Domains of analyticity and Lindstedt expansions of KAM tori in some dissipative perturbations of Hamiltonian systems
Conformally symplectic systems are characterized by the property that they transform a symplectic form into a multiple of itself. The limit of small dissipation, which is the object of the present study, is particularly interesting. We consider a family of conformally symplectic maps fμ,ε (very simp...
Saved in:
Published in | Nonlinearity Vol. 30; no. 8; pp. 3151 - 3202 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.08.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0951-7715 1361-6544 |
DOI | 10.1088/1361-6544/aa7738 |
Cover
Loading…
Abstract | Conformally symplectic systems are characterized by the property that they transform a symplectic form into a multiple of itself. The limit of small dissipation, which is the object of the present study, is particularly interesting. We consider a family of conformally symplectic maps fμ,ε (very simple modifications, which we present, give results for differential equations) defined on a 2d-dimensional symplectic manifold M with exact symplectic form Ω; we assume that fμ,ε satisfies fμ,ε∗Ω=λ(ε)Ω. The d-dimensional parameter μ is called drift. We assume that λ(ε)=1+αεa+O(|ε|a+1), where a∈Z+, α∈C\{0}. We study the perturbative expansions and the domains of analyticity in ε near ε=0 of the parameterization of the quasi-periodic orbits of frequency ω (assumed to be Diophantine) and of the parameter μ. Notice that this is a singular perturbation, since any friction (no matter how small) reduces the set of quasi-periodic solutions in the system. We prove that the tori are analytic in a domain in the complex ε plane, obtained by taking from a ball centered at zero a sequence of smaller balls with center along smooth lines going through the origin. The radii of the excluded balls decrease faster than any power of the distance of the center to the origin. We state also a conjecture on the optimality of our results. The boundary of the domain is very thin, so that we can perform unique analytic continuation of the invariant tori along closed circles enclosing the points in the complement of the analyticity. We show that there is no monodromy of these continuations, either for the tori, for the invariant manifolds or for the drift. The proof is based on the following procedure. To find a quasi-periodic solution, one solves an invariance equation for the embedding of the torus, depending on the parameters of the family. Assuming that the frequency of the torus satisfies a Diophantine condition, under mild non-degeneracy assumptions, using a Lindstedt procedure we construct an approximate solution to all orders of the invariance equation describing the KAM torus. Starting from such approximate solution, we use an a posteriori KAM theorem to get the true solution of the invariance equation. This allows also the study of monogenic and Whitney differentiability properties of the extensions as well as the monodromy. |
---|---|
