Laser Wakefield Acceleration Using Mid-Infrared Laser Pulses

We study a laser wakefield acceleration driven by mid-infrared (mid-IR) laser pulses through two-dimensional particle-in-cell simulations. Since a mid-IR laser pulse can deliver a larger ponderomotive force as compared with the usual 0.8 μm wavelength laser pulse, it is found that electron self-inje...

Full description

Saved in:
Bibliographic Details
Published inChinese physics letters Vol. 33; no. 9; pp. 77 - 81
Main Author 张国博 N. A. M. Hafz 马燕云 钱列加 邵福球 盛政明
Format Journal Article
LanguageEnglish
Published 01.09.2016
Subjects
Online AccessGet full text
ISSN0256-307X
1741-3540
DOI10.1088/0256-307X/33/9/095202

Cover

Abstract We study a laser wakefield acceleration driven by mid-infrared (mid-IR) laser pulses through two-dimensional particle-in-cell simulations. Since a mid-IR laser pulse can deliver a larger ponderomotive force as compared with the usual 0.8 μm wavelength laser pulse, it is found that electron self-injection into the wake wave occurs at an earlier time, the plasma density threshold for injection becomes lower, and the electron beam charge is substantially enhanced. Meanwhile, our study also shows that quasimonoenergetic electron beams with a narrow energy-spread can be generated by using mid-IR laser pulses. Such a mid-IR laser pulse can provide a feasible method for obtaining a high quality and high charge electron beam. Therefore, the current efforts on constructing mid-IR terawatt laser systems can greatly benefit the laser wakefield acceleration research.
AbstractList We study a laser wakefield acceleration driven by mid-infrared (mid-IR) laser pulses through two-dimensional particle-in-cell simulations. Since a mid-IR laser pulse can deliver a larger ponderomotive force as compared with the usual 0.8 μm wavelength laser pulse, it is found that electron self-injection into the wake wave occurs at an earlier time, the plasma density threshold for injection becomes lower, and the electron beam charge is substantially enhanced. Meanwhile, our study also shows that quasimonoenergetic electron beams with a narrow energy-spread can be generated by using mid-IR laser pulses. Such a mid-IR laser pulse can provide a feasible method for obtaining a high quality and high charge electron beam. Therefore, the current efforts on constructing mid-IR terawatt laser systems can greatly benefit the laser wakefield acceleration research.
Author 张国博 N. A. M. Hafz 马燕云 钱列加 邵福球 盛政明
AuthorAffiliation College of Science, National University of Defense Technology, Changsha 410073 Key Laboratory for Laser Plasmas (MOE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240 SUPA, Department of Physics, University of Strathelyde, Glasgow G40NG, UK
Author_xml – sequence: 1
  fullname: 张国博 N. A. M. Hafz 马燕云 钱列加 邵福球 盛政明
BookMark eNqFkD1PwzAQhi1UJNrCT0CK2EPu_FEngqWq-KhUBAMVbJZjO8UQErDDwL8noVUHFqa74X3u9LwTMmraxhFyinCOkOcZUDFLGcjnjLGsyKAQFOgBGaPkmDLBYUTG-8wRmcT4CoCYI47J5UpHF5In_eYq72qbzI1xtQu6822TrKNvNsmdt-myqYIOzibb_MNXHV08JoeV7peT3ZyS9fXV4-I2Xd3fLBfzVWpoDl0qK0tpjppahyildIxzQ8FgQRkXZcV0CSihFBwNZaUz2paFLSgvDe9dNJsSsb1rQhtjcJX6CP5dh2-FoIYK1KCnBj3FmCrUtoKeu_jDGd_9mnVB-_pf-mxHv7TN5rNvYv92JgFzCijYD4eybiE
CitedBy_id crossref_primary_10_7498_aps_69_20190729
crossref_primary_10_1088_0256_307X_41_2_024101
crossref_primary_10_1088_1674_1056_acae79
crossref_primary_10_1088_1674_1056_ac872c
crossref_primary_10_1364_PRJ_5_000669
crossref_primary_10_1016_j_nima_2018_01_050
crossref_primary_10_1016_j_physleta_2025_130399
crossref_primary_10_1017_hpl_2023_51
crossref_primary_10_1088_1674_1056_abfb59
