Divertor heat flux challenge and mitigation in the EHL-2 spherical torus
The divertor design is critical to heat load handling and thus to achievements of high-performance plasma operations in the EHL-2 (ENN He-Long 2) tokamak. This paper presents the design of an X-point target (XPT) divertor, featuring a conventional inner divertor and an XPT outer divertor, aimed at t...
Saved in:
Published in | Plasma science & technology Vol. 27; no. 2; pp. 24009 - 24021 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Plasma Science and Technology
01.02.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1009-0630 2058-6272 |
DOI | 10.1088/2058-6272/adadb8 |
Cover
Abstract | The divertor design is critical to heat load handling and thus to achievements of high-performance plasma operations in the EHL-2 (ENN He-Long 2) tokamak. This paper presents the design of an X-point target (XPT) divertor, featuring a conventional inner divertor and an XPT outer divertor, aimed at the effective control of heat loads, which may be extremely high during high ion temperature scenarios. The divertor target plates are made from carbon-based materials, which can handle heat loads of up to 5 MW/m². Divertor performances, including the heat load controllability, the onset of detachment and the in–out/up–down asymmetry, etc., are evaluated using both the simple particle-tracking strategy and the complicated SOLPS-ITER code. Special attention is paid to the drift effects on particle/heat transport in the divertor/scrape-off layer region and on the divertor heat loads, focusing on the semi-detached/detached operation regimes. Results from SOLPS-ITER simulations demonstrated that the currently designed magnetic equilibrium and divertor configuration can effectively handle the power heat load in EHL-2. |
---|---|
AbstractList | The divertor design is critical to heat load handling and thus to achievements of high-performance plasma operations in the EHL-2 (ENN He-Long 2) tokamak. This paper presents the design of an X-point target (XPT) divertor, featuring a conventional inner divertor and an XPT outer divertor, aimed at the effective control of heat loads, which may be extremely high during high ion temperature scenarios. The divertor target plates are made from carbon-based materials, which can handle heat loads of up to 5 MW/m². Divertor performances, including the heat load controllability, the onset of detachment and the in–out/up–down asymmetry, etc., are evaluated using both the simple particle-tracking strategy and the complicated SOLPS-ITER code. Special attention is paid to the drift effects on particle/heat transport in the divertor/scrape-off layer region and on the divertor heat loads, focusing on the semi-detached/detached operation regimes. Results from SOLPS-ITER simulations demonstrated that the currently designed magnetic equilibrium and divertor configuration can effectively handle the power heat load in EHL-2. |
Author | BO, Xiaokun GU, Xiang CHEN, Bo WANG, Erhui WANG, Fuqiong HUA, Jiankun WANG, Yumin SHI, Yuejiang LIANG, Yunfeng XU, Shuai Team, the EHL-2 |
