Rotational nonlinear double-beam energy harvesting
This paper presents an investigation of the performance of a coupled rotational double-beam energy harvester (DBEH) with magnetic nonlinearity. Two spring-connected cantilever beams are fixed on a rotating disc. Repelling magnets are attached to the frame and to the lower beam tip, and an equal-mass...
Saved in:
Published in | Smart materials and structures Vol. 31; no. 2; pp. 25020 - 25036 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents an investigation of the performance of a coupled rotational double-beam energy harvester (DBEH) with magnetic nonlinearity. Two spring-connected cantilever beams are fixed on a rotating disc. Repelling magnets are attached to the frame and to the lower beam tip, and an equal-mass block is attached to the tip of the upper beam. To describe the dynamic response, a theoretical model related to the rotational motion of the coupled cantilever beam is derived from the Lagrange equations. In addition, the harmonic balance method, together with the arc-length continuation method, is applied to obtain the frequency response functions (FRFs). Parametric studies are then conducted to analyze the effect of varying the parameters on the energy harvesting performance, and numerical analysis is performed to validate the analytical solutions. Finally, the theoretical model is verified by forward- and reverse-frequency-sweeping experiments. The DBEH in rotational motion can perform effective energy harvesting over a wide range of rotational frequencies (10–35 rad s
−1
). The upper beam is found to exhibit better energy harvesting efficiency than the lower beam around the resonant frequency. This study effectively broadens the energy harvesting bandwidth and provides a theoretical model for the design of nonlinear magnet-coupled double-beam structure in rotational energy harvesting. |
---|---|
AbstractList | This paper presents an investigation of the performance of a coupled rotational double-beam energy harvester (DBEH) with magnetic nonlinearity. Two spring-connected cantilever beams are fixed on a rotating disc. Repelling magnets are attached to the frame and to the lower beam tip, and an equal-mass block is attached to the tip of the upper beam. To describe the dynamic response, a theoretical model related to the rotational motion of the coupled cantilever beam is derived from the Lagrange equations. In addition, the harmonic balance method, together with the arc-length continuation method, is applied to obtain the frequency response functions (FRFs). Parametric studies are then conducted to analyze the effect of varying the parameters on the energy harvesting performance, and numerical analysis is performed to validate the analytical solutions. Finally, the theoretical model is verified by forward- and reverse-frequency-sweeping experiments. The DBEH in rotational motion can perform effective energy harvesting over a wide range of rotational frequencies (10–35 rad s
−1
). The upper beam is found to exhibit better energy harvesting efficiency than the lower beam around the resonant frequency. This study effectively broadens the energy harvesting bandwidth and provides a theoretical model for the design of nonlinear magnet-coupled double-beam structure in rotational energy harvesting. |
Author | Fu, Hai-Ling Ding, Hu Chen, Li-Qun Zhang, Fei-Yang Lu, Ze-Qi |
