Prospects for mineral biofortification of wheat: classical breeding and agronomy
Low intake of micro- and macroelements and vitamins in food negatively affects the health of more than two billion people around the world provoking chronic diseases. For the majority of the world's population, these are soft and durum wheats that provide beneficial nutrients, however their mod...
Saved in:
Published in | Vavilovskiĭ zhurnal genetiki i selekt͡s︡ii Vol. 28; no. 5; pp. 523 - 535 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Russia (Federation)
Siberian Branch of the Russian Academy of Sciences, Federal Research Center Institute of Cytology and Genetics, The Vavilov Society of Geneticists and Breeders
01.09.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Low intake of micro- and macroelements and vitamins in food negatively affects the health of more than two billion people around the world provoking chronic diseases. For the majority of the world's population, these are soft and durum wheats that provide beneficial nutrients, however their modern high-yielding varieties have a significantly depleted grain mineral composition that have reduced mineral intake through food. Biofortification is a new research trend, whose main goal is to improve the nutritional qualities of agricultural crops using a set of classical (hybridization and selection) methods as well and the modern ones employing gene/QTL mapping, bioinformatic analysis, transgenesis, mutagenesis and genome editing. Using the classical breeding methods, biofortified varieties have been bred as a part of various international programs funded by HarvestPlus, CIMMYT, ICARDA. Despite the promise of transgenesis and genome editing, these labor-intensive methods require significant investments, so these technologies, when applied to wheat, are still at the development stage and cannot be applied routinely. In recent years, the interest in wheat biofortification has increased due to the advances in mapping genes and QTLs for agronomically important traits. The new markers obtained from wheat genome sequencing and application of bioinformatic methods (GWAS, meta-QTL analysis) has expanded our knowledge on the traits that determine the grain mineral concentration and has identified the key gene candidates. This review describes the current research on genetic biofortification of wheat in the world and in Russia and provides information on the use of cultivated and wild-relative germplasms to expand the genetic diversity of modern wheat varieties. |
---|---|
AbstractList | Low intake of micro- and macroelements and vitamins in food negatively affects the health of more than two billion people around the world provoking chronic diseases. For the majority of the world’s population, these are soft and durum wheats that provide beneficial nutrients, however their modern high-yielding varieties have a significantly depleted grain mineral composition that have reduced mineral intake through food. Biofortification is a new research trend, whose main goal is to improve the nutritional qualities of agricultural crops using a set of classical (hybridization and selection) methods as well and the modern ones employing gene/QTL mapping, bioinformatic analysis, transgenesis, mutagenesis and genome editing. Using the classical breeding methods, biofortified varieties have been bred as a part of various international programs funded by HarvestPlus, CIMMYT, ICARDA. Despite the promise of transgenesis and genome editing, these labor-intensive methods require significant investments, so these technologies, when applied to wheat, are still at the development stage and cannot be applied routinely. In recent years, the interest in wheat biofortification has increased due to the advances in mapping genes and QTLs for agronomically important traits. The new markers obtained from wheat genome sequencing and application of bioinformatic methods (GWAS, meta-QTL analysis) has expanded our knowledge on the traits that determine the grain mineral concentration and has