Performance enhancement of alkaline organic redox flow battery using catalyst including titanium oxide and Ketjenblack

Carbon felt (CF) doped by catalyst including titanium oxide and ketjen black (TiO 2 /KB-CF) is used as negative electrode to enhance the redox reactivity of napthoquinone (NQSO) and thus the performance of aqueous organic redox flow batteries (AORFBs). The redox reactivity of NQSO is better with TiO...

Full description

Saved in:
Bibliographic Details
Published inThe Korean journal of chemical engineering Vol. 39; no. 6; pp. 1624 - 1631
Main Authors Lee, Wonmi, Park, Gyunho, Schröder, Daniel, Kwon, Yongchai
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2022
Springer Nature B.V
한국화학공학회
Subjects
Online AccessGet full text
ISSN0256-1115
1975-7220
DOI10.1007/s11814-021-1040-9

Cover

Loading…
Abstract Carbon felt (CF) doped by catalyst including titanium oxide and ketjen black (TiO 2 /KB-CF) is used as negative electrode to enhance the redox reactivity of napthoquinone (NQSO) and thus the performance of aqueous organic redox flow batteries (AORFBs). The redox reactivity of NQSO is better with TiO 2 /KB-CF than with pristine CF (anodic current density of 13.3 and 19.8 mA·cm −2 , and cathodic current density of −15.7 and −21.9 mA·cm −2 with pristine CF and TiO 2 /KB-CF), while the reaction reversibility of NQSO is also enhanced in TiO 2 /KB-CF (ratio of peak current density is 0.84 and 0.9 with pristine CF and TiO 2 /KB-CF). These results are due to the hydrophilic and conductive properties of the TiO 2 /KB catalyst. TiO 2 can hold many hydroxyl groups that are hydrophilic and electro-active group, while KB is a conductive material that induces a fast electron transfer. With these benefits, the charge transfer resistance of the electrode is reduced from 1.8 Ω with pristine CF to 1.5 Ω with TiO 2 /KB-CF. In AORFB tests using NQSO and potassium ferrocyanide under alkaline supporting electrolyte, energy efficiency increased from 58% (pristine CF) to 61% (TiO 2 /KB-CF) with a low capacity loss rate of 0.006 Ah·17 −1 per cycle and the cross-over rate of active materials during cycling of AORFB was very low.
AbstractList Carbon felt (CF) doped by catalyst including titanium oxide and ketjen black (TiO2/KB-CF) is used as negative electrode to enhance the redox reactivity of napthoquinone (NQSO) and thus the performance of aqueous organic redox flow batteries (AORFBs). The redox reactivity of NQSO is better with TiO2/KB-CF than with pristine CF (anodic current density of 13.3 and 19.8 mA·cm−2, and cathodic current density of −15.7 and −21.9 mA·cm−2 with pristine CF and TiO2/KB-CF), while the reaction reversibility of NQSO is also enhanced in TiO2/KB-CF (ratio of peak current density is 0.84 and 0.9 with pristine CF and TiO2/KB-CF). These results are due to the hydrophilic and conductive properties of the TiO2/KB catalyst. TiO2 can hold many hydroxyl groups that are hydrophilic and electro-active group, while KB is a conductive material that induces a fast electron transfer. With these benefits, the charge transfer resistance of the electrode is reduced from 1.8 Ω with pristine CF to 1.5 Ω with TiO2/KB-CF. In AORFB tests using NQSO and potassium ferrocyanide under alkaline supporting electrolyte, energy efficiency increased from 58% (pristine CF) to 61% (TiO2/KB-CF) with a low capacity loss rate of 0.006 Ah·17−1 per cycle and the cross-over rate of active materials during cycling of AORFB was very low.
Carbon felt (CF) doped by catalyst including titanium oxide and ketjen black (TiO2/KB-CF) is used as negativeelectrode to enhance the redox reactivity of napthoquinone (NQSO) and thus the performance of aqueousorganic redox flow batteries (AORFBs). The redox reactivity of NQSO is better with TiO2/KB-CF than with pristine CF(anodic current density of 13.3 and 19.8mA∙cm2, and cathodic current density of 15.7 and 21.9mA∙cm2 withpristine CF and TiO2/KB-CF), while the reaction reversibility of NQSO is also enhanced in TiO2/KB-CF (ratio of peakcurrent density is 0.84 and 0.9 with pristine CF and TiO2/KB-CF). These results are due to the hydrophilic and conductiveproperties of the TiO2/KB catalyst. TiO2 can hold many hydroxyl groups that are hydrophilic and electro-activegroup, while KB is a conductive material that induces a fast electron transfer. With these benefits, the charge transferresistance of the electrode is reduced from 1.8 with pristine CF to 1.5 with TiO2/KB-CF. In AORFB tests usingNQSO and potassium ferrocyanide under alkaline supporting electrolyte, energy efficiency increased from 58% (pristineCF) to 61% (TiO2/KB-CF) with a low capacity loss rate of 0.006 Ah∙L1 per cycle and the cross-over rate of activematerials during cycling of AORFB was very low. KCI Citation Count: 8
Carbon felt (CF) doped by catalyst including titanium oxide and ketjen black (TiO 2 /KB-CF) is used as negative electrode to enhance the redox reactivity of napthoquinone (NQSO) and thus the performance of aqueous organic redox flow batteries (AORFBs). The redox reactivity of NQSO is better with TiO 2 /KB-CF than with pristine CF (anodic current density of 13.3 and 19.8 mA·cm −2 , and cathodic current density of −15.7 and −21.9 mA·cm −2 with pristine CF and TiO 2 /KB-CF), while the reaction reversibility of NQSO is also enhanced in TiO 2 /KB-CF (ratio of peak current density is 0.84 and 0.9 with pristine CF and TiO 2 /KB-CF). These results are due to the hydrophilic and conductive properties of the TiO 2 /KB catalyst. TiO 2 can hold many hydroxyl groups that are hydrophilic and electro-active group, while KB is a conductive material that induces a fast electron transfer. With these benefits, the charge transfer resistance of the electrode is reduced from 1.8 Ω with pristine CF to 1.5 Ω with TiO 2 /KB-CF. In AORFB tests using NQSO and potassium ferrocyanide under alkaline supporting electrolyte, energy efficiency increased from 58% (pristine CF) to 61% (TiO 2 /KB-CF) with a low capacity loss rate of 0.006 Ah·17 −1 per cycle and the cross-over rate of active materials during cycling of AORFB was very low.
