Performance enhancement of alkaline organic redox flow battery using catalyst including titanium oxide and Ketjenblack
Carbon felt (CF) doped by catalyst including titanium oxide and ketjen black (TiO 2 /KB-CF) is used as negative electrode to enhance the redox reactivity of napthoquinone (NQSO) and thus the performance of aqueous organic redox flow batteries (AORFBs). The redox reactivity of NQSO is better with TiO...
Saved in:
Published in | The Korean journal of chemical engineering Vol. 39; no. 6; pp. 1624 - 1631 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.06.2022
Springer Nature B.V 한국화학공학회 |
Subjects | |
Online Access | Get full text |
ISSN | 0256-1115 1975-7220 |
DOI | 10.1007/s11814-021-1040-9 |
Cover
Loading…
Abstract | Carbon felt (CF) doped by catalyst including titanium oxide and ketjen black (TiO
2
/KB-CF) is used as negative electrode to enhance the redox reactivity of napthoquinone (NQSO) and thus the performance of aqueous organic redox flow batteries (AORFBs). The redox reactivity of NQSO is better with TiO
2
/KB-CF than with pristine CF (anodic current density of 13.3 and 19.8 mA·cm
−2
, and cathodic current density of −15.7 and −21.9 mA·cm
−2
with pristine CF and TiO
2
/KB-CF), while the reaction reversibility of NQSO is also enhanced in TiO
2
/KB-CF (ratio of peak current density is 0.84 and 0.9 with pristine CF and TiO
2
/KB-CF). These results are due to the hydrophilic and conductive properties of the TiO
2
/KB catalyst. TiO
2
can hold many hydroxyl groups that are hydrophilic and electro-active group, while KB is a conductive material that induces a fast electron transfer. With these benefits, the charge transfer resistance of the electrode is reduced from 1.8 Ω with pristine CF to 1.5 Ω with TiO
2
/KB-CF. In AORFB tests using NQSO and potassium ferrocyanide under alkaline supporting electrolyte, energy efficiency increased from 58% (pristine CF) to 61% (TiO
2
/KB-CF) with a low capacity loss rate of 0.006 Ah·17
−1
per cycle and the cross-over rate of active materials during cycling of AORFB was very low. |
---|---|
AbstractList | Carbon felt (CF) doped by catalyst including titanium oxide and ketjen black (TiO2/KB-CF) is used as negative electrode to enhance the redox reactivity of napthoquinone (NQSO) and thus the performance of aqueous organic redox flow batteries (AORFBs). The redox reactivity of NQSO is better with TiO2/KB-CF than with pristine CF (anodic current density of 13.3 and 19.8 mA·cm−2, and cathodic current density of −15.7 and −21.9 mA·cm−2 with pristine CF and TiO2/KB-CF), while the reaction reversibility of NQSO is also enhanced in TiO2/KB-CF (ratio of peak current density is 0.84 and 0.9 with pristine CF and TiO2/KB-CF). These results are due to the hydrophilic and conductive properties of the TiO2/KB catalyst. TiO2 can hold many hydroxyl groups that are hydrophilic and electro-active group, while KB is a conductive material that induces a fast electron transfer. With these benefits, the charge transfer resistance of the electrode is reduced from 1.8 Ω with pristine CF to 1.5 Ω with TiO2/KB-CF. In AORFB tests using NQSO and potassium ferrocyanide under alkaline supporting electrolyte, energy efficiency increased from 58% (pristine CF) to 61% (TiO2/KB-CF) with a low capacity loss rate of 0.006 Ah·17−1 per cycle and the cross-over rate of active materials during cycling of AORFB was very low. Carbon felt (CF) doped by catalyst including titanium oxide and ketjen black (TiO2/KB-CF) is used as negativeelectrode to enhance the redox reactivity of napthoquinone (NQSO) and thus the performance of aqueousorganic redox flow batteries (AORFBs). The redox reactivity of NQSO is better with TiO2/KB-CF than with pristine CF(anodic current density of 13.3 and 19.8mA∙cm2, and cathodic current density of 15.7 and 21.9mA∙cm2 withpristine CF and TiO2/KB-CF), while the reaction reversibility of NQSO is also enhanced in TiO2/KB-CF (ratio of peakcurrent density is 0.84 and 0.9 with pristine CF and TiO2/KB-CF). These results are due to the hydrophilic and conductiveproperties of the TiO2/KB catalyst. TiO2 can hold many hydroxyl groups that are hydrophilic and electro-activegroup, while KB is a conductive material that induces a fast electron transfer. With these benefits, the charge transferresistance of the electrode is reduced from 1.8 with pristine CF to 1.5 with TiO2/KB-CF. In AORFB tests usingNQSO and potassium ferrocyanide under alkaline supporting electrolyte, energy efficiency increased from 58% (pristineCF) to 61% (TiO2/KB-CF) with a low capacity loss rate of 0.006 Ah∙L1 per cycle and the cross-over rate of activematerials during cycling of AORFB was very low. KCI Citation Count: 8 Carbon felt (CF) doped by catalyst including titanium oxide and ketjen black (TiO 2 /KB-CF) is used as negative electrode to enhance the redox reactivity of napthoquinone (NQSO) and thus the performance of aqueous organic redox flow batteries (AORFBs). The redox reactivity of NQSO is better with TiO 2 /KB-CF than with pristine CF (anodic current density of 13.3 and 19.8 mA·cm −2 , and cathodic current density of −15.7 and −21.9 mA·cm −2 with pristine CF and TiO 2 /KB-CF), while the reaction reversibility of NQSO is also enhanced in TiO 2 /KB-CF (ratio of peak current density is 0.84 and 0.9 with pristine CF and TiO 2 /KB-CF). These results are due to the hydrophilic and conductive properties of the TiO 2 /KB catalyst. TiO 2 can hold many hydroxyl groups that are hydrophilic and electro-active group, while KB is a conductive material that induces a fast electron transfer. With these benefits, the charge transfer resistance of the electrode is reduced from 1.8 Ω with pristine CF to 1.5 Ω with TiO 2 /KB-CF. In AORFB tests using NQSO and potassium ferrocyanide under alkaline supporting electrolyte, energy efficiency increased from 58% (pristine CF) to 61% (TiO 2 /KB-CF) with a low capacity loss rate of 0.006 Ah·17 −1 per cycle and the cross-over rate of active materials during cycling of AORFB was very low. |
