Synchronization of Markov jump neural networks with two delay components via Affine transformed sampled-data control with actuator saturation
In this paper, in contrast to the existing findings the synchronization criteria for chaotic neural networks (CNNs) with sampled data control is analysed by a new integral inequality. The proposed method incorporates a parameterized controller that depends on the activation function and includes act...
Saved in:
Published in | European physical journal plus Vol. 139; no. 10; p. 913 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
21.10.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, in contrast to the existing findings the synchronization criteria for chaotic neural networks (CNNs) with sampled data control is analysed by a new integral inequality. The proposed method incorporates a parameterized controller that depends on the activation function and includes actuator saturation in addition to Markovian jump CNNs (MJCNNs) and additive time varying delay. The reformulated approach considers the constraints on the activation function parameters using weighting functions. Additionally, the controller gain matrices are combined using weighted functions that undergo affine transformations. The construction of Lyapunov–Krasovskii functionals (LKFs) lead to the establishment of two augmented terms, which facilitate the interaction among the state vectors with upper bounds of additive time delay. Benefitting from the modified free matrix-based integral inequalities addressed in Lemmas
1
and
2
provide the sufficient conditions for the affine transformed controller of the MJCNNs error system in the form of linear matrix inequalities (LMIs). Further, simulation examples are provided to demonstrate the effectiveness and superiority of the affine transformed control approach. |
---|---|
AbstractList | In this paper, in contrast to the existing findings the synchronization criteria for chaotic neural networks (CNNs) with sampled data control is analysed by a new integral inequality. The proposed method incorporates a parameterized controller that depends on the activation function and includes actuator saturation in addition to Markovian jump CNNs (MJCNNs) and additive time varying delay. The reformulated approach considers the constraints on the activation function parameters using weighting functions. Additionally, the controller gain matrices are combined using weighted functions that undergo affine transformations. The construction of Lyapunov–Krasovskii functionals (LKFs) lead to the establishment of two augmented terms, which facilitate the interaction among the state vectors with upper bounds of additive time delay. Benefitting from the modified free matrix-based integral inequalities addressed in Lemmas
1
and
2
provide the sufficient conditions for the affine transformed controller of the MJCNNs error system in the form of linear matrix inequalities (LMIs). Further, simulation examples are provided to demonstrate the effectiveness and superiority of the affine transformed control approach. In this paper, in contrast to the existing findings the synchronization criteria for chaotic neural networks (CNNs) with sampled data control is analysed by a new integral inequality. The proposed method incorporates a parameterized controller that depends on the activation function and includes actuator saturation in addition to Markovian jump CNNs (MJCNNs) and additive