Divertor heat flux challenge and mitigation in the EHL-2 spherical torus

The divertor design is critical to heat load handling and thus to achievements of high-performance plasma operations in the EHL-2 (ENN He-Long 2) tokamak. This paper presents the design of an X-point target (XPT) divertor, featuring a conventional inner divertor and an XPT outer divertor, aimed at t...

Full description

Saved in:
Bibliographic Details
Published inPlasma science & technology Vol. 27; no. 2; pp. 24009 - 24021
Main Authors WANG, Fuqiong, GU, Xiang, HUA, Jiankun, WANG, Yumin, BO, Xiaokun, CHEN, Bo, SHI, Yuejiang, XU, Shuai, WANG, Erhui, LIANG, Yunfeng, Team, the EHL-2
Format Journal Article
LanguageEnglish
Published Plasma Science and Technology 01.02.2025
Subjects
Online AccessGet full text
ISSN1009-0630
2058-6272
DOI10.1088/2058-6272/adadb8

Cover

Abstract The divertor design is critical to heat load handling and thus to achievements of high-performance plasma operations in the EHL-2 (ENN He-Long 2) tokamak. This paper presents the design of an X-point target (XPT) divertor, featuring a conventional inner divertor and an XPT outer divertor, aimed at the effective control of heat loads, which may be extremely high during high ion temperature scenarios. The divertor target plates are made from carbon-based materials, which can handle heat loads of up to 5 MW/m². Divertor performances, including the heat load controllability, the onset of detachment and the in–out/up–down asymmetry, etc., are evaluated using both the simple particle-tracking strategy and the complicated SOLPS-ITER code. Special attention is paid to the drift effects on particle/heat transport in the divertor/scrape-off layer region and on the divertor heat loads, focusing on the semi-detached/detached operation regimes. Results from SOLPS-ITER simulations demonstrated that the currently designed magnetic equilibrium and divertor configuration can effectively handle the power heat load in EHL-2.
AbstractList The divertor design is critical to heat load handling and thus to achievements of high-performance plasma operations in the EHL-2 (ENN He-Long 2) tokamak. This paper presents the design of an X-point target (XPT) divertor, featuring a conventional inner divertor and an XPT outer divertor, aimed at the effective control of heat loads, which may be extremely high during high ion temperature scenarios. The divertor target plates are made from carbon-based materials, which can handle heat loads of up to 5 MW/m². Divertor performances, including the heat load controllability, the onset of detachment and the in–out/up–down asymmetry, etc., are evaluated using both the simple particle-tracking strategy and the complicated SOLPS-ITER code. Special attention is paid to the drift effects on particle/heat transport in the divertor/scrape-off layer region and on the divertor heat loads, focusing on the semi-detached/detached operation regimes. Results from SOLPS-ITER simulations demonstrated that the currently designed magnetic equilibrium and divertor configuration can effectively handle the power heat load in EHL-2.
Author BO, Xiaokun
GU, Xiang
CHEN, Bo
WANG, Erhui
WANG, Fuqiong
HUA, Jiankun
WANG, Yumin
SHI, Yuejiang
LIANG, Yunfeng
XU, Shuai
Team, the EHL-2
Author_xml – sequence: 1
  givenname: Fuqiong
  surname: WANG
  fullname: WANG, Fuqiong
  organization: College of Physics, Donghua University, Shanghai 201620, People’s Republic of China
– sequence: 2
  givenname: Xiang
  surname: GU
  fullname: GU, Xiang
