IOP
IZVLO
JCGBZ
KNG
KOT
LAP
M45
N5L
N9A
NS0
NT-
NT.
P2P
PJBAE
Q02
R4D
RIN
RNS
RO9
ROL
RPA
RW3
S3P
SY9
T37
UCJ
W28
XPP
~02
~WA
-SA
-S~
AAYXX
ACARI
ADEQX
AERVB
AGQPQ
AOAED
ARNYC
CAJEA
CITATION
Q--
TGP
U1G
U5K
ID FETCH-LOGICAL-c280t-8d613ec02f0f95974790f484c7f9b46f9fd4bcd036ce7b121e179b9a6acb77fb3
ISSN 0256-307X
IngestDate Thu Apr 24 23:07:39 EDT 2025
Tue Jul 01 01:35:31 EDT 2025
Wed Feb 14 10:03:15 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://iopscience.iop.org/info/page/text-and-data-mining
http://iopscience.iop.org/page/copyright
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c280t-8d613ec02f0f95974790f484c7f9b46f9fd4bcd036ce7b121e179b9a6acb77fb3
Notes 11-1959/O4
As a widely used reconstruction algorithm in quantum state tomography, maximum likelihood estimation tends to assign a rank-deficient matrix, which decreases estimation accuracy for certain quantum states. Fortunately, hedged maximum likelihood estimation (HMLE) [Phys. Rev. Lett. 105 (2010)200504] was proposed to avoid this problem. Here we study more details about this proposal in the two-qubit case and further improve its performance. We ameliorate the HMLE method by updating the hedging function based on the purity of the estimated state. Both performances of HMLE and ameliorated HMLE are demonstrated by numerical simulation and experimental implementation on the Werner states of polarization-entangled photons.
Qi Yin 1,2, Guo-Yong Xiang 1,2, Chuan-Feng Li 1,2, Guang-Can Guo1,2 (1Key Laboratory of Quantum Information, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026 2 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026)
PageCount 5
ParticipantIDs crossref_citationtrail_10_1088_0256_307X_34_3_030301
crossref_primary_10_1088_0256_307X_34_3_030301
chongqing_primary_671579818
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-03-01
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-01
  day: 01
PublicationDecade 2010
PublicationTitle Chinese physics letters
PublicationTitleAlternate Chinese Physics Letters
PublicationYear 2017
References 22
24
25
27
Li X (2) 2014; 31
Qi B (19) 2013; 3
10
Bent N (4) 2015; 5
11
12
Baumgratz T (15) 2013; 15
Braess D (26) 2002; 2533
13
14
Lidstone G J (23) 1920; 8
16
Xiang G Y (3) 2013; 22
17
Blume-Kohout R (18) 2010; 12
Nielsen M A (1) 2000
5
6
7
8
9
20
21
References_xml – ident: 7
  doi: 10.1103/PhysRevLett.93.240501
– ident: 16
  doi: 10.1103/PhysRevA.64.014305
– ident: 22
  doi: 10.1103/PhysRevLett.105.200504
– year: 2000
  ident: 1
  publication-title: Quantum Computation and Quantum Information
– volume: 8
  start-page: 182
  year: 1920
  ident: 23
  publication-title: Trans. Fac. Actuaries
– ident: 9
  doi: 10.1038/nature14270
– ident: 25
  doi: 10.1016/0378-3758(94)90153-8
– ident: 8
  doi: 10.1103/PhysRevLett.97.220407
– ident: 17
  doi: 10.1103/PhysRevA.71.052323
– ident: 20
  doi: 10.1103/PhysRevA.51.2738
– ident: 24
– ident: 13
  doi: 10.1103/PhysRevA.55.R1561
– ident: 11
  doi: 10.1103/PhysRevLett.111.183601
– volume: 22
  issn: 1674-1056
  year: 2013
  ident: 3
  publication-title: Chin. Phys.
– volume: 31
  issn: 0256-307X
  year: 2014
  ident: 2
  publication-title: Chin. Phys. Lett.
– ident: 5
  doi: 10.1038/nature04279
– volume: 2533
  start-page: 153
  year: 2002
  ident: 26
  publication-title: Lect. Notes Comput. Sci.