Author_xml | – sequence: 1 givenname: Ze-Qi orcidid: 0000-0002-0150-7490 surname: Lu fullname: Lu, Ze-Qi organization: Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, School of Mechanics and Engineering Science, Shanghai University , Shanghai 200444, People’s Republic of China – sequence: 2 givenname: Fei-Yang surname: Zhang fullname: Zhang, Fei-Yang organization: Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, School of Mechanics and Engineering Science, Shanghai University , Shanghai 200444, People’s Republic of China – sequence: 3 givenname: Hai-Ling orcidid: 0000-0002-7557-3853 surname: Fu fullname: Fu, Hai-Ling organization: Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University , Loughborough, LE11 3TU, United Kingdom – sequence: 4 givenname: Hu surname: Ding fullname: Ding, Hu organization: Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, School of Mechanics and Engineering Science, Shanghai University , Shanghai 200444, People’s Republic of China – sequence: 5 givenname: Li-Qun surname: Chen fullname: Chen, Li-Qun organization: Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, School of Mechanics and Engineering Science, Shanghai University , Shanghai 200444, People’s Republic of China |
BookMark | eNp9kMFKw0AQhhepYFu9e8wDGDuTTXa3RylqhYIgCt6WSTqpW9Js2U2Fvr0pEQ-Cnn4Y5vuZbyZi1PqWhbhGuEUwZoZSYapU8T6jKi_0_EyMf0YjMYa5ylPUmboQkxi3AIhG4lhkL76jzvmWmqRvbFzLFJK1P5QNpyXTLuGWw-aYfFD45Ni5dnMpzmtqIl9951S8Pdy_Lpbp6vnxaXG3SqvMQJcqMOtSZihzpKrQEhmRFKlcG8W5zspKazC05kwCQd0HslZ1nXNBqihBToUaeqvgYwxc28oNt3aBXGMR7MncnjTtSdMO5j0Iv8B9cDsKx_-QmwFxfm-3_hD6f8S_178A9cFrCA |
CODEN | SMSTER |
CitedBy_id | crossref_primary_10_1007_s10854_022_08192_y crossref_primary_10_1002_aesr_202400116 crossref_primary_10_1007_s10853_022_07187_8 crossref_primary_10_1016_j_enconman_2023_117660 crossref_primary_10_1063_5_0137624 crossref_primary_10_1007_s11431_023_2421_4 crossref_primary_10_1155_2022_6165180 crossref_primary_10_1016_j_apenergy_2022_120355 crossref_primary_10_1007_s00339_022_05532_x crossref_primary_10_1016_j_renene_2025_122640 crossref_primary_10_3390_ma15041402 crossref_primary_10_1177_1045389X221099448 crossref_primary_10_1007_s42823_022_00395_x crossref_primary_10_1016_j_energy_2022_124882 crossref_primary_10_1016_j_ymssp_2023_110503 crossref_primary_10_1016_j_ymssp_2024_111695 crossref_primary_10_1080_15397734_2023_2199058 crossref_primary_10_1177_1045389X231194986 crossref_primary_10_1016_j_rinp_2022_105589 crossref_primary_10_1080_15397734_2024_2356725 crossref_primary_10_1080_07315171_2023_2238179 crossref_primary_10_1080_15376494_2022_2107251 crossref_primary_10_1016_j_apenergy_2023_120908 crossref_primary_10_1016_j_engstruct_2025_119644 crossref_primary_10_1016_j_sna_2022_114054 crossref_primary_10_1177_1045389X221147647 crossref_primary_10_1016_j_jmrt_2022_03_129 crossref_primary_10_1007_s10904_022_02257_5 crossref_primary_10_1007_s11029_023_10119_5 crossref_primary_10_1016_j_rser_2023_113446 crossref_primary_10_1007_s10904_022_02286_0 crossref_primary_10_1088_1361_665X_ac9dd2 crossref_primary_10_3389_fmats_2022_823155 crossref_primary_10_1007_s10409_024_23508_x crossref_primary_10_1016_j_compstruct_2022_115582 crossref_primary_10_1007_s00339_022_05338_x crossref_primary_10_1016_j_ymssp_2024_111248 crossref_primary_10_1088_1361_6463_acea2e crossref_primary_10_1016_j_ymssp_2023_110998 crossref_primary_10_1016_j_ijmecsci_2023_108204 crossref_primary_10_1142_S0219455424502122 crossref_primary_10_1002_pc_26931 crossref_primary_10_1016_j_ymssp_2022_110034 crossref_primary_10_1016_j_ijengsci_2024_104024 crossref_primary_10_1007_s11431_022_2367_9 crossref_primary_10_1088_1361_665X_ac798c |
Cites_doi | 10.1016/j.enconman.2020.113061 10.1063/1.3481689 10.1088/0964-1726/23/7/075013 10.1016/j.jsv.2020.115213 10.1016/j.joule.2018.03.011 10.1016/j.enconman.2021.114246 10.1016/S0022-460X(88)80024-5 10.1007/s11071-015-2306-8 10.1016/j.mechrescom.2017.06.005 10.1016/j.ymssp.2020.107167 10.1088/1361-665X/aad2c8 10.1016/j.apenergy.2021.117479 10.1016/j.ymssp.2018.04.043 10.1088/0964-1726/25/5/053002 10.1016/j.ijmecsci.2017.07.051 10.1016/j.apm.2020.09.023 10.3233/JAE-140077 10.1016/j.isci.2021.102749 10.1016/j.jsv.2015.06.010 10.1016/j.jsv.2020.115643 10.1007/s11071-020-05889-9 10.1016/j.ymssp.2018.06.003 10.1016/j.microrel.2021.114114 10.1039/D0EE03911J 10.1016/j.jsv.2016.09.022 10.1016/j.joule.2021.03.006 10.1016/j.jsv.2021.116022 10.1021/acsnano.8b04654 10.1016/j.enconman.2017.09.042 