Rotational nonlinear double-beam energy harvesting

This paper presents an investigation of the performance of a coupled rotational double-beam energy harvester (DBEH) with magnetic nonlinearity. Two spring-connected cantilever beams are fixed on a rotating disc. Repelling magnets are attached to the frame and to the lower beam tip, and an equal-mass...

Full description

Saved in:
Bibliographic Details
Published inSmart materials and structures Vol. 31; no. 2; pp. 25020 - 25036
Main Authors Lu, Ze-Qi, Zhang, Fei-Yang, Fu, Hai-Ling, Ding, Hu, Chen, Li-Qun
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents an investigation of the performance of a coupled rotational double-beam energy harvester (DBEH) with magnetic nonlinearity. Two spring-connected cantilever beams are fixed on a rotating disc. Repelling magnets are attached to the frame and to the lower beam tip, and an equal-mass block is attached to the tip of the upper beam. To describe the dynamic response, a theoretical model related to the rotational motion of the coupled cantilever beam is derived from the Lagrange equations. In addition, the harmonic balance method, together with the arc-length continuation method, is applied to obtain the frequency response functions (FRFs). Parametric studies are then conducted to analyze the effect of varying the parameters on the energy harvesting performance, and numerical analysis is performed to validate the analytical solutions. Finally, the theoretical model is verified by forward- and reverse-frequency-sweeping experiments. The DBEH in rotational motion can perform effective energy harvesting over a wide range of rotational frequencies (10–35 rad s −1 ). The upper beam is found to exhibit better energy harvesting efficiency than the lower beam around the resonant frequency. This study effectively broadens the energy harvesting bandwidth and provides a theoretical model for the design of nonlinear magnet-coupled double-beam structure in rotational energy harvesting.
AbstractList This paper presents an investigation of the performance of a coupled rotational double-beam energy harvester (DBEH) with magnetic nonlinearity. Two spring-connected cantilever beams are fixed on a rotating disc. Repelling magnets are attached to the frame and to the lower beam tip, and an equal-mass block is attached to the tip of the upper beam. To describe the dynamic response, a theoretical model related to the rotational motion of the coupled cantilever beam is derived from the Lagrange equations. In addition, the harmonic balance method, together with the arc-length continuation method, is applied to obtain the frequency response functions (FRFs). Parametric studies are then conducted to analyze the effect of varying the parameters on the energy harvesting performance, and numerical analysis is performed to validate the analytical solutions. Finally, the theoretical model is verified by forward- and reverse-frequency-sweeping experiments. The DBEH in rotational motion can perform effective energy harvesting over a wide range of rotational frequencies (10–35 rad s −1 ). The upper beam is found to exhibit better energy harvesting efficiency than the lower beam around the resonant frequency. This study effectively broadens the energy harvesting bandwidth and provides a theoretical model for the design of nonlinear magnet-coupled double-beam structure in rotational energy harvesting.
Author Fu, Hai-Ling
Ding, Hu
Chen, Li-Qun
Zhang, Fei-Yang
Lu, Ze-Qi
Author_xml – sequence: 1