time varying delay. The reformulated approach considers the constraints on the activation function parameters using weighting functions. Additionally, the controller gain matrices are combined using weighted functions that undergo affine transformations. The construction of Lyapunov–Krasovskii functionals (LKFs) lead to the establishment of two augmented terms, which facilitate the interaction among the state vectors with upper bounds of additive time delay. Benefitting from the modified free matrix-based integral inequalities addressed in Lemmas 1 and 2 provide the sufficient conditions for the affine transformed controller of the MJCNNs error system in the form of linear matrix inequalities (LMIs). Further, simulation examples are provided to demonstrate the effectiveness and superiority of the affine transformed control approach. |
ArticleNumber | 913 |
Author | Radhika, T. Subhashri, A. R. |
Author_xml | – sequence: 1 givenname: A. R. surname: Subhashri fullname: Subhashri, A. R. organization: Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology – sequence: 2 givenname: T. orcidid: 0000-0003-2908-4618 surname: Radhika fullname: Radhika, T. email: radhigru@gmail.com organization: Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology |
BookMark | eNqFkM1O3DAQx60KpFLYZ8BSzyl2bCfxEaG2IC3qoXC2ZpMxZEns1HZgt-_AO-Mlldpb5zJz-H-Mfp_IkfMOCTnn7Avnkl3gtJ0uIheiYgUrZcFUpVWx-0BOSq5ZoaSUR__cH8kqxi3LIzWXWp6Q15971z4G7_rfkHrvqLf0FsKTf6bbeZyowznAkFd68eEp0pc-PdJ80w4H2NPWj1P-yKVIn3ugl9b2DmkK4KL1YcSORhinAbuigwRZ7lLww5ICbZoh-ZAlKZcc2s_IsYUh4urPPiX3377eXV0X6x_fb64u10VbNiwVytZlKeoaZKdRNK2oK97VHYem2qAQWvPatow1SmuFJbMoKq44IG5Ku1EMxCn5vOROwf-aMSaz9XNwudIIzhutKiV0VtWLqg0-xoDWTKEfIewNZ-aA3xzwmwW_yfjNO36zy85mccbscA8Y_ub_z_oG2feSMg |
Cites_doi | 10.1016/j.jfranklin.2021.03.009 10.1007/s11071-014-1418-x 10.1109/TNNLS.2020.3045146 10.1007/s00521-021-06768-z 10.1007/s11071-021-06200-0 10.1007/s11071-017-3574-2 10.1016/j.neucom.2017.02.063 10.1002/mma.8774 10.1109/TFUZZ.2018.2863223 10.1016/j.apm.2022.10.015 10.1016/j.chaos.2022.112442 10.1109/TNNLS.2019.2943548 10.1016/j.neunet.2022.09.025 10.1007/s12555-018-0678-5 10.1016/j.chaos.2023.113971 10.1016/j.chaos.2023.113622 10.1109/TSMC.2023.3251355 10.1016/j.jfranklin.2021.05.019 10.1016/j.automatica.2022.110357 10.1016/j.cnsns.2024.108087 10.1016/j.neucom.2018.08.090 10.1109/TCYB.2014.2312004 10.1109/TNNLS.2023.3246426 10.1007/s42452-023-05515-4 10.1109/ACCESS.2021.3057918 10.1016/j.neucom.2020.05.060 10.1016/j.chaos.2022.113059 10.1007/s00500-021-06500-y 10.1016/j.jfranklin.2023.03.030 10.1007/s12555-018-0245-0 10.1109/TNNLS.2020.3027862 10.1016/j.neucom.2020.09.018 10.1016/j.chaos.2024.115087 10.1109/TFUZZ.2021.3069319 10.1002/mma.9657 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Oct 2024 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Oct 2024 |
DBID | AAYXX CITATION |
DOI | 10.1140/epjp/s13360-024-05695-x |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2190-5444 |
ExternalDocumentID | 10_1140_epjp_s13360_024_05695_x |
GroupedDBID | -5F -5G -BR -EM -~C 06D 0R~ 203 29~ 2JN 2KG 30V 4.4 406 408 8UJ 95. 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABHLI ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACPIV ACREN ACZOJ ADHHG ADINQ ADKNI ADKPE ADURQ ADYFF ADZKW AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ARMRJ AXYYD AYJHY BGNMA CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI ESBYG FERAY FFXSO FIGPU FNLPD FRRFC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HMJXF HRMNR HZ~ I0C IKXTQ IWAJR IXD J-C JBSCW JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O93 O9J P9T PT4 RID RLLFE ROL RSV S27 S3B SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z7S Z7Y ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c280t-5f722377a4d9e38c3761d7d1a86be339917fc0085995e20fe36151aeeb2fb50a3 |