Author Schröder, Daniel
Lee, Wonmi
Park, Gyunho
Kwon, Yongchai
Author_xml – sequence: 1
  givenname: Wonmi
  surname: Lee
  fullname: Lee, Wonmi
  organization: Graduate school of Energy and Environment, Seoul National University of Science and Technology
– sequence: 2
  givenname: Gyunho
  surname: Park
  fullname: Park, Gyunho
  organization: Graduate school of Energy and Environment, Seoul National University of Science and Technology
– sequence: 3
  givenname: Daniel
  surname: Schröder
  fullname: Schröder, Daniel
  email: d.schroeder@tu-braunschweig.de
  organization: Institute of Energy and Process Systems Engineering (InES), Technische Universität Braunschweig
– sequence: 4
  givenname: Yongchai
  surname: Kwon
  fullname: Kwon, Yongchai
  email: kwony@seoultech.ac.kr
  organization: Graduate school of Energy and Environment, Seoul National University of Science and Technology, Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Department of New and Renewable Energy Convergence, Seoul National University of Science and Technology
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002842580$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kU-LFDEQxYOs4OzqB_AW8OSh3VSmk3Qfl8U_iwuKrOeQTqrHzPQka5LWnW9v2l4QBD09KN6vXlHvnJyFGJCQl8DeAGPqMgN00DaMQwOsZU3_hGygV6JRnLMzsmFcyAYAxDNynvOeMSEkZxvy4zOmMaajCRYphm-LHjEUGkdqpoOZfEAa084Eb2lCFx_oOMWfdDClYDrROfuwo9YUM51yoT7YaXbLqPhSmflI44N3SE1w9COWPYZhMvbwnDwdzZTxxaNekK_v3t5df2huP72_ub66bSzvWGkUMpTcQdcyy6UCKSwzTkjRgZNt30qnus50o9jCYAD71vWgBmeHdhiQSdhekNfr3pBGfbBeR-N_6y7qQ9JXX-5udF_fJLtt9b5avfcpfp8xF72Pcwr1PF2za6hibV9dsLpsijknHPV98keTThqYXqrQaxW6VqGXKvTCqL8YW79TfAwlGT_9l-QrmWtK2GH6c9O_oV_PH6Av
CitedBy_id crossref_primary_10_1016_j_cej_2023_142661
crossref_primary_10_1007_s11814_024_00252_9
crossref_primary_10_1007_s11814_024_00255_6
crossref_primary_10_1007_s11814_025_00419_y
crossref_primary_10_1016_j_apenergy_2023_122171
crossref_primary_10_1039_D4TA02525C
crossref_primary_10_1002_tcr_202300284
crossref_primary_10_1016_j_jpowsour_2023_233770
crossref_primary_10_1016_j_jiec_2023_02_027
crossref_primary_10_1016_j_jcis_2024_12_142
crossref_primary_10_1016_j_jpowsour_2024_234766
crossref_primary_10_1007_s11814_024_00200_7
crossref_primary_10_1021_acsanm_3c06270
crossref_primary_10_1016_j_apsusc_2022_155962
crossref_primary_10_1016_j_est_2023_107796
crossref_primary_10_1002_batt_202200365
crossref_primary_10_1016_j_est_2023_108337
crossref_primary_10_1021_acssuschemeng_3c03316
Cites_doi 10.1007/s11814-021-0861-x
10.1021/acsenergylett.6b00413
10.1007/s11814-021-0813-5
10.1016/j.cej.2018.10.159
10.1007/s11814-019-0462-0
10.1007/s11814-019-0414-8
10.1021/acsenergylett.7b01302
10.1016/j.jpowsour.2018.10.042
10.1021/acsami.7b10598
10.1016/j.jpowsour.2010.11.126
10.1149/2.0191601jes
10.1016/j.jpowsour.2016.12.016
10.1016/j.jmst.2020.09.042
10.1007/s11814-020-0693-0
10.1021/acs.chemmater.7b00616
10.1002/aenm.201501449
10.1021/acs.chemmater.9b05077
10.1016/j.ssi.2018.06.009
10.1039/c3ra00115f
10.1016/j.jpowsour.2019.227063
10.1021/acs.chemmater.7b04220
10.1016/j.elecom.2009.10.006
10.1002/aenm.201601488
10.1016/S0378-7753(03)00230-1
10.1039/C7TA06672D
10.1016/j.elecom.2014.03.010
10.1002/aenm.201100008
10.1007/s11814-021-0871-8
10.1007/s10800-011-0348-2
10.1016/j.apenergy.2018.04.025
10.1021/acsenergylett.7b00650
10.1149/2.0351704jes
10.1002/anie.201604925
10.1016/j.apsusc.2017.07.022
10.1002/cssc.201100068
10.1016/j.cej.2019.123985
10.1016/j.rser.2013.08.001
10.1007/s11814-019-0374-z
10.1016/j.apenergy.2016.12.129
10.1016/j.jpowsour.2019.227079
10.1007/s11814-020-0695-y
10.1007/s11814-017-0213-z
10.1016/j.electacta.2017.03.131
10.1149/2.0621807jes
10.1007/s11814-020-0669-0
10.1016/j.cej.2019.123085
10.1002/cssc.202000454
10.1016/j.elecom.2011.08.017
10.1016/j.cej.2020.125610
10.1039/C5RA24626A
10.1016/j.ijhydene.2021.07.172
10.1007/s11814-021-0819-z
10.1126/science.aab3033
10.1021/acsami.8b10952
10.1007/s11814-014-0157-5
10.1002/anie.201410823
10.1039/D0TC00640H
10.1007/s11814-021-0787-3
10.1021/la980623e
10.1007/s11814-020-0539-9
10.1002/er.1863
10.1016/j.rser.2016.11.188
10.1149/2.1001409jes
ContentType Journal Article
Copyright The Korean Institute of Chemical Engineers 2022
The Korean Institute of Chemical Engineers 2022.
Copyright_xml – notice: The Korean Institute of Chemical Engineers 2022
– notice: The Korean Institute of Chemical Engineers 2022.
DBID AAYXX
CITATION
ACYCR
DOI 10.1007/s11814-021-1040-9
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1975-7220
EndPage 1631
ExternalDocumentID oai_kci_go_kr_ARTI_9975683
10_1007_s11814_021_1040_9
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
9ZL
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZB
HZ~
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
MZR
N2Q
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9N
PF0
PT4
PT5
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
W4F
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z8N
Z8Q
Z8Z
Z92
ZMTXR
ZZE
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
ABRTQ
85H
AABYN
AAFGU
AAGCJ
AAUCO
AAYFA
ABFGW
ABKAS
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ACYCR