Author_xml | – sequence: 1 givenname: Fuqiong surname: WANG fullname: WANG, Fuqiong organization: College of Physics, Donghua University, Shanghai 201620, People’s Republic of China – sequence: 2 givenname: Xiang surname: GU fullname: GU, Xiang organization: ENN Science and Technology Development Co., Ltd., Langfang 065001, People’s Republic of China – sequence: 3 givenname: Jiankun surname: HUA fullname: HUA, Jiankun organization: Forschungszentrum Jülich GmbH, Institute of Fusion Energy and Nuclear Waste Management-Plasma Physics , Jülich 52425, Germany – sequence: 4 givenname: Yumin surname: WANG fullname: WANG, Yumin organization: ENN Science and Technology Development Co., Ltd., Langfang 065001, People’s Republic of China – sequence: 5 givenname: Xiaokun surname: BO fullname: BO, Xiaokun organization: ENN Science and Technology Development Co., Ltd., Langfang 065001, People’s Republic of China – sequence: 6 givenname: Bo surname: CHEN fullname: CHEN, Bo organization: ENN Science and Technology Development Co., Ltd., Langfang 065001, People’s Republic of China – sequence: 7 givenname: Yuejiang surname: SHI fullname: SHI, Yuejiang organization: ENN Science and Technology Development Co., Ltd., Langfang 065001, People’s Republic of China – sequence: 8 givenname: Shuai surname: XU fullname: XU, Shuai organization: Forschungszentrum Jülich GmbH, Institute of Fusion Energy and Nuclear Waste Management-Plasma Physics , Jülich 52425, Germany – sequence: 9 givenname: Erhui surname: WANG fullname: WANG, Erhui organization: Forschungszentrum Jülich GmbH, Institute of Fusion Energy and Nuclear Waste Management-Plasma Physics , Jülich 52425, Germany – sequence: 10 givenname: Yunfeng surname: LIANG fullname: LIANG, Yunfeng organization: Forschungszentrum Jülich GmbH, Institute of Fusion Energy and Nuclear Waste Management-Plasma Physics , Jülich 52425, Germany – sequence: 11 givenname: the EHL-2 surname: Team fullname: Team, the EHL-2 organization: ENN Science and Technology Development Co., Ltd., Langfang 065001, People’s Republic of China |
BookMark | eNp9kE1LAzEQhoNUsK3ePeYHuHY223zsUWq1woIXPYfZbNJN2WZLNhX997ZWPAh6GhjmeZnnnZBR6IMl5DqH2xyUmjHgKhNMshk22NTqjIx_ViMyzgHKDEQBF2QyDBsAPi9VMSare_9mY-ojbS0m6rr9OzUtdp0Na0sxNHTrk19j8n2gPtDUWrpcVRmjw6610Rvs6IHeD5fk3GE32KvvOSWvD8uXxSqrnh-fFndVZpiClAnjgKORUgKWsi4kwFy6ui4L1ojaorDcAEioBXcsF64RquHSSoRCcavyYkrEKdfEfhiiddr49PVeiug7nYM-9qGP8voor099HED4Be6i32L8-A-5OSG-3-lNv4_hYPb3-Sf2z3Ov |
CitedBy_id | crossref_primary_10_1088_2058_6272_adae72 crossref_primary_10_1088_2058_6272_ad981a |
Cites_doi | 10.1088/1361-6587/abd3df 10.1088/0741-3335/58/12/125012 10.1016/j.jnucmat.2014.10.012 10.1016/j.nme.2020.100890 10.1088/0029-5515/53/9/093031 10.1088/1741-4326/aa986b 10.1088/1741-4326/ad3e14 10.1088/2058-6272/ace026 10.13182/FST47-172 10.1088/0029-5515/55/5/053020 10.1088/0029-5515/47/6/S04 10.1088/2058-6272/ad981a 10.1016/j.jnucmat.2013.01.008 10.1088/1741-4326/ab7a66 10.1088/1361-6587/aaacf6 10.1088/1361-6587/ac828d 10.1016/j.fusengdes.2021.112962 10.1088/1741-4326/ab4639 10.1088/2058-6272/adae72 10.1088/1741-4326/ac5eab 10.1088/1741-4326/ac14e6 10.1088/0741-3335/44/5/304 10.1088/0029-5515/49/2/025007 10.1088/1741-4326/ac2ff4 10.1088/1361-6587/aaa7a9 10.1088/0741-3335/57/9/095002 10.1088/1361-6587/ac757d 10.1585/pfr.11.1403102 10.1017/S0022377824000199 10.1063/5.0199112 10.1016/j.jnucmat.2006.12.029 10.1016/j.jnucmat.2014.10.042 10.1088/1741-4326/ad1337 10.1088/2058-6272/ada9c3 10.1088/0029-5515/49/6/065028 10.1088/2058-6272/ad9da2 10.1088/1741-4326/acd863 |
ContentType | Journal Article |
Copyright | 2025 Hefei Institutes of Physical Science, Chinese Academy of Sciences and IOP Publishing Printed in China |