crossref_primary_10_1109_JSTQE_2019_2925720
crossref_primary_10_1088_1674_1056_acdc0c
crossref_primary_10_1364_JOSAB_509609
Cites_doi 10.1063/1.4906883
10.1103/PhysRevLett.113.245002
10.1063/1.1799371
10.1063/1.2728773
10.1103/PhysRevSTAB.16.011301
10.1063/1.4754868
10.1063/1.3368678
10.1063/1.872001
10.1103/PhysRevSTAB.17.101301
10.1103/PhysRevLett.104.025003
10.1038/srep14659
10.1080/00107510802221630
10.1063/1.1319526
10.1038/nphoton.2008.155
10.1103/PhysRevLett.106.225001
10.1063/1.2179194
10.1063/1.3695389
10.1063/1.4932997
10.1364/OL.37.004973
10.1038/nphoton.2014.256
10.1063/1.2388958
10.1103/RevModPhys.81.1229
10.1364/OE.22.029578
10.1364/OL.35.002340
10.1364/OL.36.002608
10.1063/1.4927583
10.1103/PhysRevSTAB.10.061301
10.1063/1.3689922
10.1007/s003400200795
10.1063/1.4922053
10.1103/PhysRevLett.102.065001
10.1063/1.4908552
10.1038/srep13244
10.1103/PhysRevLett.43.267
10.1103/PhysRevLett.110.045001
10.1103/PhysRevE.85.046403
10.1103/PhysRevLett.115.055004
10.1063/1.4943419
ContentType Journal Article
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
DOI 10.1088/0256-307X/33/9/095202
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Laser Wakefield Acceleration Using Mid-Infrared Laser Pulses
EISSN 1741-3540
EndPage 81
ExternalDocumentID 10_1088_0256_307X_33_9_095202
670182015
GroupedDBID 02O
042
1JI
1PV
1WK
29B
2RA
4.4
5B3
5GY
5VR
5VS
5ZH
7.M
7.Q
92L
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFUIB
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CEBXE
CJUJL
CQIGP
CRLBU
CS3
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FEDTE
HAK
HVGLF
IHE
IJHAN
IOP
IZVLO
JCGBZ
KNG
KOT
LAP
M45
N5L
N9A
NS0
NT-
NT.
P2P
PJBAE
Q02
R4D
RIN
RNS
RO9
ROL
RPA
RW3
S3P
SY9
T37
UCJ
W28
XPP
~02
~WA
-SA
-S~
AAYXX
ACARI
ADEQX
AERVB
AGQPQ
AOAED
ARNYC
CAJEA
CITATION
Q--
TGP
U1G
U5K
ID FETCH-LOGICAL-c280t-7fd2281a2de11777e344c20c192345bf3ab0170b541c23becadb9d924bc4952a3
ISSN 0256-307X
IngestDate Tue Jul 01 01:35:30 EDT 2025
Thu Apr 24 23:12:03 EDT 2025
Wed Feb 14 10:15:33 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License http://iopscience.iop.org/info/page/text-and-data-mining
http://iopscience.iop.org/page/copyright
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c280t-7fd2281a2de11777e344c20c192345bf3ab0170b541c23becadb9d924bc4952a3
Notes 11-1959/O4
Guo-Bo Zhang1,2, N. A. M. Hafz2,3, Yan-Yun1,3, Lie-Jia Qian2,3, Fu-Qiu Shao1, Zheng-Ming Sheng2,3,4( College of Science, National University of Defense Technology, Changsha 410073 2Key Laboratory for Laser Plasmas (MOE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 3 Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240 4SUPA, Department of Physics, University of Strathclyde, Glasgow G40NG, UK)
We study a laser wakefield acceleration driven by mid-infrared (mid-IR) laser pulses through two-dimensional particle-in-cell simulations. Since a mid-IR laser pulse can deliver a larger ponderomotive force as compared with the usual 0.8 μm wavelength laser pulse, it is found that electron self-injection into the wake wave occurs at an earlier time, the plasma density threshold for injection becomes lower, and the electron beam charge is substantially enhanced. Meanwhile, our study also shows that quasimonoenergetic electron beams with a narrow energy-spread can be generated by using mid-IR laser pulses. Such a mid-IR laser pulse can provide a feasible method for obtaining a high quality and high charge electron beam. Therefore, the current efforts on constructing mid-IR terawatt laser systems can greatly benefit the laser wakefield acceleration research.