ADMDM
ADOXG
AEEQQ
AEFTE
AESTI
AEVTX
AFNRJ
AGGBP
AIMYW
AJDOV
AJGSW
AKQUC
SQXTU
UNUBA
ID FETCH-LOGICAL-c280t-7e0e62d1840c267165c0ad56581d64946d788a8f531ba1e94d917bdcb4bbe0613
IEDL.DBID AGYKE
ISSN 0256-1115
IngestDate Wed Jan 31 06:58:39 EST 2024
Fri Jul 25 10:58:22 EDT 2025
Tue Jul 01 03:29:43 EDT 2025
Thu Apr 24 22:50:10 EDT 2025
Fri Feb 21 02:49:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Naphthoquinone Derivatives
Titanium Oxide
Alkaline Organic Redox Flow Battery
Catalyst Effect
Ketjen Black
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c280t-7e0e62d1840c267165c0ad56581d64946d788a8f531ba1e94d917bdcb4bbe0613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2675657049
PQPubID 2044390
PageCount 8
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9975683
proquest_journals_2675657049
crossref_primary_10_1007_s11814_021_1040_9
crossref_citationtrail_10_1007_s11814_021_1040_9
springer_journals_10_1007_s11814_021_1040_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle The Korean journal of chemical engineering
PublicationTitleAbbrev Korean J. Chem. Eng
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
한국화학공학회
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: 한국화학공학회
References LeeWKwonB WKwonYACS Appl. Mater. Interfaces201810368821:CAS:528:DC%2BC1cXhvV2jsr7E3029907410.1021/acsami.8b10952
WinsbergJHagemannTJanoschkaTHagerM DSchubertU SAngew. Chem. Int. Ed.2017566861:CAS:528:DC%2BC28Xhsl2hsLrF10.1002/anie.201604925
NohCMoonSChungYKwonYJ. Mater. Chem. A20175213341:CAS:528:DC%2BC2sXhsFKntL3F10.1039/C7TA06672D
YadavDKumarSVermaO PPachauriNSharmaVKorean J. Chem. Eng.2021389061:CAS:528:DC%2BB3MXhtVKmsLjO10.1007/s11814-021-0787-3
LiuQSleightholmeA EShinkleA ALiYThompsonL TElectrochem. Commun.20091123121:CAS:528:DC%2BD1MXhsVGls7%2FJ10.1016/j.elecom.2009.10.006
YangDGuoYTangHWangYYangDMingPZhangCLiBZhuSInt. J. Hydrogen Energy202146333001:CAS:528:DC%2BB3MXhslCjs77I10.1016/j.ijhydene.2021.07.172
ElgammalR ATangZSunC NLawtonJZawodzinskiT AJr.Electrochim. Acta201723711:CAS:528:DC%2BC2sXlslCqtLc%3D10.1016/j.electacta.2017.03.131
WinsbergJStolzeCMuenchSLiedlFHagerM DSchubertU SACS Energy Lett.201619761:CAS:528:DC%2BC28Xhs1OnsL7F10.1021/acsenergylett.6b00413
NohCJungMHenkensmeierDNamS WKwonYACS Appl. Mater. Interfaces20179367991:CAS:528:DC%2BC2sXhs1aiurrO2901610810.1021/acsami.7b10598
BahooshRJafariMBahrainianS SKorean J. Chem. Eng.20213817031:CAS:528:DC%2BB3MXhsV2lurbJ10.1007/s11814-019-0462-0
NiazHMansourLakourajMLiuJKorean J. Chem. Eng.20213816171:CAS:528:DC%2BB3MXhtlCis7fN10.1007/s11814-021-0819-z
ChoiCKimSKimRChoiYKimSJungH YYangJ HKimH TRenew. Sustain. Energy Rev.2017692631:CAS:528:DC%2BC28XhvFShs7fL10.1016/j.rser.2016.11.188
SakaiNWangRFujishimaAWatanabeTHashimotoKLangmuir19981459181:CAS:528:DyaK1cXlslartLo%3D10.1021/la980623e
LeeWParkGKimYChangDKwonYYChem. Eng. J.20203981256101:CAS:528:DC%2BB3cXhtV2rs7zK10.1016/j.cej.2020.125610
ChristwardanaMChungYKwonYKorean J. Chem. Eng.20173430091:CAS:528:DC%2BC2sXhsVejtbnO10.1007/s11814-017-0213-z
LvYHanCZhuYZhangTYaoSHeZDaiLWangLJ. Mater. Sci. Technol.2021759610.1016/j.jmst.2020.09.0421:CAS:528:DC%2BB38XhtFehtrbO
ChuCKwonB WLeeWKwonYKorean J. Chem. Eng.20193617321:CAS:528:DC%2BC1MXhvFSns7fO10.1007/s11814-019-0374-z
FanLSunPYangLXuZHanJKorean J. Chem. Eng.2020371661:CAS:528:DC%2BB3cXnvVaqtQ%3D%3D10.1007/s11814-019-0414-8
WeiXPanWDuanWHollasAYangZLiBNieZLiuJReedDWangWSprenkleVACS Energy Lett.2017221871:CAS:528:DC%2BC2sXhtlymt7vL10.1021/acsenergylett.7b00650
KurodaSToboriNSakurabaMSatoYJ. Power Sources200311992410.1016/S0378-7753(03)00230-11:CAS:528:DC%2BD3sXktlOmt78%3D
NuluANuluVMoonJ SSohnK YKorean J. Chem. Eng.20213819231:CAS:528:DC%2BB3MXhsl2mtLzN10.1007/s11814-021-0813-5
PhamH T TJoCLeeJKwonYRSC Adv.201661757410.1039/C5RA24626A1:CAS:528:DC%2BC28Xhtlartrc%3D
VijayakumarMLiLGraffGLiuJZhangHYangZHuJ ZJ. Power Sources201119636691:CAS:528:DC%2BC3MXht1Wns74%3D10.1016/j.jpowsour.2010.11.126
WeberA ZMenchM MMeyersJ PRossP NGostickJ TLiuQJ. Appl. Electrochem.20114111371:CAS:528:DC%2BC3MXht1yjsr7O10.1007/s10800-011-0348-2
PermatasariALeeWKwonYChem. Eng. J.20203831230851:CAS:528:DC%2BC1MXhvFCktbbE10.1016/j.cej.2019.123085
LeeWJoCYoukSShinH YLeeJChungYKwonYAppl. Surf. Sci.20184291871:CAS:528:DC%2BC2sXhtF2qu7vF10.1016/j.apsusc.2017.07.022
LeeWPermatasariAKwonB WKwonYChem. Eng. J.201935814381:CAS:528:DC%2BC1cXitVWjt77M10.1016/j.cej.2018.10.159
JeongSKimL HKwonYKimSKorean J. Chem. Eng.20143120811:CAS:528:DC%2BC2cXhtlOrtrzJ10.1007/s11814-014-0157-5
NohCLeeC SChiW SChungYKimJ HKwonYJ. Electrochem. Soc.2018165A13881:CAS:528:DC%2BC1cXhtVWltb3J10.1149/2.0621807jes
NohCKwonB WChungYKwonYJ. Power Sources2018406261:CAS:528:DC%2BC1cXhvFCjsbzJ10.1016/j.jpowsour.2018.10.042
HofmannJ DSchmalischSSchwanSHongLWegnerH AMollenhauerDJanekJSchröderDChem. Mater.20203234271:CAS:528:DC%2BB3cXlvFCis78%3D10.1021/acs.chemmater.9b05077
LeeWParkGKwonYChem. Eng. J.20203861239851:CAS:528:DC%2BB3cXps1Slsw%3D%3D10.1016/j.cej.2019.123985
Hoober-BurkhardtLKrishnamoorthySYangBMuraliANirmalchandarAPrakashG SNarayananS RJ. Electrochem. Soc.2017164A6001:CAS:528:DC%2BC2sXktlGqsL8%3D10.1149/2.0351704jes