Author | Schröder, Daniel Lee, Wonmi Park, Gyunho Kwon, Yongchai |
Author_xml | – sequence: 1 givenname: Wonmi surname: Lee fullname: Lee, Wonmi organization: Graduate school of Energy and Environment, Seoul National University of Science and Technology – sequence: 2 givenname: Gyunho surname: Park fullname: Park, Gyunho organization: Graduate school of Energy and Environment, Seoul National University of Science and Technology – sequence: 3 givenname: Daniel surname: Schröder fullname: Schröder, Daniel email: d.schroeder@tu-braunschweig.de organization: Institute of Energy and Process Systems Engineering (InES), Technische Universität Braunschweig – sequence: 4 givenname: Yongchai surname: Kwon fullname: Kwon, Yongchai email: kwony@seoultech.ac.kr organization: Graduate school of Energy and Environment, Seoul National University of Science and Technology, Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Department of New and Renewable Energy Convergence, Seoul National University of Science and Technology |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002842580$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kU-LFDEQxYOs4OzqB_AW8OSh3VSmk3Qfl8U_iwuKrOeQTqrHzPQka5LWnW9v2l4QBD09KN6vXlHvnJyFGJCQl8DeAGPqMgN00DaMQwOsZU3_hGygV6JRnLMzsmFcyAYAxDNynvOeMSEkZxvy4zOmMaajCRYphm-LHjEUGkdqpoOZfEAa084Eb2lCFx_oOMWfdDClYDrROfuwo9YUM51yoT7YaXbLqPhSmflI44N3SE1w9COWPYZhMvbwnDwdzZTxxaNekK_v3t5df2huP72_ub66bSzvWGkUMpTcQdcyy6UCKSwzTkjRgZNt30qnus50o9jCYAD71vWgBmeHdhiQSdhekNfr3pBGfbBeR-N_6y7qQ9JXX-5udF_fJLtt9b5avfcpfp8xF72Pcwr1PF2za6hibV9dsLpsijknHPV98keTThqYXqrQaxW6VqGXKvTCqL8YW79TfAwlGT_9l-QrmWtK2GH6c9O_oV_PH6Av |
CitedBy_id | crossref_primary_10_1016_j_cej_2023_142661 crossref_primary_10_1007_s11814_024_00252_9 crossref_primary_10_1007_s11814_024_00255_6 crossref_primary_10_1007_s11814_025_00419_y crossref_primary_10_1016_j_apenergy_2023_122171 crossref_primary_10_1039_D4TA02525C crossref_primary_10_1002_tcr_202300284 crossref_primary_10_1016_j_jpowsour_2023_233770 crossref_primary_10_1016_j_jiec_2023_02_027 crossref_primary_10_1016_j_jcis_2024_12_142 crossref_primary_10_1016_j_jpowsour_2024_234766 crossref_primary_10_1007_s11814_024_00200_7 crossref_primary_10_1021_acsanm_3c06270 crossref_primary_10_1016_j_apsusc_2022_155962 crossref_primary_10_1016_j_est_2023_107796 crossref_primary_10_1002_batt_202200365 crossref_primary_10_1016_j_est_2023_108337 crossref_primary_10_1021_acssuschemeng_3c03316 |
Cites_doi | 10.1007/s11814-021-0861-x 10.1021/acsenergylett.6b00413 10.1007/s11814-021-0813-5 10.1016/j.cej.2018.10.159 10.1007/s11814-019-0462-0 10.1007/s11814-019-0414-8 10.1021/acsenergylett.7b01302 10.1016/j.jpowsour.2018.10.042 10.1021/acsami.7b10598 10.1016/j.jpowsour.2010.11.126 10.1149/2.0191601jes 10.1016/j.jpowsour.2016.12.016 10.1016/j.jmst.2020.09.042 10.1007/s11814-020-0693-0 10.1021/acs.chemmater.7b00616 10.1002/aenm.201501449 10.1021/acs.chemmater.9b05077 10.1016/j.ssi.2018.06.009 10.1039/c3ra00115f 10.1016/j.jpowsour.2019.227063 10.1021/acs.chemmater.7b04220 10.1016/j.elecom.2009.10.006 10.1002/aenm.201601488 10.1016/S0378-7753(03)00230-1 10.1039/C7TA06672D 10.1016/j.elecom.2014.03.010 10.1002/aenm.201100008 10.1007/s11814-021-0871-8 10.1007/s10800-011-0348-2 10.1016/j.apenergy.2018.04.025 10.1021/acsenergylett.7b00650 10.1149/2.0351704jes 10.1002/anie.201604925 10.1016/j.apsusc.2017.07.022 10.1002/cssc.201100068 10.1016/j.cej.2019.123985 10.1016/j.rser.2013.08.001 10.1007/s11814-019-0374-z 10.1016/j.apenergy.2016.12.129 10.1016/j.jpowsour.2019.227079 10.1007/s11814-020-0695-y 10.1007/s11814-017-0213-z 10.1016/j.electacta.2017.03.131 10.1149/2.0621807jes 10.1007/s11814-020-0669-0 10.1016/j.cej.2019.123085 10.1002/cssc.202000454 10.1016/j.elecom.2011.08.017 10.1016/j.cej.2020.125610 10.1039/C5RA24626A 10.1016/j.ijhydene.2021.07.172 10.1007/s11814-021-0819-z 10.1126/science.aab3033 10.1021/acsami.8b10952 10.1007/s11814-014-0157-5 10.1002/anie.201410823 10.1039/D0TC00640H 10.1007/s11814-021-0787-3 10.1021/la980623e 10.1007/s11814-020-0539-9 10.1002/er.1863 10.1016/j.rser.2016.11.188 10.1149/2.1001409jes |
ContentType | Journal Article |
Copyright | The Korean Institute of Chemical Engineers 2022 The Korean Institute of Chemical Engineers 2022. |
Copyright_xml | – notice: The Korean Institute of Chemical Engineers 2022 – notice: The Korean Institute of Chemical Engineers 2022. |
DBID | AAYXX CITATION ACYCR |
DOI | 10.1007/s11814-021-1040-9 |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1975-7220 |
EndPage | 1631 |