  organization: ENN Science and Technology Development Co., Ltd., Langfang 065001, People’s Republic of China
– sequence: 3
  givenname: Jiankun
  surname: HUA
  fullname: HUA, Jiankun
  organization: Forschungszentrum Jülich GmbH, Institute of Fusion Energy and Nuclear Waste Management-Plasma Physics , Jülich 52425, Germany
– sequence: 4
  givenname: Yumin
  surname: WANG
  fullname: WANG, Yumin
  organization: ENN Science and Technology Development Co., Ltd., Langfang 065001, People’s Republic of China
– sequence: 5
  givenname: Xiaokun
  surname: BO
  fullname: BO, Xiaokun
  organization: ENN Science and Technology Development Co., Ltd., Langfang 065001, People’s Republic of China
– sequence: 6
  givenname: Bo
  surname: CHEN
  fullname: CHEN, Bo
  organization: ENN Science and Technology Development Co., Ltd., Langfang 065001, People’s Republic of China
– sequence: 7
  givenname: Yuejiang
  surname: SHI
  fullname: SHI, Yuejiang
  organization: ENN Science and Technology Development Co., Ltd., Langfang 065001, People’s Republic of China
– sequence: 8
  givenname: Shuai
  surname: XU
  fullname: XU, Shuai
  organization: Forschungszentrum Jülich GmbH, Institute of Fusion Energy and Nuclear Waste Management-Plasma Physics , Jülich 52425, Germany
– sequence: 9
  givenname: Erhui
  surname: WANG
  fullname: WANG, Erhui
  organization: Forschungszentrum Jülich GmbH, Institute of Fusion Energy and Nuclear Waste Management-Plasma Physics , Jülich 52425, Germany
– sequence: 10
  givenname: Yunfeng
  surname: LIANG
  fullname: LIANG, Yunfeng
  organization: Forschungszentrum Jülich GmbH, Institute of Fusion Energy and Nuclear Waste Management-Plasma Physics , Jülich 52425, Germany
– sequence: 11
  givenname: the EHL-2
  surname: Team
  fullname: Team, the EHL-2
  organization: ENN Science and Technology Development Co., Ltd., Langfang 065001, People’s Republic of China
BookMark eNp9kE1LAzEQhoNUsK3ePeYHuHY223zsUWq1woIXPYfZbNJN2WZLNhX997ZWPAh6GhjmeZnnnZBR6IMl5DqH2xyUmjHgKhNMshk22NTqjIx_ViMyzgHKDEQBF2QyDBsAPi9VMSare_9mY-ojbS0m6rr9OzUtdp0Na0sxNHTrk19j8n2gPtDUWrpcVRmjw6610Rvs6IHeD5fk3GE32KvvOSWvD8uXxSqrnh-fFndVZpiClAnjgKORUgKWsi4kwFy6ui4L1ojaorDcAEioBXcsF64RquHSSoRCcavyYkrEKdfEfhiiddr49PVeiug7nYM-9qGP8voor099HED4Be6i32L8-A-5OSG-3-lNv4_hYPb3-Sf2z3Ov
CitedBy_id crossref_primary_10_1088_2058_6272_adae72
crossref_primary_10_1088_2058_6272_ad981a
Cites_doi 10.1088/1361-6587/abd3df
10.1088/0741-3335/58/12/125012
10.1016/j.jnucmat.2014.10.012
10.1016/j.nme.2020.100890
10.1088/0029-5515/53/9/093031
10.1088/1741-4326/aa986b
10.1088/1741-4326/ad3e14
10.1088/2058-6272/ace026
10.13182/FST47-172
10.1088/0029-5515/55/5/053020
10.1088/0029-5515/47/6/S04
10.1088/2058-6272/ad981a
10.1016/j.jnucmat.2013.01.008
10.1088/1741-4326/ab7a66
10.1088/1361-6587/aaacf6
10.1088/1361-6587/ac828d
10.1016/j.fusengdes.2021.112962
10.1088/1741-4326/ab4639
10.1088/2058-6272/adae72
10.1088/1741-4326/ac5eab
10.1088/1741-4326/ac14e6
10.1088/0741-3335/44/5/304
10.1088/0029-5515/49/2/025007
10.1088/1741-4326/ac2ff4
10.1088/1361-6587/aaa7a9
10.1088/0741-3335/57/9/095002
10.1088/1361-6587/ac757d
10.1585/pfr.11.1403102
10.1017/S0022377824000199
10.1063/5.0199112
10.1016/j.jnucmat.2006.12.029
10.1016/j.jnucmat.2014.10.042
10.1088/1741-4326/ad1337
10.1088/2058-6272/ada9c3
10.1088/0029-5515/49/6/065028
10.1088/2058-6272/ad9da2
10.1088/1741-4326/acd863
ContentType Journal Article
Copyright 2025 Hefei Institutes of Physical Science, Chinese Academy of Sciences and IOP Publishing Printed in China