LimE HChunJ YJoC SHwangJ KKorean J. Chem. Eng.2021382271:CAS:528:DC%2BB3MXhsVegtbw%3D10.1007/s11814-020-0693-0
LeeWKwonB WJungMSerhiichukDHenkensmeierDKwonYJ. Power Sources20194392270791:CAS:528:DC%2BC1MXhvV2ktb7F10.1016/j.jpowsour.2019.227079
LeeWParkGChangDKwonYKorean J. Chem. Eng.20203723261:CAS:528:DC%2BB3cXis1Oks7%2FL10.1007/s11814-020-0669-0
ParkGLeeWKwonYKorean Chem. Eng. Res.2019578681:CAS:528:DC%2BB3cXktVShs7w%3D
Al-YasiriMParkJAppl. Energy20182225301:CAS:528:DC%2BC1cXns1emsrc%3D10.1016/j.apenergy.2018.04.025
KearGShahA AWalshF CInt. J. Energy Res.20123611051:CAS:528:DC%2BC38XhtFyqtbzJ10.1002/er.1863
LeeWChungK YKwonYKorean Chem. Eng. Res.2019572391:CAS:528:DC%2BC1MXht1Knt7jE
DeBrulerCHuBMossJLuoJLiuT LACS Energy Lett.201836631:CAS:528:DC%2BC1cXis12ntb4%3D10.1021/acsenergylett.7b01302
NoackJRoznyatovskayaNHerrTFischerPAngew. Chem. Int. Ed.20155497761:CAS:528:DC%2BC2MXhtVOmu73E10.1002/anie.201410823
LiuTWeiZNieZSprenkleVWangWAdv. Energy Mater.20166150144910.1002/aenm.2015014491:CAS:528:DC%2BC2MXhvFWktLbF
HwangMJeongJ SLeeJ CYuS IJungH SChoB SKimK YKorean J. Chem. Eng.2021384541:CAS:528:DC%2BB3MXjsF2nurk%3D10.1007/s11814-020-0695-y
Di BlasiABusaccaaCDi BlasiaOBriguglioaNSquadritoaGAntonucciaVAppl. Energy20171901651:CAS:528:DC%2BC2sXlsVOitg%3D%3D10.1016/j.apenergy.2016.12.129
CarneyT JCollinsS JMooreJ SBrushettF RChem. Mater.20172948011:CAS:528:DC%2BC2sXotVGmsLw%3D10.1021/acs.chemmater.7b00616
AlottoPGuarnieriMMoroFRenew. Sustain. Energy Rev.2014293251:CAS:528:DC%2BC3sXhslGlt7rO10.1016/j.rser.2013.08.001
LinKChenQGerhardtM RTongLKimS BEisenachLValleA WHardeeDGordonR GAzizM JMarshakM PScience201534915291:CAS:528:DC%2BC2MXhsFCrtbjN2640483410.1126/science.aab3033
SeoJ SNaB KKorean J. Chem. Eng.20213818261:CAS:528:DC%2BB3MXhvVOksLnO10.1007/s11814-021-0861-x
RyuJParkMChoJJ. Electrochem. Soc.2015163A514410.1149/2.0191601jes1:CAS:528:DC%2BC2MXhvFyksr%2FE
LiLKimSWangWVijayakumarMNieZChenBZhangJXiaGHuJGraffGLiuJYangZAdv. Energy Mater.201113941:CAS:528:DC%2BC3MXmslWqu7s%3D10.1002/aenm.201100008
ShinS HYunS HMoonS HRSC Adv.2013390951:CAS:528:DC%2BC3sXot1ehtLs%3D10.1039/c3ra00115f
LinKGómez-BombarelliRBehE STongLChenQValleAAspuru-GuzikAAzizM JGordonR GNat. Energy201611
HofmannJ DPfanschillingF LKrawczykNGeiglePHongLSchmalischSWegnerH AMoleenhauerDJanekJSchröderDChem. Mater.2018307621:CAS:528:DC%2BC1cXhslyqurs%3D10.1021/acs.chemmater.7b04220
ChuCLeeWKwonYKorean Chem. Eng. Res.2019578471:CAS:528:DC%2BB3cXktVSiurk%3D
SchwanSSchröderDWegnerH AJanekJMollenhauerDChemSusChem20201354801:CAS:528:DC%2BB3cXhvV2msLrK3279824010.1002/cssc.2020004547702104
KimJ HMoS IParkG SYunJ WKorean J. Chem. Eng.20213818341:CAS:528:DC%2BB3MXhvFSqsLbE10.1007/s11814-021-0871-8
YangBHoober-BurkhardtLWangFPrakashG SNarayananS RJ. Electrochem. Soc.2014161A13711:CAS:528:DC%2BC2cXhtFOnsrnO10.1149/2.1001409jes
JungH-YChoM-SSadhasivamTKimJ-YRohS-HKwonYSolid State Ion.2018324691:CAS:528:DC%2BC1cXhtFGksLzN10.1016/j.ssi.2018.06.009
SunC NTangZBelcherCZawodzinskiT AFujimotoCElectrochem. Commun.2014436310.1016/j.elecom.2014.03.0101:CAS:528:DC%2BC2cXotlWmtL0%3D
LeeWPermatasariAKwonYJ. Mater. Chem. C2020857271:CAS:528:DC%2BB3cXkvF2ltL4%3D10.1039/D0TC00640H
ChungYNohCKwonYJ. Power Sources20194382270631:CAS:528:DC%2BC1MXhs1emsLnM10.1016/j.jpowsour.2019.227063
LeeWKwonYKorean Chem. Eng. Res.201957695
KarimM RHanT HSawantS YShimJ JLeeM YKimW KKimJ SChoM HKorean J. Chem. Eng.20203712411:CAS:528:DC%2BB3cXhtVSju7%2FM10.1007/s11814-020-0539-9
SchwenzerBZhangJKimSLiLLiuJYangZChemSus-Chem.2011413881:CAS:528:DC%2BC3MXht1yjsr%2FJ10.1002/cssc.201100068
GonzálezZSánchezABlancoCGrandaMMenéndezRSantamaríaRElectrochem. Commun.201113137910.1016/j.elecom.2011.08.0171:CAS:528:DC%2BC3MXhsFart7nE
GerhardtM RTongLGómez-BombarelliRChenQMarshakM PGalvinC JAspuru-GuzikA AGordonR GAzizM JAdv. Energy Mater.20177160148810.1002/aenm.2016014881:CAS:528:DC%2BC28XitVKrs73K
WeiLZhaoT SZengLZengY KJiangH RJ. Power Sources20173413181:CAS:528:DC%2BC28XitFGhsb7I10.1016/j.jpowsour.2016.12.016
W Lee (1040_CR37) 2020; 37
W Lee (1040_CR44) 2018; 10
C DeBruler (1040_CR39) 2018; 3
A Permatasari (1040_CR52) 2020; 383
C Noh (1040_CR27) 2017; 9
J D Hofmann (1040_CR49) 2018; 30
W Lee (1040_CR42) 2020; 398
C Noh (1040_CR21) 2017; 5
W Lee (1040_CR36) 2018; 429
C N Sun (1040_CR26) 2014; 43
J Ryu (1040_CR63) 2015; 163
M R Karim (1040_CR3) 2020; 37
N Sakai (1040_CR67) 1998; 14
K Lin (1040_CR45) 2016; 1
R A Elgammal (1040_CR23) 2017; 237
S Schwan (1040_CR55) 2020; 13
Q Liu (1040_CR18) 2009; 11
T J Carney (1040_CR65) 2017; 29
B Yang (1040_CR50) 2014; 161
W Lee (1040_CR58) 2019; 358
J S Seo (1040_CR4) 2021; 38
W Lee (1040_CR19) 2019; 439
W Lee (1040_CR59) 2020; 8
M Al-Yasiri (1040_CR68) 2018; 222
A Di Blasi (1040_CR31) 2017; 190
X Wei (1040_CR43) 2017; 2
J Winsberg (1040_CR41) 2017; 56
C Chu (1040_CR60) 2019; 57
C Choi (1040_CR29) 2017; 69
H Niaz (1040_CR1) 2021; 38
M Vijayakumar (1040_CR33) 2011; 196
L Fan (1040_CR9) 2020; 37
G Kear (1040_CR5) 2012; 36
S H Shin (1040_CR17) 2013; 3
C Noh (1040_CR22) 2018; 165
B Schwenzer (1040_CR28) 2011; 4
H T T Pham (1040_CR20) 2016; 6
L Hoober-Burkhardt (1040_CR51) 2017; 164
W Lee (1040_CR61) 2019; 57
