Synchronization of Markov jump neural networks with two delay components via Affine transformed sampled-data control with actuator saturation

In this paper, in contrast to the existing findings the synchronization criteria for chaotic neural networks (CNNs) with sampled data control is analysed by a new integral inequality. The proposed method incorporates a parameterized controller that depends on the activation function and includes act...

Full description

Saved in:
Bibliographic Details
Published inEuropean physical journal plus Vol. 139; no. 10; p. 913
Main Authors Subhashri, A. R., Radhika, T.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 21.10.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, in contrast to the existing findings the synchronization criteria for chaotic neural networks (CNNs) with sampled data control is analysed by a new integral inequality. The proposed method incorporates a parameterized controller that depends on the activation function and includes actuator saturation in addition to Markovian jump CNNs (MJCNNs) and additive time varying delay. The reformulated approach considers the constraints on the activation function parameters using weighting functions. Additionally, the controller gain matrices are combined using weighted functions that undergo affine transformations. The construction of Lyapunov–Krasovskii functionals (LKFs) lead to the establishment of two augmented terms, which facilitate the interaction among the state vectors with upper bounds of additive time delay. Benefitting from the modified free matrix-based integral inequalities addressed in Lemmas  1 and 2 provide the sufficient conditions for the affine transformed controller of the MJCNNs error system in the form of linear matrix inequalities (LMIs). Further, simulation examples are provided to demonstrate the effectiveness and superiority of the affine transformed control approach.
AbstractList In this paper, in contrast to the existing findings the synchronization criteria for chaotic neural networks (CNNs) with sampled data control is analysed by a new integral inequality. The proposed method incorporates a parameterized controller that depends on the activation function and includes actuator saturation in addition to Markovian jump CNNs (MJCNNs) and additive time varying delay. The reformulated approach considers the constraints on the activation function parameters using weighting functions. Additionally, the controller gain matrices are combined using weighted functions that undergo affine transformations. The construction of Lyapunov–Krasovskii functionals (LKFs) lead to the establishment of two augmented terms, which facilitate the interaction among the state vectors with upper bounds of additive time delay. Benefitting from the modified free matrix-based integral inequalities addressed in Lemmas  1 and 2 provide the sufficient conditions for the affine transformed controller of the MJCNNs error system in the form of linear matrix inequalities (LMIs). Further, simulation examples are provided to demonstrate the effectiveness and superiority of the affine transformed control approach.
In this paper, in contrast to the existing findings the synchronization criteria for chaotic neural networks (CNNs) with sampled data control is analysed by a new integral inequality. The proposed method incorporates a parameterized controller that depends on the activation function and includes actuator saturation in addition to Markovian jump CNNs (MJCNNs) and additive time varying delay. The reformulated approach considers the constraints on the activation function parameters using weighting functions. Additionally, the controller gain matrices are combined using weighted functions that undergo affine transformations. The construction of Lyapunov–Krasovskii functionals (LKFs) lead to the establishment of two augmented terms, which facilitate the interaction among the state vectors with upper bounds of additive time delay. Benefitting from the modified free matrix-based integral inequalities addressed in Lemmas 1 and 2 provide the sufficient conditions for the affine transformed controller of the MJCNNs error system in the form of linear matrix inequalities (LMIs). Further, simulation examples are provided to demonstrate the effectiveness and superiority of the affine transformed control approach.
ArticleNumber 913
Author Radhika, T.
Subhashri, A. R.
