Domains of analyticity and Lindstedt expansions of KAM tori in some dissipative perturbations of Hamiltonian systems

Conformally symplectic systems are characterized by the property that they transform a symplectic form into a multiple of itself. The limit of small dissipation, which is the object of the present study, is particularly interesting. We consider a family of conformally symplectic maps fμ,ε (very simp...

Full description

Saved in:
Bibliographic Details
Published inNonlinearity Vol. 30; no. 8; pp. 3151 - 3202
Main Authors Calleja, Renato C, Celletti, Alessandra, de la Llave, Rafael
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.08.2017
Subjects
Online AccessGet full text
ISSN0951-7715
1361-6544
DOI10.1088/1361-6544/aa7738

Cover

Loading…
Abstract Conformally symplectic systems are characterized by the property that they transform a symplectic form into a multiple of itself. The limit of small dissipation, which is the object of the present study, is particularly interesting. We consider a family of conformally symplectic maps fμ,ε (very simple modifications, which we present, give results for differential equations) defined on a 2d-dimensional symplectic manifold M with exact symplectic form Ω; we assume that fμ,ε satisfies fμ,ε∗Ω=λ(ε)Ω. The d-dimensional parameter μ is called drift. We assume that λ(ε)=1+αεa+O(|ε|a+1), where a∈Z+, α∈C\{0}. We study the perturbative expansions and the domains of analyticity in ε near ε=0 of the parameterization of the quasi-periodic orbits of frequency ω (assumed to be Diophantine) and of the parameter μ. Notice that this is a singular perturbation, since any friction (no matter how small) reduces the set of quasi-periodic solutions in the system. We prove that the tori are analytic in a domain in the complex ε plane, obtained by taking from a ball centered at zero a sequence of smaller balls with center along smooth lines going through the origin. The radii of the excluded balls decrease faster than any power of the distance of the center to the origin. We state also a conjecture on the optimality of our results. The boundary of the domain is very thin, so that we can perform unique analytic continuation of the invariant tori along closed circles enclosing the points in the complement of the analyticity. We show that there is no monodromy of these continuations, either for the tori, for the invariant manifolds or for the drift. The proof is based on the following procedure. To find a quasi-periodic solution, one solves an invariance equation for the embedding of the torus, depending on the parameters of the family. Assuming that the frequency of the torus satisfies a Diophantine condition, under mild non-degeneracy assumptions, using a Lindstedt procedure we construct an approximate solution to all orders of the invariance equation describing the KAM torus. Starting from such approximate solution, we use an a posteriori KAM theorem to get the true solution of the invariance equation. This allows also the study of monogenic and Whitney differentiability properties of the extensions as well as the monodromy.
AbstractList Conformally symplectic systems are characterized by the property that they transform a symplectic form into a multiple of itself. The limit of small dissipation, which is the object of the present study, is particularly interesting. We consider a family of conformally symplectic maps fμ,ε (very simple modifications, which we present, give results for differential equations) defined on a 2d-dimensional symplectic manifold M with exact symplectic form Ω; we assume that fμ,ε satisfies fμ,ε∗Ω=λ(ε)Ω. The d-dimensional parameter μ is called drift. We assume that λ(ε)=1+αεa+O(|ε|a+1), where a∈Z+, α∈C\{0}. We study the perturbative expansions and the domains of analyticity in ε near ε=0 of the parameterization of the quasi-periodic orbits of frequency ω (assumed to be Diophantine) and of the parameter μ. Notice that this is a singular perturbation, since any friction (no matter how small) reduces the set of quasi-periodic solutions in the system. We prove that the tori are analytic in a domain in the complex ε plane, obtained by taking from a ball centered at zero a sequence of smaller balls with center along smooth lines going through the origin. The radii of the excluded balls decrease faster than any power of the distance of the center to the origin. We state also a conjecture on the optimality of our results. The boundary of the domain is very thin, so that we can perform unique analytic continuation of the invariant tori along closed circles enclosing the points in the complement of the analyticity. We show that there is no monodromy of these continuations, either for the tori, for the invariant manifolds or for the drift. The proof is based on the following procedure. To find a quasi-periodic solution, one solves an invariance equation for the embedding of the torus, depending on the parameters of the family. Assuming that the frequency of the torus satisfies a Diophantine condition, under mild non-degeneracy assumptions, using a Lindstedt procedure we construct an approximate solution to all orders of the invariance equation describing the KAM torus. Starting from such approximate solution, we use an a posteriori KAM theorem to get the true solution of the invariance equation. This allows also the study of monogenic and Whitney differentiability properties of the extensions as well as the monodromy.