A Nulu (1040_CR6) 2021; 38
J H Kim (1040_CR10) 2021; 38
M Christwardana (1040_CR13) 2017; 34
W Lee (1040_CR46) 2019; 57
K Lin (1040_CR54) 2015; 349
C Noh (1040_CR35) 2018; 406
W Lee (1040_CR57) 2020; 386
T Liu (1040_CR47) 2016; 6
H-Y Jung (1040_CR24) 2018; 324
J D Hofmann (1040_CR53) 2020; 32
E H Lim (1040_CR7) 2021; 38
J Winsberg (1040_CR40) 2016; 1
D Yadav (1040_CR2) 2021; 38
L Li (1040_CR12) 2011; 1
S Jeong (1040_CR25) 2014; 31
Y Chung (1040_CR34) 2019; 438
S Kuroda (1040_CR66) 2003; 119
J Noack (1040_CR15) 2015; 54
D Yang (1040_CR64) 2021; 46
M Hwang (1040_CR8) 2021; 38
R Bahoosh (1040_CR11) 2021; 38
Z González (1040_CR32) 2011; 13
L Wei (1040_CR30) 2017; 341
Y Lv (1040_CR62) 2021; 75
P Alotto (1040_CR16) 2014; 29
G Park (1040_CR48) 2019; 57
A Z Weber (1040_CR14) 2011; 41
C Chu (1040_CR38) 2019; 36
M R Gerhardt (1040_CR56) 2017; 7
References_xml – reference: ChuCKwonB WLeeWKwonYKorean J. Chem. Eng.20193617321:CAS:528:DC%2BC1MXhvFSns7fO10.1007/s11814-019-0374-z
– reference: LeeWParkGKwonYChem. Eng. J.20203861239851:CAS:528:DC%2BB3cXps1Slsw%3D%3D10.1016/j.cej.2019.123985
– reference: LvYHanCZhuYZhangTYaoSHeZDaiLWangLJ. Mater. Sci. Technol.2021759610.1016/j.jmst.2020.09.0421:CAS:528:DC%2BB38XhtFehtrbO
– reference: YangDGuoYTangHWangYYangDMingPZhangCLiBZhuSInt. J. Hydrogen Energy202146333001:CAS:528:DC%2BB3MXhslCjs77I10.1016/j.ijhydene.2021.07.172
– reference: NoackJRoznyatovskayaNHerrTFischerPAngew. Chem. Int. Ed.20155497761:CAS:528:DC%2BC2MXhtVOmu73E10.1002/anie.201410823
– reference: VijayakumarMLiLGraffGLiuJZhangHYangZHuJ ZJ. Power Sources201119636691:CAS:528:DC%2BC3MXht1Wns74%3D10.1016/j.jpowsour.2010.11.126
– reference: SchwanSSchröderDWegnerH AJanekJMollenhauerDChemSusChem20201354801:CAS:528:DC%2BB3cXhvV2msLrK3279824010.1002/cssc.2020004547702104
– reference: YangBHoober-BurkhardtLWangFPrakashG SNarayananS RJ. Electrochem. Soc.2014161A13711:CAS:528:DC%2BC2cXhtFOnsrnO10.1149/2.1001409jes
– reference: ShinS HYunS HMoonS HRSC Adv.2013390951:CAS:528:DC%2BC3sXot1ehtLs%3D10.1039/c3ra00115f
– reference: Al-YasiriMParkJAppl. Energy20182225301:CAS:528:DC%2BC1cXns1emsrc%3D10.1016/j.apenergy.2018.04.025
– reference: SunC NTangZBelcherCZawodzinskiT AFujimotoCElectrochem. Commun.2014436310.1016/j.elecom.2014.03.0101:CAS:528:DC%2BC2cXotlWmtL0%3D
– reference: Hoober-BurkhardtLKrishnamoorthySYangBMuraliANirmalchandarAPrakashG SNarayananS RJ. Electrochem. Soc.2017164A6001:CAS:528:DC%2BC2sXktlGqsL8%3D10.1149/2.0351704jes
– reference: LeeWJoCYoukSShinH YLeeJChungYKwonYAppl. Surf. Sci.20184291871:CAS:528:DC%2BC2sXhtF2qu7vF10.1016/j.apsusc.2017.07.022
– reference: LeeWKwonYKorean Chem. Eng. Res.201957695
– reference: KarimM RHanT HSawantS YShimJ JLeeM YKimW KKimJ SChoM HKorean J. Chem. Eng.20203712411:CAS:528:DC%2BB3cXhtVSju7%2FM10.1007/s11814-020-0539-9
– reference: SakaiNWangRFujishimaAWatanabeTHashimotoKLangmuir19981459181:CAS:528:DyaK1cXlslartLo%3D10.1021/la980623e
– reference: NohCLeeC SChiW SChungYKimJ HKwonYJ. Electrochem. Soc.2018165A13881:CAS:528:DC%2BC1cXhtVWltb3J10.1149/2.0621807jes
– reference: ChoiCKimSKimRChoiYKimSJungH YYangJ HKimH TRenew. Sustain. Energy Rev.2017692631:CAS:528:DC%2BC28XhvFShs7fL10.1016/j.rser.2016.11.188
– reference: WeiXPanWDuanWHollasAYangZLiBNieZLiuJReedDWangWSprenkleVACS Energy Lett.2017221871:CAS:528:DC%2BC2sXhtlymt7vL10.1021/acsenergylett.7b00650
– reference: CarneyT JCollinsS JMooreJ SBrushettF RChem. Mater.20172948011:CAS:528:DC%2BC2sXotVGmsLw%3D10.1021/acs.chemmater.7b00616
– reference: LiuTWeiZNieZSprenkleVWangWAdv. Energy Mater.20166150144910.1002/aenm.2015014491:CAS:528:DC%2BC2MXhvFWktLbF
– reference: LeeWKwonB WJungMSerhiichukDHenkensmeierDKwonYJ. Power Sources20194392270791:CAS:528:DC%2BC1MXhvV2ktb7F10.1016/j.jpowsour.2019.227079
– reference: LiLKimSWangWVijayakumarMNieZChenBZhangJXiaGHuJGraffGLiuJYangZAdv. Energy Mater.201113941:CAS:528:DC%2BC3MXmslWqu7s%3D10.1002/aenm.201100008
– reference: LimE HChunJ YJoC SHwangJ KKorean J. Chem. Eng.2021382271:CAS:528:DC%2BB3MXhsVegtbw%3D10.1007/s11814-020-0693-0
– reference: HwangMJeongJ SLeeJ CYuS IJungH SChoB SKimK YKorean J. Chem. Eng.2021384541:CAS:528:DC%2BB3MXjsF2nurk%3D10.1007/s11814-020-0695-y
– reference: KimJ HMoS IParkG SYunJ WKorean J. Chem. Eng.20213818341:CAS:528:DC%2BB3MXhvFSqsLbE10.1007/s11814-021-0871-8
– reference: Di BlasiABusaccaaCDi BlasiaOBriguglioaNSquadritoaGAntonucciaVAppl. Energy20171901651:CAS:528:DC%2BC2sXlsVOitg%3D%3D10.1016/j.apenergy.2016.12.129
– reference: LiuQSleightholmeA EShinkleA ALiYThompsonL TElectrochem. Commun.20091123121:CAS:528:DC%2BD1MXhsVGls7%2FJ10.1016/j.elecom.2009.10.006
– reference: LinKGómez-BombarelliRBehE STongLChenQValleAAspuru-GuzikAAzizM JGordonR GNat. Energy201611
– reference: LeeWPermatasariAKwonB WKwonYChem. Eng. J.201935814381:CAS:528:DC%2BC1cXitVWjt77M10.1016/j.cej.2018.10.159
– reference: NiazHMansourLakourajMLiuJKorean J. Chem. Eng.20213816171:CAS:528:DC%2BB3MXhtlCis7fN10.1007/s11814-021-0819-z
– reference: WeiLZhaoT SZengLZengY KJiangH RJ. Power Sources20173413181:CAS:528:DC%2BC28XitFGhsb7I10.1016/j.jpowsour.2016.12.016