10.1063/1.3595278 10.1016/j.jsv.2019.115142 10.1016/j.ymssp.2016.07.047 10.1016/j.apenergy.2021.117274 10.1103/PhysRevLett.102.080601 10.1016/j.ymssp.2020.107307 10.1016/j.sna.2017.12.067 10.1115/1.4026278 10.1109/TMECH.2012.2205266 10.1088/0964-1726/18/2/025009 10.1016/j.matpr.2020.11.210 10.1088/1361-665X/ab78b2 10.1016/j.ymssp.2021.107805 10.1115/1.4002789 10.1006/jsvi.1997.1469 10.1016/j.apenergy.2017.12.053 10.1063/1.5037733 10.1016/j.jsv.2017.06.020 10.1016/j.ymssp.2019.106267 10.1115/1.2890402 10.3390/s18051492 10.1016/j.jsv.2019.115141 10.1016/j.apenergy.2018.03.170 10.1016/j.apenergy.2020.114846 10.1063/1.5022599 10.1016/j.jsv.2017.01.007 10.1039/C3EE42454E 10.1088/1361-665X/abf69e |
ContentType | Journal Article |
Copyright | 2021 IOP Publishing Ltd |
Copyright_xml | – notice: 2021 IOP Publishing Ltd |
DBID | AAYXX CITATION |
DOI | 10.1088/1361-665X/ac4579 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1361-665X |
ExternalDocumentID | 10_1088_1361_665X_ac4579 smsac4579 |
GrantInformation_xml | – fundername: Innovation Program of Shanghai Municipal Education Commission grantid: 2017-01-07-00-09-E00019 – fundername: National Natural Science Foundation of China grantid: 11572182; 11872037; 11872159 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | -~X 123 1JI 4.4 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TN5 W28 XPP ZMT AAYXX ADEQX CITATION |
ID | FETCH-LOGICAL-c280t-608db321341ac5731e11a6a64786e472bc7708ade230a0fe231e76ff4e5a65b03 |
IEDL.DBID | IOP |
ISSN | 0964-1726 |
IngestDate | Tue Jul 01 03:38:47 EDT 2025 Thu Apr 24 23:05:55 EDT 2025 Wed Aug 21 03:35:00 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c280t-608db321341ac5731e11a6a64786e472bc7708ade230a0fe231e76ff4e5a65b03 |
Notes | SMS-112986.R1 |
ORCID | 0000-0002-7557-3853 0000-0002-0150-7490 |
PageCount | 17 |
ParticipantIDs | crossref_citationtrail_10_1088_1361_665X_ac4579 crossref_primary_10_1088_1361_665X_ac4579 iop_journals_10_1088_1361_665X_ac4579 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Smart materials and structures |
PublicationTitleAbbrev | SMS |
PublicationTitleAlternate | Smart Mater. Struct |
PublicationYear | 2022 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Fu (smsac4579bib1) 2021; 5 Eshtehardiha (smsac4579bib30) 2021; 500 Fu (smsac4579bib44) 2020; 101 Mei (smsac4579bib43) 2020; 148 Kim (smsac4579bib31) 2011; 98 Rui (smsac4579bib41) 2020; 149 Chen (smsac4579bib27) 2021; 298 Fang (smsac4579bib33) 2020; 488 Khameneifar (smsac4579bib39) 2013; 18 Mahajan (smsac4579bib13) 2021; 43 Khameneifar (smsac4579bib46) 2011; 133 Li (smsac4579bib24) 2021; 159 Febbo (smsac4579bib34) 2017; 152 Radice (smsac4579bib19) 2017; 84 Abdelkefi (smsac4579bib51) 2015; 83 Wang (smsac4579bib6) 2018; 12 Gunn (smsac4579bib32) 2021; 302 Mei (smsac4579bib42) 2020; 469 Zhou (smsac4579bib49) 2018; 18 Machado (smsac4579bib40) 2020; 469 Zhao (smsac4579bib18) 2020; 473 Khan (smsac4579bib3) 2016; 25 Daqaq (smsac4579bib14) 2014; 66 Kumar (smsac4579bib57) 2017; 393 Wu (smsac4579bib11) 2018; 271 Guo (smsac4579bib47) 2015; 47 Gu (smsac4579bib9) 2020; 266 Leng (smsac4579bib25) 2017; 406 Machado (smsac4579bib37) 2021; 24 Erturk (smsac4579bib56) 2009; 18 Panyam (smsac4579bib26) 2017; 386 Hu (smsac4579bib12) 2021; 120 Erturk (smsac4579bib55) 2008; 130 Yang (smsac4579bib5) 2018; 2 Fu (smsac4579bib22) 2019; 125 Lan (smsac4579bib20) 2016; 85 Huang (smsac4579bib21) 2021; 90 Fan (smsac4579bib28) 2020; 221 Zhang (smsac4579bib10) 2018; 212 Zhou (smsac4579bib54) 2019; 115 Ramírez (smsac4579bib36) 2019; 133 Hu (smsac4579bib45) 2017; 149 Yoo (smsac4579bib48) 1998; 212 Yigit (smsac4579bib52) 1988; 121 Fan (smsac4579bib15) 2018; 112 Sun (smsac4579bib23) 2021; 239 Peng (smsac4579bib7) 2021; 30 Chen (smsac4579bib29) 2015; 354 Bowen (smsac4579bib4) 2014; 7 Zhao (smsac4579bib53) 2018; 27 Gao (smsac4579bib2) 2021; 14 Hsu (smsac4579bib35) 2014; 23 Mei (smsac4579bib50) 2020; 29 Gao (smsac4579bib8) 2018; 220 Kumar (smsac4579bib16) 2018; 112 Cottone (smsac4579bib17) 2009; 102 Gu (smsac4579bib38) 2010; 97 |