Author_xml – sequence: 1
  givenname: A. R.
  surname: Subhashri
  fullname: Subhashri, A. R.
  organization: Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology
– sequence: 2
  givenname: T.
  orcidid: 0000-0003-2908-4618
  surname: Radhika
  fullname: Radhika, T.
  email: radhigru@gmail.com
  organization: Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology
BookMark eNqFkM1O3DAQx60KpFLYZ8BSzyl2bCfxEaG2IC3qoXC2ZpMxZEns1HZgt-_AO-Mlldpb5zJz-H-Mfp_IkfMOCTnn7Avnkl3gtJ0uIheiYgUrZcFUpVWx-0BOSq5ZoaSUR__cH8kqxi3LIzWXWp6Q15971z4G7_rfkHrvqLf0FsKTf6bbeZyowznAkFd68eEp0pc-PdJ80w4H2NPWj1P-yKVIn3ugl9b2DmkK4KL1YcSORhinAbuigwRZ7lLww5ICbZoh-ZAlKZcc2s_IsYUh4urPPiX3377eXV0X6x_fb64u10VbNiwVytZlKeoaZKdRNK2oK97VHYem2qAQWvPatow1SmuFJbMoKq44IG5Ku1EMxCn5vOROwf-aMSaz9XNwudIIzhutKiV0VtWLqg0-xoDWTKEfIewNZ-aA3xzwmwW_yfjNO36zy85mccbscA8Y_ub_z_oG2feSMg
Cites_doi 10.1016/j.jfranklin.2021.03.009
10.1007/s11071-014-1418-x
10.1109/TNNLS.2020.3045146
10.1007/s00521-021-06768-z
10.1007/s11071-021-06200-0
10.1007/s11071-017-3574-2
10.1016/j.neucom.2017.02.063
10.1002/mma.8774
10.1109/TFUZZ.2018.2863223
10.1016/j.apm.2022.10.015
10.1016/j.chaos.2022.112442
10.1109/TNNLS.2019.2943548
10.1016/j.neunet.2022.09.025
10.1007/s12555-018-0678-5
10.1016/j.chaos.2023.113971
10.1016/j.chaos.2023.113622
10.1109/TSMC.2023.3251355
10.1016/j.jfranklin.2021.05.019
10.1016/j.automatica.2022.110357
10.1016/j.cnsns.2024.108087
10.1016/j.neucom.2018.08.090
10.1109/TCYB.2014.2312004
10.1109/TNNLS.2023.3246426
10.1007/s42452-023-05515-4
10.1109/ACCESS.2021.3057918
10.1016/j.neucom.2020.05.060
10.1016/j.chaos.2022.113059
10.1007/s00500-021-06500-y
10.1016/j.jfranklin.2023.03.030
10.1007/s12555-018-0245-0
10.1109/TNNLS.2020.3027862
10.1016/j.neucom.2020.09.018
10.1016/j.chaos.2024.115087
10.1109/TFUZZ.2021.3069319
10.1002/mma.9657
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Oct 2024
Copyright_xml – notice: The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Oct 2024
DBID AAYXX
CITATION
DOI 10.1140/epjp/s13360-024-05695-x
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2190-5444
ExternalDocumentID 10_1140_epjp_s13360_024_05695_x
GroupedDBID -5F
-5G
-BR
-EM
-~C
06D
0R~
203
29~
2JN
2KG
30V
4.4
406
408
8UJ
95.