Copyright_xml | – notice: 2025 Hefei Institutes of Physical Science, Chinese Academy of Sciences and IOP Publishing Printed in China |
DBID | AAYXX CITATION |
DOI | 10.1088/2058-6272/adadb8 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2058-6272 |
ExternalDocumentID | 10_1088_2058_6272_adadb8 pstadadb8 |
GroupedDBID | -SA -S~ 123 1JI 4.4 5B3 5VR 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI AAXDM ABHWH ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED CAJEA CCEZO CCVFK CEBXE CHBEP CJUJL CRLBU CS3 CW9 DU5 EBS EDWGO EMSAF EPQRW EQZZN FA0 HAK IJHAN IOP IZVLO KOT LAP N5L N9A P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 U1G U5K W28 AAYXX ADEQX AEINN CITATION |
ID | FETCH-LOGICAL-c280t-6cf05ac7770a97b370047fbb932d6bea6e5c0070b65f216fd68d57e7a0385e813 |
IEDL.DBID | IOP |
ISSN | 1009-0630 |
IngestDate | Thu Apr 24 23:09:21 EDT 2025 Tue Aug 05 11:58:31 EDT 2025 Wed Feb 26 08:00:43 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c280t-6cf05ac7770a97b370047fbb932d6bea6e5c0070b65f216fd68d57e7a0385e813 |
PageCount | 13 |
ParticipantIDs | crossref_citationtrail_10_1088_2058_6272_adadb8 crossref_primary_10_1088_2058_6272_adadb8 iop_journals_10_1088_2058_6272_adadb8 |
PublicationCentury | 2000 |
PublicationDate | 20250201 2025-02-01 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 2 year: 2025 text: 20250201 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Plasma science & technology |
PublicationTitleAlternate | Plasma Sci. Technol |
PublicationYear | 2025 |
Publisher | Plasma Science and Technology |
Publisher_xml | – name: Plasma Science and Technology |
References | Eich (pst_27_2_024009_bib16) 2013; 53 Asakura (pst_27_2_024009_bib31) 2021; 61 Stangeby (pst_27_2_024009_bib10) 2018; 60 Wiesen (pst_27_2_024009_bib12) 2015; 463 Knieps (pst_27_2_024009_bib25) 2022; 64 Chankin (pst_27_2_024009_bib34) 2015; 57 Faitsch (pst_27_2_024009_bib19) 2021; 26 Asakura (pst_27_2_024009_bib35) 2007; 363−365 Aymar (pst_27_2_024009_bib5) 2002; 44 Liu (pst_27_2_024009_bib39) 2019; 59 Liu (pst_27_2_024009_bib2) 2024; 31 Leonard (pst_27_2_024009_bib9) 2018; 60 In (pst_27_2_024009_bib18) 2024; 64 Wang (pst_27_2_024009_bib37) 2023; 25 Rozhansky (pst_27_2_024009_bib26) 2009; 49 pst_27_2_024009_bib15 pst_27_2_024009_bib14 pst_27_2_024009_bib33 Pitts (pst_27_2_024009_bib8) 2013; 438 Bonnin (pst_27_2_024009_bib38) 2016; 11 pst_27_2_024009_bib4 Reiter (pst_27_2_024009_bib13) 2005; 47 pst_27_2_024009_bib3 pst_27_2_024009_bib1 Chankin (pst_27_2_024009_bib29) 2021; 63 Wang (pst_27_2_024009_bib24) 2021; 173 Meier (pst_27_2_024009_bib32) 2016; 58 Eich (pst_27_2_024009_bib20) 2020; 60 Shimizu (pst_27_2_024009_bib30) 2009; 49 Nichols (pst_27_2_024009_bib36) 2021; 61 Kukushkin (pst_27_2_024009_bib7) 2015; 463 Loarte (pst_27_2_024009_bib11) 2007; 47 Osawa (pst_27_2_024009_bib27) 2023; 63 Liu (pst_27_2_024009_bib17) 2022; 62 Nami (pst_27_2_024009_bib21) 2024; 90 Liu (pst_27_2_024009_bib23) 2018; 64 Furia (pst_27_2_024009_bib28) 2022; 64 LaBombard (pst_27_2_024009_bib6) 2015; 55 Maurizio (pst_27_2_024009_bib22) 2018; 58 |