  givenname: Ze-Qi
  orcidid: 0000-0002-0150-7490
  surname: Lu
  fullname: Lu, Ze-Qi
  organization: Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, School of Mechanics and Engineering Science, Shanghai University , Shanghai 200444, People’s Republic of China
– sequence: 2
  givenname: Fei-Yang
  surname: Zhang
  fullname: Zhang, Fei-Yang
  organization: Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, School of Mechanics and Engineering Science, Shanghai University , Shanghai 200444, People’s Republic of China
– sequence: 3
  givenname: Hai-Ling
  orcidid: 0000-0002-7557-3853
  surname: Fu
  fullname: Fu, Hai-Ling
  organization: Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University , Loughborough, LE11 3TU, United Kingdom
– sequence: 4
  givenname: Hu
  surname: Ding
  fullname: Ding, Hu
  organization: Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, School of Mechanics and Engineering Science, Shanghai University , Shanghai 200444, People’s Republic of China
– sequence: 5
  givenname: Li-Qun
  surname: Chen
  fullname: Chen, Li-Qun
  organization: Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, School of Mechanics and Engineering Science, Shanghai University , Shanghai 200444, People’s Republic of China
BookMark eNp9kMFKw0AQhhepYFu9e8wDGDuTTXa3RylqhYIgCt6WSTqpW9Js2U2Fvr0pEQ-Cnn4Y5vuZbyZi1PqWhbhGuEUwZoZSYapU8T6jKi_0_EyMf0YjMYa5ylPUmboQkxi3AIhG4lhkL76jzvmWmqRvbFzLFJK1P5QNpyXTLuGWw-aYfFD45Ni5dnMpzmtqIl9951S8Pdy_Lpbp6vnxaXG3SqvMQJcqMOtSZihzpKrQEhmRFKlcG8W5zspKazC05kwCQd0HslZ1nXNBqihBToUaeqvgYwxc28oNt3aBXGMR7MncnjTtSdMO5j0Iv8B9cDsKx_-QmwFxfm-3_hD6f8S_178A9cFrCA
CODEN SMSTER
CitedBy_id crossref_primary_10_1007_s10854_022_08192_y
crossref_primary_10_1002_aesr_202400116
crossref_primary_10_1007_s10853_022_07187_8
crossref_primary_10_1016_j_enconman_2023_117660
crossref_primary_10_1063_5_0137624
crossref_primary_10_1007_s11431_023_2421_4
crossref_primary_10_1155_2022_6165180
crossref_primary_10_1016_j_apenergy_2022_120355
crossref_primary_10_1007_s00339_022_05532_x
crossref_primary_10_1016_j_renene_2025_122640
crossref_primary_10_3390_ma15041402
crossref_primary_10_1177_1045389X221099448
crossref_primary_10_1007_s42823_022_00395_x
crossref_primary_10_1016_j_energy_2022_124882
crossref_primary_10_1016_j_ymssp_2023_110503
crossref_primary_10_1016_j_ymssp_2024_111695
crossref_primary_10_1080_15397734_2023_2199058
crossref_primary_10_1177_1045389X231194986
crossref_primary_10_1016_j_rinp_2022_105589
crossref_primary_10_1080_15397734_2024_2356725
crossref_primary_10_1080_07315171_2023_2238179
crossref_primary_10_1080_15376494_2022_2107251
crossref_primary_10_1016_j_apenergy_2023_120908
crossref_primary_10_1016_j_engstruct_2025_119644
crossref_primary_10_1016_j_sna_2022_114054
crossref_primary_10_1177_1045389X221147647
crossref_primary_10_1016_j_jmrt_2022_03_129
crossref_primary_10_1007_s10904_022_02257_5
crossref_primary_10_1007_s11029_023_10119_5
crossref_primary_10_1016_j_rser_2023_113446
crossref_primary_10_1007_s10904_022_02286_0
crossref_primary_10_1088_1361_665X_ac9dd2
crossref_primary_10_3389_fmats_2022_823155
crossref_primary_10_1007_s10409_024_23508_x
crossref_primary_10_1016_j_compstruct_2022_115582
crossref_primary_10_1007_s00339_022_05338_x
crossref_primary_10_1016_j_ymssp_2024_111248
crossref_primary_10_1088_1361_6463_acea2e
crossref_primary_10_1016_j_ymssp_2023_110998
crossref_primary_10_1016_j_ijmecsci_2023_108204
crossref_primary_10_1142_S0219455424502122
crossref_primary_10_1002_pc_26931
crossref_primary_10_1016_j_ymssp_2022_110034