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACREN
ACZOJ
ADHHG
ADINQ
ADKNI
ADKPE
ADURQ
ADYFF
ADZKW
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ARMRJ
AXYYD
AYJHY
BGNMA
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
ESBYG
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O93
O9J
P9T
PT4
RID
RLLFE
ROL
RSV
S27
S3B
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z7S
Z7Y
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c280t-5f722377a4d9e38c3761d7d1a86be339917fc0085995e20fe36151aeeb2fb50a3
IEDL.DBID U2A
ISSN 2190-5444
IngestDate Fri Jul 25 21:14:25 EDT 2025
Tue Jul 01 02:42:38 EDT 2025
Fri Feb 21 02:36:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c280t-5f722377a4d9e38c3761d7d1a86be339917fc0085995e20fe36151aeeb2fb50a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2908-4618
PQID 3118956539
PQPubID 2044220
ParticipantIDs proquest_journals_3118956539
crossref_primary_10_1140_epjp_s13360_024_05695_x
springer_journals_10_1140_epjp_s13360_024_05695_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-21
PublicationDateYYYYMMDD 2024-10-21
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-21
  day: 21
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle European physical journal plus
PublicationTitleAbbrev Eur. Phys. J. Plus
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References T Wu (5695_CR10) 2022; 413
HB Zeng (5695_CR32) 2020; 33
SS Mohanrasu (5695_CR7) 2023; 115
B Jiang (5695_CR15) 2022; 142
C Dineshkumar (5695_CR19) 2024; 136
S Lee (5695_CR34) 2019; 27
W Kwon (5695_CR24) 2023; 360
S Dong (5695_CR27) 2023; 157
J Li (5695_CR3) 2022; 162
C Dineshkumar (5695_CR18) 2024; 185
HH Lian (5695_CR22) 2019; 346
Y Jin (5695_CR31) 2021; 30
ZG Wu (5695_CR36) 2014; 44
M Mohan Raja (5695_CR8) 2024; 47
M Xing (5695_CR11) 2021; 103
X Li (5695_CR4) 2022; 26
N Gunasekaran (5695_CR33) 2020; 413
5695_CR9
W He (5695_CR20) 2019; 31
Q Hai (5695_CR25) 2021; 9
Y Liu (5695_CR6) 2023; 53
F Aliabadi (5695_CR5) 2022; 34
Y Shu (5695_CR14) 2017; 89
Y Jin (5695_CR26) 2022; 33
Y Zhang (5695_CR37) 2021; 422
F Liu (5695_CR16) 2023; 173
SH Lee (5695_CR23) 2019; 17
M Huan (5695_CR21) 2023; 167
WB Xie (5695_CR28) 2019; 17
S Jo (5695_CR30) 2024; 35
W Ma (5695_CR35) 2021; 358
T Fang (5695_CR13) 2021; 358
HB Zeng (5695_CR38) 2017; 260
Y Sun (5695_CR1) 2023; 175
Z Zhang (5695_CR12) 2022; 430
Q Zeng (5695_CR29) 2023; 5
S Shahi (5695_CR2) 2022; 8
W Zhou (5695_CR17) 2014; 78
References_xml – volume: 358
  start-page: 4103
  year: 2021
  ident: 5695_CR13
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2021.03.009
– volume: 78
  start-page: 15
  year: 2014
  ident: 5695_CR17
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-014-1418-x
– volume: 33
  start-page: 2791
  year: 2022
  ident: 5695_CR26
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.3045146
– volume: 8
  year: 2022
  ident: 5695_CR2
  publication-title: Mach. Learn. Appl.
– volume: 34
  start-page: 6521
  year: 2022
  ident: 5695_CR5
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-06768-z
– volume: 103
  start-page: 1709
  year: 2021
  ident: 5695_CR11
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-021-06200-0
– volume: 89
  start-page: 2125
  year: 2017
  ident: 5695_CR14
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-017-3574-2
– volume: 260
  start-page: 25
  year: 2017
  ident: 5695_CR38
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.02.063
– ident: 5695_CR9
  doi: 10.1002/mma.8774
– volume: 27
  start-page: 540
  year: 2019
  ident: 5695_CR34
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2018.2863223
– volume: 115
  start-page: 490
  year: 2023
  ident: 5695_CR7
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2022.10.015
– volume: 162
  year: 2022
  ident: 5695_CR3
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2022.112442
– volume: 31
  start-page: 3334
  year: 2019
  ident: 5695_CR20
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2019.2943548
– volume: 157
  start-page: 54
  year: 2023
  ident: 5695_CR27
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2022.09.025
– volume: 17
  start-page: 2430
  year: 2019
  ident: 5695_CR23
  publication-title: Int. J. Control Autom. Syst.
  doi: 10.1007/s12555-018-0678-5
– volume: 175
  year: 2023
  ident: 5695_CR1
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2023.113971
– volume: 173
  year: 2023
  ident: 5695_CR16
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2023.113622
– volume: 53
  start-page: 4511
  year: 2023
  ident: 5695_CR6
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2023.3251355
– volume: 358
  start-page: 5750
  year: 2021
  ident: 5695_CR35
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2021.05.019
– volume: 142
  year: 2022
  ident: 5695_CR15
  publication-title: Automatica
  doi: 10.1016/j.automatica.2022.110357
– volume: 136
  year: 2024
  ident: 5695_CR19
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2024.108087
– volume: 430
  year: 2022
  ident: 5695_CR12
  publication-title: Appl. Math. Comput.