References_xml | – volume: 221 year: 2020 ident: smsac4579bib28 article-title: Enhanced nonlinear energy harvesting using combined primary and parametric resonances: experiments with theoretical verifications publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2020.113061 – volume: 97 year: 2010 ident: smsac4579bib38 article-title: Passive self-tuning energy harvester for extracting energy from rotational motion publication-title: Appl. Phys. Lett. doi: 10.1063/1.3481689 – volume: 23 year: 2014 ident: smsac4579bib35 article-title: Analysis and experiment of self-frequency-tuning piezoelectric energy harvesters for rotational motion publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/23/7/075013 – volume: 473 year: 2020 ident: smsac4579bib18 article-title: Development of large-scale bistable motion system for energy harvesting by application of stochastic resonance publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2020.115213 – volume: 2 start-page: 642 year: 2018 ident: smsac4579bib5 article-title: High-performance piezoelectric energy harvesters and their applications publication-title: Joule doi: 10.1016/j.joule.2018.03.011 – volume: 239 year: 2021 ident: smsac4579bib23 article-title: Performance of a novel dual-magnet tri-stable piezoelectric energy harvester subjected to random excitation publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2021.114246 – volume: 121 start-page: 201 year: 1988 ident: smsac4579bib52 article-title: Flexural motion of a radially rotating beam attached to a rigid body publication-title: J. Sound Vib. doi: 10.1016/S0022-460X(88)80024-5 – volume: 83 start-page: 41 year: 2015 ident: smsac4579bib51 article-title: Nonlinear analysis and power improvement of broadband low-frequency piezomagnetoelastic energy harvesters publication-title: Nonlinear Dyn. doi: 10.1007/s11071-015-2306-8 – volume: 84 start-page: 49 year: 2017 ident: smsac4579bib19 article-title: On the use of discontinuous nonlinear bistable dynamics to increase the responsiveness of energy harvesting devices publication-title: Mech. Res. Commun. doi: 10.1016/j.mechrescom.2017.06.005 – volume: 148 year: 2020 ident: smsac4579bib43 article-title: Enhancing energy harvesting in low-frequency rotational motion by a quad-stable energy harvester with time-varying potential wells publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2020.107167 – volume: 27 year: 2018 ident: smsac4579bib53 article-title: Arbitrary-directional broadband vibration energy harvesting using magnetically coupled flextensional transducers publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aad2c8 – volume: 302 year: 2021 ident: smsac4579bib32 article-title: A self-tuned rotational vibration energy harvester for self-powered wireless sensing in powertrains publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.117479 – volume: 125 start-page: 229 year: 2019 ident: smsac4579bib22 article-title: Rotational energy harvesting using bi-stability and frequency up-conversion for low-power sensing applications: theoretical modelling and experimental validation publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2018.04.043 – volume: 25 year: 2016 ident: smsac4579bib3 article-title: Piezoelectric thin films: an integrated review of transducers and energy harvesting publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/25/5/053002 – volume: 149 start-page: 500 year: 2017 ident: smsac4579bib45 article-title: A two-degree-of-freedom piezoelectric energy harvester with stoppers for achieving enhanced performance publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2017.07.051 – volume: 90 start-page: 505 year: 2021 ident: smsac4579bib21 article-title: Stochastic resonance in a piecewise bistable energy harvesting model driven by harmonic excitation