IEDL.DBID | U2A |
ISSN | 2190-5444 |
IngestDate | Fri Jul 25 21:14:25 EDT 2025 Tue Jul 01 02:42:38 EDT 2025 Fri Feb 21 02:36:50 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c280t-5f722377a4d9e38c3761d7d1a86be339917fc0085995e20fe36151aeeb2fb50a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2908-4618 |
PQID | 3118956539 |
PQPubID | 2044220 |
ParticipantIDs | proquest_journals_3118956539 crossref_primary_10_1140_epjp_s13360_024_05695_x springer_journals_10_1140_epjp_s13360_024_05695_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-21 |
PublicationDateYYYYMMDD | 2024-10-21 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | European physical journal plus |
PublicationTitleAbbrev | Eur. Phys. J. Plus |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | T Wu (5695_CR10) 2022; 413 HB Zeng (5695_CR32) 2020; 33 SS Mohanrasu (5695_CR7) 2023; 115 B Jiang (5695_CR15) 2022; 142 C Dineshkumar (5695_CR19) 2024; 136 S Lee (5695_CR34) 2019; 27 W Kwon (5695_CR24) 2023; 360 S Dong (5695_CR27) 2023; 157 J Li (5695_CR3) 2022; 162 C Dineshkumar (5695_CR18) 2024; 185 HH Lian (5695_CR22) 2019; 346 Y Jin (5695_CR31) 2021; 30 ZG Wu (5695_CR36) 2014; 44 M Mohan Raja (5695_CR8) 2024; 47 M Xing (5695_CR11) 2021; 103 X Li (5695_CR4) 2022; 26 N Gunasekaran (5695_CR33) 2020; 413 5695_CR9 W He (5695_CR20) 2019; 31 Q Hai (5695_CR25) 2021; 9 Y Liu (5695_CR6) 2023; 53 F Aliabadi (5695_CR5) 2022; 34 Y Shu (5695_CR14) 2017; 89 Y Jin (5695_CR26) 2022; 33 Y Zhang (5695_CR37) 2021; 422 F Liu (5695_CR16) 2023; 173 SH Lee (5695_CR23) 2019; 17 M Huan (5695_CR21) 2023; 167 WB Xie (5695_CR28) 2019; 17 S Jo (5695_CR30) 2024; 35 W Ma (5695_CR35) 2021; 358 T Fang (5695_CR13) 2021; 358 HB Zeng (5695_CR38) 2017; 260 Y Sun (5695_CR1) 2023; 175 Z Zhang (5695_CR12) 2022; 430 Q Zeng (5695_CR29) 2023; 5 S Shahi (5695_CR2) 2022; 8 W Zhou (5695_CR17) 2014; 78 |
References_xml | – volume: 358 start-page: 4103 year: 2021 ident: 5695_CR13 publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2021.03.009 – volume: 78 start-page: 15 year: 2014 ident: 5695_CR17 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-014-1418-x – volume: 33 start-page: 2791 year: 2022 ident: 5695_CR26 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.3045146 – volume: 8 year: 2022 ident: 5695_CR2 publication-title: Mach. Learn. Appl. – volume: 34 start-page: 6521 year: 2022 ident: 5695_CR5 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-06768-z – volume: 103 start-page: 1709 year: 2021 ident: 5695_CR11 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-021-06200-0 – volume: 89 start-page: 2125 year: 2017 ident: 5695_CR14 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-017-3574-2 – volume: 260 start-page: 25 year: 2017 ident: 5695_CR38 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.02.063 – ident: 5695_CR9 doi: 10.1002/mma.8774 – volume: 27 start-page: 540 year: 2019 ident: 5695_CR34 publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2018.2863223 – volume: 115 start-page: 490 year: 2023 ident: 5695_CR7 publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2022.10.015 – volume: 162 year: 2022 ident: 5695_CR3 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2022.112442 – volume: 31 start-page: 3334 year: 2019 ident: 5695_CR20 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2019.2943548 – volume: 157 start-page: 54 year: 2023 ident: 5695_CR27 publication-title: Neural Netw. doi: 10.1016/j.neunet.2022.09.025 – volume: 17 start-page: 2430 year: 2019 ident: 5695_CR23 publication-title: Int. J. Control Autom. Syst. doi: 10.1007/s12555-018-0678-5 – volume: 175 year: 2023 ident: 5695_CR1 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2023.113971 – volume: 173 year: 2023 ident: 5695_CR16 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2023.113622 – volume: 53 start-page: 4511 year: 2023 ident: 5695_CR6 publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2023.3251355 – volume: 358 start-page: 5750 year: 2021 ident: 5695_CR35 publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2021.05.019 – volume: 142 year: 2022 ident: 5695_CR15 publication-title: Automatica doi: 10.1016/j.automatica.2022.110357 – volume: 136 year: 2024 ident: 5695_CR19 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2024.108087 – volume: 430 year: 2022 ident: 5695_CR12 publication-title: Appl. Math. Comput. – volume: 346 start-page: 30 year: 2019 ident: 5695_CR22 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.08.090 – volume: 44 start-page: 2635 year: 2014 ident: 5695_CR36 publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2014.2312004 – volume: 35 start-page: 11009 year: 2024 ident: 5695_CR30 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2023.3246426 – volume: 5 start-page: 301 year: 2023 ident: 5695_CR29 publication-title: SN Appl. Sci. doi: 10.1007/s42452-023-05515-4 – volume: 9 start-page: 25383 year: 2021 ident: 5695_CR25 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3057918 – volume: 413 year: 2022 ident: 5695_CR10 publication-title: Appl. Math. Comput. – volume: 413 start-page: 499 year: 2020 ident: 5695_CR33 publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.05.060 – volume: 167 year: 2023 ident: 5695_CR21 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2022.113059 – volume: 26 start-page: 511 year: 2022 ident: 5695_CR4 publication-title: Soft Comput. doi: 10.1007/s00500-021-06500-y – volume: 360 start-page: 5134 year: 2023 ident: 5695_CR24 publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2023.03.030 – volume: 17 start-page: 907 year: 2019 ident: 5695_CR28 publication-title: Int. J. Control Autom. Syst. doi: 10.1007/s12555-018-0245-0 – volume: 33 start-page: 406 year: 2020 ident: 5695_CR32 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.3027862 – volume: 422 start-page: 287 year: 2021 ident: 5695_CR37 publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.09.018 – volume: 185 year: 2024 ident: 5695_CR18 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2024.115087 – volume: 30 start-page: 1864 year: 2021 ident: 5695_CR31 publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2021.3069319 – volume: 47 start-page: 336 year: 2024 ident: 5695_CR8 publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.9657 |
SSID | ssj0000491494 |
Score | 2.3209536 |
Snippet | In this paper, in contrast to the existing findings the synchronization criteria for chaotic neural networks (CNNs) with sampled data control is analysed by a... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 913 |