crossref_primary_10_1016_j_ijengsci_2024_104024
crossref_primary_10_1007_s11431_022_2367_9
crossref_primary_10_1088_1361_665X_ac798c
Cites_doi 10.1016/j.enconman.2020.113061
10.1063/1.3481689
10.1088/0964-1726/23/7/075013
10.1016/j.jsv.2020.115213
10.1016/j.joule.2018.03.011
10.1016/j.enconman.2021.114246
10.1016/S0022-460X(88)80024-5
10.1007/s11071-015-2306-8
10.1016/j.mechrescom.2017.06.005
10.1016/j.ymssp.2020.107167
10.1088/1361-665X/aad2c8
10.1016/j.apenergy.2021.117479
10.1016/j.ymssp.2018.04.043
10.1088/0964-1726/25/5/053002
10.1016/j.ijmecsci.2017.07.051
10.1016/j.apm.2020.09.023
10.3233/JAE-140077
10.1016/j.isci.2021.102749
10.1016/j.jsv.2015.06.010
10.1016/j.jsv.2020.115643
10.1007/s11071-020-05889-9
10.1016/j.ymssp.2018.06.003
10.1016/j.microrel.2021.114114
10.1039/D0EE03911J
10.1016/j.jsv.2016.09.022
10.1016/j.joule.2021.03.006
10.1016/j.jsv.2021.116022
10.1021/acsnano.8b04654
10.1016/j.enconman.2017.09.042
10.1063/1.3595278
10.1016/j.jsv.2019.115142
10.1016/j.ymssp.2016.07.047
10.1016/j.apenergy.2021.117274
10.1103/PhysRevLett.102.080601
10.1016/j.ymssp.2020.107307
10.1016/j.sna.2017.12.067
10.1115/1.4026278
10.1109/TMECH.2012.2205266
10.1088/0964-1726/18/2/025009
10.1016/j.matpr.2020.11.210
10.1088/1361-665X/ab78b2
10.1016/j.ymssp.2021.107805
10.1115/1.4002789
10.1006/jsvi.1997.1469
10.1016/j.apenergy.2017.12.053
10.1063/1.5037733
10.1016/j.jsv.2017.06.020
10.1016/j.ymssp.2019.106267
10.1115/1.2890402
10.3390/s18051492
10.1016/j.jsv.2019.115141
10.1016/j.apenergy.2018.03.170
10.1016/j.apenergy.2020.114846
10.1063/1.5022599
10.1016/j.jsv.2017.01.007
10.1039/C3EE42454E
10.1088/1361-665X/abf69e
ContentType Journal Article
Copyright 2021 IOP Publishing Ltd
Copyright_xml – notice: 2021 IOP Publishing Ltd
DBID AAYXX
CITATION
DOI 10.1088/1361-665X/ac4579
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1361-665X
ExternalDocumentID 10_1088_1361_665X_ac4579
smsac4579
GrantInformation_xml – fundername: Innovation Program of Shanghai Municipal Education Commission
  grantid: 2017-01-07-00-09-E00019
– fundername: National Natural Science Foundation of China
  grantid: 11572182; 11872037; 11872159
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -~X
123
1JI
4.4
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
W28
XPP
ZMT
AAYXX
ADEQX
CITATION
ID FETCH-LOGICAL-c280t-608db321341ac5731e11a6a64786e472bc7708ade230a0fe231e76ff4e5a65b03
IEDL.DBID IOP
ISSN 0964-1726
IngestDate Tue Jul 01 03:38:47 EDT 2025
Thu Apr 24 23:05:55 EDT 2025
Wed Aug 21 03:35:00 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c280t-608db321341ac5731e11a6a64786e472bc7708ade230a0fe231e76ff4e5a65b03
Notes SMS-112986.R1
ORCID 0000-0002-7557-3853
0000-0002-0150-7490
PageCount 17
ParticipantIDs crossref_citationtrail_10_1088_1361_665X_ac4579
crossref_primary_10_1088_1361_665X_ac4579
iop_journals_10_1088_1361_665X_ac4579
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Smart materials and structures
PublicationTitleAbbrev SMS
PublicationTitleAlternate Smart Mater. Struct
PublicationYear 2022
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Fu (smsac4579bib1) 2021; 5
Eshtehardiha (smsac4579bib30) 2021; 500
Fu (smsac4579bib44) 2020; 101
Mei (smsac4579bib43) 2020; 148
Kim (smsac4579bib31) 2011; 98
Rui (smsac4579bib41) 2020; 149
Chen (smsac4579bib27) 2021; 298
Fang (smsac4579bib33) 2020; 488
Khameneifar (smsac4579bib39) 2013; 18
Mahajan (smsac4579bib13) 2021; 43
Khameneifar (smsac4579bib46) 2011; 133
Li (smsac4579bib24) 2021; 159
Febbo (smsac4579bib34) 2017; 152