and additive Gaussian white noise publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2020.09.023 – volume: 47 start-page: 411 year: 2015 ident: smsac4579bib47 article-title: Characteristics of a nonlinear rotating piezoelectric energy harvester under variable rotating speeds publication-title: Int. J. Appl. Electromagn. doi: 10.3233/JAE-140077 – volume: 24 year: 2021 ident: smsac4579bib37 article-title: Multi-dimensional constrained energy optimization of a piezoelectric harvester for E-gadgets publication-title: iScience doi: 10.1016/j.isci.2021.102749 – volume: 354 start-page: 196 year: 2015 ident: smsac4579bib29 article-title: Internal resonance in forced vibration of coupled cantilevers subjected to magnetic interaction publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2015.06.010 – volume: 488 year: 2020 ident: smsac4579bib33 article-title: Analytical and experimental investigation of the centrifugal softening and stiffening effects in rotational energy harvesting publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2020.115643 – volume: 101 start-page: 2131 year: 2020 ident: smsac4579bib44 article-title: Ultra-low frequency energy harvesting using bi-stability and rotary-translational motion in a magnet-tethered oscillator publication-title: Nonlinear Dyn. doi: 10.1007/s11071-020-05889-9 – volume: 115 start-page: 162 year: 2019 ident: smsac4579bib54 article-title: Improving energy harvesting from random excitation by nonlinear flexible bi-stable energy harvester with a variable potential energy function publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2018.06.003 – volume: 120 year: 2021 ident: smsac4579bib12 article-title: Design optimization of multi-resonant piezoelectric energy harvesters publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2021.114114 – volume: 14 start-page: 2114 year: 2021 ident: smsac4579bib2 article-title: Power generation for wearable systems publication-title: Energy Environ. Sci. doi: 10.1039/D0EE03911J – volume: 386 start-page: 336 year: 2017 ident: smsac4579bib26 article-title: Characterizing the effective bandwidth of tri-stable energy harvesters publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2016.09.022 – volume: 5 start-page: 1074 year: 2021 ident: smsac4579bib1 article-title: Rotational energy harvesting for self-powered sensing publication-title: Joule doi: 10.1016/j.joule.2021.03.006 – volume: 500 year: 2021 ident: smsac4579bib30 article-title: Experimental and numerical investigation of energy harvesting from double cantilever beams with internal resonance publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2021.116022 – volume: 12 start-page: 9433 year: 2018 ident: smsac4579bib6 article-title: An ultra-low-friction triboelectric-electromagnetic hybrid nanogenerator for rotation energy harvesting and self-owered wind speed sensor publication-title: ACS Nano doi: 10.1021/acsnano.8b04654 – volume: 152 start-page: 166 year: 2017 ident: smsac4579bib34 article-title: An out-of-plane rotational energy harvesting system for low frequency environments publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2017.09.042 – volume: 98 year: 2011 ident: smsac4579bib31 article-title: Broadband energy-harvesting using a two degree-of-freedom vibrating body publication-title: Appl. Phys. Lett. doi: 10.1063/1.3595278 – volume: 469 year: 2020 ident: smsac4579bib42 article-title: A tri-stable energy harvester in rotational motion: modeling, theoretical analyses and experiments publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2019.115142 – volume: 85 start-page: 71 year: 2016 ident: smsac4579bib20 article-title: Enhancing ability of harvesting energy from random vibration by decreasing the potential barrier of bistable harvester publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2016.07.047 – volume: 298 year: 2021 ident: smsac4579bib27 article-title: An auxetic nonlinear