Copyright_xml – notice: 2025 Hefei Institutes of Physical Science, Chinese Academy of Sciences and IOP Publishing Printed in China
DBID AAYXX
CITATION
DOI 10.1088/2058-6272/adadb8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2058-6272
ExternalDocumentID 10_1088_2058_6272_adadb8
pstadadb8
GroupedDBID -SA
-S~
123
1JI
4.4
5B3
5VR
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
AAXDM
ABHWH
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
CAJEA
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CRLBU
CS3
CW9
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
FA0
HAK
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
U1G
U5K
W28
AAYXX
ADEQX
AEINN
CITATION
ID FETCH-LOGICAL-c280t-6cf05ac7770a97b370047fbb932d6bea6e5c0070b65f216fd68d57e7a0385e813
IEDL.DBID IOP
ISSN 1009-0630
IngestDate Thu Apr 24 23:09:21 EDT 2025
Tue Aug 05 11:58:31 EDT 2025
Wed Feb 26 08:00:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c280t-6cf05ac7770a97b370047fbb932d6bea6e5c0070b65f216fd68d57e7a0385e813
PageCount 13
ParticipantIDs crossref_citationtrail_10_1088_2058_6272_adadb8
crossref_primary_10_1088_2058_6272_adadb8
iop_journals_10_1088_2058_6272_adadb8
PublicationCentury 2000
PublicationDate 20250201
2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 2
  year: 2025
  text: 20250201
  day: 01
PublicationDecade 2020
PublicationTitle Plasma science & technology
PublicationTitleAlternate Plasma Sci. Technol
PublicationYear 2025
Publisher Plasma Science and Technology
Publisher_xml – name: Plasma Science and Technology
References Eich (pst_27_2_024009_bib16) 2013; 53
Asakura (pst_27_2_024009_bib31) 2021; 61
Stangeby (pst_27_2_024009_bib10) 2018; 60
Wiesen (pst_27_2_024009_bib12) 2015; 463
Knieps (pst_27_2_024009_bib25) 2022; 64
Chankin (pst_27_2_024009_bib34) 2015; 57
Faitsch (pst_27_2_024009_bib19) 2021; 26
Asakura (pst_27_2_024009_bib35) 2007; 363−365
Aymar (pst_27_2_024009_bib5) 2002; 44
Liu (pst_27_2_024009_bib39) 2019; 59
Liu (pst_27_2_024009_bib2) 2024; 31
Leonard (pst_27_2_024009_bib9) 2018; 60
In (pst_27_2_024009_bib18) 2024; 64
Wang (pst_27_2_024009_bib37) 2023; 25
Rozhansky (pst_27_2_024009_bib26) 2009; 49
pst_27_2_024009_bib15
pst_27_2_024009_bib14
pst_27_2_024009_bib33
Pitts (pst_27_2_024009_bib8) 2013; 438
Bonnin (pst_27_2_024009_bib38) 2016; 11
pst_27_2_024009_bib4
Reiter (pst_27_2_024009_bib13) 2005; 47
pst_27_2_024009_bib3
pst_27_2_024009_bib1
Chankin (pst_27_2_024009_bib29) 2021; 63
Wang (pst_27_2_024009_bib24) 2021; 173
Meier (pst_27_2_024009_bib32) 2016; 58
Eich (pst_27_2_024009_bib20) 2020; 60
Shimizu (pst_27_2_024009_bib30) 2009; 49
Nichols (pst_27_2_024009_bib36) 2021; 61
Kukushkin (pst_27_2_024009_bib7) 2015; 463
Loarte (pst_27_2_024009_bib11) 2007; 47
Osawa (pst_27_2_024009_bib27) 2023; 63
Liu (pst_27_2_024009_bib17) 2022; 62
Nami (pst_27_2_024009_bib21) 2024; 90
Liu (pst_27_2_024009_bib23) 2018; 64
Furia (pst_27_2_024009_bib28) 2022; 64
LaBombard (pst_27_2_024009_bib6) 2015; 55
Maurizio (pst_27_2_024009_bib22) 2018; 58
References_xml – volume: 63
  start-page: 035010
  year: 2021
  ident: pst_27_2_024009_bib29
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/1361-6587/abd3df
– volume: 58
  start-page: 125012
  year: 2016
  ident: pst_27_2_024009_bib32
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/0741-3335/58/12/125012
– volume: 463
  start-page: 480
  year: 2015
  ident: pst_27_2_024009_bib12
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2014.10.012
– volume: 26
  start-page: 100890
  year: 2021
  ident: pst_27_2_024009_bib19
  publication-title: Nucl. Mater. Eng.