AbstractList | Conformally symplectic systems are characterized by the property that they transform a symplectic form into a multiple of itself. The limit of small dissipation, which is the object of the present study, is particularly interesting. We consider a family of conformally symplectic maps fμ,ε (very simple modifications, which we present, give results for differential equations) defined on a 2d-dimensional symplectic manifold M with exact symplectic form Ω; we assume that fμ,ε satisfies fμ,ε∗Ω=λ(ε)Ω. The d-dimensional parameter μ is called drift. We assume that λ(ε)=1+αεa+O(|ε|a+1), where a∈Z+, α∈C\{0}. We study the perturbative expansions and the domains of analyticity in ε near ε=0 of the parameterization of the quasi-periodic orbits of frequency ω (assumed to be Diophantine) and of the parameter μ. Notice that this is a singular perturbation, since any friction (no matter how small) reduces the set of quasi-periodic solutions in the system. We prove that the tori are analytic in a domain in the complex ε plane, obtained by taking from a ball centered at zero a sequence of smaller balls with center along smooth lines going through the origin. The radii of the excluded balls decrease faster than any power of the distance of the center to the origin. We state also a conjecture on the optimality of our results. The boundary of the domain is very thin, so that we can perform unique analytic continuation of the invariant tori along closed circles enclosing the points in the complement of the analyticity. We show that there is no monodromy of these continuations, either for the tori, for the invariant manifolds or for the drift. The proof is based on the following procedure. To find a quasi-periodic solution, one solves an invariance equation for the embedding of the torus, depending on the parameters of the family. Assuming that the frequency of the torus satisfies a Diophantine condition, under mild non-degeneracy assumptions, using a Lindstedt procedure we construct an approximate solution to all orders of the invariance equation describing the KAM torus. Starting from such approximate solution, we use an a posteriori KAM theorem to get the true solution of the invariance equation. This allows also the study of monogenic and Whitney differentiability properties of the extensions as well as the monodromy. |
Author | Celletti, Alessandra Calleja, Renato C de la Llave, Rafael |
Author_xml | – sequence: 1 givenname: Renato C surname: Calleja fullname: Calleja, Renato C email: calleja@mym.iimas.unam.mx organization: National Autonomous University of Mexico (UNAM) Department of Mathematics and Mechanics, IIMAS, Apdo. Postal 20-126, C.P. 01000, Mexico D.F., Mexico – sequence: 2 givenname: Alessandra surname: Celletti fullname: Celletti, Alessandra email: celletti@mat.uniroma2.it organization: University of Rome Tor Vergata Department of Mathematics, Via della Ricerca Scientifica 1, 00133 Roma, Italy – sequence: 3 givenname: Rafael surname: de la Llave fullname: de la Llave, Rafael email: rafael.delallave@math.gatech.edu organization: Georgia Institute of Technology School of Mathematics, 686 Cherry St. Atlanta, GA 30332-1160, United States of America |
