Laser Wakefield Acceleration Using Mid-Infrared Laser Pulses
We study a laser wakefield acceleration driven by mid-infrared (mid-IR) laser pulses through two-dimensional particle-in-cell simulations. Since a mid-IR laser pulse can deliver a larger ponderomotive force as compared with the usual 0.8 μm wavelength laser pulse, it is found that electron self-inje...
Saved in:
Published in | Chinese physics letters Vol. 33; no. 9; pp. 77 - 81 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.09.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0256-307X 1741-3540 |
DOI | 10.1088/0256-307X/33/9/095202 |
Cover
Abstract | We study a laser wakefield acceleration driven by mid-infrared (mid-IR) laser pulses through two-dimensional particle-in-cell simulations. Since a mid-IR laser pulse can deliver a larger ponderomotive force as compared with the usual 0.8 μm wavelength laser pulse, it is found that electron self-injection into the wake wave occurs at an earlier time, the plasma density threshold for injection becomes lower, and the electron beam charge is substantially enhanced. Meanwhile, our study also shows that quasimonoenergetic electron beams with a narrow energy-spread can be generated by using mid-IR laser pulses. Such a mid-IR laser pulse can provide a feasible method for obtaining a high quality and high charge electron beam. Therefore, the current efforts on constructing mid-IR terawatt laser systems can greatly benefit the laser wakefield acceleration research. |
---|---|
AbstractList | We study a laser wakefield acceleration driven by mid-infrared (mid-IR) laser pulses through two-dimensional particle-in-cell simulations. Since a mid-IR laser pulse can deliver a larger ponderomotive force as compared with the usual 0.8 μm wavelength laser pulse, it is found that electron self-injection into the wake wave occurs at an earlier time, the plasma density threshold for injection becomes lower, and the electron beam charge is substantially enhanced. Meanwhile, our study also shows that quasimonoenergetic electron beams with a narrow energy-spread can be generated by using mid-IR laser pulses. Such a mid-IR laser pulse can provide a feasible method for obtaining a high quality and high charge electron beam. Therefore, the current efforts on constructing mid-IR terawatt laser systems can greatly benefit the laser wakefield acceleration research. |
Author | 张国博 N. A. M. Hafz 马燕云 钱列加 邵福球 盛政明 |
AuthorAffiliation | College of Science, National University of Defense Technology, Changsha 410073 Key Laboratory for Laser Plasmas (MOE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240 SUPA, Department of Physics, University of Strathelyde, Glasgow G40NG, UK |
Author_xml | – sequence: 1 fullname: 张国博 N. A. M. Hafz 马燕云 钱列加 邵福球 盛政明 |
BookMark | eNqFkD1PwzAQhi1UJNrCT0CK2EPu_FEngqWq-KhUBAMVbJZjO8UQErDDwL8noVUHFqa74X3u9LwTMmraxhFyinCOkOcZUDFLGcjnjLGsyKAQFOgBGaPkmDLBYUTG-8wRmcT4CoCYI47J5UpHF5In_eYq72qbzI1xtQu6822TrKNvNsmdt-myqYIOzibb_MNXHV08JoeV7peT3ZyS9fXV4-I2Xd3fLBfzVWpoDl0qK0tpjppahyildIxzQ8FgQRkXZcV0CSihFBwNZaUz2paFLSgvDe9dNJsSsb1rQhtjcJX6CP5dh2-FoIYK1KCnBj3FmCrUtoKeu_jDGd_9mnVB-_pf-mxHv7TN5rNvYv92JgFzCijYD4eybiE |