– volume: 346
  start-page: 30
  year: 2019
  ident: 5695_CR22
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.08.090
– volume: 44
  start-page: 2635
  year: 2014
  ident: 5695_CR36
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2014.2312004
– volume: 35
  start-page: 11009
  year: 2024
  ident: 5695_CR30
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2023.3246426
– volume: 5
  start-page: 301
  year: 2023
  ident: 5695_CR29
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-023-05515-4
– volume: 9
  start-page: 25383
  year: 2021
  ident: 5695_CR25
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3057918
– volume: 413
  year: 2022
  ident: 5695_CR10
  publication-title: Appl. Math. Comput.
– volume: 413
  start-page: 499
  year: 2020
  ident: 5695_CR33
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.05.060
– volume: 167
  year: 2023
  ident: 5695_CR21
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2022.113059
– volume: 26
  start-page: 511
  year: 2022
  ident: 5695_CR4
  publication-title: Soft Comput.
  doi: 10.1007/s00500-021-06500-y
– volume: 360
  start-page: 5134
  year: 2023
  ident: 5695_CR24
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2023.03.030
– volume: 17
  start-page: 907
  year: 2019
  ident: 5695_CR28
  publication-title: Int. J. Control Autom. Syst.
  doi: 10.1007/s12555-018-0245-0
– volume: 33
  start-page: 406
  year: 2020
  ident: 5695_CR32
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.3027862
– volume: 422
  start-page: 287
  year: 2021
  ident: 5695_CR37
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.09.018
– volume: 185
  year: 2024
  ident: 5695_CR18
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2024.115087
– volume: 30
  start-page: 1864
  year: 2021
  ident: 5695_CR31
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2021.3069319
– volume: 47
  start-page: 336
  year: 2024
  ident: 5695_CR8
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.9657
SSID ssj0000491494
Score 2.3209536
Snippet In this paper, in contrast to the existing findings the synchronization criteria for chaotic neural networks (CNNs) with sampled data control is analysed by a...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 913
SubjectTerms Actuators
Affine transformations
Applied and Technical Physics
Atomic
Communication
Complex Systems
Condensed Matter Physics
Control algorithms
Controllers
Dynamical systems
Functionals
Linear matrix inequalities
Markov analysis
Mathematical and Computational Physics
Molecular
Neural networks
Optical and Plasma Physics
Parameter modification
Physics
Physics and Astronomy
Regular Article
Signal processing
State vectors
Stochastic models
Theoretical
Time lag
Time synchronization
Time varying control
Upper bounds
Weighting functions