BookMark | eNp9kMtKAzEUhoNUsK3uXeYBHJtMrl2WeqlYcaPrITNJIGUmGZJU7Ns7dYoLQVfnwvcfON8MTHzwBoBrjG4xknKBCccFZ5QulBKCyDMw_VlNwBQtGS6EwOwCzFLaIYSxLMkU5LvQKecTDBYqr9pDdo3Lh6HXcOu8TtnoDM1nr3xyYeSeVy8wh-ig8zCFzkDtUnK9yu7DwN7EvI_1MJzojepcm4N3aqAPw70uXYJzq9pkrk51Dt4f7t_Wm2L7-vi0Xm2LppQoF3KpKKGYIkZVoy2XXJuyYRqXDSqtZsLYusR1rYW0RHKsSlErQTiVhHLGLJkDNN5tYkgpGlv10XUqHiqMqqO16qioOiqqRmtDhP-KDDq-n8lRufa_4M0YdKGvdmEfB5npb_wLQG6DSw |
CODEN | NONLE5 |
CitedBy_id | crossref_primary_10_5802_mrr_4 crossref_primary_10_1134_S1560354723040123 crossref_primary_10_1016_j_physd_2019_02_006 crossref_primary_10_1088_1361_6544_ab4c80 crossref_primary_10_1016_j_cnsns_2024_108538 crossref_primary_10_1016_j_jde_2021_02_028 crossref_primary_10_1016_j_physd_2020_132837 crossref_primary_10_1007_s10958_021_05265_x crossref_primary_10_1016_j_cnsns_2021_106111 crossref_primary_10_1088_1361_6544_ac5cd5 crossref_primary_10_1137_18M1210344 |
Cites_doi | 10.1007/3-540-07171-7_19 10.1090/pspum/069/1858536 10.3934/dcdss.2010.3.623 10.1007/978-1-4939-1230-8 10.1088/0951-7715/22/6/004 10.1007/s00220-005-1325-6 10.1007/BF02584836 10.1103/PhysRevE.53.R5545 10.1007/978-3-540-85146-2 10.1137/130929369 10.1007/bf02415450 10.3934/dcds.2013.33.4411 10.1007/s002200050347 10.1017/CBO9780511530074 10.1063/1.3335408 10.3934/dcdsb.2011.15.623 10.1063/1.166072 10.1088/0951-7715/27/9/2035 10.1090/S0273-0979-08-01240-8 10.1145/322092.322099 10.1090/memo/0780 10.1007/s00574-011-0003-x 10.1007/s00222-016-0648-6 10.3934/dcdsb.2015.20.1155 10.1016/S0294-1449(16)30180-9 10.1007/s00220-006-0079-0 10.1063/1.2157052 10.1142/S0129055X96000135 10.1016/j.jde.2013.05.001 10.1002/cpa.3160280104 10.1142/3031 10.1007/978-1-4613-9092-3_12 10.1007/s002200200599 10.1142/S0219199713500223 10.1142/4733 10.1007/BF01247129 10.1007/978-3-642-93469-8 10.1155/2012/930385 10.1007/BF01360131 10.1002/cpa.3160290615 10.1007/BFb0073564 10.1007/978-94-011-4673-9_14 10.1007/s10884-013-9319-0 10.1007/s10955-010-0085-7 10.1007/s00014-002-8345-z 10.1063/1.524408 10.1088/0951-7715/18/2/020 10.1103/PhysRevLett.73.1459 10.1017/S0143385709000583 10.1063/1.4836777 10.3934/dcds.1999.5.157 10.1090/S0002-9947-1936-1501875-0 10.3934/dcdsb.2012.17.2561 10.1088/0951-7715/23/9/001 10.4213/rm9372 10.1090/S0002-9947-99-02320-X 10.1007/BF01399536 10.1007/s00205-008-0141-5 10.1063/1.2213790 10.1080/026811199281930 |
ContentType | Journal Article |
Copyright | 2017 IOP Publishing Ltd & London Mathematical Society |
Copyright_xml | – notice: 2017 IOP Publishing Ltd & London Mathematical Society |
DBID | AAYXX CITATION |
DOI | 10.1088/1361-6544/aa7738 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics Physics |
DocumentTitleAlternate | Domains of analyticity and Lindstedt expansions of KAM tori in some dissipative perturbations of Hamiltonian systems |
EISSN | 1361-6544 |
EndPage | 3202 |
ExternalDocumentID | 10_1088_1361_6544_aa7738 nonaa7738 |
GrantInformation_xml | – fundername: MC-ITN grantid: Astronet-II – fundername: PRIN-MIUR grantid: 2010JJ4KPA 009 – fundername: National Science Foundation grantid: DMS-1500943 funderid: https://doi.org/10.13039/100000001 |
GroupedDBID | -~X .DC 123 1JI 4.4 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAGID AAJIO AAJKP AALHV AATNI ABCXL ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A NT- NT. P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TN5 W28 XPP YQT ZMT AAYXX ADEQX CITATION |