Author Celletti, Alessandra
Calleja, Renato C
de la Llave, Rafael
Author_xml – sequence: 1
  givenname: Renato C
  surname: Calleja
  fullname: Calleja, Renato C
  email: calleja@mym.iimas.unam.mx
  organization: National Autonomous University of Mexico (UNAM) Department of Mathematics and Mechanics, IIMAS, Apdo. Postal 20-126, C.P. 01000, Mexico D.F., Mexico
– sequence: 2
  givenname: Alessandra
  surname: Celletti
  fullname: Celletti, Alessandra
  email: celletti@mat.uniroma2.it
  organization: University of Rome Tor Vergata Department of Mathematics, Via della Ricerca Scientifica 1, 00133 Roma, Italy
– sequence: 3
  givenname: Rafael
  surname: de la Llave
  fullname: de la Llave, Rafael
  email: rafael.delallave@math.gatech.edu
  organization: Georgia Institute of Technology School of Mathematics, 686 Cherry St. Atlanta, GA 30332-1160, United States of America
BookMark eNp9kMtKAzEUhoNUsK3uXeYBHJtMrl2WeqlYcaPrITNJIGUmGZJU7Ns7dYoLQVfnwvcfON8MTHzwBoBrjG4xknKBCccFZ5QulBKCyDMw_VlNwBQtGS6EwOwCzFLaIYSxLMkU5LvQKecTDBYqr9pDdo3Lh6HXcOu8TtnoDM1nr3xyYeSeVy8wh-ig8zCFzkDtUnK9yu7DwN7EvI_1MJzojepcm4N3aqAPw70uXYJzq9pkrk51Dt4f7t_Wm2L7-vi0Xm2LppQoF3KpKKGYIkZVoy2XXJuyYRqXDSqtZsLYusR1rYW0RHKsSlErQTiVhHLGLJkDNN5tYkgpGlv10XUqHiqMqqO16qioOiqqRmtDhP-KDDq-n8lRufa_4M0YdKGvdmEfB5npb_wLQG6DSw
CODEN NONLE5
CitedBy_id crossref_primary_10_5802_mrr_4
crossref_primary_10_1134_S1560354723040123
crossref_primary_10_1016_j_physd_2019_02_006
crossref_primary_10_1088_1361_6544_ab4c80
crossref_primary_10_1016_j_cnsns_2024_108538
crossref_primary_10_1016_j_jde_2021_02_028
crossref_primary_10_1016_j_physd_2020_132837
crossref_primary_10_1007_s10958_021_05265_x
crossref_primary_10_1016_j_cnsns_2021_106111
crossref_primary_10_1088_1361_6544_ac5cd5
crossref_primary_10_1137_18M1210344
Cites_doi 10.1007/3-540-07171-7_19
10.1090/pspum/069/1858536
10.3934/dcdss.2010.3.623
10.1007/978-1-4939-1230-8
10.1088/0951-7715/22/6/004
10.1007/s00220-005-1325-6
10.1007/BF02584836
10.1103/PhysRevE.53.R5545
10.1007/978-3-540-85146-2
10.1137/130929369
10.1007/bf02415450
10.3934/dcds.2013.33.4411
10.1007/s002200050347
10.1017/CBO9780511530074
10.1063/1.3335408
10.3934/dcdsb.2011.15.623
10.1063/1.166072
10.1088/0951-7715/27/9/2035
10.1090/S0273-0979-08-01240-8
10.1145/322092.322099
10.1090/memo/0780
10.1007/s00574-011-0003-x
10.1007/s00222-016-0648-6
10.3934/dcdsb.2015.20.1155
10.1016/S0294-1449(16)30180-9
10.1007/s00220-006-0079-0
10.1063/1.2157052
10.1142/S0129055X96000135
10.1016/j.jde.2013.05.001
10.1002/cpa.3160280104
10.1142/3031
10.1007/978-1-4613-9092-3_12
10.1007/s002200200599
10.1142/S0219199713500223
10.1142/4733
10.1007/BF01247129
10.1007/978-3-642-93469-8
10.1155/2012/930385
10.1007/BF01360131
10.1002/cpa.3160290615
10.1007/BFb0073564
10.1007/978-94-011-4673-9_14
10.1007/s10884-013-9319-0
10.1007/s10955-010-0085-7
10.1007/s00014-002-8345-z
10.1063/1.524408
10.1088/0951-7715/18/2/020
10.1103/PhysRevLett.73.1459
10.1017/S0143385709000583
10.1063/1.4836777
10.3934/dcds.1999.5.157
10.1090/S0002-9947-1936-1501875-0
10.3934/dcdsb.2012.17.2561
10.1088/0951-7715/23/9/001
10.4213/rm9372
10.1090/S0002-9947-99-02320-X
10.1007/BF01399536