CitedBy_id | crossref_primary_10_7498_aps_69_20190729 crossref_primary_10_1088_0256_307X_41_2_024101 crossref_primary_10_1088_1674_1056_acae79 crossref_primary_10_1088_1674_1056_ac872c crossref_primary_10_1364_PRJ_5_000669 crossref_primary_10_1016_j_nima_2018_01_050 crossref_primary_10_1016_j_physleta_2025_130399 crossref_primary_10_1017_hpl_2023_51 crossref_primary_10_1088_1674_1056_abfb59 crossref_primary_10_1109_JSTQE_2019_2925720 crossref_primary_10_1088_1674_1056_acdc0c crossref_primary_10_1364_JOSAB_509609 |
Cites_doi | 10.1063/1.4906883 10.1103/PhysRevLett.113.245002 10.1063/1.1799371 10.1063/1.2728773 10.1103/PhysRevSTAB.16.011301 10.1063/1.4754868 10.1063/1.3368678 10.1063/1.872001 10.1103/PhysRevSTAB.17.101301 10.1103/PhysRevLett.104.025003 10.1038/srep14659 10.1080/00107510802221630 10.1063/1.1319526 10.1038/nphoton.2008.155 10.1103/PhysRevLett.106.225001 10.1063/1.2179194 10.1063/1.3695389 10.1063/1.4932997 10.1364/OL.37.004973 10.1038/nphoton.2014.256 10.1063/1.2388958 10.1103/RevModPhys.81.1229 10.1364/OE.22.029578 10.1364/OL.35.002340 10.1364/OL.36.002608 10.1063/1.4927583 10.1103/PhysRevSTAB.10.061301 10.1063/1.3689922 10.1007/s003400200795 10.1063/1.4922053 10.1103/PhysRevLett.102.065001 10.1063/1.4908552 10.1038/srep13244 10.1103/PhysRevLett.43.267 10.1103/PhysRevLett.110.045001 10.1103/PhysRevE.85.046403 10.1103/PhysRevLett.115.055004 10.1063/1.4943419 |
ContentType | Journal Article |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION |
DOI | 10.1088/0256-307X/33/9/095202 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库- 镜像站点 CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | Laser Wakefield Acceleration Using Mid-Infrared Laser Pulses |
EISSN | 1741-3540 |
EndPage | 81 |
ExternalDocumentID | 10_1088_0256_307X_33_9_095202 670182015 |
GroupedDBID | 02O 042 1JI 1PV 1WK 29B 2RA 4.4 5B3 5GY 5VR 5VS 5ZH 7.M 7.Q 92L AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFUIB AFYNE AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BBWZM CEBXE CJUJL CQIGP CRLBU CS3 EBS EDWGO EJD EMSAF EPQRW EQZZN FEDTE HAK HVGLF IHE IJHAN IOP IZVLO JCGBZ KNG KOT LAP M45 N5L N9A NS0 NT- NT. P2P PJBAE Q02 R4D RIN RNS RO9 ROL RPA RW3 S3P SY9 T37 UCJ W28 XPP ~02 ~WA -SA -S~ AAYXX ACARI ADEQX AERVB AGQPQ AOAED ARNYC CAJEA CITATION Q-- TGP U1G U5K |
ID | FETCH-LOGICAL-c280t-7fd2281a2de11777e344c20c192345bf3ab0170b541c23becadb9d924bc4952a3 |
ISSN | 0256-307X |
IngestDate | Tue Jul 01 01:35:30 EDT 2025 Thu Apr 24 23:12:03 EDT 2025 Wed Feb 14 10:15:33 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | http://iopscience.iop.org/info/page/text-and-data-mining http://iopscience.iop.org/page/copyright |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c280t-7fd2281a2de11777e344c20c192345bf3ab0170b541c23becadb9d924bc4952a3 |