identified the key gene candidates. This review describes the current research on genetic biofortification of wheat in the world and in Russia and provides information on the use of cultivated and wild-relative germplasms to expand the genetic diversity of modern wheat varieties. Low intake of micro- and macroelements and vitamins in food negatively affects the health of more than two billion people around the world provoking chronic diseases. For the majority of the world's population, these are soft and durum wheats that provide beneficial nutrients, however their modern high-yielding varieties have a significantly depleted grain mineral composition that have reduced mineral intake through food. Biofortification is a new research trend, whose main goal is to improve the nutritional qualities of agricultural crops using a set of classical (hybridization and selection) methods as well and the modern ones employing gene/QTL mapping, bioinformatic analysis, transgenesis, mutagenesis and genome editing. Using the classical breeding methods, biofortified varieties have been bred as a part of various international programs funded by HarvestPlus, CIMMYT, ICARDA. Despite the promise of transgenesis and genome editing, these labor-intensive methods require significant investments, so these technologies, when applied to wheat, are still at the development stage and cannot be applied routinely. In recent years, the interest in wheat biofortification has increased due to the advances in mapping genes and QTLs for agronomically important traits. The new markers obtained from wheat genome sequencing and application of bioinformatic methods (GWAS, meta-QTL analysis) has expanded our knowledge on the traits that determine the grain mineral concentration and has identified the key gene candidates. This review describes the current research on genetic biofortification of wheat in the world and in Russia and provides information on the use of cultivated and wild-relative germplasms to expand the genetic diversity of modern wheat varieties.Low intake of micro- and macroelements and vitamins in food negatively affects the health of more than two billion people around the world provoking chronic diseases. For the majority of the world's population, these are soft and durum wheats that provide beneficial nutrients, however their modern high-yielding varieties have a significantly depleted grain mineral composition that have reduced mineral intake through food. Biofortification is a new research trend, whose main goal is to improve the nutritional qualities of agricultural crops using a set of classical (hybridization and selection) methods as well and the modern ones employing gene/QTL mapping, bioinformatic analysis, transgenesis, mutagenesis and genome editing. Using the classical breeding methods, biofortified varieties have been bred as a part of various international programs funded by HarvestPlus, CIMMYT, ICARDA. Despite the promise of transgenesis and genome editing, these labor-intensive methods require significant investments, so these technologies, when applied to wheat, are still at the development stage and cannot be applied routinely. In recent years, the interest in wheat biofortification has increased due to the advances in mapping genes and QTLs for agronomically important traits. The new markers obtained from wheat genome sequencing and application of bioinformatic methods (GWAS, meta-QTL analysis) has expanded our knowledge on the traits that determine the grain mineral concentration and has identified the key gene candidates. This review describes the current research on genetic biofortification of wheat in the world and in Russia and provides information on the use of cultivated and wild-relative germplasms to expand the genetic diversity of modern wheat varieties. Low intake of micro- and macroelements and vitamins in food negatively affects the health of more than two billion people around the world provoking chronic diseases. For the majority of the world's population, these are soft and durum wheats