10.1007/s00205-008-0141-5
10.1063/1.2213790
10.1080/026811199281930
ContentType Journal Article
Copyright 2017 IOP Publishing Ltd & London Mathematical Society
Copyright_xml – notice: 2017 IOP Publishing Ltd & London Mathematical Society
DBID AAYXX
CITATION
DOI 10.1088/1361-6544/aa7738
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Physics
DocumentTitleAlternate Domains of analyticity and Lindstedt expansions of KAM tori in some dissipative perturbations of Hamiltonian systems
EISSN 1361-6544
EndPage 3202
ExternalDocumentID 10_1088_1361_6544_aa7738
nonaa7738
GrantInformation_xml – fundername: MC-ITN
  grantid: Astronet-II
– fundername: PRIN-MIUR
  grantid: 2010JJ4KPA 009
– fundername: National Science Foundation
  grantid: DMS-1500943
  funderid: https://doi.org/10.13039/100000001
GroupedDBID -~X
.DC
123
1JI
4.4
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AALHV
AATNI
ABCXL
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
NT-
NT.
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
W28
XPP
YQT
ZMT
AAYXX
ADEQX
CITATION
ID FETCH-LOGICAL-c280t-89a43414054acdf686de2c5d12c02fd57efb21bbd78f3861a27ba7364834655f3
IEDL.DBID IOP
ISSN 0951-7715
IngestDate Tue Jul 01 02:43:37 EDT 2025
Thu Apr 24 23:09:28 EDT 2025
Wed Aug 21 03:32:04 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c280t-89a43414054acdf686de2c5d12c02fd57efb21bbd78f3861a27ba7364834655f3
Notes NON-101607.R1
London Mathematical Society
PageCount 52
ParticipantIDs crossref_citationtrail_10_1088_1361_6544_aa7738
crossref_primary_10_1088_1361_6544_aa7738
iop_journals_10_1088_1361_6544_aa7738
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-08-01
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-01
  day: 01
PublicationDecade 2010
PublicationTitle Nonlinearity
PublicationTitleAbbrev Non
PublicationTitleAlternate Nonlinearity
PublicationYear 2017
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 44
Abraham R (3) 1967
45
46
47
48
49
Calleja R (26) 2009; 22
Malek S (64) 2012
Le Guillou J C (63) 1990
de la Llave R (37) 2005; 18
Nelson E (70) 1969
Marmi S (68) 2003; 164
Carminati C (34) 2014; 27
50
51
52
Calleja R (21) 2016
11
12
56
Bustamante A P (14) 2017
58
59
18
19
Biscani F (10) 2009
Kolmogorov A N (60) 1957; 1
Saks S (83) 1965
Moser J (65) 1966; 20
1
2
Bensoussan A (7) 1988
6
Grafakos L (53) 2014
8
61
62
Schmidt W M (77) 1980
22
23
67
24
25
69
Poincaré H (72) 1987
27
Carathéodory C (15) 1952
29
Arnol’d V I (4) 1961; 25
71
Caratheodory C (17) 1954
de la Llave R (38) 1999; 5
74
31
75
32
76
33
Ramis J-P (73) 1985; 301
78
35
79
36
39
Haro A (55) 2011
Broer H W (9) 1996
Calleja R (30) 2012; 23
Winkler J (85) 1993; 18
Calleja R (28) 2010; 23
Balser W (5) 1994
Carathéodory C (16) 1954
Moser J (66) 1966; 20
Borel É (13) 1917
Calleja R (20) 2017
Hardy G H (54) 1949
80
81
Hille E (57) 1948
40
84
41
42
86
43
Stein E M (82) 1970
87
References_xml – ident: 74
  doi: 10.1007/3-540-07171-7_19
– ident: 36
  doi: 10.1090/pspum/069/1858536
– ident: 62
  doi: 10.3934/dcdss.2010.3.623
– volume: 18
  start-page: 105
  year: 1993
  ident: 85
  publication-title: Ann. Acad. Sci. Fenn. Ser. A: I Math.