Notes | 11-1959/O4 Guo-Bo Zhang1,2, N. A. M. Hafz2,3, Yan-Yun1,3, Lie-Jia Qian2,3, Fu-Qiu Shao1, Zheng-Ming Sheng2,3,4( College of Science, National University of Defense Technology, Changsha 410073 2Key Laboratory for Laser Plasmas (MOE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 3 Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240 4SUPA, Department of Physics, University of Strathclyde, Glasgow G40NG, UK) We study a laser wakefield acceleration driven by mid-infrared (mid-IR) laser pulses through two-dimensional particle-in-cell simulations. Since a mid-IR laser pulse can deliver a larger ponderomotive force as compared with the usual 0.8 μm wavelength laser pulse, it is found that electron self-injection into the wake wave occurs at an earlier time, the plasma density threshold for injection becomes lower, and the electron beam charge is substantially enhanced. Meanwhile, our study also shows that quasimonoenergetic electron beams with a narrow energy-spread can be generated by using mid-IR laser pulses. Such a mid-IR laser pulse can provide a feasible method for obtaining a high quality and high charge electron beam. Therefore, the current efforts on constructing mid-IR terawatt laser systems can greatly benefit the laser wakefield acceleration research. |
PageCount | 5 |
ParticipantIDs | crossref_primary_10_1088_0256_307X_33_9_095202 crossref_citationtrail_10_1088_0256_307X_33_9_095202 chongqing_primary_670182015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-09-01 |
PublicationDateYYYYMMDD | 2016-09-01 |
PublicationDate_xml | – month: 09 year: 2016 text: 2016-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Chinese physics letters |
PublicationTitleAlternate | Chinese Physics Letters |
PublicationYear | 2016 |
References | 22 44 23 45 24 25 26 27 28 30 31 10 Zhang G B (16) 2013; 62 32 Ma Y Y (39) 2002; 19 11 12 34 13 35 14 36 15 37 38 18 19 Yu T P (33) 2013; 55 Ge Z Y (7) 2012; 14 Jin Z Y (29) 2009; 26 Wu H C (20) 2010; 27 1 2 Zhang G B (17) 2013; 62 3 4 5 6 8 9 40 41 42 21 43 |
References_xml | – ident: 42 doi: 10.1063/1.4906883 – ident: 25 doi: 10.1103/PhysRevLett.113.245002 – ident: 4 doi: 10.1063/1.1799371 – ident: 19 doi: 10.1063/1.2728773 – ident: 8 doi: 10.1103/PhysRevSTAB.16.011301 – ident: 9 doi: 10.1063/1.4754868 – ident: 43 doi: 10.1063/1.3368678 – ident: 44 doi: 10.1063/1.872001 – volume: 14 issn: 1367-2630 year: 2012 ident: 7 publication-title: New J. Phys. – ident: 13 doi: 10.1103/PhysRevSTAB.17.101301 – ident: 12 doi: 10.1103/PhysRevLett.104.025003 – ident: 14 doi: 10.1038/srep14659 – volume: 27 issn: 0256-307X year: 2010 ident: 20 publication-title: Chin. Phys. Lett. – ident: 36 doi: 10.1080/00107510802221630 – ident: 41 doi: 10.1063/1.1319526 – ident: 27 doi: 10.1038/nphoton.2008.155 – ident: 18 doi: 10.1103/PhysRevLett.106.225001 – ident: 10 doi: 10.1063/1.2179194 – volume: 19 start-page: 311 year: 2002 ident: 39 publication-title: Chin. J. Comput. Phys. – ident: 2 doi: 10.1063/1.3695389 – volume: 26 issn: 0256-307X year: 2009 ident: 29 publication-title: Chin. Phys. Lett. – ident: 24 doi: 10.1063/1.4932997 – ident: 35 doi: 10.1364/OL.37.004973 – ident: 38 doi: 10.1038/nphoton.2014.256 – ident: 