Radice (smsac4579bib19) 2017; 84
Abdelkefi (smsac4579bib51) 2015; 83
Wang (smsac4579bib6) 2018; 12
Gunn (smsac4579bib32) 2021; 302
Mei (smsac4579bib42) 2020; 469
Zhou (smsac4579bib49) 2018; 18
Machado (smsac4579bib40) 2020; 469
Zhao (smsac4579bib18) 2020; 473
Khan (smsac4579bib3) 2016; 25
Daqaq (smsac4579bib14) 2014; 66
Kumar (smsac4579bib57) 2017; 393
Wu (smsac4579bib11) 2018; 271
Guo (smsac4579bib47) 2015; 47
Gu (smsac4579bib9) 2020; 266
Leng (smsac4579bib25) 2017; 406
Machado (smsac4579bib37) 2021; 24
Erturk (smsac4579bib56) 2009; 18
Panyam (smsac4579bib26) 2017; 386
Hu (smsac4579bib12) 2021; 120
Erturk (smsac4579bib55) 2008; 130
Yang (smsac4579bib5) 2018; 2
Fu (smsac4579bib22) 2019; 125
Lan (smsac4579bib20) 2016; 85
Huang (smsac4579bib21) 2021; 90
Fan (smsac4579bib28) 2020; 221
Zhang (smsac4579bib10) 2018; 212
Zhou (smsac4579bib54) 2019; 115
Ramírez (smsac4579bib36) 2019; 133
Hu (smsac4579bib45) 2017; 149
Yoo (smsac4579bib48) 1998; 212
Yigit (smsac4579bib52) 1988; 121
Fan (smsac4579bib15) 2018; 112
Sun (smsac4579bib23) 2021; 239
Peng (smsac4579bib7) 2021; 30
Chen (smsac4579bib29) 2015; 354
Bowen (smsac4579bib4) 2014; 7
Zhao (smsac4579bib53) 2018; 27
Gao (smsac4579bib2) 2021; 14
Hsu (smsac4579bib35) 2014; 23
Mei (smsac4579bib50) 2020; 29
Gao (smsac4579bib8) 2018; 220
Kumar (smsac4579bib16) 2018; 112
Cottone (smsac4579bib17) 2009; 102
Gu (smsac4579bib38) 2010; 97
References_xml – volume: 221
  year: 2020
  ident: smsac4579bib28
  article-title: Enhanced nonlinear energy harvesting using combined primary and parametric resonances: experiments with theoretical verifications
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2020.113061
– volume: 97
  year: 2010
  ident: smsac4579bib38
  article-title: Passive self-tuning energy harvester for extracting energy from rotational motion
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3481689
– volume: 23
  year: 2014
  ident: smsac4579bib35
  article-title: Analysis and experiment of self-frequency-tuning piezoelectric energy harvesters for rotational motion
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/23/7/075013
– volume: 473
  year: 2020
  ident: smsac4579bib18
  article-title: Development of large-scale bistable motion system for energy harvesting by application of stochastic resonance
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2020.115213
– volume: 2
  start-page: 642
  year: 2018
  ident: smsac4579bib5
  article-title: High-performance piezoelectric energy harvesters and their applications
  publication-title: Joule
  doi: 10.1016/j.joule.2018.03.011
– volume: 239
  year: 2021
  ident: smsac4579bib23
  article-title: Performance of a novel dual-magnet tri-stable piezoelectric energy harvester subjected to random excitation
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2021.114246
– volume: 121
  start-page: 201
  year: 1988
  ident: smsac4579bib52
  article-title: Flexural motion of a radially rotating beam attached to a rigid body
  publication-title: J. Sound Vib.
  doi: 10.1016/S0022-460X(88)80024-5
– volume: 83
  start-page: 41
  year: 2015
  ident: smsac4579bib51
  article-title: Nonlinear analysis and power improvement of broadband low-frequency piezomagnetoelastic energy harvesters
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-015-2306-8
– volume: 84
  start-page: 49
  year: 2017
  ident: smsac4579bib19
  article-title: On the use of discontinuous nonlinear bistable dynamics to increase the responsiveness of energy harvesting devices
  publication-title: Mech. Res. Commun.