that provide beneficial nutrients, however their modern high-yielding varieties have a significantly depleted grain mineral composition that have reduced mineral intake through food. Biofortification is a new research trend, whose main goal is to improve the nutritional qualities of agricultural crops using a set of classical (hybridization and selection) methods as well and the modern ones employing gene/QTL mapping, bioinformatic analysis, transgenesis, mutagenesis and genome editing. Using the classical breeding methods, biofortified varieties have been bred as a part of various international programs funded by HarvestPlus, CIMMYT, ICARDA. Despite the promise of transgenesis and genome editing, these labor-intensive methods require significant investments, so these technologies, when applied to wheat, are still at the development stage and cannot be applied routinely. In recent years, the interest in wheat biofortification has increased due to the advances in mapping genes and QTLs for agronomically important traits. The new markers obtained from wheat genome sequencing and application of bioinformatic methods (GWAS, meta-QTL analysis) has expanded our knowledge on the traits that determine the grain mineral concentration and has identified the key gene candidates. This review describes the current research on genetic biofortification of wheat in the world and in Russia and provides information on the use of cultivated and wild-relative germplasms to expand the genetic diversity of modern wheat varieties. |
Author | Ageeva, E V Shumny, V K Leonova, I N |
Author_xml | – sequence: 1 givenname: I N surname: Leonova fullname: Leonova, I N organization: Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia – sequence: 2 givenname: E V surname: Ageeva fullname: Ageeva, E V organization: Siberian Research Institute of Plant Production and Breeding - Branch of the Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Krasnoobsk, Novosibirsk region, Russia – sequence: 3 givenname: V K surname: Shumny fullname: Shumny, V K organization: Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39280848$$D View this record in MEDLINE/PubMed |
BookMark | eNo9kc1vFDEMxSNUREvpiTuaIxIacCaebMINVXxUqkQPcI48iWfJamayJLOg_vek3aUn209PP8vPL8XZkhYW4rWE99Joaz_82W2HtsO2t8_ERdcDtKrr7dmpB9TdubgqZQcActNba_CFOFe2M2DQXIi7u5zKnv1amjHlZo4LZ5qaIaY6rnGMntaYliaNzd9fTOvHxk9USpWrKTOHuGwbWkJD25yWNN-_Es9Hmgpfneql-Pnl84_rb-3t9683159uW19Xry0GOUhCJK-02mg1MrHslK7aYAdCHZhxJCT2YTMGb_xAyvfeG5B2QFSX4ubIDYl2bp_jTPneJYruUUh566ge4Cd2WvdkLATQSFhjIOgIAAE3irRiW1lvj6x9Tr8PXFY3x-J5mmjhdChOSdCgjJGyWt8drb7mVjKPT6sluMePuIePuA5d_wB-cwIfhpnDk_d__uofQxyI8Q |
Cites_doi | 10.1016/j.jia.2023.06.030 10.1016/j.foodchem.2022.134565 10.3390/plants10122599 10.1016/j.jtemb.2008.07.002 10.3389/fpls.2022.903819 10.1371/journal.pone.0192026 10.3389/fpls.2021.748523 10.1007/s11010-022-04638-3 10.1134/S2079059717040062 10.21285/2227-2925-2020-10-3-496-505 10.18697/ajfand.78.HarvestPlus05 10.1016/j.foodchem.2015.02.025 10.1016/j.lwt.2021.112802 10.3390/ijerph17030679 10.1007/s11104-016-3025-8 10.3389/fpls.2020.01114 10.1080/00380768.2004.10408573 10.1007/s00122-020-03583-3 10.1007/s10681-008-9681-x 10.18699/vjgb-24-51 10.3945/jn.117.255901 10.1016/j.eja.2006.04.011 10.1126/science.1133649 10.1016/j.gfs.2017.01.009 10.1002/jsfa.13328 10.18699/VJ18.335 10.3389/fpls.2018.00937 10.1007/s00122-014-2327-6 10.1016/S2095-3119(13)60640-1 10.1016/j.jcs.2010.10.006 10.1016/j.cbi.2022.110173 10.1111/nbu.12347 10.1093/aob/mcq024 10.3389/fnut.2021.704030 10.1016/j.jcs.2013.09.001 10.1094/CCHEM-87-1-0010 10.3389/fnut.2021.680391 10.1007/s11032-014-0147-7 10.1038/s41598-022-24868-1 10.3390/plants11162173 10.1155/2018/5013825 10.3389/fpls.2021.651283 10.1016/j.fcr.2017.09.030 10.1016/j.jcs.2008.11.007 10.3390/ijms19103237 10.1016/j.plaphy.2020.02.039 10.1007/s00122-020-03709-7 10.1108/00346650410544855 10.4103/2277-8632.158577 10.1002/jsfa.2601 10.1021/jf5003683 10.1016/j.jcs.2018.07.018 10.3389/fpls.2017.01800 10.1098/rstb.2007.2170 10.1177/156482650002100409 10.3389/fpls.2021.709817 