– year: 2014
  ident: 53
  publication-title: Modern Fourier Analysis
  doi: 10.1007/978-1-4939-1230-8
– volume: 22
  start-page: 1311
  issn: 0951-7715
  year: 2009
  ident: 26
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/22/6/004
– ident: 50
  doi: 10.1007/s00220-005-1325-6
– ident: 56
  doi: 10.1007/BF02584836
– volume: 301
  start-page: 99
  issn: 0764-4442
  year: 1985
  ident: 73
  publication-title: C. R. Acad. Sci. Paris Sér. I Math.
– year: 1965
  ident: 83
  publication-title: Analytic Functions
– year: 1949
  ident: 54
  publication-title: Divergent Series
– ident: 43
  doi: 10.1103/PhysRevE.53.R5545
– ident: 29
  doi: 10.1007/978-3-540-85146-2
– ident: 25
  doi: 10.1137/130929369
– ident: 71
  doi: 10.1007/bf02415450
– ident: 23
  doi: 10.3934/dcds.2013.33.4411
– ident: 86
  doi: 10.1007/s002200050347
– ident: 8
  doi: 10.1017/CBO9780511530074
– ident: 19
  doi: 10.1063/1.3335408
– ident: 58
  doi: 10.3934/dcdsb.2011.15.623
– ident: 42
  doi: 10.1063/1.166072
– volume: 27
  start-page: 2035
  issn: 0951-7715
  year: 2014
  ident: 34
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/27/9/2035
– year: 1988
  ident: 7
  publication-title: Perturbation Methods in Optimal Control
– ident: 46
  doi: 10.1090/S0273-0979-08-01240-8
– year: 1948
  ident: 57
  publication-title: Functional Analysis and Semi-Groups
– year: 2017
  ident: 14
– ident: 12
  doi: 10.1145/322092.322099
– volume: 20
  start-page: 499
  year: 1966
  ident: 65
  publication-title: Ann. Scuola Norm. Sup. Pisa (3)
– volume: 164
  issn: 0065-9266
  year: 2003
  ident: 68
  publication-title: Mem. Am. Math. Soc.
  doi: 10.1090/memo/0780
– ident: 69
  doi: 10.1007/s00574-011-0003-x
– ident: 35
  doi: 10.1007/s00222-016-0648-6
– ident: 80
  doi: 10.3934/dcdsb.2015.20.1155
– ident: 44
  doi: 10.1016/S0294-1449(16)30180-9
– ident: 33
  doi: 10.1007/s00220-006-0079-0
– ident: 51
  doi: 10.1063/1.2157052
– year: 1917
  ident: 13
  publication-title: Leçons sur les Fonctions Monogènes Uniformes d’une Variable Complexe. Rédigées par G. Julia.