ExternalDocumentID | oai_kci_go_kr_ARTI_9975683 10_1007_s11814_021_1040_9 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X 9ZL AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG5 HG6 HMJXF HRMNR HVGLF HZB HZ~ IJ- IKXTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KDC KOV LLZTM M4Y MA- MZR N2Q NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9N PF0 PT4 PT5 QOK QOR QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 W4F WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z8N Z8Q Z8Z Z92 ZMTXR ZZE ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR CITATION ABRTQ 85H AABYN AAFGU AAGCJ AAUCO AAYFA ABFGW ABKAS ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ACYCR ADMDM ADOXG AEEQQ AEFTE AESTI AEVTX AFNRJ AGGBP AIMYW AJDOV AJGSW AKQUC SQXTU UNUBA |
ID | FETCH-LOGICAL-c280t-7e0e62d1840c267165c0ad56581d64946d788a8f531ba1e94d917bdcb4bbe0613 |
IEDL.DBID | AGYKE |
ISSN | 0256-1115 |
IngestDate | Wed Jan 31 06:58:39 EST 2024 Fri Jul 25 10:58:22 EDT 2025 Tue Jul 01 03:29:43 EDT 2025 Thu Apr 24 22:50:10 EDT 2025 Fri Feb 21 02:49:08 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Naphthoquinone Derivatives Titanium Oxide Alkaline Organic Redox Flow Battery Catalyst Effect Ketjen Black |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c280t-7e0e62d1840c267165c0ad56581d64946d788a8f531ba1e94d917bdcb4bbe0613 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2675657049 |
PQPubID | 2044390 |
PageCount | 8 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9975683 proquest_journals_2675657049 crossref_primary_10_1007_s11814_021_1040_9 crossref_citationtrail_10_1007_s11814_021_1040_9 springer_journals_10_1007_s11814_021_1040_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | The Korean journal of chemical engineering |
PublicationTitleAbbrev | Korean J. Chem. Eng |
PublicationYear | 2022 |
Publisher | Springer US Springer Nature B.V 한국화학공학회 |
Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: 한국화학공학회 |
References | LeeWKwonB WKwonYACS Appl. Mater. Interfaces201810368821:CAS:528:DC%2BC1cXhvV2jsr7E3029907410.1021/acsami.8b10952 WinsbergJHagemannTJanoschkaTHagerM DSchubertU SAngew. Chem. Int. Ed.2017566861:CAS:528:DC%2BC28Xhsl2hsLrF10.1002/anie.201604925 NohCMoonSChungYKwonYJ. Mater. Chem. A20175213341:CAS:528:DC%2BC2sXhsFKntL3F10.1039/C7TA06672D YadavDKumarSVermaO PPachauriNSharmaVKorean J. Chem. Eng.2021389061:CAS:528:DC%2BB3MXhtVKmsLjO10.1007/s11814-021-0787-3 LiuQSleightholmeA EShinkleA ALiYThompsonL TElectrochem. Commun.20091123121:CAS:528:DC%2BD1MXhsVGls7%2FJ10.1016/j.elecom.2009.10.006 YangDGuoYTangHWangYYangDMingPZhangCLiBZhuSInt. J. Hydrogen Energy202146333001:CAS:528:DC%2BB3MXhslCjs77I10.1016/j.ijhydene.2021.07.172 ElgammalR ATangZSunC NLawtonJZawodzinskiT AJr.Electrochim. Acta201723711:CAS:528:DC%2BC2sXlslCqtLc%3D10.1016/j.electacta.2017.03.131 WinsbergJStolzeCMuenchSLiedlFHagerM DSchubertU SACS Energy Lett.201619761:CAS:528:DC%2BC28Xhs1OnsL7F10.1021/acsenergylett.6b00413 NohCJungMHenkensmeierDNamS WKwonYACS Appl. Mater. Interfaces20179367991:CAS:528:DC%2BC2sXhs1aiurrO2901610810.1021/acsami.7b10598 BahooshRJafariMBahrainianS SKorean J. Chem. Eng.20213817031:CAS:528:DC%2BB3MXhsV2lurbJ10.1007/s11814-019-0462-0 NiazHMansourLakourajMLiuJKorean J. Chem. Eng.20213816171:CAS:528:DC%2BB3MXhtlCis7fN10.1007/s11814-021-0819-z ChoiCKimSKimRChoiYKimSJungH YYangJ HKimH TRenew. Sustain. Energy Rev.2017692631:CAS:528:DC%2BC28XhvFShs7fL10.1016/j.rser.2016.11.188 SakaiNWangRFujishimaAWatanabeTHashimotoKLangmuir19981459181:CAS:528:DyaK1cXlslartLo%3D10.1021/la980623e LeeWParkGKimYChangDKwonYYChem. Eng. J.20203981256101:CAS:528:DC%2BB3cXhtV2rs7zK10.1016/j.cej.2020.125610 ChristwardanaMChungYKwonYKorean J. Chem. Eng.20173430091:CAS:528:DC%2BC2sXhsVejtbnO10.1007/s11814-017-0213-z LvYHanCZhuYZhangTYaoSHeZDaiLWangLJ. Mater. Sci. Technol.2021759610.1016/j.jmst.2020.09.0421:CAS:528:DC%2BB38XhtFehtrbO ChuCKwonB WLeeWKwonYKorean J. Chem. Eng.20193617321:CAS:528:DC%2BC1MXhvFSns7fO10.1007/s11814-019-0374-z FanLSunPYangLXuZHanJKorean J. Chem. Eng.2020371661:CAS:528:DC%2BB3cXnvVaqtQ%3D%3D10.1007/s11814-019-0414-8 WeiXPanWDuanWHollasAYangZLiBNieZLiuJReedDWangWSprenkleVACS Energy Lett.2017221871:CAS:528:DC%2BC2sXhtlymt7vL10.1021/acsenergylett.7b00650 KurodaSToboriNSakurabaMSatoYJ. Power Sources200311992410.1016/S0378-7753(03)00230-11:CAS:528:DC%2BD3sXktlOmt78%3D NuluANuluVMoonJ SSohnK YKorean J. Chem. Eng.20213819231:CAS:528:DC%2BB3MXhsl2mtLzN10.1007/s11814-021-0813-5 PhamH T TJoCLeeJKwonYRSC Adv.201661757410.1039/C5RA24626A1:CAS:528:DC%2BC28Xhtlartrc%3D VijayakumarMLiLGraffGLiuJZhangHYangZHuJ ZJ. Power Sources201119636691:CAS:528:DC%2BC3MXht1Wns74%3D10.1016/j.jpowsour.2010.11.126 WeberA ZMenchM MMeyersJ PRossP NGostickJ TLiuQJ. Appl. Electrochem.20114111371:CAS:528:DC%2BC3MXht1yjsr7O10.1007/s10800-011-0348-2 PermatasariALeeWKwonYChem. Eng. J.20203831230851:CAS:528:DC%2BC1MXhvFCktbbE10.1016/j.cej.2019.123085 LeeWJoCYoukSShinH YLeeJChungYKwonYAppl. Surf. Sci.20184291871:CAS:528:DC%2BC2sXhtF2qu7vF10.1016/j.apsusc.2017.07.022 LeeWPermatasariAKwonB WKwonYChem. Eng. J.201935814381:CAS:528:DC%2BC1cXitVWjt77M10.1016/j.cej.2018.10.159 JeongSKimL HKwonYKimSKorean J. Chem. Eng.20143120811:CAS:528:DC%2BC2cXhtlOrtrzJ10.1007/s11814-014-0157-5 NohCLeeC SChiW SChungYKimJ HKwonYJ. Electrochem. Soc.2018165A13881:CAS:528:DC%2BC1cXhtVWltb3J10.1149/2.0621807jes NohCKwonB WChungYKwonYJ. Power Sources2018406261:CAS:528:DC%2BC1cXhvFCjsbzJ10.1016/j.jpowsour.2018.10.042 HofmannJ DSchmalischSSchwanSHongLWegnerH AMollenhauerDJanekJSchröderDChem. Mater.20203234271:CAS:528:DC%2BB3cXlvFCis78%3D10.1021/acs.chemmater.9b05077 LeeWParkGKwonYChem. Eng. J.20203861239851:CAS:528:DC%2BB3cXps1Slsw%3D%3D10.1016/j.cej.2019.123985 Hoober-BurkhardtLKrishnamoorthySYangBMuraliANirmalchandarAPrakashG