References_xml | – volume: 63 start-page: 035010 year: 2021 ident: pst_27_2_024009_bib29 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/1361-6587/abd3df – volume: 58 start-page: 125012 year: 2016 ident: pst_27_2_024009_bib32 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/58/12/125012 – volume: 463 start-page: 480 year: 2015 ident: pst_27_2_024009_bib12 publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2014.10.012 – volume: 26 start-page: 100890 year: 2021 ident: pst_27_2_024009_bib19 publication-title: Nucl. Mater. Eng. doi: 10.1016/j.nme.2020.100890 – volume: 53 start-page: 09303 year: 2013 ident: pst_27_2_024009_bib16 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/53/9/093031 – volume: 58 start-page: 016052 year: 2018 ident: pst_27_2_024009_bib22 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/aa986b – volume: 64 start-page: 06400 year: 2024 ident: pst_27_2_024009_bib18 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ad3e14 – volume: 25 start-page: 115102 year: 2023 ident: pst_27_2_024009_bib37 publication-title: Plasma Sci. Technol doi: 10.1088/2058-6272/ace026 – volume: 47 start-page: 172 year: 2005 ident: pst_27_2_024009_bib13 publication-title: Fusion Sci. Technol. doi: 10.13182/FST47-172 – volume: 55 start-page: 53020 year: 2015 ident: pst_27_2_024009_bib6 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/55/5/053020 – volume: 47 start-page: S203 year: 2007 ident: pst_27_2_024009_bib11 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/47/6/S04 – ident: pst_27_2_024009_bib1 doi: 10.1088/2058-6272/ad981a – volume: 438 start-page: S48 year: 2013 ident: pst_27_2_024009_bib8 publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2013.01.008 – volume: 60 start-page: 056016 year: 2020 ident: pst_27_2_024009_bib20 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ab7a66 – volume: 60 start-page: 044022 year: 2018 ident: pst_27_2_024009_bib10 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/1361-6587/aaacf6 – volume: 64 start-page: 104003 year: 2022 ident: pst_27_2_024009_bib28 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/1361-6587/ac828d – volume: 173 start-page: 112962 year: 2021 ident: pst_27_2_024009_bib24 publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2021.112962 – volume: 59 start-page: 126046 year: 2019 ident: pst_27_2_024009_bib39 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ab4639 – ident: pst_27_2_024009_bib14 doi: 10.1088/2058-6272/adae72 – volume: 62 start-page: 076022 year: 2022 ident: pst_27_2_024009_bib17 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ac5eab – ident: pst_27_2_024009_bib3 – volume: 61 start-page: 096018 year: 2021 ident: pst_27_2_024009_bib36 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ac14e6 – volume: 44 start-page: 519 year: 2002 ident: pst_27_2_024009_bib5 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/44/5/304 – volume: 49 start-page: 025007 year: 2009 ident: pst_27_2_024009_bib26 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/49/2/025007 – volume: 61 start-page: 126057 year: 2021 ident: pst_27_2_024009_bib31 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ac2ff4 – volume: 60 start-page: 044001 year: 2018 ident: pst_27_2_024009_bib9 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/1361-6587/aaa7a9 – volume: 57 start-page: 095002 year: 2015 ident: pst_27_2_024009_bib34 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/57/9/095002 – volume: 64 start-page: 084001 year: 2022 ident: pst_27_2_024009_bib25 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/1361-6587/ac757d – volume: 11 start-page: 1403102 year: 2016 ident: pst_27_2_024009_bib38 publication-title: Plasma Fusion Res. doi: 10.1585/pfr.11.1403102 – volume: 90 start-page: 