PageCount 5
ParticipantIDs crossref_primary_10_1088_0256_307X_33_9_095202
crossref_citationtrail_10_1088_0256_307X_33_9_095202
chongqing_primary_670182015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-09-01
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09-01
  day: 01
PublicationDecade 2010
PublicationTitle Chinese physics letters
PublicationTitleAlternate Chinese Physics Letters
PublicationYear 2016
References 22
44
23
45
24
25
26
27
28
30
31
10
Zhang G B (16) 2013; 62
32
Ma Y Y (39) 2002; 19
11
12
34
13
35
14
36
15
37
38
18
19
Yu T P (33) 2013; 55
Ge Z Y (7) 2012; 14
Jin Z Y (29) 2009; 26
Wu H C (20) 2010; 27
1
2
Zhang G B (17) 2013; 62
3
4
5
6
8
9
40
41
42
21
43
References_xml – ident: 42
  doi: 10.1063/1.4906883
– ident: 25
  doi: 10.1103/PhysRevLett.113.245002
– ident: 4
  doi: 10.1063/1.1799371
– ident: 19
  doi: 10.1063/1.2728773
– ident: 8
  doi: 10.1103/PhysRevSTAB.16.011301
– ident: 9
  doi: 10.1063/1.4754868
– ident: 43
  doi: 10.1063/1.3368678
– ident: 44
  doi: 10.1063/1.872001
– volume: 14
  issn: 1367-2630
  year: 2012
  ident: 7
  publication-title: New J. Phys.
– ident: 13
  doi: 10.1103/PhysRevSTAB.17.101301
– ident: 12
  doi: 10.1103/PhysRevLett.104.025003
– ident: 14
  doi: 10.1038/srep14659
– volume: 27
  issn: 0256-307X
  year: 2010
  ident: 20
  publication-title: Chin. Phys. Lett.
– ident: 36
  doi: 10.1080/00107510802221630
– ident: 41
  doi: 10.1063/1.1319526
– ident: 27
  doi: 10.1038/nphoton.2008.155
– ident: 18
  doi: 10.1103/PhysRevLett.106.225001
– ident: 10
  doi: 10.1063/1.2179194
– volume: 19
  start-page: 311
  year: 2002
  ident: 39
  publication-title: Chin. J. Comput. Phys.
– ident: 2
  doi: 10.1063/1.3695389
– volume: 26
  issn: 0256-307X
  year: 2009
  ident: 29
  publication-title: Chin. Phys. Lett.
– ident: 24
  doi: 10.1063/1.4932997
– ident: 35
  doi: 10.1364/OL.37.004973
– ident: 38
  doi: 10.1038/nphoton.2014.256
– ident: 23
  doi: 10.1063/1.2388958
– ident: 26
  doi: 10.1103/RevModPhys.81.1229
– ident: 28
  doi: 10.1364/OE.22.029578
– ident: 34
  doi: 10.1364/OL.35.002340
– ident: 37
  doi: 10.1364/OL.36.002608
– volume: 62
  issn: 0372-736X
  year: 2013
  ident: 16
  publication-title: Acta Phys. Sin.
– ident: 21
  doi: 10.1063/1.4927583
– ident: 40
  doi: 10.1103/PhysRevSTAB.10.061301
– ident: 11
  doi: 10.1063/1.3689922
– volume: 55
  issn: 0741-3335
  year: 2013
  ident: 33
  publication-title: Plasma Phys. Control. Fusion
– ident: 3
  doi: 10.1007/s003400200795
– ident: 31
  doi: 10.1063/1.4922053
– ident: 6
  doi: 10.1103/PhysRevLett.102.065001
– ident: 30
  doi: 10.1063/1.4908552
– ident: 22
  doi: 10.1038/srep13244
– ident: 1
  doi: 10.1103/PhysRevLett.43.267
– volume: 62
  issn: 0372-736X
  year: 2013
  ident: 17
  publication-title: Acta Phys. Sin.