ID | FETCH-LOGICAL-c280t-89a43414054acdf686de2c5d12c02fd57efb21bbd78f3861a27ba7364834655f3 |
IEDL.DBID | IOP |
ISSN | 0951-7715 |
IngestDate | Tue Jul 01 02:43:37 EDT 2025 Thu Apr 24 23:09:28 EDT 2025 Wed Aug 21 03:32:04 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c280t-89a43414054acdf686de2c5d12c02fd57efb21bbd78f3861a27ba7364834655f3 |
Notes | NON-101607.R1 London Mathematical Society |
PageCount | 52 |
ParticipantIDs | crossref_citationtrail_10_1088_1361_6544_aa7738 crossref_primary_10_1088_1361_6544_aa7738 iop_journals_10_1088_1361_6544_aa7738 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-08-01 |
PublicationDateYYYYMMDD | 2017-08-01 |
PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Nonlinearity |
PublicationTitleAbbrev | Non |
PublicationTitleAlternate | Nonlinearity |
PublicationYear | 2017 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | 44 Abraham R (3) 1967 45 46 47 48 49 Calleja R (26) 2009; 22 Malek S (64) 2012 Le Guillou J C (63) 1990 de la Llave R (37) 2005; 18 Nelson E (70) 1969 Marmi S (68) 2003; 164 Carminati C (34) 2014; 27 50 51 52 Calleja R (21) 2016 11 12 56 Bustamante A P (14) 2017 58 59 18 19 Biscani F (10) 2009 Kolmogorov A N (60) 1957; 1 Saks S (83) 1965 Moser J (65) 1966; 20 1 2 Bensoussan A (7) 1988 6 Grafakos L (53) 2014 8 61 62 Schmidt W M (77) 1980 22 23 67 24 25 69 Poincaré H (72) 1987 27 Carathéodory C (15) 1952 29 Arnol’d V I (4) 1961; 25 71 Caratheodory C (17) 1954 de la Llave R (38) 1999; 5 74 31 75 32 76 33 Ramis J-P (73) 1985; 301 78 35 79 36 39 Haro A (55) 2011 Broer H W (9) 1996 Calleja R (30) 2012; 23 Winkler J (85) 1993; 18 Calleja R (28) 2010; 23 Balser W (5) 1994 Carathéodory C (16) 1954 Moser J (66) 1966; 20 Borel É (13) 1917 Calleja R (20) 2017 Hardy G H (54) 1949 80 81 Hille E (57) 1948 40 84 41 42 86 43 Stein E M (82) 1970 87 |
References_xml | – ident: 74 doi: 10.1007/3-540-07171-7_19 – ident: 36 doi: 10.1090/pspum/069/1858536 – ident: 62 doi: 10.3934/dcdss.2010.3.623 – volume: 18 start-page: 105 year: 1993 ident: 85 publication-title: Ann. Acad. Sci. Fenn. Ser. A: I Math. – year: 2014 ident: 53 publication-title: Modern Fourier Analysis doi: 10.1007/978-1-4939-1230-8 – volume: 22 start-page: 1311 issn: 0951-7715 year: 2009 ident: 26 publication-title: Nonlinearity doi: 10.1088/0951-7715/22/6/004 – ident: 50 doi: 10.1007/s00220-005-1325-6 – ident: 56 doi: 10.1007/BF02584836 – volume: 301 start-page: 99 issn: 0764-4442 year: 1985 ident: 73 publication-title: C. R. Acad. Sci. Paris Sér. I Math. – year: 1965 ident: 83 publication-title: Analytic Functions – year: 1949 ident: 54 publication-title: Divergent Series – ident: 43 doi: 10.1103/PhysRevE.53.R5545 – ident: 29 doi: 10.1007/978-3-540-85146-2 – ident: 25 doi: 10.1137/130929369 – ident: 71 doi: 10.1007/bf02415450 – ident: 23 doi: 10.3934/dcds.2013.33.4411 – ident: 86 doi: 10.1007/s002200050347 – ident: 8 doi: 10.1017/CBO9780511530074 – ident: 19 doi: 10.1063/1.3335408 – ident: 58 doi: 10.3934/dcdsb.2011.15.623 – ident: 42 doi: 10.1063/1.166072 – volume: 27 start-page: 2035 issn: 0951-7715 year: 2014 ident: 34 publication-title: Nonlinearity doi: 10.1088/0951-7715/27/9/2035 – year: 1988 