905900117 year: 2024 ident: pst_27_2_024009_bib21 publication-title: Plasma Phys. doi: 10.1017/S0022377824000199 – volume: 31 start-page: 6 year: 2024 ident: pst_27_2_024009_bib2 publication-title: Phys. Plasmas doi: 10.1063/5.0199112 – ident: pst_27_2_024009_bib4 – volume: 363−365 start-page: 41 year: 2007 ident: pst_27_2_024009_bib35 publication-title: Nucl. Mater. doi: 10.1016/j.jnucmat.2006.12.029 – volume: 463 start-page: 586 year: 2015 ident: pst_27_2_024009_bib7 publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2014.10.042 – volume: 64 start-page: 026002 year: 2018 ident: pst_27_2_024009_bib23 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ad1337 – ident: pst_27_2_024009_bib15 doi: 10.1088/2058-6272/ada9c3 – volume: 49 start-page: 065028 year: 2009 ident: pst_27_2_024009_bib30 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/49/6/065028 – ident: pst_27_2_024009_bib33 doi: 10.1088/2058-6272/ad9da2 – volume: 63 start-page: 076032 year: 2023 ident: pst_27_2_024009_bib27 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/acd863 |
SSID | ssj0054983 ssib023363536 |
Score | 2.3418765 |
Snippet | The divertor design is critical to heat load handling and thus to achievements of high-performance plasma operations in the EHL-2 (ENN He-Long 2) tokamak. This... |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 24009 |
SubjectTerms | divertor EHL-2 heat flux |
Title | Divertor heat flux challenge and mitigation in the EHL-2 spherical torus |
URI | https://iopscience.iop.org/article/10.1088/2058-6272/adadb8 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB5qRfDiLtaNOejBw7TpJJmZ4km0JYrbwUIPQpgVijUtJgHx1zuTpaioiLcc3iTDy8tb5n35HgBHXYM1sbaBNPcUCjhViAVSI1trBMqGCBMqdw55c0uiYXA1CkcNcDr_F2Y6q1x_216WRMGlCitAHLPlesgQwRR3uOJKsAWw6AZXOvO-vLuv3bCte1iJrnen_8T3qh7ld3f4FJMW7HM_hJjBKnisN1ciS57aeSba8u0Lb-M_d78GVqrUE56VouugoZMNsFRAQGW6CaILB9GwJTh0_hmaSf4KZT1qBfJEwedxScgxTeA4gTZzhP3oGmGYOmoC97KhXZ2nW2A46D-cR6ias4AkZl6GiDReyCWl1OM9KnzHeE-NEDa1U0RoTnQoHS2QIKHBXWIUYSqkmnLXVdSs62-DZjJN9A6AkjoKv25PGKEDY7MfJpmVxD1bFjFf-i3QqTUdy4qE3M3CmMRFM5yx2OkndvqJS_20wMl8xawk4PhF9tiqPa6-wvRHud0_yu2BZezG_RYg7X3QzF5yfWBzkEwcFrb2Dsqa090 |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEG4Eo_Hi24jPHvTgobDsoy1HIxBQRA6ScFv7TIi4EIHE-Oud7i5GjRoTb3uY7uPb7nSm8-03CJ1VrW8ozA1ihKdJKJgmPFSGQK4RalgibKTdPuRtl7b64fUgGuR9TtN_YcaT3PWX4TATCs4gzAlxHNL1iBPqM78itNCSVybaFtByBK7Ycbrad72FK4bch2cMe1cBoIGX1ym_O8undakA1_6wzDQ30MPiBjN2yWN5PpNl9fpFu_EfT7CJ1vMQFF9m5ltoySTbaCWlgqrpDmrVHVUDUnHs_DS2o_kLVouWK1gkGj8NM2GOcYKHCYYIEjdaHeLjqZMocC8dw-j5dBf1m437qxbJ-y0Q5XNvRqiyXiQUY8wTNSYDp3zPrJQQ4mkqjaAmUk4eSNLI-lVqNeU6YoYJV100vBrsoWIyTsw-woo5Kb9qTVppQgtREFccLP0apEc8UEEJVRZoxyoXI3c9MUZxWhTnPHYYxQ6jOMOohC7eR0wyIY5fbM8B-jj_Gqc_2h380e4UrfbqzbjT7t4cojXfdQBOedtHqDh7nptjCEtm8iSdem_kr9lB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Divertor+heat+flux+challenge+and+mitigation+in+the+EHL-2+spherical+torus&rft.jtitle=Plasma+science+%26+technology&rft.au=WANG%2C+Fuqiong&rft.au=GU%2C+Xiang&rft.au=HUA%2C+Jiankun&rft.au=WANG%2C+Yumin&rft.date=2025-02-01&rft.pub=Plasma+Science+and+Technology&rft.issn=1009-0630&rft.volume=27&rft.issue=2&rft_id=info:doi/10.1088%2F2058-6272%2Fadadb8&rft.externalDocID=pstadadb8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1009-0630&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1009-0630&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1009-0630&client=summon |