– reference: HofmannJ DSchmalischSSchwanSHongLWegnerH AMollenhauerDJanekJSchröderDChem. Mater.20203234271:CAS:528:DC%2BB3cXlvFCis78%3D10.1021/acs.chemmater.9b05077
– reference: SchwenzerBZhangJKimSLiLLiuJYangZChemSus-Chem.2011413881:CAS:528:DC%2BC3MXht1yjsr%2FJ10.1002/cssc.201100068
– reference: HofmannJ DPfanschillingF LKrawczykNGeiglePHongLSchmalischSWegnerH AMoleenhauerDJanekJSchröderDChem. Mater.2018307621:CAS:528:DC%2BC1cXhslyqurs%3D10.1021/acs.chemmater.7b04220
– reference: WeberA ZMenchM MMeyersJ PRossP NGostickJ TLiuQJ. Appl. Electrochem.20114111371:CAS:528:DC%2BC3MXht1yjsr7O10.1007/s10800-011-0348-2
– reference: WinsbergJStolzeCMuenchSLiedlFHagerM DSchubertU SACS Energy Lett.201619761:CAS:528:DC%2BC28Xhs1OnsL7F10.1021/acsenergylett.6b00413
– reference: DeBrulerCHuBMossJLuoJLiuT LACS Energy Lett.201836631:CAS:528:DC%2BC1cXis12ntb4%3D10.1021/acsenergylett.7b01302
– reference: FanLSunPYangLXuZHanJKorean J. Chem. Eng.2020371661:CAS:528:DC%2BB3cXnvVaqtQ%3D%3D10.1007/s11814-019-0414-8
– reference: KearGShahA AWalshF CInt. J. Energy Res.20123611051:CAS:528:DC%2BC38XhtFyqtbzJ10.1002/er.1863
– reference: GonzálezZSánchezABlancoCGrandaMMenéndezRSantamaríaRElectrochem. Commun.201113137910.1016/j.elecom.2011.08.0171:CAS:528:DC%2BC3MXhsFart7nE
– reference: ElgammalR ATangZSunC NLawtonJZawodzinskiT AJr.Electrochim. Acta201723711:CAS:528:DC%2BC2sXlslCqtLc%3D10.1016/j.electacta.2017.03.131
– reference: ChristwardanaMChungYKwonYKorean J. Chem. Eng.20173430091:CAS:528:DC%2BC2sXhsVejtbnO10.1007/s11814-017-0213-z
– reference: LeeWParkGKimYChangDKwonYYChem. Eng. J.20203981256101:CAS:528:DC%2BB3cXhtV2rs7zK10.1016/j.cej.2020.125610
– reference: LeeWKwonB WKwonYACS Appl. Mater. Interfaces201810368821:CAS:528:DC%2BC1cXhvV2jsr7E3029907410.1021/acsami.8b10952
– reference: YadavDKumarSVermaO PPachauriNSharmaVKorean J. Chem. Eng.2021389061:CAS:528:DC%2BB3MXhtVKmsLjO10.1007/s11814-021-0787-3
– reference: ChungYNohCKwonYJ. Power Sources20194382270631:CAS:528:DC%2BC1MXhs1emsLnM10.1016/j.jpowsour.2019.227063
– reference: ChuCLeeWKwonYKorean Chem. Eng. Res.2019578471:CAS:528:DC%2BB3cXktVSiurk%3D
– reference: BahooshRJafariMBahrainianS SKorean J. Chem. Eng.20213817031:CAS:528:DC%2BB3MXhsV2lurbJ10.1007/s11814-019-0462-0
– reference: NohCJungMHenkensmeierDNamS WKwonYACS Appl. Mater. Interfaces20179367991:CAS:528:DC%2BC2sXhs1aiurrO2901610810.1021/acsami.7b10598
– reference: LinKChenQGerhardtM RTongLKimS BEisenachLValleA WHardeeDGordonR GAzizM JMarshakM PScience201534915291:CAS:528:DC%2BC2MXhsFCrtbjN2640483410.1126/science.aab3033
– reference: KurodaSToboriNSakurabaMSatoYJ. Power Sources200311992410.1016/S0378-7753(03)00230-11:CAS:528:DC%2BD3sXktlOmt78%3D
– reference: NohCKwonB WChungYKwonYJ. Power Sources2018406261:CAS:528:DC%2BC1cXhvFCjsbzJ10.1016/j.jpowsour.2018.10.042
– reference: NuluANuluVMoonJ SSohnK YKorean J. Chem. Eng.20213819231:CAS:528:DC%2BB3MXhsl2mtLzN10.1007/s11814-021-0813-5
– reference: JeongSKimL HKwonYKimSKorean J. Chem. Eng.20143120811:CAS:528:DC%2BC2cXhtlOrtrzJ10.1007/s11814-014-0157-5
– reference: LeeWPermatasariAKwonYJ. Mater. Chem. C2020857271:CAS:528:DC%2BB3cXkvF2ltL4%3D10.1039/D0TC00640H
– reference: JungH-YChoM-SSadhasivamTKimJ-YRohS-HKwonYSolid State Ion.2018324691:CAS:528:DC%2BC1cXhtFGksLzN10.1016/j.ssi.2018.06.009
– reference: LeeWParkGChangDKwonYKorean J. Chem. Eng.20203723261:CAS:528:DC%2BB3cXis1Oks7%2FL10.1007/s11814-020-0669-0
– reference: GerhardtM RTongLGómez-BombarelliRChenQMarshakM PGalvinC JAspuru-GuzikA AGordonR GAzizM JAdv. Energy Mater.20177160148810.1002/aenm.2016014881:CAS:528:DC%2BC28XitVKrs73K
– reference: PermatasariALeeWKwonYChem. Eng. J.20203831230851:CAS:528:DC%2BC1MXhvFCktbbE10.1016/j.cej.2019.123085
– reference: AlottoPGuarnieriMMoroFRenew. Sustain. Energy Rev.2014293251:CAS:528:DC%2BC3sXhslGlt7rO10.1016/j.rser.2013.08.001
– reference: ParkGLeeWKwonYKorean Chem. Eng. Res.2019578681:CAS:528:DC%2BB3cXktVShs7w%3D
– reference: RyuJParkMChoJJ. Electrochem. Soc.2015163A514410.1149/2.0191601jes1:CAS:528:DC%2BC2MXhvFyksr%2FE
– reference: WinsbergJHagemannTJanoschkaTHagerM DSchubertU SAngew. Chem. Int. Ed.2017566861:CAS:528:DC%2BC28Xhsl2hsLrF10.1002/anie.201604925
– reference: PhamH T TJoCLeeJKwonYRSC Adv.201661757410.1039/C5RA24626A1:CAS:528:DC%2BC28Xhtlartrc%3D
– reference: LeeWChungK YKwonYKorean Chem. Eng. Res.2019572391:CAS:528:DC%2BC1MXht1Knt7jE
– reference: NohCMoonSChungYKwonYJ. Mater. Chem. A20175213341:CAS:528:DC%2BC2sXhsFKntL3F10.1039/C7TA06672D
– reference: SeoJ SNaB KKorean J. Chem. Eng.20213818261:CAS:528:DC%2BB3MXhvVOksLnO10.1007/s11814-021-0861-x
– volume: 38
  start-page: 1826
  year: 2021
  ident: 1040_CR4
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-021-0861-x
– volume: 1
  start-page: 976
  year: 2016
  ident: 1040_CR40
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.6b00413
– volume: 38
  start-page: 1923
  year: 2021
  ident: 1040_CR6
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-021-0813-5
– volume: 358
  start-page: 1438
  year: 2019
  ident: 1040_CR58
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.10.159
– volume: 57
  start-page: 847
  year: 2019
  ident: 1040_CR60
  publication-title: Korean Chem. Eng. Res.