SNarayananS RJ. Electrochem. Soc.2017164A6001:CAS:528:DC%2BC2sXktlGqsL8%3D10.1149/2.0351704jes LimE HChunJ YJoC SHwangJ KKorean J. Chem. Eng.2021382271:CAS:528:DC%2BB3MXhsVegtbw%3D10.1007/s11814-020-0693-0 LeeWKwonB WJungMSerhiichukDHenkensmeierDKwonYJ. Power Sources20194392270791:CAS:528:DC%2BC1MXhvV2ktb7F10.1016/j.jpowsour.2019.227079 LeeWParkGChangDKwonYKorean J. Chem. Eng.20203723261:CAS:528:DC%2BB3cXis1Oks7%2FL10.1007/s11814-020-0669-0 ParkGLeeWKwonYKorean Chem. Eng. Res.2019578681:CAS:528:DC%2BB3cXktVShs7w%3D Al-YasiriMParkJAppl. Energy20182225301:CAS:528:DC%2BC1cXns1emsrc%3D10.1016/j.apenergy.2018.04.025 KearGShahA AWalshF CInt. J. Energy Res.20123611051:CAS:528:DC%2BC38XhtFyqtbzJ10.1002/er.1863 LeeWChungK YKwonYKorean Chem. Eng. Res.2019572391:CAS:528:DC%2BC1MXht1Knt7jE DeBrulerCHuBMossJLuoJLiuT LACS Energy Lett.201836631:CAS:528:DC%2BC1cXis12ntb4%3D10.1021/acsenergylett.7b01302 NoackJRoznyatovskayaNHerrTFischerPAngew. Chem. Int. Ed.20155497761:CAS:528:DC%2BC2MXhtVOmu73E10.1002/anie.201410823 LiuTWeiZNieZSprenkleVWangWAdv. Energy Mater.20166150144910.1002/aenm.2015014491:CAS:528:DC%2BC2MXhvFWktLbF HwangMJeongJ SLeeJ CYuS IJungH SChoB SKimK YKorean J. Chem. Eng.2021384541:CAS:528:DC%2BB3MXjsF2nurk%3D10.1007/s11814-020-0695-y Di BlasiABusaccaaCDi BlasiaOBriguglioaNSquadritoaGAntonucciaVAppl. Energy20171901651:CAS:528:DC%2BC2sXlsVOitg%3D%3D10.1016/j.apenergy.2016.12.129 CarneyT JCollinsS JMooreJ SBrushettF RChem. Mater.20172948011:CAS:528:DC%2BC2sXotVGmsLw%3D10.1021/acs.chemmater.7b00616 AlottoPGuarnieriMMoroFRenew. Sustain. Energy Rev.2014293251:CAS:528:DC%2BC3sXhslGlt7rO10.1016/j.rser.2013.08.001 LinKChenQGerhardtM RTongLKimS BEisenachLValleA WHardeeDGordonR GAzizM JMarshakM PScience201534915291:CAS:528:DC%2BC2MXhsFCrtbjN2640483410.1126/science.aab3033 SeoJ SNaB KKorean J. Chem. Eng.20213818261:CAS:528:DC%2BB3MXhvVOksLnO10.1007/s11814-021-0861-x RyuJParkMChoJJ. Electrochem. Soc.2015163A514410.1149/2.0191601jes1:CAS:528:DC%2BC2MXhvFyksr%2FE LiLKimSWangWVijayakumarMNieZChenBZhangJXiaGHuJGraffGLiuJYangZAdv. Energy Mater.201113941:CAS:528:DC%2BC3MXmslWqu7s%3D10.1002/aenm.201100008 ShinS HYunS HMoonS HRSC Adv.2013390951:CAS:528:DC%2BC3sXot1ehtLs%3D10.1039/c3ra00115f LinKGómez-BombarelliRBehE STongLChenQValleAAspuru-GuzikAAzizM JGordonR GNat. Energy201611 HofmannJ DPfanschillingF LKrawczykNGeiglePHongLSchmalischSWegnerH AMoleenhauerDJanekJSchröderDChem. Mater.2018307621:CAS:528:DC%2BC1cXhslyqurs%3D10.1021/acs.chemmater.7b04220 ChuCLeeWKwonYKorean Chem. Eng. Res.2019578471:CAS:528:DC%2BB3cXktVSiurk%3D SchwanSSchröderDWegnerH AJanekJMollenhauerDChemSusChem20201354801:CAS:528:DC%2BB3cXhvV2msLrK3279824010.1002/cssc.2020004547702104 KimJ HMoS IParkG SYunJ WKorean J. Chem. Eng.20213818341:CAS:528:DC%2BB3MXhvFSqsLbE10.1007/s11814-021-0871-8 YangBHoober-BurkhardtLWangFPrakashG SNarayananS RJ. Electrochem. Soc.2014161A13711:CAS:528:DC%2BC2cXhtFOnsrnO10.1149/2.1001409jes JungH-YChoM-SSadhasivamTKimJ-YRohS-HKwonYSolid State Ion.2018324691:CAS:528:DC%2BC1cXhtFGksLzN10.1016/j.ssi.2018.06.009 SunC NTangZBelcherCZawodzinskiT AFujimotoCElectrochem. Commun.2014436310.1016/j.elecom.2014.03.0101:CAS:528:DC%2BC2cXotlWmtL0%3D LeeWPermatasariAKwonYJ. Mater. Chem. C2020857271:CAS:528:DC%2BB3cXkvF2ltL4%3D10.1039/D0TC00640H ChungYNohCKwonYJ. Power Sources20194382270631:CAS:528:DC%2BC1MXhs1emsLnM10.1016/j.jpowsour.2019.227063 LeeWKwonYKorean Chem. Eng. Res.201957695 KarimM RHanT HSawantS YShimJ JLeeM YKimW KKimJ SChoM HKorean J. Chem. Eng.20203712411:CAS:528:DC%2BB3cXhtVSju7%2FM10.1007/s11814-020-0539-9 SchwenzerBZhangJKimSLiLLiuJYangZChemSus-Chem.2011413881:CAS:528:DC%2BC3MXht1yjsr%2FJ10.1002/cssc.201100068 GonzálezZSánchezABlancoCGrandaMMenéndezRSantamaríaRElectrochem. Commun.201113137910.1016/j.elecom.2011.08.0171:CAS:528:DC%2BC3MXhsFart7nE GerhardtM RTongLGómez-BombarelliRChenQMarshakM PGalvinC JAspuru-GuzikA AGordonR GAzizM JAdv. Energy Mater.20177160148810.1002/aenm.2016014881:CAS:528:DC%2BC28XitVKrs73K WeiLZhaoT SZengLZengY KJiangH RJ. Power Sources20173413181:CAS:528:DC%2BC28XitFGhsb7I10.1016/j.jpowsour.2016.12.016 W Lee (1040_CR37) 2020; 37 W Lee (1040_CR44) 2018; 10 C DeBruler (1040_CR39) 2018; 3 A Permatasari (1040_CR52) 2020; 383 C Noh (1040_CR27) 2017; 9 J D Hofmann (1040_CR49) 2018; 30 W Lee (1040_CR42) 2020; 398 C Noh (1040_CR21) 2017; 5 W Lee (1040_CR36) 2018; 429 C N Sun (1040_CR26) 2014; 43 J Ryu (1040_CR63) 2015; 163 M R Karim (1040_CR3) 2020; 37 N Sakai (1040_CR67) 1998; 14 K Lin (1040_CR45) 2016; 1 R A Elgammal (1040_CR23) 2017; 237 S Schwan (1040_CR55) 2020; 13 Q Liu (1040_CR18) 2009; 11 T J Carney (1040_CR65) 2017; 29 B Yang (1040_CR50) 2014; 161 W Lee (1040_CR58) 2019; 358 J S Seo (1040_CR4) 2021; 38 W Lee (1040_CR19) 2019; 439 W Lee (1040_CR59) 2020; 8 M Al-Yasiri (1040_CR68) 2018; 222 A Di Blasi (1040_CR31) 2017; 190 X Wei (1040_CR43) 2017; 2 J Winsberg (1040_CR41) 2017; 56 C Chu (1040_CR60) 2019; 57 C Choi (1040_CR29) 2017; 69 H Niaz (1040_CR1) 2021; 38 M Vijayakumar (1040_CR33) 2011; 196 L Fan (1040_CR9) 2020; 37 G Kear (1040_CR5) 2012; 36 S H Shin (1040_CR17) 2013; 3 C Noh (1040_CR22) 2018; 165 B Schwenzer (1040_CR28) 2011; 4 H T T Pham (1040_CR20) 2016; 6 L Hoober-Burkhardt (1040_CR51) 2017; 164 W Lee (1040_CR61) 2019; 57 A Nulu (1040_CR6) 2021; 38 J H Kim (1040_CR10) 2021; 38 M Christwardana (1040_CR13) 2017; 34 W Lee (1040_CR46) 2019; 57 K Lin (1040_CR54) 2015; 349 C Noh (1040_CR35) 2018; 406 W Lee (1040_CR57) 2020; 386 T Liu (1040_CR47) 2016; 6 H-Y Jung (1040_CR24) 2018; 324 J D Hofmann (1040_CR53) 2020; 32 E H Lim (1040_CR7) 2021; 38 J Winsberg (1040_CR40) 2016; 1 D Yadav (1040_CR2) 2021; 38 L Li (1040_CR12) 2011; 1 S Jeong (1040_CR25) 2014; 31 Y Chung (1040_CR34) 2019; 438 S Kuroda (1040_CR66) 2003; 119 J Noack (1040_CR15) 2015; 54 D Yang (1040_CR64) 2021; 46 M Hwang (1040_CR8) 2021; 38 R Bahoosh (1040_CR11) 2021; 38 Z González (1040_CR32) 2011; 13 L Wei (1040_CR30) 2017; 341 Y Lv (1040_CR62) 2021; 75 P Alotto (1040_CR16) 2014; 29 G Park (1040_CR48) 2019; 57 A Z Weber (1040_CR14) 2011; 41 C Chu (1040_CR38) 2019; 36 M R Gerhardt (1040_CR56) 2017; 7 |