  doi: 10.1016/j.nme.2020.100890
– volume: 53
  start-page: 09303
  year: 2013
  ident: pst_27_2_024009_bib16
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/53/9/093031
– volume: 58
  start-page: 016052
  year: 2018
  ident: pst_27_2_024009_bib22
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/aa986b
– volume: 64
  start-page: 06400
  year: 2024
  ident: pst_27_2_024009_bib18
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/ad3e14
– volume: 25
  start-page: 115102
  year: 2023
  ident: pst_27_2_024009_bib37
  publication-title: Plasma Sci. Technol
  doi: 10.1088/2058-6272/ace026
– volume: 47
  start-page: 172
  year: 2005
  ident: pst_27_2_024009_bib13
  publication-title: Fusion Sci. Technol.
  doi: 10.13182/FST47-172
– volume: 55
  start-page: 53020
  year: 2015
  ident: pst_27_2_024009_bib6
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/55/5/053020
– volume: 47
  start-page: S203
  year: 2007
  ident: pst_27_2_024009_bib11
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/47/6/S04
– ident: pst_27_2_024009_bib1
  doi: 10.1088/2058-6272/ad981a
– volume: 438
  start-page: S48
  year: 2013
  ident: pst_27_2_024009_bib8
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2013.01.008
– volume: 60
  start-page: 056016
  year: 2020
  ident: pst_27_2_024009_bib20
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/ab7a66
– volume: 60
  start-page: 044022
  year: 2018
  ident: pst_27_2_024009_bib10
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/1361-6587/aaacf6
– volume: 64
  start-page: 104003
  year: 2022
  ident: pst_27_2_024009_bib28
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/1361-6587/ac828d
– volume: 173
  start-page: 112962
  year: 2021
  ident: pst_27_2_024009_bib24
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2021.112962
– volume: 59
  start-page: 126046
  year: 2019
  ident: pst_27_2_024009_bib39
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/ab4639
– ident: pst_27_2_024009_bib14
  doi: 10.1088/2058-6272/adae72
– volume: 62
  start-page: 076022
  year: 2022
  ident: pst_27_2_024009_bib17
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/ac5eab
– ident: pst_27_2_024009_bib3
– volume: 61
  start-page: 096018
  year: 2021
  ident: pst_27_2_024009_bib36
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/ac14e6
– volume: 44
  start-page: 519
  year: 2002
  ident: pst_27_2_024009_bib5
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/0741-3335/44/5/304
– volume: 49
  start-page: 025007
  year: 2009
  ident: pst_27_2_024009_bib26
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/49/2/025007
– volume: 61
  start-page: 126057
  year: 2021
  ident: pst_27_2_024009_bib31
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/ac2ff4
– volume: 60
  start-page: 044001
  year: 2018
  ident: pst_27_2_024009_bib9
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/1361-6587/aaa7a9
– volume: 57
  start-page: 095002
  year: 2015
  ident: pst_27_2_024009_bib34
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/0741-3335/57/9/095002
– volume: 64
  start-page: 084001
  year: 2022
  ident: pst_27_2_024009_bib25
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/1361-6587/ac757d
– volume: 11
  start-page: 1403102
  year: 2016
  ident: pst_27_2_024009_bib38
  publication-title: Plasma Fusion Res.
  doi: 10.1585/pfr.11.1403102
– volume: 90
  start-page: 905900117
  year: 2024
  ident: pst_27_2_024009_bib21
  publication-title: Plasma Phys.
  doi: 10.1017/S0022377824000199
– volume: 31
  start-page: 6
  year: 2024
  ident: pst_27_2_024009_bib2
  publication-title: Phys. Plasmas
  doi: 10.1063/5.0199112
– ident: pst_27_2_024009_bib4
– volume: 363−365
  start-page: 41
  year: 2007
  ident: pst_27_2_024009_bib35
  publication-title: Nucl. Mater.