  doi: 10.1016/j.mechrescom.2017.06.005
– volume: 148
  year: 2020
  ident: smsac4579bib43
  article-title: Enhancing energy harvesting in low-frequency rotational motion by a quad-stable energy harvester with time-varying potential wells
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2020.107167
– volume: 27
  year: 2018
  ident: smsac4579bib53
  article-title: Arbitrary-directional broadband vibration energy harvesting using magnetically coupled flextensional transducers
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aad2c8
– volume: 302
  year: 2021
  ident: smsac4579bib32
  article-title: A self-tuned rotational vibration energy harvester for self-powered wireless sensing in powertrains
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.117479
– volume: 125
  start-page: 229
  year: 2019
  ident: smsac4579bib22
  article-title: Rotational energy harvesting using bi-stability and frequency up-conversion for low-power sensing applications: theoretical modelling and experimental validation
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.04.043
– volume: 25
  year: 2016
  ident: smsac4579bib3
  article-title: Piezoelectric thin films: an integrated review of transducers and energy harvesting
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/25/5/053002
– volume: 149
  start-page: 500
  year: 2017
  ident: smsac4579bib45
  article-title: A two-degree-of-freedom piezoelectric energy harvester with stoppers for achieving enhanced performance
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2017.07.051
– volume: 90
  start-page: 505
  year: 2021
  ident: smsac4579bib21
  article-title: Stochastic resonance in a piecewise bistable energy harvesting model driven by harmonic excitation and additive Gaussian white noise
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2020.09.023
– volume: 47
  start-page: 411
  year: 2015
  ident: smsac4579bib47
  article-title: Characteristics of a nonlinear rotating piezoelectric energy harvester under variable rotating speeds
  publication-title: Int. J. Appl. Electromagn.
  doi: 10.3233/JAE-140077
– volume: 24
  year: 2021
  ident: smsac4579bib37
  article-title: Multi-dimensional constrained energy optimization of a piezoelectric harvester for E-gadgets
  publication-title: iScience
  doi: 10.1016/j.isci.2021.102749
– volume: 354
  start-page: 196
  year: 2015
  ident: smsac4579bib29
  article-title: Internal resonance in forced vibration of coupled cantilevers subjected to magnetic interaction
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2015.06.010
– volume: 488
  year: 2020
  ident: smsac4579bib33
  article-title: Analytical and experimental investigation of the centrifugal softening and stiffening effects in rotational energy harvesting
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2020.115643
– volume: 101
  start-page: 2131
  year: 2020
  ident: smsac4579bib44
  article-title: Ultra-low frequency energy harvesting using bi-stability and rotary-translational motion in a magnet-tethered oscillator
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-020-05889-9
– volume: 115
  start-page: 162
  year: 2019
  ident: smsac4579bib54
  article-title: Improving energy harvesting from random excitation by nonlinear flexible bi-stable energy harvester with a variable potential energy function
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.06.003
– volume: 120
  year: 2021
  ident: smsac4579bib12
  article-title: Design optimization of multi-resonant piezoelectric energy harvesters
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2021.114114
– volume: 14
  start-page: 2114
  year: 2021
  ident: smsac4579bib2
  article-title: Power generation for wearable systems
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE03911J
– volume: 386
  start-page: 336
  year: 2017
  ident: smsac4579bib26
  article-title: Characterizing the effective bandwidth of tri-stable energy harvesters
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2016.09.022
– volume: 5
  start-page: 1074
  year: 2021
  ident: smsac4579bib1
  article-title: Rotational energy harvesting for self-powered sensing
  publication-title: Joule
  doi: 10.1016/j.joule.2021.03.006
– volume: 500
  year: 2021
  ident: smsac4579bib30
  article-title: Experimental and numerical investigation of energy harvesting from double cantilever beams with internal resonance
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2021.116022
– volume: 12
  start-page: 9433
  year: 2018
  ident: smsac4579bib6
  article-title: An ultra-low-friction triboelectric-electromagnetic hybrid nanogenerator for rotation energy harvesting and self-owered wind speed sensor
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b04654
– volume: 152
  start-page: 166
  year: 2017
  ident: smsac4579bib34
  article-title: An out-of-plane rotational energy harvesting system for low frequency environments
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2017.09.042
– volume: 98
  year: 2011
  ident: smsac4579bib31
  article-title: Broadband energy-harvesting using a two degree-of-freedom vibrating body
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3595278
– volume: 469
  year: 2020
  ident: smsac4579bib42
  article-title: A tri-stable energy harvester in rotational motion: modeling, theoretical analyses and experiments
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2019.115142
– volume: 85
  start-page: 71
  year: 2016
  ident: smsac4579bib20
  article-title: Enhancing ability of harvesting energy from random vibration by decreasing the potential barrier of bistable harvester
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2016.07.047
– volume: 298
  year: 2021
  ident: smsac4579bib27
  article-title: An auxetic nonlinear piezoelectric energy harvester for enhancing efficiency and bandwidth
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.117274
– volume: 102
  year: 2009
  ident: smsac4579bib17
  article-title: Nonlinear energy harvesting
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.080601
– volume: 149
  year: 2020
  ident: smsac4579bib41
  article-title: Design and analysis of a broadband three-beam impact piezoelectric energy harvester for low-frequency rotational motion
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2020.107307
– volume: 271
  start-page: 364
  year: 2018
  ident: smsac4579bib11
  article-title: Electret-material enhanced triboelectric energy harvesting from air flow for self-powered wireless temperature sensor network
  publication-title: Sens. Actuators A
  doi: 10.1016/j.sna.2017.12.067
– volume: 66
  year: 2014
  ident: smsac4579bib14
  article-title: On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion
  publication-title: Appl. Mech. Rev.