ident: 7 publication-title: Perturbation Methods in Optimal Control – ident: 46 doi: 10.1090/S0273-0979-08-01240-8 – year: 1948 ident: 57 publication-title: Functional Analysis and Semi-Groups – year: 2017 ident: 14 – ident: 12 doi: 10.1145/322092.322099 – volume: 20 start-page: 499 year: 1966 ident: 65 publication-title: Ann. Scuola Norm. Sup. Pisa (3) – volume: 164 issn: 0065-9266 year: 2003 ident: 68 publication-title: Mem. Am. Math. Soc. doi: 10.1090/memo/0780 – ident: 69 doi: 10.1007/s00574-011-0003-x – ident: 35 doi: 10.1007/s00222-016-0648-6 – ident: 80 doi: 10.3934/dcdsb.2015.20.1155 – ident: 44 doi: 10.1016/S0294-1449(16)30180-9 – ident: 33 doi: 10.1007/s00220-006-0079-0 – ident: 51 doi: 10.1063/1.2157052 – year: 1917 ident: 13 publication-title: Leçons sur les Fonctions Monogènes Uniformes d’une Variable Complexe. Rédigées par G. Julia. – ident: 52 doi: 10.1142/S0129055X96000135 – ident: 24 doi: 10.1016/j.jde.2013.05.001 – year: 1952 ident: 15 publication-title: Conformal Representation – year: 1954 ident: 16 – ident: 87 doi: 10.1002/cpa.3160280104 – ident: 11 doi: 10.1142/3031 – volume: 20 start-page: 265 year: 1966 ident: 66 publication-title: Ann. Scuola Norm. Sup. Pisa (3) – ident: 40 doi: 10.1007/978-1-4613-9092-3_12 – ident: 49 doi: 10.1007/s002200200599 – volume: 1 start-page: 315 year: 1957 ident: 60 publication-title: Proc. of the Int. Congress of Mathematicians – year: 1990 ident: 63 publication-title: Large-Order Behaviour of Perturbation Theory – year: 2011 ident: 55 – ident: 32 doi: 10.1142/S0219199713500223 – ident: 61 doi: 10.1142/4733 – year: 1967 ident: 3 publication-title: Transversal Mappings and Flows – ident: 76 doi: 10.1007/BF01247129 – ident: 1 doi: 10.1007/978-3-642-93469-8 – start-page: 930385 year: 2012 ident: 64 publication-title: Abstr. Appl. Anal. doi: 10.1155/2012/930385 – year: 1996 ident: 9 publication-title: Quasi-Periodic Motions in Families of Dynamical Systems – ident: 78 doi: 10.1007/BF01360131 – ident: 75 doi: 10.1002/cpa.3160290615 – year: 1994 ident: 5 publication-title: From Divergent Power Series to Analytic Functions doi: 10.1007/BFb0073564 – volume: 25 start-page: 21 issn: 0373-2436 year: 1961 ident: 4 publication-title: Izv. Akad. Nauk SSSR Ser. Mat. – ident: 59 doi: 10.1007/978-94-011-4673-9_14 – ident: 22 doi: 10.1007/s10884-013-9319-0 – ident: 27 doi: 10.1007/s10955-010-0085-7 – volume: 23 year: 2012 ident: 30 publication-title: Chaos – ident: 6 doi: 10.1007/s00014-002-8345-z – year: 2017 ident: 20 publication-title: SIAM J. Math. Anal. – year: 1987 ident: 72 publication-title: Les Méthodes Nouvelles de la Mécanique Céleste (Tome II) – ident: 81 doi: 10.1063/1.524408 – year: 1954 ident: 17 – volume: 18 start-page: 855 issn: 0951-7715 year: 2005 ident: 37 publication-title: Nonlinearity doi: 10.1088/0951-7715/18/2/020 – ident: 41 doi: 10.1103/PhysRevLett.73.1459 – ident: 48 doi: 10.1017/S0143385709000583 – year: 1970 ident: 82 publication-title: Singular Integrals and Differentiability Properties of Functions – ident: 31 doi: 10.1063/1.4836777 – year: 2016 ident: 21 – volume: 5 start-page: 157 issn: 1078-0947 year: 1999 ident: 38 publication-title: Discrete Contin. Dyn. Syst. doi: 