  doi: 10.1016/j.jnucmat.2006.12.029
– volume: 463
  start-page: 586
  year: 2015
  ident: pst_27_2_024009_bib7
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2014.10.042
– volume: 64
  start-page: 026002
  year: 2018
  ident: pst_27_2_024009_bib23
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/ad1337
– ident: pst_27_2_024009_bib15
  doi: 10.1088/2058-6272/ada9c3
– volume: 49
  start-page: 065028
  year: 2009
  ident: pst_27_2_024009_bib30
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/49/6/065028
– ident: pst_27_2_024009_bib33
  doi: 10.1088/2058-6272/ad9da2
– volume: 63
  start-page: 076032
  year: 2023
  ident: pst_27_2_024009_bib27
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/acd863
SSID ssj0054983
ssib023363536
Score 2.3418765
Snippet The divertor design is critical to heat load handling and thus to achievements of high-performance plasma operations in the EHL-2 (ENN He-Long 2) tokamak. This...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 24009
SubjectTerms divertor
EHL-2
heat flux
Title Divertor heat flux challenge and mitigation in the EHL-2 spherical torus
URI https://iopscience.iop.org/article/10.1088/2058-6272/adadb8
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB5qRfDiLtaNOejBw7TpJJmZ4km0JYrbwUIPQpgVijUtJgHx1zuTpaioiLcc3iTDy8tb5n35HgBHXYM1sbaBNPcUCjhViAVSI1trBMqGCBMqdw55c0uiYXA1CkcNcDr_F2Y6q1x_216WRMGlCitAHLPlesgQwRR3uOJKsAWw6AZXOvO-vLuv3bCte1iJrnen_8T3qh7ld3f4FJMW7HM_hJjBKnisN1ciS57aeSba8u0Lb-M_d78GVqrUE56VouugoZMNsFRAQGW6CaILB9GwJTh0_hmaSf4KZT1qBfJEwedxScgxTeA4gTZzhP3oGmGYOmoC97KhXZ2nW2A46D-cR6ias4AkZl6GiDReyCWl1OM9KnzHeE-NEDa1U0RoTnQoHS2QIKHBXWIUYSqkmnLXVdSs62-DZjJN9A6AkjoKv25PGKEDY7MfJpmVxD1bFjFf-i3QqTUdy4qE3M3CmMRFM5yx2OkndvqJS_20wMl8xawk4PhF9tiqPa6-wvRHud0_yu2BZezG_RYg7X3QzF5yfWBzkEwcFrb2Dsqa090
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEG4Eo_Hi24jPHvTgobDsoy1HIxBQRA6ScFv7TIi4EIHE-Oud7i5GjRoTb3uY7uPb7nSm8-03CJ1VrW8ozA1ihKdJKJgmPFSGQK4RalgibKTdPuRtl7b64fUgGuR9TtN_YcaT3PWX4TATCs4gzAlxHNL1iBPqM78itNCSVybaFtByBK7Ycbrad72FK4bch2cMe1cBoIGX1ym_O8undakA1_6wzDQ30MPiBjN2yWN5PpNl9fpFu_EfT7CJ1vMQFF9m5ltoySTbaCWlgqrpDmrVHVUDUnHs_DS2o_kLVouWK1gkGj8NM2GOcYKHCYYIEjdaHeLjqZMocC8dw-j5dBf1m437qxbJ-y0Q5XNvRqiyXiQUY8wTNSYDp3zPrJQQ4mkqjaAmUk4eSNLI-lVqNeU6YoYJV100vBrsoWIyTsw-woo5Kb9qTVppQgtREFccLP0apEc8UEEJVRZoxyoXI3c9MUZxWhTnPHYYxQ6jOMOohC7eR0wyIY5fbM8B-jj_Gqc_2h380e4UrfbqzbjT7t4cojXfdQBOedtHqDh7nptjCEtm8iSdem_kr9lB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Divertor+heat+flux+challenge+and+mitigation+in+the+EHL-2+spherical+torus&rft.jtitle=Plasma+science+%26+technology&rft.au=WANG%2C+Fuqiong&rft.au=GU%2C+Xiang&rft.au=HUA%2C+Jiankun&rft.au=WANG%2C+Yumin&rft.date=2025-02-01&rft.pub=Plasma+Science+and+Technology&rft.issn=1009-0630&rft.volume=27&rft.issue=2&rft_id=info:doi/10.1088%2F2058-6272%2Fadadb8&rft.externalDocID=pstadadb8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1009-0630&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1009-0630&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1009-0630&client=summon