– volume: 38
  start-page: 1703
  year: 2021
  ident: 1040_CR11
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-019-0462-0
– volume: 37
  start-page: 166
  year: 2020
  ident: 1040_CR9
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-019-0414-8
– volume: 3
  start-page: 663
  year: 2018
  ident: 1040_CR39
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b01302
– volume: 406
  start-page: 26
  year: 2018
  ident: 1040_CR35
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.10.042
– volume: 9
  start-page: 36799
  year: 2017
  ident: 1040_CR27
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b10598
– volume: 57
  start-page: 239
  year: 2019
  ident: 1040_CR61
  publication-title: Korean Chem. Eng. Res.
– volume: 196
  start-page: 3669
  year: 2011
  ident: 1040_CR33
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.11.126
– volume: 163
  start-page: A5144
  year: 2015
  ident: 1040_CR63
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0191601jes
– volume: 341
  start-page: 318
  year: 2017
  ident: 1040_CR30
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.12.016
– volume: 75
  start-page: 96
  year: 2021
  ident: 1040_CR62
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2020.09.042
– volume: 38
  start-page: 227
  year: 2021
  ident: 1040_CR7
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-020-0693-0
– volume: 57
  start-page: 868
  year: 2019
  ident: 1040_CR48
  publication-title: Korean Chem. Eng. Res.
– volume: 29
  start-page: 4801
  year: 2017
  ident: 1040_CR65
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b00616
– volume: 6
  start-page: 1501449
  year: 2016
  ident: 1040_CR47
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501449
– volume: 32
  start-page: 3427
  year: 2020
  ident: 1040_CR53
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b05077
– volume: 324
  start-page: 69
  year: 2018
  ident: 1040_CR24
  publication-title: Solid State Ion.
  doi: 10.1016/j.ssi.2018.06.009
– volume: 3
  start-page: 9095
  year: 2013
  ident: 1040_CR17
  publication-title: RSC Adv.
  doi: 10.1039/c3ra00115f
– volume: 438
  start-page: 227063
  year: 2019
  ident: 1040_CR34
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.227063
– volume: 30
  start-page: 762
  year: 2018
  ident: 1040_CR49
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b04220
– volume: 11
  start-page: 2312
  year: 2009
  ident: 1040_CR18
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2009.10.006
– volume: 7
  start-page: 1601488
  year: 2017
  ident: 1040_CR56
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601488
– volume: 57
  start-page: 695
  year: 2019
  ident: 1040_CR46
  publication-title: Korean Chem. Eng. Res.
– volume: 119
  start-page: 924
  year: 2003
  ident: 1040_CR66
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(03)00230-1
– volume: 5
  start-page: 21334
  year: 2017
  ident: 1040_CR21
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA06672D
– volume: 43
  start-page: 63
  year: 2014
  ident: 1040_CR26
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2014.03.010
– volume: 1
  start-page: 394
  year: 2011
  ident: 1040_CR12
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201100008
– volume: 38
  start-page: 1834
  year: 2021
  ident: 1040_CR10
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-021-0871-8
– volume: 41
  start-page: 1137
  year: 2011
  ident: 1040_CR14
  publication-title: J. Appl. Electrochem.
  doi: 10.1007/s10800-011-0348-2
– volume: 222
  start-page: 530
  year: 2018
  ident: 1040_CR68
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.04.025
– volume: 2
  start-page: 2187
  year: 2017
  ident: 1040_CR43
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00650
– volume: 164
  start-page: A600
  year: 2017
  ident: 1040_CR51
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0351704jes
– volume: 56
  start-page: 686
  year: 2017
  ident: 1040_CR41
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201604925
– volume: 429
  start-page: 187
  year: 2018
  ident: 1040_CR36
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.07.022
– volume: 4
  start-page: 1388
  year: 2011
  ident: 1040_CR28
  publication-title: ChemSus-Chem.
  doi: 10.1002/cssc.201100068
– volume: 1
  start-page: 1
  year: 2016
  ident: 1040_CR45
  publication-title: Nat. Energy
– volume: 386
  start-page: 123985
  year: 2020
  ident: 1040_CR57
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123985
– volume: 29
  start-page: 325
  year: 2014
  ident: 1040_CR16
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2013.08.001
– volume: 36
  start-page: 1732
  year: 2019
  ident: 1040_CR38
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-019-0374-z
– volume: 190
  start-page: 165
  year: 2017
  ident: 1040_CR31
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.12.129
– volume: 439
  start-page: 227079
  year: 2019
  ident: 1040_CR19
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.227079
– volume: 38
  start-page: 454
  year: 2021
  ident: 1040_CR8
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-020-0695-y
– volume: 34
  start-page: 3009
  year: 2017
  ident: 1040_CR13
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-017-0213-z
– volume: 237
  start-page: 1
  year: 2017
  ident: 1040_CR23
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.03.131
– volume: 165
  start-page: A1388
  year: 2018
  ident: 1040_CR22
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0621807jes
– volume: 37
  start-page: 2326
  year: 2020
  ident: 1040_CR37
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-020-0669-0
– volume: 383
  start-page: 123085
  year: 2020
  ident: 1040_CR52
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123085
– volume: 13
  start-page: 5480
  year: 2020
  ident: 1040_CR55
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202000454
– volume: 13
  start-page: 1379
  year: 2011
  ident: 1040_CR32
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2011.08.017
– volume: 398
  start-page: 125610
  year: 2020
  ident: 1040_CR42
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125610
– volume: 6
  start-page: 17574
  year: 2016
  ident: 1040_CR20
  publication-title: RSC Adv.
  doi: 10.1039/C5RA24626A
– volume: 46
  start-page: 33300
  year: 2021
  ident: 1040_CR64
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.07.172
– volume: 38
  start-page: 1617
  year: 2021
  ident: 1040_CR1
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-021-0819-z
– volume: 349
  start-page: 1529
  year: 2015
  ident: 1040_CR54
  publication-title: Science
  doi: 10.1126/science.aab3033
– volume: 10
  start-page: 36882
  year: 2018
  ident: 1040_CR44
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b10952
– volume: 31
  start-page: 2081
  year: 2014
  ident: 1040_CR25
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-014-0157-5
– volume: 54
  start-page: 9776
  year: 2015
  ident: 1040_CR15
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201410823
– volume: 8
  start-page: 5727
  year: 2020
  ident: 1040_CR59
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D0TC00640H
– volume: 38
  start-page: 906
  year: 2021
  ident: 1040_CR2
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-021-0787-3
– volume: 14
  start-page: 5918
  year: 1998
  ident: 1040_CR67
  publication-title: Langmuir
  doi: 10.1021/la980623e
– volume: 37
  start-page: 1241
  year: 2020
  ident: 1040_CR3
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-020-0539-9
– volume: 36
  start-page: 1105
  year: 2012
  ident: 1040_CR5
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.1863
– volume: 69
  start-page: 263
  year: 2017
  ident: 1040_CR29
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.11.188
– volume: 161
  start-page: A1371
  year: 2014
  ident: 1040_CR50
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1001409jes
SSID ssj0055620
Score 2.417518
Snippet Carbon felt (CF) doped by catalyst including titanium oxide and ketjen black (TiO 2 /KB-CF) is used as negative electrode to enhance the redox reactivity of...