– ident: 52
  doi: 10.1142/S0129055X96000135
– ident: 24
  doi: 10.1016/j.jde.2013.05.001
– year: 1952
  ident: 15
  publication-title: Conformal Representation
– year: 1954
  ident: 16
– ident: 87
  doi: 10.1002/cpa.3160280104
– ident: 11
  doi: 10.1142/3031
– volume: 20
  start-page: 265
  year: 1966
  ident: 66
  publication-title: Ann. Scuola Norm. Sup. Pisa (3)
– ident: 40
  doi: 10.1007/978-1-4613-9092-3_12
– ident: 49
  doi: 10.1007/s002200200599
– volume: 1
  start-page: 315
  year: 1957
  ident: 60
  publication-title: Proc. of the Int. Congress of Mathematicians
– year: 1990
  ident: 63
  publication-title: Large-Order Behaviour of Perturbation Theory
– year: 2011
  ident: 55
– ident: 32
  doi: 10.1142/S0219199713500223
– ident: 61
  doi: 10.1142/4733
– year: 1967
  ident: 3
  publication-title: Transversal Mappings and Flows
– ident: 76
  doi: 10.1007/BF01247129
– ident: 1
  doi: 10.1007/978-3-642-93469-8
– start-page: 930385
  year: 2012
  ident: 64
  publication-title: Abstr. Appl. Anal.
  doi: 10.1155/2012/930385
– year: 1996
  ident: 9
  publication-title: Quasi-Periodic Motions in Families of Dynamical Systems
– ident: 78
  doi: 10.1007/BF01360131
– ident: 75
  doi: 10.1002/cpa.3160290615
– year: 1994
  ident: 5
  publication-title: From Divergent Power Series to Analytic Functions
  doi: 10.1007/BFb0073564
– volume: 25
  start-page: 21
  issn: 0373-2436
  year: 1961
  ident: 4
  publication-title: Izv. Akad. Nauk SSSR Ser. Mat.
– ident: 59
  doi: 10.1007/978-94-011-4673-9_14
– ident: 22
  doi: 10.1007/s10884-013-9319-0
– ident: 27
  doi: 10.1007/s10955-010-0085-7
– volume: 23
  year: 2012
  ident: 30
  publication-title: Chaos
– ident: 6
  doi: 10.1007/s00014-002-8345-z
– year: 2017
  ident: 20
  publication-title: SIAM J. Math. Anal.
– year: 1987
  ident: 72
  publication-title: Les Méthodes Nouvelles de la Mécanique Céleste (Tome II)
– ident: 81
  doi: 10.1063/1.524408
– year: 1954
  ident: 17
– volume: 18
  start-page: 855
  issn: 0951-7715
  year: 2005
  ident: 37
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/18/2/020
– ident: 41
  doi: 10.1103/PhysRevLett.73.1459
– ident: 48
  doi: 10.1017/S0143385709000583
– year: 1970
  ident: 82
  publication-title: Singular Integrals and Differentiability Properties of Functions
– ident: 31
  doi: 10.1063/1.4836777
– year: 2016
  ident: 21
– volume: 5
  start-page: 157
  issn: 1078-0947
  year: 1999
  ident: 38
  publication-title: Discrete Contin. Dyn. Syst.