– volume: 12
  issn: 1367-2630
  year: 2010
  ident: 18
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/12/4/043034
– ident: 14
  doi: 10.1103/PhysRevA.64.052312
– volume: 15
  issn: 1367-2630
  year: 2013
  ident: 15
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/15/12/125004
– volume: 5
  year: 2015
  ident: 4
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRevX.5.041006
– ident: 10
  doi: 10.1103/PhysRevLett.105.030406
– volume: 3
  start-page: 3496
  year: 2013
  ident: 19
  publication-title: Sci. Rep.
  doi: 10.1038/srep03496
– ident: 6
  doi: 10.1126/science.1130886
– ident: 21
  doi: 10.1109/18.850709
– ident: 27
  doi: 10.1103/PhysRevA.60.R773
– ident: 12
  doi: 10.1038/npjqi.2016.1
SSID ssj0011811
Score 2.1409247
Snippet As a widely used reconstruction algorithm in quantum state tomography, maximum likelihood estimation tends to assign a rank-deficient matrix, which decreases...
SourceID crossref
chongqing
SourceType Enrichment Source
Index Database
Publisher
StartPage 1
Title Improving Accuracy of Estimating Two-Qubit States with Hedged Maximum Likelihood
URI http://lib.cqvip.com/qk/84212X/201703/671579818.html
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfGEBIXxKcoA-QDPk1Z8-HE9tHpUhUkYEid1FtUOwmr2FoYrUD8WfyFvOc4aQ7TBFwsy66fLftXv997ebYJeZPGQtRK2WDZgKXDrcwCCWWBNACoGHRU7M5XvP-Qzc75u0W6ODj4PYha2m3Nif1147mS_1lVKIN1xVOy_7CyvVAogDysL6SwwpD-1RrvPQLa2t01vtyOgYLwr0UeCsXzH5vg086stp5Utm7XGfrQMLzi5-pqdwVm-Zf6cnXhX43vmCorOMsl06esSJnKWQ4ZwaRiWmFGhUxmWJVPmc5ZkTGpmU5ZMWX5hCnNCskktIqwSkGt8M1lHzuLNbpgufDytD5mBciPWK4GnaYoR4pjJ-iUycKNbMJ0iL9WwIVz104mfrAyxX6wN5A0Hbo1QFX2cV1-9wMuho6xRauo2t0Z6E-Ajqrh9u19oauhde_24mig1NMbtQXssO5iDd8T5BOOCRYmaCvulWQfupiJKBUKaM4dchdw7kID3n48679cAWNyrzR2QrtTY1KO-7JxwsfJuO0C7_S42Kw_fwNUDLjRgOTMH5IH3jqhuoXaI3JQrx-Tey5K2H5_Qs56wNEOcHTT0D3gaA842gKOIuBoCzjqAUf3gHtKzqfFfDIL_JMcgY1luA1kBfSvtmHchI1ytqgKGy65FY0yPGtUU3FjK6BFthYmiqMaNnyjltnSGiEakzwjh-vNun5OqIhNJUWcZDVPuTINaF3LQd_wqo54XdkROeonpvzaXr1S9rM_IrybqtL62-zxUZXL0kVVSFnibJc422XCy6RsZ3tETvpmncxbG7y4dRRH5P4euy_J4fZ6V78Ckro1rx0q_gBkknHB
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+Accuracy+of+Estimating+Two-Qubit+States+with+Hedged+Maximum+Likelihood&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%89%A9%E7%90%86%E5%BF%AB%E6%8A%A5%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E6%AE%B7%E7%90%AA+%E9%A1%B9%E5%9B%BD%E5%8B%87+%E6%9D%8E%E4%BC%A0%E9%94%8B+%E9%83%AD%E5%85%89%E7%81%BF&rft.date=2017-03-01&rft.issn=0256-307X&rft.eissn=1741-3540&rft.volume=34&rft.issue=3&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1088%2F0256-307X%2F34%2F3%2F030301&rft.externalDocID=671579818
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84212X%2F84212X.jpg