10.3934/dcds.1999.5.157 – year: 2009 ident: 10 – ident: 84 doi: 10.1090/S0002-9947-1936-1501875-0 – year: 1969 ident: 70 publication-title: Topics in Dynamics. I: Flows – ident: 79 doi: 10.3934/dcdsb.2012.17.2561 – volume: 23 start-page: 2029 issn: 0951-7715 year: 2010 ident: 28 publication-title: Nonlinearity doi: 10.1088/0951-7715/23/9/001 – year: 1980 ident: 77 publication-title: Diophantine Approximation – ident: 2 doi: 10.4213/rm9372 – ident: 39 doi: 10.1090/S0002-9947-99-02320-X – ident: 67 doi: 10.1007/BF01399536 – ident: 18 doi: 10.1007/s00205-008-0141-5 – ident: 47 doi: 10.1063/1.2213790 – ident: 45 doi: 10.1080/026811199281930 |
SSID | ssj0011823 |
Score | 2.2426 |
Snippet | Conformally symplectic systems are characterized by the property that they transform a symplectic form into a multiple of itself. The limit of small... |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 3151 |
SubjectTerms | dissipative systems domains of analyticity KAM theory |
Title | Domains of analyticity and Lindstedt expansions of KAM tori in some dissipative perturbations of Hamiltonian systems |
URI | https://iopscience.iop.org/article/10.1088/1361-6544/aa7738 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS91AEB_8QGgP9RutreyhPXjIey-b7GaDJ6mVp-VZDwoehLBfgYeaPEwsbf_6ziQx2KIivW3CJFlmP-aXmdnfAHziJtQW11CQShEFuEvqwNjYBl6FOld4Uwo6KDw5leOL-ORSXM7Bfn8Wppx1W_8Amy1RcKvCLiFODcNIhoEUcTzUOkkiNQ-LkZKSyhccfz_rQwgInPs68kkSii5G-dQb_rJJ8_jdRybmaBmuHjrXZpZcD-5rM7C__-Ft_M_er8C7Dnqyg1Z0FeZ8sQZvHxES4tWkZ3Gt1mCpSQ-11TrUh-WtnhYVK3OmicaEcrHrX9h2jP7qyWdaM_8TtxbyvjVy3w4mjBhI2LRgVXnrGYX-mwTuH57N_B3aOtO6C0l6TI4WxKE4W1nLLl1twMXR1_Mv46Cr1xBYrkZ1oFIdo1FECBhr63KppPPcChdyO-K5E4nPDQ-NcYnKccRCzROjk0iSP1MKkUebsFCUhd8Cpka5Sa2zNuU6jkeaaNdMinBEOERwLtqG4cOIZbYjM6eaGjdZE1RXKiM9Z6TnrNXzNuz1T8xaIo8XZD_j8GXdaq6elXv_SrkdeMMJDTR5gx9gob679x8Ry9Rmt5mzfwB0UusE |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9VAEJ8IRKMHQdQI-LEHPXjoe6-73e32SMSXh_CQgyTc6n4mRGlfaDHKX89MW17QqDHxtm2mX7Mf8-vM7G8AXnObGodzKCmUFAmukiaxLnNJ0KmJGk8qSRuF50dqdpJ9OJWnQ53Tbi9MvRiW_hE2e6LgXoVDQpwep0KliZJZNjYmz4UeL3xcgTUplCDy_P2Px8swAoLnZS35PE_lEKf83V1-sksr-OxbZma6Dp9vXrDPLvkyumztyF39wt34H1-wAQ8HCMp2e_FHcCdUm_DgFjEhHs2XbK7NJtzt0kRd8xjavfrcnFUNqyMzRGdCOdntD2x7Rn_35DttWfiOSwx54Tq5g905IyYSdlaxpj4PjFIAukTub4EtwgXaPNu7DUl6Rg4XxKM4alnPMt08gZPp-0_vZslQtyFxXE_aRBcmQ-OIUDAzzkellQ_cSZ9yN-HRyzxEy1Nrfa6j0Co1PLcmF4r8mkrKKJ7CalVX4RkwPYm2cN65gpssmxiiX7MFwhLpEcl5sQXjm14r3UBqTrU1vpZdcF3rknRdkq7LXtdb8HZ5xaIn9PiL7BvswnKY1c0f5bb_Ue4V3Dvem5aH-0cHO3CfE0DoUgmfw2p7cRleILxp7ctuCF8DTxnwaA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Domains+of+analyticity+and+Lindstedt+expansions+of+KAM+tori+in+some+dissipative+perturbations+of+Hamiltonian+systems&rft.jtitle=Nonlinearity&rft.au=Calleja%2C+Renato+C&rft.au=Celletti%2C+Alessandra&rft.au=de+la+Llave%2C+Rafael&rft.date=2017-08-01&rft.pub=IOP+Publishing&rft.issn=0951-7715&rft.eissn=1361-6544&rft.volume=30&rft.issue=8&rft.spage=3151&rft.epage=3202&rft_id=info:doi/10.1088%2F1361-6544%2Faa7738&rft.externalDocID=nonaa7738 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-7715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-7715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-7715&client=summon |