References_xml | – reference: ChuCKwonB WLeeWKwonYKorean J. Chem. Eng.20193617321:CAS:528:DC%2BC1MXhvFSns7fO10.1007/s11814-019-0374-z – reference: LeeWParkGKwonYChem. Eng. J.20203861239851:CAS:528:DC%2BB3cXps1Slsw%3D%3D10.1016/j.cej.2019.123985 – reference: LvYHanCZhuYZhangTYaoSHeZDaiLWangLJ. Mater. Sci. Technol.2021759610.1016/j.jmst.2020.09.0421:CAS:528:DC%2BB38XhtFehtrbO – reference: YangDGuoYTangHWangYYangDMingPZhangCLiBZhuSInt. J. Hydrogen Energy202146333001:CAS:528:DC%2BB3MXhslCjs77I10.1016/j.ijhydene.2021.07.172 – reference: NoackJRoznyatovskayaNHerrTFischerPAngew. Chem. Int. Ed.20155497761:CAS:528:DC%2BC2MXhtVOmu73E10.1002/anie.201410823 – reference: VijayakumarMLiLGraffGLiuJZhangHYangZHuJ ZJ. Power Sources201119636691:CAS:528:DC%2BC3MXht1Wns74%3D10.1016/j.jpowsour.2010.11.126 – reference: SchwanSSchröderDWegnerH AJanekJMollenhauerDChemSusChem20201354801:CAS:528:DC%2BB3cXhvV2msLrK3279824010.1002/cssc.2020004547702104 – reference: YangBHoober-BurkhardtLWangFPrakashG SNarayananS RJ. Electrochem. Soc.2014161A13711:CAS:528:DC%2BC2cXhtFOnsrnO10.1149/2.1001409jes – reference: ShinS HYunS HMoonS HRSC Adv.2013390951:CAS:528:DC%2BC3sXot1ehtLs%3D10.1039/c3ra00115f – reference: Al-YasiriMParkJAppl. Energy20182225301:CAS:528:DC%2BC1cXns1emsrc%3D10.1016/j.apenergy.2018.04.025 – reference: SunC NTangZBelcherCZawodzinskiT AFujimotoCElectrochem. Commun.2014436310.1016/j.elecom.2014.03.0101:CAS:528:DC%2BC2cXotlWmtL0%3D – reference: Hoober-BurkhardtLKrishnamoorthySYangBMuraliANirmalchandarAPrakashG SNarayananS RJ. Electrochem. Soc.2017164A6001:CAS:528:DC%2BC2sXktlGqsL8%3D10.1149/2.0351704jes – reference: LeeWJoCYoukSShinH YLeeJChungYKwonYAppl. Surf. Sci.20184291871:CAS:528:DC%2BC2sXhtF2qu7vF10.1016/j.apsusc.2017.07.022 – reference: LeeWKwonYKorean Chem. Eng. Res.201957695 – reference: KarimM RHanT HSawantS YShimJ JLeeM YKimW KKimJ SChoM HKorean J. Chem. Eng.20203712411:CAS:528:DC%2BB3cXhtVSju7%2FM10.1007/s11814-020-0539-9 – reference: SakaiNWangRFujishimaAWatanabeTHashimotoKLangmuir19981459181:CAS:528:DyaK1cXlslartLo%3D10.1021/la980623e – reference: NohCLeeC SChiW SChungYKimJ HKwonYJ. Electrochem. Soc.2018165A13881:CAS:528:DC%2BC1cXhtVWltb3J10.1149/2.0621807jes – reference: ChoiCKimSKimRChoiYKimSJungH YYangJ HKimH TRenew. Sustain. Energy Rev.2017692631:CAS:528:DC%2BC28XhvFShs7fL10.1016/j.rser.2016.11.188 – reference: WeiXPanWDuanWHollasAYangZLiBNieZLiuJReedDWangWSprenkleVACS Energy Lett.2017221871:CAS:528:DC%2BC2sXhtlymt7vL10.1021/acsenergylett.7b00650 – reference: CarneyT JCollinsS JMooreJ SBrushettF RChem. Mater.20172948011:CAS:528:DC%2BC2sXotVGmsLw%3D10.1021/acs.chemmater.7b00616 – reference: LiuTWeiZNieZSprenkleVWangWAdv. Energy Mater.20166150144910.1002/aenm.2015014491:CAS:528:DC%2BC2MXhvFWktLbF – reference: LeeWKwonB WJungMSerhiichukDHenkensmeierDKwonYJ. Power Sources20194392270791:CAS:528:DC%2BC1MXhvV2ktb7F10.1016/j.jpowsour.2019.227079 – reference: LiLKimSWangWVijayakumarMNieZChenBZhangJXiaGHuJGraffGLiuJYangZAdv. Energy Mater.201113941:CAS:528:DC%2BC3MXmslWqu7s%3D10.1002/aenm.201100008 – reference: LimE HChunJ YJoC SHwangJ KKorean J. Chem. Eng.2021382271:CAS:528:DC%2BB3MXhsVegtbw%3D10.1007/s11814-020-0693-0 – reference: HwangMJeongJ SLeeJ CYuS IJungH SChoB SKimK YKorean J. Chem. Eng.2021384541:CAS:528:DC%2BB3MXjsF2nurk%3D10.1007/s11814-020-0695-y – reference: KimJ HMoS IParkG SYunJ WKorean J. Chem. Eng.20213818341:CAS:528:DC%2BB3MXhvFSqsLbE10.1007/s11814-021-0871-8 – reference: Di BlasiABusaccaaCDi BlasiaOBriguglioaNSquadritoaGAntonucciaVAppl. Energy20171901651:CAS:528:DC%2BC2sXlsVOitg%3D%3D10.1016/j.apenergy.2016.12.129 – reference: LiuQSleightholmeA EShinkleA ALiYThompsonL TElectrochem. Commun.20091123121:CAS:528:DC%2BD1MXhsVGls7%2FJ10.1016/j.elecom.2009.10.006 – reference: LinKGómez-BombarelliRBehE STongLChenQValleAAspuru-GuzikAAzizM JGordonR GNat. Energy201611 – reference: LeeWPermatasariAKwonB WKwonYChem. Eng. J.201935814381:CAS:528:DC%2BC1cXitVWjt77M10.1016/j.cej.2018.10.159 – reference: NiazHMansourLakourajMLiuJKorean J. Chem. Eng.20213816171:CAS:528:DC%2BB3MXhtlCis7fN10.1007/s11814-021-0819-z – reference: WeiLZhaoT SZengLZengY KJiangH RJ. Power Sources20173413181:CAS:528:DC%2BC28XitFGhsb7I10.1016/j.jpowsour.2016.12.016 – reference: HofmannJ DSchmalischSSchwanSHongLWegnerH AMollenhauerDJanekJSchröderDChem. Mater.20203234271:CAS:528:DC%2BB3cXlvFCis78%3D10.1021/acs.chemmater.9b05077 – reference: SchwenzerBZhangJKimSLiLLiuJYangZChemSus-Chem.2011413881:CAS:528:DC%2BC3MXht1yjsr%2FJ10.1002/cssc.201100068 – reference: HofmannJ DPfanschillingF LKrawczykNGeiglePHongLSchmalischSWegnerH AMoleenhauerDJanekJSchröderDChem. Mater.2018307621:CAS:528:DC%2BC1cXhslyqurs%3D10.1021/acs.chemmater.7b04220 – reference: WeberA ZMenchM MMeyersJ PRossP NGostickJ TLiuQJ. Appl. Electrochem.20114111371:CAS:528:DC%2BC3MXht1yjsr7O10.1007/s10800-011-0348-2 – reference: WinsbergJStolzeCMuenchSLiedlFHagerM DSchubertU SACS Energy Lett.201619761:CAS:528:DC%2BC28Xhs1OnsL7F10.1021/acsenergylett.6b00413 – reference: DeBrulerCHuBMossJLuoJLiuT LACS Energy Lett.201836631:CAS:528:DC%2BC1cXis12ntb4%3D10.1021/acsenergylett.7b01302 – reference: FanLSunPYangLXuZHanJKorean J. Chem. Eng.2020371661:CAS:528:DC%2BB3cXnvVaqtQ%3D%3D10.1007/s11814-019-0414-8 – reference: KearGShahA AWalshF CInt. J. Energy Res.20123611051:CAS:528:DC%2BC38XhtFyqtbzJ10.1002/er.1863 – reference: GonzálezZSánchezABlancoCGrandaMMenéndezRSantamaríaRElectrochem. Commun.201113137910.1016/j.elecom.2011.08.0171:CAS:528:DC%2BC3MXhsFart7nE – reference: ElgammalR ATangZSunC NLawtonJZawodzinskiT AJr.Electrochim. Acta201723711:CAS:528:DC%2BC2sXlslCqtLc%3D10.1016/j.electacta.2017.03.131 – reference: ChristwardanaMChungYKwonYKorean J. Chem. Eng.20173430091:CAS:528:DC%2BC2sXhsVejtbnO10.1007/s11814-017-0213-z – reference: LeeWParkGKimYChangDKwonYYChem. Eng. J.20203981256101:CAS:528:DC%2BB3cXhtV2rs7zK10.1016/j.cej.2020.125610 – reference: LeeWKwonB WKwonYACS Appl. Mater. Interfaces201810368821:CAS:528:DC%2BC1cXhvV2jsr7E3029907410.1021/acsami.8b10952 – reference: YadavDKumarSVermaO PPachauriNSharmaVKorean J. Chem. Eng.2021389061:CAS:528:DC%2BB3MXhtVKmsLjO10.1007/s11814-021-0787-3 – reference: ChungYNohCKwonYJ. Power Sources20194382270631:CAS:528:DC%2BC1MXhs1emsLnM10.1016/j.jpowsour.2019.227063 – reference: ChuCLeeWKwonYKorean Chem. Eng. Res.2019578471:CAS:528:DC%2BB3cXktVSiurk%3D – reference: BahooshRJafariMBahrainianS SKorean J. Chem. Eng.20213817031:CAS:528:DC%2BB3MXhsV2lurbJ10.1007/s11814-019-0462-0 – reference: NohCJungMHenkensmeierDNamS WKwonYACS Appl. Mater. Interfaces20179367991:CAS:528:DC%2BC2sXhs1aiurrO2901610810.1021/acsami.7b10598 – reference: LinKChenQGerhardtM RTongLKimS BEisenachLValleA WHardeeDGordonR GAzizM JMarshakM PScience201534915291:CAS:528:DC%2BC2MXhsFCrtbjN2640483410.1126/science.aab3033 – reference: KurodaSToboriNSakurabaMSatoYJ. Power Sources200311992410.1016/S0378-7753(03)00230-11:CAS:528:DC%2BD3sXktlOmt78%3D – reference: NohCKwonB WChungYKwonYJ. Power Sources2018406261:CAS:528:DC%2BC1cXhvFCjsbzJ10.1016/j.jpowsour.2018.10.042 – reference: NuluANuluVMoonJ SSohnK YKorean J. Chem. Eng.20213819231:CAS:528:DC%2BB3MXhsl2mtLzN10.1007/s11814-021-0813-5 – reference: JeongSKimL HKwonYKimSKorean J. Chem. Eng.20143120811:CAS:528:DC%2BC2cXhtlOrtrzJ10.1007/s11814-014-0157-5 – reference: LeeWPermatasariAKwonYJ. Mater. Chem. C2020857271:CAS:528:DC%2BB3cXkvF2ltL4%3D10.1039/D0TC00640H – reference: JungH-YChoM-SSadhasivamTKimJ-YRohS-HKwonYSolid State Ion.2018324691:CAS:528:DC%2BC1cXhtFGksLzN10.1016/j.ssi.2018.06.009 – reference: LeeWParkGChangDKwonYKorean J. Chem. Eng.20203723261:CAS:528:DC%2BB3cXis1Oks7%2FL10.1007/s11814-020-0669-0 – reference: GerhardtM RTongLGómez-BombarelliRChenQMarshakM PGalvinC JAspuru-GuzikA AGordonR GAzizM JAdv. Energy Mater.20177160148810.1002/aenm.2016014881:CAS:528:DC%2BC28XitVKrs73K – reference: PermatasariALeeWKwonYChem. Eng. J.20203831230851:CAS:528:DC%2BC1MXhvFCktbbE10.1016/j.cej.2019.123085 – reference: AlottoPGuarnieriMMoroFRenew. Sustain. Energy Rev.2014293251:CAS:528:DC%2BC3sXhslGlt7rO10.1016/j.rser.2013.08.001 – reference: ParkGLeeWKwonYKorean Chem. Eng. Res.2019578681:CAS:528:DC%2BB3cXktVShs7w%3D – reference: RyuJParkMChoJJ. Electrochem. Soc.2015163A514410.1149/2.0191601jes1:CAS:528:DC%2BC2MXhvFyksr%2FE – reference: WinsbergJHagemannTJanoschkaTHagerM DSchubertU SAngew. Chem. Int. Ed.2017566861:CAS:528:DC%2BC28Xhsl2hsLrF10.1002/anie.201604925 – reference: PhamH T TJoCLeeJKwonYRSC Adv.201661757410.1039/C5RA24626A1:CAS:528:DC%2BC28Xhtlartrc%3D – reference: LeeWChungK YKwonYKorean Chem. Eng. Res.2019572391:CAS:528:DC%2BC1MXht1Knt7jE – reference: NohCMoonSChungYKwonYJ. Mater. Chem. A20175213341:CAS:528:DC%2BC2sXhsFKntL3F10.1039/C7TA06672D – reference: SeoJ SNaB KKorean J. Chem. Eng.20213818261:CAS:528:DC%2BB3MXhvVOksLnO10.1007/s11814-021-0861-x – volume: 38 start-page: 1826 year: 2021 ident: 1040_CR4 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-021-0861-x – volume: 1 start-page: 976 year: 2016 ident: 1040_CR40 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.6b00413 – volume: 38 start-page: 1923 year: 2021 ident: 1040_CR6 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-021-0813-5 – volume: 358 start-page: 1438 year: 2019 ident: 1040_CR58 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.10.159 – volume: 57 start-page: 847 year: 2019 ident: 1040_CR60 publication-title: Korean Chem. Eng. Res. – volume: 38 start-page: 1703 year: 2021 ident: 1040_CR11 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-019-0462-0 – volume: 37 start-page: 166 year: 2020 ident: 1040_CR9 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-019-0414-8 – volume: 3 start-page: 663 year: 2018 ident: 1040_CR39 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b01302 – volume: 406 start-page: 26 year: 2018 ident: 1040_CR35 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.10.042 – volume: 9 start-page: 36799 year: 2017 ident: 1040_CR27 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b10598 – volume: 57 start-page: 239 year: 2019 ident: 1040_CR61 publication-title: Korean Chem. Eng. Res. – volume: 196 start-page: 3669 year: 2011 ident: 1040_CR33 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.11.126 – volume: 163 start-page: A5144 year: 2015 ident: 1040_CR63 