– ident: 32
  doi: 10.1103/PhysRevLett.110.045001
– ident: 15
  doi: 10.1103/PhysRevE.85.046403
– ident: 45
  doi: 10.1103/PhysRevLett.115.055004
– ident: 5
  doi: 10.1063/1.4943419
SSID ssj0011811
Score 2.16721
Snippet We study a laser wakefield acceleration driven by mid-infrared (mid-IR) laser pulses through two-dimensional particle-in-cell simulations. Since a mid-IR laser...
SourceID crossref
chongqing
SourceType Enrichment Source
Index Database
Publisher
StartPage 77
SubjectTerms 中红外激光
光脉冲产生
尾波场
电子束
等离子体密度
红外激光脉冲
脉冲激光
驱动激光
Title Laser Wakefield Acceleration Using Mid-Infrared Laser Pulses
URI http://lib.cqvip.com/qk/84212X/201609/670182015.html
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtswTAg67DjsiWXrBh_Gk-HEliVbAnaRUwfpsHQ9tFhuhp_bsCFd0-TS_9t_jZQf86EotgGBQYimxIiESMkUydg7qUUhI6G9OqIrOT6VedGFj5BE41LLmhd0G3l9Fq0uxYeN3Ewmv0ZRS4d9MStv77xX8j9SxTaUK92S_QfJDp1iA8IoX3yihPH5VzL-iCZo537Ov9c2EI1KP6AV6WTaBgOsv1Xe6bbZ2Tjz9v3zA5rDm7FXCqmARIE5gVSCTiBBIAalwWgCtA8qIlSyBJNAGoEyYCSkS0gWoA2kChRSBYTSiI07cjXEyVrqBRh_NIIEdYLU7tnMNTN3PXNXeXPrQmqHNQvbBw4uLXcGdGBxmtuBkFiBji2AzPgWpxAnic4gE8ue9dC1UEI_YlDQ_yAAuU7Hpx5BNIR19Ysjump0brZp7Vi7eKN35NE51khv9Whx7urFdGY-uNOA4KJrc210vSNMJ95L3X7k4j7_YzeHaMYo9ikNPqU6eMDj2EYLnH46Hz5moRNlCzf2nfYXyZSaD23zMJzreTsEpfn4erX9co1qMnKXRn7PxWP2qNuwOKbVvidsUm-fsoc2cLi8ecbeW51yBh10xjroWB10xjrotO-3OvicXS7Ti8XK6ypyeCVX_t6Lm4pzFeS8quljf1yHQpTcL2mbIGTRhHlB-ZgKKYKSh7g85FWhK9ziFyVuxHkevmBH26tt_ZI5uiplKBDji1qoIC7CoGxiUTWRLP2gklP2epiE7GebeSUbZnrKRD8tWdkls6eaKj8yG1ShVEYzm9HMZmGY6ayd2SmbDWR9n_cSvLqXi2N2tN8d6jfolu6Lt1bovwHcqmZj
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Laser+Wakefield+Acceleration+Using+Mid-Infrared+Laser+Pulses&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%89%A9%E7%90%86%E5%BF%AB%E6%8A%A5%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E5%BC%A0%E5%9B%BD%E5%8D%9A+N.+A.+M.+Hafz+%E9%A9%AC%E7%87%95%E4%BA%91+%E9%92%B1%E5%88%97%E5%8A%A0+%E9%82%B5%E7%A6%8F%E7%90%83+%E7%9B%9B%E6%94%BF%E6%98%8E&rft.date=2016-09-01&rft.issn=0256-307X&rft.eissn=1741-3540&rft.issue=9&rft.spage=77&rft.epage=81&rft_id=info:doi/10.1088%2F0256-307X%2F33%2F9%2F095202&rft.externalDocID=670182015
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84212X%2F84212X.jpg