  doi: 10.1115/1.4026278
– volume: 18
  start-page: 1527
  year: 2013
  ident: smsac4579bib39
  article-title: A piezoelectric energy harvester for rotary motion applications: design and experiments
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2012.2205266
– volume: 18
  year: 2009
  ident: smsac4579bib56
  article-title: An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/18/2/025009
– volume: 43
  start-page: 65
  year: 2021
  ident: smsac4579bib13
  article-title: A review on energy harvesting based piezoelectric system
  publication-title: Mater. Today
  doi: 10.1016/j.matpr.2020.11.210
– volume: 29
  year: 2020
  ident: smsac4579bib50
  article-title: A passively self-tuning nonlinear energy harvester in rotational motion: theoretical and experimental investigation
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/ab78b2
– volume: 159
  year: 2021
  ident: smsac4579bib24
  article-title: Improving the performance of a tri-stable energy harvester with a staircase-shaped potential well
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2021.107805
– volume: 133
  year: 2011
  ident: smsac4579bib46
  article-title: Modeling and analysis of a piezoelectric energy scavenger for rotary motion applications
  publication-title: J. Vib. Acoust.
  doi: 10.1115/1.4002789
– volume: 212
  start-page: 807
  year: 1998
  ident: smsac4579bib48
  article-title: Vibration analysis of rotating cantilever beams
  publication-title: J. Sound Vib.
  doi: 10.1006/jsvi.1997.1469
– volume: 212
  start-page: 362
  year: 2018
  ident: smsac4579bib10
  article-title: Micro electrostatic energy harvester with both broad bandwidth and high normalized power density
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.12.053
– volume: 112
  year: 2018
  ident: smsac4579bib16
  article-title: Exploring the benefits of an asymmetric monostable potential function in broadband vibration energy harvesting
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5037733
– volume: 406
  start-page: 146
  year: 2017
  ident: smsac4579bib25
  article-title: Magnetic force analysis and performance of a tri-stable piezoelectric energy harvester under random excitation
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2017.06.020
– volume: 133
  year: 2019
  ident: smsac4579bib36
  article-title: Energy harvesting for autonomous thermal sensing using a linked E-shape multi-beam piezoelectric device in a low frequency rotational motion
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2019.106267
– volume: 130
  year: 2008
  ident: smsac4579bib55
  article-title: A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters
  publication-title: J. Vib. Acoust.