SubjectTerms | Actuators Affine transformations Applied and Technical Physics Atomic Communication Complex Systems Condensed Matter Physics Control algorithms Controllers Dynamical systems Functionals Linear matrix inequalities Markov analysis Mathematical and Computational Physics Molecular Neural networks Optical and Plasma Physics Parameter modification Physics Physics and Astronomy Regular Article Signal processing State vectors Stochastic models Theoretical Time lag Time synchronization Time varying control Upper bounds Weighting functions |
Title | Synchronization of Markov jump neural networks with two delay components via Affine transformed sampled-data control with actuator saturation |
URI | https://link.springer.com/article/10.1140/epjp/s13360-024-05695-x https://www.proquest.com/docview/3118956539 |
Volume | 139 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsQwFA0yg-BGfOL4Igu3YdK0aZvlIOqg6EYHdBWSJgFn0RnsKPoR_rP39uGoCwV3hTZp6Ul7z03OPSHkxKRcGctzJoMRLHEiZdaJmDkV8gQN1qzCAufrm3Q8SS7v5f3Xrb5Q7d4tSdZ_6sbPlg_9fDofVpBSpZxBYGEQuZVkQB_7EhN4GMoTMfqcXgHiC9w_aRVdv7T_Ho-WJPPHumgdbs43yHrLE-moAXaTrPhyi6zWes2i2ibvt29lUfvaNmWUdBYolt3MXugUAKJoUwnNy0bkXVGcbqVwTNEU8o2ikHxWooaCvjwaOgoByCZddCTWO1oZtA12DBWktNWzN70YLDmBTB0uQc8OvPsOmZyf3Z2OWbuzAitEzhcATAa0IMtM4pSP8wL-MpHLXGTy1PoYOEuUhQLZmFLSCx58jMTHeEjDg5XcxLukV8Jj7hHqZSisAtqX2CIxwkFGXaRZbK0MLsjMDAjv3q-eNwYauimG5hoh0Q0kGiDRNST6dUAOOxx0-0VVOoZMCHI5GasBiTpslqf_6HL_H20OyJrAgQKBSkSHpLd4evZHwEAW9pj0RxcPV2fH9Zj7AGLV29g |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsQwFA2iiG7EJ47PLNwG07Rpm-UgyqgzbnTAXUiaBHTRGew46Ef4z97bh6-FgrtCm7T0pLnnJueeEnJiUq6M5TmTwQiWOJEy60TMnAp5ggZrVmGB8-gmHYyTq3t5__VXX6h277Yk65m68bPlp376OD2tIKVKOYPAwiByK8mAPi4BI8hRzTUW_Y_lFSC-wP2TVtH1S_vv8eiTZP7YF63DzcU6WWt5Iu03wG6QBV9ukuVar1lUW-Tt9rUsal_bpoySTgLFspvJnD4CQBRtKqF52Yi8K4rLrRSOKZpCvlIUkk9K1FDQ-YOh_RCAbNJZR2K9o5VB22DHUEFKWz1704vBkhPI1OES9OzAu2-T8cX53dmAtX9WYIXI-QyAyYAWZJlJnPJxXsAsE7nMRSZPrY-Bs0RZKJCNKSW94MHHSHyMhzQ8WMlNvEMWS3jMXUK9DIVVQPsSWyRGOMioizSLrZXBBZmZHuHd-9XTxkBDN8XQXCMkuoFEAyS6hkS_9MhBh4Nuv6hKx5AJQS4nY9UjUYfN5-k_utz7R5tjsjK4Gw318PLmep-sChw0ELREdEAWZ0_P_hDYyMwe1ePuHfz-3Tc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUQVREXVPohlkLrQ6_WOnacxMcV7IpSQJVgpb1ZdmxL3UN21aQIfgT_uTP5YAUHkLhFSuxEeY7njf3mhZAfNuPaOl4wFa1gqRcZc15I5nUsUjRYcxoLnC-vsrN5er5Qiy0yHWphWrX7sCXZ1TSgS1PVjNc-9t62fBzWy_W4hvQq4wyCDIMorhUDKvkO5uQEB_dcTB6XWoAEQx6Q9uquF9o_jU0bwvlsj7QNPbMPZK_njHTSgbxPtkL1kbxvtZtl_Yk8XN9XZetx25VU0lWkWIKzuqVLAIuiZSU0rzrBd01x6ZXCMUWDyHuKovJVhXoKevvH0kmMQDxpMxDa4Glt0ULYM1ST0l7b3vVisfwEsna4BP078O6fyXw2vTk5Y_1fFlgpCt4ASDlQhDy3qddBFiXMOInPfWKLzAUJ_CXJY4nMTGsVBI9BIgmyAVLy6BS38gvZruAxDwgNKpZOAwVMXZla4SG7LrNcOqeijyq3I8KH92vWnZmG6QqjuUFITAeJAUhMC4m5G5GjAQfTf121kZAVQV6npB6RZMBmc_qVLg_f0OY72fl9OjMXP69-fSW7AscMxC-RHJHt5u-_cAzEpHHf2mH3H2tw4XM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synchronization+of+Markov+jump+neural+networks+with+two+delay+components+via+Affine+transformed+sampled-data+control+with+actuator+saturation&rft.jtitle=European+physical+journal+plus&rft.au=Subhashri%2C+A.+R.&rft.au=Radhika%2C+T.&rft.date=2024-10-21&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=2190-5444&rft.volume=139&rft.issue=10&rft_id=info:doi/10.1140%2Fepjp%2Fs13360-024-05695-x&rft.externalDocID=10_1140_epjp_s13360_024_05695_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-5444&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-5444&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-5444&client=summon |