Carbon felt (CF) doped by catalyst including titanium oxide and ketjen black (TiO2/KB-CF) is used as negative electrode to enhance the redox reactivity of...
Carbon felt (CF) doped by catalyst including titanium oxide and ketjen black (TiO2/KB-CF) is used as negativeelectrode to enhance the redox reactivity of...
SourceID nrf
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1624
SubjectTerms Biotechnology
Catalysis
Catalysts
Charge transfer
Chemistry
Chemistry and Materials Science
Current density
Electrodes
Electron transfer
Electronic
Hydrophilicity
Hydroxyl groups
Industrial Chemistry/Chemical Engineering
Inorganic
Iron cyanides
Materials (Organic
Materials Science
Performance enhancement
Rechargeable batteries
Thin Films
Titanium dioxide
Titanium oxides
화학공학
Title Performance enhancement of alkaline organic redox flow battery using catalyst including titanium oxide and Ketjenblack
URI https://link.springer.com/article/10.1007/s11814-021-1040-9
https://www.proquest.com/docview/2675657049
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002842580
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Korean Journal of Chemical Engineering, 2022, 39(6), 267, pp.1624-1631
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFH-i3QF24GOAVhiVhTiBMqWpk8bHbloZTEwcVmmcLH-O0uKgNoWNv5738kHZBEg7-RA7ie33_L5_Bnjlc55zb1RkkJgiLhyPBHciGimVD2PFU6PJUPxwmh1P-fvz9Lyp41612e5tSLI6qTfFbiiMeEQpBQNKgxMd2EoHuci7sDV---nkqD2AUxTptWuFIPZQ42mDmX97yTVx1AlLf03TvBEcrWTO5AGctX9bp5rM99el3jc_bwA53nI6D-F-o4OycU00j-COCztw97C9-m0Htv9AKXwM3z9uiguYC5-pJZ8iKzxTi7kiRZXVt0MZRvijl8wvih9MV9CdV4xS6y9Y5Se6WpVsFsxiTRKTUX1bmK2_suJyZh1TwbITV35xQZNX8QlMJ0dnh8dRc11DZJI8LqORi12WWDIZTZKhHZaaWFlUGFElzrjgmUVzW-UeuV6rgRPcoqmordFca0dqxVPohiK4XWDeZCq2icexljtD0UC05Ibp0KdJrk3cg7jdNWkaLHO6UmMhNyjMtLwSl1fS8krRg9e_h3yrgTz-1_klkoKcm5kk-G1qLwo5X0o0Mt5JIUZplg97sNdSimwYfyVx4hRIRrurB2_ajd88_ucXn92q93O4l1AZRuUN2oNuuVy7F6gclbqPzDA5ODjtN0zRh840Gf8CF0QGtg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB6V9EA5oJZSEUrpCnEqsmScteM9IgQKT_VAJG6rfdKQsEaJQ-HfM-PYBBBU6mkP9tqyZ3fnm9c3ANs-5zn3RkUGF1PEheOR4E5EXaXyTqx4ajQZimfnWa_Pjy_Ty7qOe9Jkuzchyeqknhe7oTLiEaUU7FIanFiAj4gFcmpb0E_2muM3RYU-c6wQwR7inSaU-dYjXiijhTD2L3Dmq9BopXEOP8NyDRXZ3ky2X-CDCyuwuN90aFuBpWdkgl_h7ve8BoC58IdGcv2xwjM1GirCk2zWxMkwogm9Z35U_GW6Yth8YJQBf8Uqd87DpGSDYEZTUmyMytDCYHrDivuBdUwFy05cee2CJuffKvQPDy72e1HdVSEySR6XUdfFLkssWXYmydBcSk2sLOI6RK4ZFzyzaBWr3OPm1GrXCW7RotPWaK61I-3_DVqhCG4NmDeZim3ica7lzlDQDg2uTtrxaZJrE7chbn6vNDXlOHW-GMk5WTJJRKJEJElEijb8eppyO-Pb-NfNWygzOTQDSSzZNF4VcjiWaAscSSG6aZZ32rDRiFTW-3Mi8cMp3ovmURt2GjHPL7_7xvX_uvsnLPYuzk7l6dH5yXf4lFDlROXA2YBWOZ66H4hnSr1Zrd9HuZfqaA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB4BlVp6QIW2agqlK9RTKwvHWTveIwIiKAVxIBK31T4hTbpGiUPh33fGj6ZUFKmnPdhry57dnW9e3wB88jnPuTcqMriYIi4cjwR3IuorlfdixVOjyVA8PcuOhvzrZXrZ9DmdtdnubUiyrmkglqZQ7t5Yv7sofEPFxCNKL-hSSpxYhmd4GndpoQ-TvfYoTlG5104WIttD7NOGNR97xAPFtBym_gHm_CtMWmmfwStYa2Aj26vlvA5LLmzAi_22W9sGvPyDWPA13J4v6gGYC9c0khuQFZ6pyVgRtmR1QyfDiDL0jvlJ8ZPpim3znlE2_BWrXDv3s5KNgpnMSckxKkkLo_kPVtyNrGMqWHbiyu8uaHIEvoHh4PBi_yhqOixEJsnjMuq72GWJJSvPJBmaTqmJlUWMhyg244JnFi1klXvcqFp1neAWrTttjeZaO0ICb2ElFMG9A-ZNpmKbeJxruTMUwEPjq5f2fJrk2sQdiNvfK01DP05dMCZyQZxMEpEoEUkSkaIDn39Puam5N566eQdlJsdmJIkxm8arQo6nEu2CYylEP83yXge2WpHKZq_OJH44xX7RVOrAl1bMi8v_fOP7_7r7Izw_PxjIb8dnJ5uwmlARReXL2YKVcjp3HxDalHq7Wr6_AEma7qQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+enhancement+of+alkaline+organic+redox+flow+battery+using+catalyst+including+titanium+oxide+and+Ketjenblack&rft.jtitle=The+Korean+journal+of+chemical+engineering&rft.au=Lee%2C+Wonmi&rft.au=Park%2C+Gyunho&rft.au=Schr%C3%B6der%2C+Daniel&rft.au=Kwon%2C+Yongchai&rft.date=2022-06-01&rft.issn=0256-1115&rft.eissn=1975-7220&rft.volume=39&rft.issue=6&rft.spage=1624&rft.epage=1631&rft_id=info:doi/10.1007%2Fs11814-021-1040-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11814_021_1040_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0256-1115&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0256-1115&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0256-1115&client=summon