Title Synchronization of Markov jump neural networks with two delay components via Affine transformed sampled-data control with actuator saturation
URI https://link.springer.com/article/10.1140/epjp/s13360-024-05695-x
https://www.proquest.com/docview/3118956539
Volume 139
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsQwFA0yg-BGfOL4Igu3YdK0aZvlIOqg6EYHdBWSJgFn0RnsKPoR_rP39uGoCwV3hTZp6Ul7z03OPSHkxKRcGctzJoMRLHEiZdaJmDkV8gQN1qzCAufrm3Q8SS7v5f3Xrb5Q7d4tSdZ_6sbPlg_9fDofVpBSpZxBYGEQuZVkQB_7EhN4GMoTMfqcXgHiC9w_aRVdv7T_Ho-WJPPHumgdbs43yHrLE-moAXaTrPhyi6zWes2i2ibvt29lUfvaNmWUdBYolt3MXugUAKJoUwnNy0bkXVGcbqVwTNEU8o2ikHxWooaCvjwaOgoByCZddCTWO1oZtA12DBWktNWzN70YLDmBTB0uQc8OvPsOmZyf3Z2OWbuzAitEzhcATAa0IMtM4pSP8wL-MpHLXGTy1PoYOEuUhQLZmFLSCx58jMTHeEjDg5XcxLukV8Jj7hHqZSisAtqX2CIxwkFGXaRZbK0MLsjMDAjv3q-eNwYauimG5hoh0Q0kGiDRNST6dUAOOxx0-0VVOoZMCHI5GasBiTpslqf_6HL_H20OyJrAgQKBSkSHpLd4evZHwEAW9pj0RxcPV2fH9Zj7AGLV29g
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsQwFA2iiG7EJ47PLNwG07Rpm-UgyqgzbnTAXUiaBHTRGew46Ef4z97bh6-FgrtCm7T0pLnnJueeEnJiUq6M5TmTwQiWOJEy60TMnAp5ggZrVmGB8-gmHYyTq3t5__VXX6h277Yk65m68bPlp376OD2tIKVKOYPAwiByK8mAPi4BI8hRzTUW_Y_lFSC-wP2TVtH1S_vv8eiTZP7YF63DzcU6WWt5Iu03wG6QBV9ukuVar1lUW-Tt9rUsal_bpoySTgLFspvJnD4CQBRtKqF52Yi8K4rLrRSOKZpCvlIUkk9K1FDQ-YOh_RCAbNJZR2K9o5VB22DHUEFKWz1704vBkhPI1OES9OzAu2-T8cX53dmAtX9WYIXI-QyAyYAWZJlJnPJxXsAsE7nMRSZPrY-Bs0RZKJCNKSW94MHHSHyMhzQ8WMlNvEMWS3jMXUK9DIVVQPsSWyRGOMioizSLrZXBBZmZHuHd-9XTxkBDN8XQXCMkuoFEAyS6hkS_9MhBh4Nuv6hKx5AJQS4nY9UjUYfN5-k_utz7R5tjsjK4Gw318PLmep-sChw0ELREdEAWZ0_P_hDYyMwe1ePuHfz-3Tc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUQVREXVPohlkLrQ6_WOnacxMcV7IpSQJVgpb1ZdmxL3UN21aQIfgT_uTP5YAUHkLhFSuxEeY7njf3mhZAfNuPaOl4wFa1gqRcZc15I5nUsUjRYcxoLnC-vsrN5er5Qiy0yHWphWrX7sCXZ1TSgS1PVjNc-9t62fBzWy_W4hvQq4wyCDIMorhUDKvkO5uQEB_dcTB6XWoAEQx6Q9uquF9o_jU0bwvlsj7QNPbMPZK_njHTSgbxPtkL1kbxvtZtl_Yk8XN9XZetx25VU0lWkWIKzuqVLAIuiZSU0rzrBd01x6ZXCMUWDyHuKovJVhXoKevvH0kmMQDxpMxDa4Glt0ULYM1ST0l7b3vVisfwEsna4BP078O6fyXw2vTk5Y_1fFlgpCt4ASDlQhDy3qddBFiXMOInPfWKLzAUJ_CXJY4nMTGsVBI9BIgmyAVLy6BS38gvZruAxDwgNKpZOAwVMXZla4SG7LrNcOqeijyq3I8KH92vWnZmG6QqjuUFITAeJAUhMC4m5G5GjAQfTf121kZAVQV6npB6RZMBmc_qVLg_f0OY72fl9OjMXP69-fSW7AscMxC-RHJHt5u-_cAzEpHHf2mH3H2tw4XM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synchronization+of+Markov+jump+neural+networks+with+two+delay+components+via+Affine+transformed+sampled-data+control+with+actuator+saturation&rft.jtitle=European+physical+journal+plus&rft.au=Subhashri%2C+A.+R.&rft.au=Radhika%2C+T.&rft.date=2024-10-21&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=2190-5444&rft.volume=139&rft.issue=10&rft_id=info:doi/10.1140%2Fepjp%2Fs13360-024-05695-x&rft.externalDocID=10_1140_epjp_s13360_024_05695_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-5444&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-5444&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-5444&client=summon