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0191601jes – volume: 341 start-page: 318 year: 2017 ident: 1040_CR30 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.12.016 – volume: 75 start-page: 96 year: 2021 ident: 1040_CR62 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2020.09.042 – volume: 38 start-page: 227 year: 2021 ident: 1040_CR7 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-020-0693-0 – volume: 57 start-page: 868 year: 2019 ident: 1040_CR48 publication-title: Korean Chem. Eng. Res. – volume: 29 start-page: 4801 year: 2017 ident: 1040_CR65 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b00616 – volume: 6 start-page: 1501449 year: 2016 ident: 1040_CR47 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501449 – volume: 32 start-page: 3427 year: 2020 ident: 1040_CR53 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b05077 – volume: 324 start-page: 69 year: 2018 ident: 1040_CR24 publication-title: Solid State Ion. doi: 10.1016/j.ssi.2018.06.009 – volume: 3 start-page: 9095 year: 2013 ident: 1040_CR17 publication-title: RSC Adv. doi: 10.1039/c3ra00115f – volume: 438 start-page: 227063 year: 2019 ident: 1040_CR34 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.227063 – volume: 30 start-page: 762 year: 2018 ident: 1040_CR49 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b04220 – volume: 11 start-page: 2312 year: 2009 ident: 1040_CR18 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2009.10.006 – volume: 7 start-page: 1601488 year: 2017 ident: 1040_CR56 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601488 – volume: 57 start-page: 695 year: 2019 ident: 1040_CR46 publication-title: Korean Chem. Eng. Res. – volume: 119 start-page: 924 year: 2003 ident: 1040_CR66 publication-title: J. Power Sources doi: 10.1016/S0378-7753(03)00230-1 – volume: 5 start-page: 21334 year: 2017 ident: 1040_CR21 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA06672D – volume: 43 start-page: 63 year: 2014 ident: 1040_CR26 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2014.03.010 – volume: 1 start-page: 394 year: 2011 ident: 1040_CR12 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201100008 – volume: 38 start-page: 1834 year: 2021 ident: 1040_CR10 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-021-0871-8 – volume: 41 start-page: 1137 year: 2011 ident: 1040_CR14 publication-title: J. Appl. Electrochem. doi: 10.1007/s10800-011-0348-2 – volume: 222 start-page: 530 year: 2018 ident: 1040_CR68 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.04.025 – volume: 2 start-page: 2187 year: 2017 ident: 1040_CR43 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00650 – volume: 164 start-page: A600 year: 2017 ident: 1040_CR51 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0351704jes – volume: 56 start-page: 686 year: 2017 ident: 1040_CR41 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201604925 – volume: 429 start-page: 187 year: 2018 ident: 1040_CR36 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.07.022 – volume: 4 start-page: 1388 year: 2011 ident: 1040_CR28 publication-title: ChemSus-Chem. doi: 10.1002/cssc.201100068 – volume: 1 start-page: 1 year: 2016 ident: 1040_CR45 publication-title: Nat. Energy – volume: 386 start-page: 123985 year: 2020 ident: 1040_CR57 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123985 – volume: 29 start-page: 325 year: 2014 ident: 1040_CR16 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2013.08.001 – volume: 36 start-page: 1732 year: 2019 ident: 1040_CR38 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-019-0374-z – volume: 190 start-page: 165 year: 2017 ident: 1040_CR31 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.12.129 – volume: 439 start-page: 227079 year: 2019 ident: 1040_CR19 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.227079 – volume: 38 start-page: 454 year: 2021 ident: 1040_CR8 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-020-0695-y – volume: 34 start-page: 3009 year: 2017 ident: 1040_CR13 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-017-0213-z – volume: 237 start-page: 1 year: 2017 ident: 1040_CR23 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.03.131 – volume: 165 start-page: A1388 year: 2018 ident: 1040_CR22 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0621807jes – volume: 37 start-page: 2326 year: 2020 ident: 1040_CR37 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-020-0669-0 – volume: 383 start-page: 123085 year: 2020 ident: 1040_CR52 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123085 – volume: 13 start-page: 5480 year: 2020 ident: 1040_CR55 publication-title: ChemSusChem doi: 10.1002/cssc.202000454 – volume: 13 start-page: 1379 year: 2011 ident: 1040_CR32 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2011.08.017 – volume: 398 start-page: 125610 year: 2020 ident: 1040_CR42 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125610 – volume: 6 start-page: 17574 year: 2016 ident: 1040_CR20 publication-title: RSC Adv. doi: 10.1039/C5RA24626A – volume: 46 start-page: 33300 year: 2021 ident: 1040_CR64 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2021.07.172 – volume: 38 start-page: 1617 year: 2021 ident: 1040_CR1 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-021-0819-z – volume: 349 start-page: 1529 year: 2015 ident: 1040_CR54 publication-title: Science doi: 10.1126/science.aab3033 – volume: 10 start-page: 36882 year: 2018 ident: 