23 doi: 10.1063/1.2388958 – ident: 26 doi: 10.1103/RevModPhys.81.1229 – ident: 28 doi: 10.1364/OE.22.029578 – ident: 34 doi: 10.1364/OL.35.002340 – ident: 37 doi: 10.1364/OL.36.002608 – volume: 62 issn: 0372-736X year: 2013 ident: 16 publication-title: Acta Phys. Sin. – ident: 21 doi: 10.1063/1.4927583 – ident: 40 doi: 10.1103/PhysRevSTAB.10.061301 – ident: 11 doi: 10.1063/1.3689922 – volume: 55 issn: 0741-3335 year: 2013 ident: 33 publication-title: Plasma Phys. Control. Fusion – ident: 3 doi: 10.1007/s003400200795 – ident: 31 doi: 10.1063/1.4922053 – ident: 6 doi: 10.1103/PhysRevLett.102.065001 – ident: 30 doi: 10.1063/1.4908552 – ident: 22 doi: 10.1038/srep13244 – ident: 1 doi: 10.1103/PhysRevLett.43.267 – volume: 62 issn: 0372-736X year: 2013 ident: 17 publication-title: Acta Phys. Sin. – ident: 32 doi: 10.1103/PhysRevLett.110.045001 – ident: 15 doi: 10.1103/PhysRevE.85.046403 – ident: 45 doi: 10.1103/PhysRevLett.115.055004 – ident: 5 doi: 10.1063/1.4943419 |
SSID | ssj0011811 |
Score | 2.16721 |
Snippet | We study a laser wakefield acceleration driven by mid-infrared (mid-IR) laser pulses through two-dimensional particle-in-cell simulations. Since a mid-IR laser... |
SourceID | crossref chongqing |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 77 |
SubjectTerms | 中红外激光 光脉冲产生 尾波场 电子束 等离子体密度 红外激光脉冲 脉冲激光 驱动激光 |
Title | Laser Wakefield Acceleration Using Mid-Infrared Laser Pulses |
URI | http://lib.cqvip.com/qk/84212X/201609/670182015.html |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtswTAg67DjsiWXrBh_Gk-HEliVbAnaRUwfpsHQ9tFhuhp_bsCFd0-TS_9t_jZQf86EotgGBQYimxIiESMkUydg7qUUhI6G9OqIrOT6VedGFj5BE41LLmhd0G3l9Fq0uxYeN3Ewmv0ZRS4d9MStv77xX8j9SxTaUK92S_QfJDp1iA8IoX3yihPH5VzL-iCZo537Ov9c2EI1KP6AV6WTaBgOsv1Xe6bbZ2Tjz9v3zA5rDm7FXCqmARIE5gVSCTiBBIAalwWgCtA8qIlSyBJNAGoEyYCSkS0gWoA2kChRSBYTSiI07cjXEyVrqBRh_NIIEdYLU7tnMNTN3PXNXeXPrQmqHNQvbBw4uLXcGdGBxmtuBkFiBji2AzPgWpxAnic4gE8ue9dC1UEI_YlDQ_yAAuU7Hpx5BNIR19Ysjump0brZp7Vi7eKN35NE51khv9Whx7urFdGY-uNOA4KJrc210vSNMJ95L3X7k4j7_YzeHaMYo9ikNPqU6eMDj2EYLnH46Hz5moRNlCzf2nfYXyZSaD23zMJzreTsEpfn4erX9co1qMnKXRn7PxWP2qNuwOKbVvidsUm-fsoc2cLi8ecbeW51yBh10xjroWB10xjrotO-3OvicXS7Ti8XK6ypyeCVX_t6Lm4pzFeS8quljf1yHQpTcL2mbIGTRhHlB-ZgKKYKSh7g85FWhK9ziFyVuxHkevmBH26tt_ZI5uiplKBDji1qoIC7CoGxiUTWRLP2gklP2epiE7GebeSUbZnrKRD8tWdkls6eaKj8yG1ShVEYzm9HMZmGY6ayd2SmbDWR9n_cSvLqXi2N2tN8d6jfolu6Lt1bovwHcqmZj |
linkProvider | IOP Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Laser+Wakefield+Acceleration+Using+Mid-Infrared+Laser+Pulses&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%89%A9%E7%90%86%E5%BF%AB%E6%8A%A5%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E5%BC%A0%E5%9B%BD%E5%8D%9A+N.+A.+M.+Hafz+%E9%A9%AC%E7%87%95%E4%BA%91+%E9%92%B1%E5%88%97%E5%8A%A0+%E9%82%B5%E7%A6%8F%E7%90%83+%E7%9B%9B%E6%94%BF%E6%98%8E&rft.date=2016-09-01&rft.issn=0256-307X&rft.eissn=1741-3540&rft.issue=9&rft.spage=77&rft.epage=81&rft_id=info:doi/10.1088%2F0256-307X%2F33%2F9%2F095202&rft.externalDocID=670182015 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84212X%2F84212X.jpg |