  doi: 10.1115/1.2890402
– volume: 18
  start-page: 1492
  year: 2018
  ident: smsac4579bib49
  article-title: A novel nonlinear piezoelectric energy harvesting system based on linear-element coupling: design, modeling and dynamic analysis
  publication-title: Sensors
  doi: 10.3390/s18051492
– volume: 469
  year: 2020
  ident: smsac4579bib40
  article-title: Rotational double-beam piezoelectric energy harvester impacting against a stop
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2019.115141
– volume: 220
  start-page: 856
  year: 2018
  ident: smsac4579bib8
  article-title: Experimental investigation of non-linear multi-stable electromagnetic-induction energy harvesting mechanism by magnetic levitation oscillation
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.03.170
– volume: 266
  year: 2020
  ident: smsac4579bib9
  article-title: A goblet-like non-linear electromagnetic generator for planar multi-directional vibration energy harvesting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.114846
– volume: 112
  year: 2018
  ident: smsac4579bib15
  article-title: A monostable piezoelectric energy harvester for broadband low-level excitations
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5022599
– volume: 393
  start-page: 265
  year: 2017
  ident: smsac4579bib57
  article-title: Magneto-elastic oscillator: modeling and analysis with nonlinear magnetic interaction
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2017.01.007
– volume: 7
  start-page: 25
  year: 2014
  ident: smsac4579bib4
  article-title: Piezoelectric and ferroelectric materials and structures for energy harvesting applications
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C3EE42454E
– volume: 30
  year: 2021
  ident: smsac4579bib7
  article-title: Power density improvement based on investigation of initial relative position in an electromagnetic energy harvester with self-powered applications
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/abf69e
SSID ssj0011831
Score 2.569664
Snippet This paper presents an investigation of the performance of a coupled rotational double-beam energy harvester (DBEH) with magnetic nonlinearity. Two...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 25020
SubjectTerms energy harvesting
magnetic nonlinearity
piezoelectric beams
rotational motion excitation
Title Rotational nonlinear double-beam energy harvesting
URI https://iopscience.iop.org/article/10.1088/1361-665X/ac4579
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB7aiqAHH1WxvshBDx62TbLJZosnEUsVfCAWehDC7majYG1Lml789c5u0lJFRTwlh9nN8O0mM9mZ-QbgWGim_ID6RKMvTtAeU9IWShNDXILeNwtlag70b25Ztxdc98N-Bc7mtTCjcfnpb-JtQRRcQFgmxPGWR5lHGAv7LaGCMGpXYYlyxkz7gqu7-3kIAfeqbZfXRh3QSs9ilN_N8MkmVfG5Cyamsw5PM-WKzJLX5jSXTfX-hbfxn9pvwFrpejrnhegmVPSwDqsLhIR1WLYJoWqyBf7DKC_PCZ1hQachMicZTeVAE6nFm6Nt1aDzIjLL1DF83oZe5_LxokvK_gpE-dzNCXN5IqmldBMqjKinPU8wYapPmQ4iX6oocrlINP6mCDfFi6cjlqaBDgUuokt3oIYa6F1w0AyGuKw68pMEZ3O5TFCW8gSXW3qMNaA1QzhWJfm46YExiG0QnPPY4BIbXOIClwaczkeMC-KNX2RPEO64fPsmP8rt_VFuH1Z8U-Vgk7MPoJZnU32Ivkcuj-we-wBE9M4o
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4IRqMHH6gRnz3owcNC22235WhUAj6QGEm41d3tVhMRCJSLv97pdiFo1Jh4ag_T7fabbWe6M_MNwAlXTLoedYlCX5ygPaakxqUiGXEJet_MF0m2oX_XYo2Od931u6bPqa6FGQzNp7-CpzlRcA6hSYgLqw5lDmHM71a59PygVh3GSQEWfcpoRp7fvG_Pwgi4XnXLvBrOAy31NE753Sif7FIB7z1nZurr8DSdYJ5d8lqZpKIi379wN_7jCTZgzbig1nkuvgkLql-C1TliwhIs6cRQOd4C92GQmv1Cq5_TavCRFQ8moqeIUPzNUrp60HrhI83Y0X_ehk796vGiQUyfBSLd0E4Js8NYUE3txqUfUEc5Dmc8q0JlygtcIYPADnms8HeF2wkeHBWwJPGUz1GZNt2BIs5A7YKF5tBH9arAjWMczQ5FjLI0jFHtwmGsDNUpypE0JORZL4xepIPhYRhl2EQZNlGOTRnOZlcMcwKOX2RPEfLIvIXjH-X2_ih3DMvty3p022zd7MOKmxU-6HztAyimo4k6RHckFUd6yX0A_2TTjA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rotational+nonlinear+double-beam+energy+harvesting&rft.jtitle=Smart+materials+and+structures&rft.au=Lu%2C+Ze-Qi&rft.au=Zhang%2C+Fei-Yang&rft.au=Fu%2C+Hai-Ling&rft.au=Ding%2C+Hu&rft.date=2022-02-01&rft.issn=0964-1726&rft.eissn=1361-665X&rft.volume=31&rft.issue=2&rft.spage=25020&rft_id=info:doi/10.1088%2F1361-665X%2Fac4579&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_665X_ac4579
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-1726&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-1726&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-1726&client=summon