1040_CR44 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b10952 – volume: 31 start-page: 2081 year: 2014 ident: 1040_CR25 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-014-0157-5 – volume: 54 start-page: 9776 year: 2015 ident: 1040_CR15 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201410823 – volume: 8 start-page: 5727 year: 2020 ident: 1040_CR59 publication-title: J. Mater. Chem. C doi: 10.1039/D0TC00640H – volume: 38 start-page: 906 year: 2021 ident: 1040_CR2 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-021-0787-3 – volume: 14 start-page: 5918 year: 1998 ident: 1040_CR67 publication-title: Langmuir doi: 10.1021/la980623e – volume: 37 start-page: 1241 year: 2020 ident: 1040_CR3 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-020-0539-9 – volume: 36 start-page: 1105 year: 2012 ident: 1040_CR5 publication-title: Int. J. Energy Res. doi: 10.1002/er.1863 – volume: 69 start-page: 263 year: 2017 ident: 1040_CR29 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.11.188 – volume: 161 start-page: A1371 year: 2014 ident: 1040_CR50 publication-title: J. Electrochem. Soc. doi: 10.1149/2.1001409jes |
SSID | ssj0055620 |
Score | 2.417518 |
Snippet | Carbon felt (CF) doped by catalyst including titanium oxide and ketjen black (TiO
2
/KB-CF) is used as negative electrode to enhance the redox reactivity of... Carbon felt (CF) doped by catalyst including titanium oxide and ketjen black (TiO2/KB-CF) is used as negative electrode to enhance the redox reactivity of... Carbon felt (CF) doped by catalyst including titanium oxide and ketjen black (TiO2/KB-CF) is used as negativeelectrode to enhance the redox reactivity of... |
SourceID | nrf proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1624 |
SubjectTerms | Biotechnology Catalysis Catalysts Charge transfer Chemistry Chemistry and Materials Science Current density Electrodes Electron transfer Electronic Hydrophilicity Hydroxyl groups Industrial Chemistry/Chemical Engineering Inorganic Iron cyanides Materials (Organic Materials Science Performance enhancement Rechargeable batteries Thin Films Titanium dioxide Titanium oxides 화학공학 |
Title | Performance enhancement of alkaline organic redox flow battery using catalyst including titanium oxide and Ketjenblack |
URI | https://link.springer.com/article/10.1007/s11814-021-1040-9 https://www.proquest.com/docview/2675657049 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002842580 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Korean Journal of Chemical Engineering, 2022, 39(6), 267, pp.1624-1631 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFH-i3QF24GOAVhiVhTiBMqWpk8bHbloZTEwcVmmcLH-O0uKgNoWNv5738kHZBEg7-RA7ie33_L5_Bnjlc55zb1RkkJgiLhyPBHciGimVD2PFU6PJUPxwmh1P-fvz9Lyp41612e5tSLI6qTfFbiiMeEQpBQNKgxMd2EoHuci7sDV---nkqD2AUxTptWuFIPZQ42mDmX97yTVx1AlLf03TvBEcrWTO5AGctX9bp5rM99el3jc_bwA53nI6D-F-o4OycU00j-COCztw97C9-m0Htv9AKXwM3z9uiguYC5-pJZ8iKzxTi7kiRZXVt0MZRvijl8wvih9MV9CdV4xS6y9Y5Se6WpVsFsxiTRKTUX1bmK2_suJyZh1TwbITV35xQZNX8QlMJ0dnh8dRc11DZJI8LqORi12WWDIZTZKhHZaaWFlUGFElzrjgmUVzW-UeuV6rgRPcoqmordFca0dqxVPohiK4XWDeZCq2icexljtD0UC05Ibp0KdJrk3cg7jdNWkaLHO6UmMhNyjMtLwSl1fS8krRg9e_h3yrgTz-1_klkoKcm5kk-G1qLwo5X0o0Mt5JIUZplg97sNdSimwYfyVx4hRIRrurB2_ajd88_ucXn92q93O4l1AZRuUN2oNuuVy7F6gclbqPzDA5ODjtN0zRh840Gf8CF0QGtg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB6V9EA5oJZSEUrpCnEqsmScteM9IgQKT_VAJG6rfdKQsEaJQ-HfM-PYBBBU6mkP9tqyZ3fnm9c3ANs-5zn3RkUGF1PEheOR4E5EXaXyTqx4ajQZimfnWa_Pjy_Ty7qOe9Jkuzchyeqknhe7oTLiEaUU7FIanFiAj4gFcmpb0E_2muM3RYU-c6wQwR7inSaU-dYjXiijhTD2L3Dmq9BopXEOP8NyDRXZ3ky2X-CDCyuwuN90aFuBpWdkgl_h7ve8BoC58IdGcv2xwjM1GirCk2zWxMkwogm9Z35U_GW6Yth8YJQBf8Uqd87DpGSDYEZTUmyMytDCYHrDivuBdUwFy05cee2CJuffKvQPDy72e1HdVSEySR6XUdfFLkssWXYmydBcSk2sLOI6RK4ZFzyzaBWr3OPm1GrXCW7RotPWaK61I-3_DVqhCG4NmDeZim3ica7lzlDQDg2uTtrxaZJrE7chbn6vNDXlOHW-GMk5WTJJRKJEJElEijb8eppyO-Pb-NfNWygzOTQDSSzZNF4VcjiWaAscSSG6aZZ32rDRiFTW-3Mi8cMp3ovmURt2GjHPL7_7xvX_uvsnLPYuzk7l6dH5yXf4lFDlROXA2YBWOZ66H4hnSr1Zrd9HuZfqaA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB4BlVp6QIW2agqlK9RTKwvHWTveIwIiKAVxIBK31T4hTbpGiUPh33fGj6ZUFKmnPdhry57dnW9e3wB88jnPuTcqMriYIi4cjwR3IuorlfdixVOjyVA8PcuOhvzrZXrZ9DmdtdnubUiyrmkglqZQ7t5Yv7sofEPFxCNKL-hSSpxYhmd4GndpoQ-TvfYoTlG5104WIttD7NOGNR97xAPFtBym_gHm_CtMWmmfwStYa2Aj26vlvA5LLmzAi_22W9sGvPyDWPA13J4v6gGYC9c0khuQFZ6pyVgRtmR1QyfDiDL0jvlJ8ZPpim3znlE2_BWrXDv3s5KNgpnMSckxKkkLo_kPVtyNrGMqWHbiyu8uaHIEvoHh4PBi_yhqOixEJsnjMuq72GWJJSvPJBmaTqmJlUWMhyg244JnFi1klXvcqFp1neAWrTttjeZaO0ICb2ElFMG9A-ZNpmKbeJxruTMUwEPjq5f2fJrk2sQdiNvfK01DP05dMCZyQZxMEpEoEUkSkaIDn39Puam5N566eQdlJsdmJIkxm8arQo6nEu2CYylEP83yXge2WpHKZq_OJH44xX7RVOrAl1bMi8v_fOP7_7r7Izw_PxjIb8dnJ5uwmlARReXL2YKVcjp3HxDalHq7Wr6_AEma7qQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+enhancement+of+alkaline+organic+redox+flow+battery+using+catalyst+including+titanium+oxide+and+Ketjenblack&rft.jtitle=The+Korean+journal+of+chemical+engineering&rft.au=Lee%2C+Wonmi&rft.au=Park%2C+Gyunho&rft.au=Schr%C3%B6der%2C+Daniel&rft.au=Kwon%2C+Yongchai&rft.date=2022-06-01&rft.issn=0256-1115&rft.eissn=1975-7220&rft.volume=39&rft.issue=6&rft.spage=1624&rft.epage=1631&rft_id=info:doi/10.1007%2Fs11814-021-1040-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11814_021_1040_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0256-1115&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0256-1115&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0256-1115&client=summon |