  doi: 10.3934/dcds.1999.5.157
– year: 2009
  ident: 10
– ident: 84
  doi: 10.1090/S0002-9947-1936-1501875-0
– year: 1969
  ident: 70
  publication-title: Topics in Dynamics. I: Flows
– ident: 79
  doi: 10.3934/dcdsb.2012.17.2561
– volume: 23
  start-page: 2029
  issn: 0951-7715
  year: 2010
  ident: 28
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/23/9/001
– year: 1980
  ident: 77
  publication-title: Diophantine Approximation
– ident: 2
  doi: 10.4213/rm9372
– ident: 39
  doi: 10.1090/S0002-9947-99-02320-X
– ident: 67
  doi: 10.1007/BF01399536
– ident: 18
  doi: 10.1007/s00205-008-0141-5
– ident: 47
  doi: 10.1063/1.2213790
– ident: 45
  doi: 10.1080/026811199281930
SSID ssj0011823
Score 2.2426
Snippet Conformally symplectic systems are characterized by the property that they transform a symplectic form into a multiple of itself. The limit of small...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 3151
SubjectTerms dissipative systems
domains of analyticity
KAM theory
Title Domains of analyticity and Lindstedt expansions of KAM tori in some dissipative perturbations of Hamiltonian systems
URI https://iopscience.iop.org/article/10.1088/1361-6544/aa7738
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS91AEB_8QGgP9RutreyhPXjIey-b7GaDJ6mVp-VZDwoehLBfgYeaPEwsbf_6ziQx2KIivW3CJFlmP-aXmdnfAHziJtQW11CQShEFuEvqwNjYBl6FOld4Uwo6KDw5leOL-ORSXM7Bfn8Wppx1W_8Amy1RcKvCLiFODcNIhoEUcTzUOkkiNQ-LkZKSyhccfz_rQwgInPs68kkSii5G-dQb_rJJ8_jdRybmaBmuHjrXZpZcD-5rM7C__-Ft_M_er8C7Dnqyg1Z0FeZ8sQZvHxES4tWkZ3Gt1mCpSQ-11TrUh-WtnhYVK3OmicaEcrHrX9h2jP7qyWdaM_8TtxbyvjVy3w4mjBhI2LRgVXnrGYX-mwTuH57N_B3aOtO6C0l6TI4WxKE4W1nLLl1twMXR1_Mv46Cr1xBYrkZ1oFIdo1FECBhr63KppPPcChdyO-K5E4nPDQ-NcYnKccRCzROjk0iSP1MKkUebsFCUhd8Cpka5Sa2zNuU6jkeaaNdMinBEOERwLtqG4cOIZbYjM6eaGjdZE1RXKiM9Z6TnrNXzNuz1T8xaIo8XZD_j8GXdaq6elXv_SrkdeMMJDTR5gx9gob679x8Ry9Rmt5mzfwB0UusE
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9VAEJ8IRKMHQdQI-LEHPXjoe6-73e32SMSXh_CQgyTc6n4mRGlfaDHKX89MW17QqDHxtm2mX7Mf8-vM7G8AXnObGodzKCmUFAmukiaxLnNJ0KmJGk8qSRuF50dqdpJ9OJWnQ53Tbi9MvRiW_hE2e6LgXoVDQpwep0KliZJZNjYmz4UeL3xcgTUplCDy_P2Px8swAoLnZS35PE_lEKf83V1-sksr-OxbZma6Dp9vXrDPLvkyumztyF39wt34H1-wAQ8HCMp2e_FHcCdUm_DgFjEhHs2XbK7NJtzt0kRd8xjavfrcnFUNqyMzRGdCOdntD2x7Rn_35DttWfiOSwx54Tq5g905IyYSdlaxpj4PjFIAukTub4EtwgXaPNu7DUl6Rg4XxKM4alnPMt08gZPp-0_vZslQtyFxXE_aRBcmQ-OIUDAzzkellQ_cSZ9yN-HRyzxEy1Nrfa6j0Co1PLcmF4r8mkrKKJ7CalVX4RkwPYm2cN65gpssmxiiX7MFwhLpEcl5sQXjm14r3UBqTrU1vpZdcF3rknRdkq7LXtdb8HZ5xaIn9PiL7BvswnKY1c0f5bb_Ue4V3Dvem5aH-0cHO3CfE0DoUgmfw2p7cRleILxp7ctuCF8DTxnwaA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Domains+of+analyticity+and+Lindstedt+expansions+of+KAM+tori+in+some+dissipative+perturbations+of+Hamiltonian+systems&rft.jtitle=Nonlinearity&rft.au=Calleja%2C+Renato+C&rft.au=Celletti%2C+Alessandra&rft.au=de+la+Llave%2C+Rafael&rft.date=2017-08-01&rft.pub=IOP+Publishing&rft.issn=0951-7715&rft.eissn=1361-6544&rft.volume=30&rft.issue=8&rft.spage=3151&rft.epage=3202&rft_id=info:doi/10.1088%2F1361-6544%2Faa7738&rft.externalDocID=nonaa7738
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-7715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-7715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-7715&client=summon