piezoelectric energy harvester for enhancing efficiency and bandwidth publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.117274 – volume: 102 year: 2009 ident: smsac4579bib17 article-title: Nonlinear energy harvesting publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.080601 – volume: 149 year: 2020 ident: smsac4579bib41 article-title: Design and analysis of a broadband three-beam impact piezoelectric energy harvester for low-frequency rotational motion publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2020.107307 – volume: 271 start-page: 364 year: 2018 ident: smsac4579bib11 article-title: Electret-material enhanced triboelectric energy harvesting from air flow for self-powered wireless temperature sensor network publication-title: Sens. Actuators A doi: 10.1016/j.sna.2017.12.067 – volume: 66 year: 2014 ident: smsac4579bib14 article-title: On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion publication-title: Appl. Mech. Rev. doi: 10.1115/1.4026278 – volume: 18 start-page: 1527 year: 2013 ident: smsac4579bib39 article-title: A piezoelectric energy harvester for rotary motion applications: design and experiments publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2012.2205266 – volume: 18 year: 2009 ident: smsac4579bib56 article-title: An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/18/2/025009 – volume: 43 start-page: 65 year: 2021 ident: smsac4579bib13 article-title: A review on energy harvesting based piezoelectric system publication-title: Mater. Today doi: 10.1016/j.matpr.2020.11.210 – volume: 29 year: 2020 ident: smsac4579bib50 article-title: A passively self-tuning nonlinear energy harvester in rotational motion: theoretical and experimental investigation publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/ab78b2 – volume: 159 year: 2021 ident: smsac4579bib24 article-title: Improving the performance of a tri-stable energy harvester with a staircase-shaped potential well publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2021.107805 – volume: 133 year: 2011 ident: smsac4579bib46 article-title: Modeling and analysis of a piezoelectric energy scavenger for rotary motion applications publication-title: J. Vib. Acoust. doi: 10.1115/1.4002789 – volume: 212 start-page: 807 year: 1998 ident: smsac4579bib48 article-title: Vibration analysis of rotating cantilever beams publication-title: J. Sound Vib. doi: 10.1006/jsvi.1997.1469 – volume: 212 start-page: 362 year: 2018 ident: smsac4579bib10 article-title: Micro electrostatic energy harvester with both broad bandwidth and high normalized power density publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.12.053 – volume: 112 year: 2018 ident: smsac4579bib16 article-title: Exploring the benefits of an asymmetric monostable potential function in broadband vibration energy harvesting publication-title: Appl. Phys. Lett. doi: 10.1063/1.5037733 – volume: 406 start-page: 146 year: 2017 ident: smsac4579bib25 article-title: Magnetic force analysis and performance of a tri-stable piezoelectric energy harvester under random excitation publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2017.06.020 – volume: 133 year: 2019 ident: smsac4579bib36 article-title: Energy harvesting for autonomous thermal sensing using a linked E-shape multi-beam piezoelectric device in a low frequency rotational motion publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2019.106267 – volume: 130 year: 2008 ident: smsac4579bib55 article-title: A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters publication-title: J. Vib. Acoust. doi: 10.1115/1.2890402 – volume: 18 start-page: 1492 year: 2018 ident: smsac4579bib49 article-title: A novel nonlinear piezoelectric energy harvesting system based on linear-element coupling: design, modeling and dynamic analysis publication-title: Sensors doi: 10.3390/s18051492 – volume: 469 year: 2020 ident: smsac4579bib40 article-title: Rotational double-beam piezoelectric energy harvester impacting against a stop publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2019.115141 – volume: 220 start-page: 856 year: 2018 ident: smsac4579bib8 article-title: Experimental investigation of non-linear multi-stable electromagnetic-induction energy harvesting mechanism by magnetic levitation oscillation publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.03.170 – volume: 266 year: 2020 ident: smsac4579bib9 article-title: A goblet-like non-linear electromagnetic generator for planar multi-directional vibration energy harvesting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.114846 – volume: 112 year: 2018 ident: smsac4579bib15 article-title: A monostable piezoelectric energy harvester for broadband low-level excitations publication-title: Appl. Phys. Lett. doi: 10.1063/1.5022599 – volume: 393 start-page: 265 year: 2017 ident: smsac4579bib57 article-title: Magneto-elastic oscillator: modeling and analysis with nonlinear magnetic interaction publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2017.01.007 – volume: 7 start-page: 25 year: 2014 ident: smsac4579bib4 article-title: Piezoelectric and ferroelectric materials and structures for energy harvesting applications publication-title: Energy Environ. Sci. doi: 10.1039/C3EE42454E – volume: 30 year: 2021 ident: smsac4579bib7 article-title: Power density improvement based on investigation of initial relative position in an electromagnetic energy harvester with self-powered applications publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/abf69e |
SSID | ssj0011831 |
Score | 2.569664 |
Snippet | This paper presents an investigation of the performance of a coupled rotational double-beam energy harvester (DBEH) with magnetic nonlinearity. Two... |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 25020 |
SubjectTerms | energy harvesting magnetic nonlinearity piezoelectric beams rotational motion excitation |
Title | Rotational nonlinear double-beam energy harvesting |
URI | https://iopscience.iop.org/article/10.1088/1361-665X/ac4579 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB7aiqAHH1WxvshBDx62TbLJZosnEUsVfCAWehDC7majYG1Lml789c5u0lJFRTwlh9nN8O0mM9mZ-QbgWGim_ID6RKMvTtAeU9IWShNDXILeNwtlag70b25Ztxdc98N-Bc7mtTCjcfnpb-JtQRRcQFgmxPGWR5lHGAv7LaGCMGpXYYlyxkz7gqu7-3kIAfeqbZfXRh3QSs9ilN_N8MkmVfG5Cyamsw5PM-WKzJLX5jSXTfX-hbfxn9pvwFrpejrnhegmVPSwDqsLhIR1WLYJoWqyBf7DKC_PCZ1hQachMicZTeVAE6nFm6Nt1aDzIjLL1DF83oZe5_LxokvK_gpE-dzNCXN5IqmldBMqjKinPU8wYapPmQ4iX6oocrlINP6mCDfFi6cjlqaBDgUuokt3oIYa6F1w0AyGuKw68pMEZ3O5TFCW8gSXW3qMNaA1QzhWJfm46YExiG0QnPPY4BIbXOIClwaczkeMC-KNX2RPEO64fPsmP8rt_VFuH1Z8U-Vgk7MPoJZnU32Ivkcuj-we-wBE9M4o |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4IRqMHH6gRnz3owcNC22235WhUAj6QGEm41d3tVhMRCJSLv97pdiFo1Jh4ag_T7fabbWe6M_MNwAlXTLoedYlCX5ygPaakxqUiGXEJet_MF0m2oX_XYo2Od931u6bPqa6FGQzNp7-CpzlRcA6hSYgLqw5lDmHM71a59PygVh3GSQEWfcpoRp7fvG_Pwgi4XnXLvBrOAy31NE753Sif7FIB7z1nZurr8DSdYJ5d8lqZpKIi379wN_7jCTZgzbig1nkuvgkLql-C1TliwhIs6cRQOd4C92GQmv1Cq5_TavCRFQ8moqeIUPzNUrp60HrhI83Y0X_ehk796vGiQUyfBSLd0E4Js8NYUE3txqUfUEc5Dmc8q0JlygtcIYPADnms8HeF2wkeHBWwJPGUz1GZNt2BIs5A7YKF5tBH9arAjWMczQ5FjLI0jFHtwmGsDNUpypE0JORZL4xepIPhYRhl2EQZNlGOTRnOZlcMcwKOX2RPEfLIvIXjH-X2_ih3DMvty3p022zd7MOKmxU-6HztAyimo4k6RHckFUd6yX0A_2TTjA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rotational+nonlinear+double-beam+energy+harvesting&rft.jtitle=Smart+materials+and+structures&rft.au=Lu%2C+Ze-Qi&rft.au=Zhang%2C+Fei-Yang&rft.au=Fu%2C+Hai-Ling&rft.au=Ding%2C+Hu&rft.date=2022-02-01&rft.issn=0964-1726&rft.eissn=1361-665X&rft.volume=31&rft.issue=2&rft.spage=25020&rft_id=info:doi/10.1088%2F1361-665X%2Fac4579&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_665X_ac4579 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-1726&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-1726&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-1726&client=summon |