10.1007/s00122-023-04467-y 10.1007/978-3-030-34163-3_12 10.1093/jxb/erp058 10.3402/fnr.v58.22100 10.1007/s12298-022-01149-9 10.3389/fpls.2024.1305196 10.1038/s41598-022-10618-w 10.1186/s12870-022-03602-z 10.3389/fpls.2017.01797 10.1007/s42729-021-00473-5 10.3389/fpls.2021.756741 10.3390/molecules25215071 10.1016/j.foodchem.2016.07.015 10.3389/fnut.2021.669444 10.1186/s12870-021-03105-3 10.3389/fnut.2018.00012 10.1007/s12571-013-0263-y 10.1016/j.tifs.2021.04.037 10.17076/eb1701 10.18619/2072-9146-2017-2-81-85 10.3390/ijms20010076 10.1016/j.ejsobi.2012.01.005 10.1007/s00122-009-1044-z 10.1080/10408398.2022.2119366 10.1007/s00122-017-3042-x 10.4067/S0718-58392016000200012 10.3390/plants12173019 10.1007/978-3-030-77388-5_5 10.1007/s11738-017-2509-3 10.17221/259/2017-PSE 10.1007/s00122-021-04013-8 10.28983/asj.y2023i7pp48-55 10.1371/journal.pone.0169416 10.1016/j.fcr.2008.12.010 10.1371/journal.pone.0184351 10.3390/agronomy11010108 10.1139/gen-2013-0204 10.1016/j.jtemin.2023.100076 10.18699/VJ21.061 10.1016/j.jcs.2009.11.008 10.1007/s11033-023-08800-y 10.1023/B:EUPH.0000003849.10595.ac 10.2147/NDS.S43523 10.5601/jelem.2012.17.1.10 10.3390/plants11020149 10.1016/j.foodchem.2023.136312 10.1093/jhered/esp030 10.1002/tpg2.20362 10.1111/j.1467-3010.2009.01747.x 10.1002/tpg2.20077 10.1007/s11104-007-9417-z 10.1007/s11104-012-1369-2 10.3389/fpls.2023.1140454 10.1007/s00438-023-02074-6 10.1270/jsbbs.61.189 10.3390/agronomy9050250 10.1016/j.apsoil.2018.11.007 10.3390/agronomy13020566 10.1371/journal.pone.0194367 10.3389/fnut.2022.826131 10.3390/genes13122298 10.1111/aab.12276 |
ContentType | Journal Article |
Copyright | Copyright © AUTHORS. |
Copyright_xml | – notice: Copyright © AUTHORS. |
DBID | NPM AAYXX CITATION 7X8 DOA |
DOI | 10.18699/vjgb-24-59 |
DatabaseName | PubMed CrossRef MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2500-3259 |
EndPage | 535 |
ExternalDocumentID | oai_doaj_org_article_665a890d064a4001a02a0040473a63e9 10_18699_vjgb_24_59 39280848 |
Genre | Journal Article |
GroupedDBID | 5VS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV GROUPED_DOAJ NPM OK1 PGMZT RPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c280t-4d1b1a44ac363763feae12361a4b9ba46dee4fa4aecd7fdc8cba3c5cc8019b443 |
IEDL.DBID | DOA |
ISSN | 2500-0462 2500-3259 |
IngestDate | Mon Oct 21 19:39:08 EDT 2024 Sat Oct 26 03:58:15 EDT 2024 Wed Sep 04 12:44:23 EDT 2024 Sat Nov 02 12:27:26 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | macroelements wheat microelements agronomy biofortification breeding |
Language | English |
License | Copyright © AUTHORS. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c280t-4d1b1a44ac363763feae12361a4b9ba46dee4fa4aecd7fdc8cba3c5cc8019b443 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7714-5609 0000-0002-6516-0545 |
OpenAccessLink | https://doaj.org/article/665a890d064a4001a02a0040473a63e9 |
PMID | 39280848 |
PQID | 3106038811 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_665a890d064a4001a02a0040473a63e9 proquest_miscellaneous_3106038811 crossref_primary_10_18699_vjgb_24_59 pubmed_primary_39280848 |
PublicationCentury | 2000 |
PublicationDate | 2024-Sep |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-Sep |
PublicationDecade | 2020 |
PublicationPlace | Russia (Federation) |
PublicationPlace_xml | – name: Russia (Federation) |
PublicationTitle | Vavilovskiĭ zhurnal genetiki i selekt͡s︡ii |
PublicationTitleAlternate | Vavilovskii Zhurnal Genet Selektsii |
PublicationYear | 2024 |
Publisher | Siberian Branch of the Russian Academy of Sciences, Federal Research Center Institute of Cytology and Genetics, The Vavilov Society of Geneticists and Breeders |
Publisher_xml | – name: Siberian Branch of the Russian Academy of Sciences, Federal Research Center Institute of Cytology and Genetics, The Vavilov Society of Geneticists and Breeders |
References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref54 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref101 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref13 ref12 ref15 ref14 ref97 ref126 ref96 ref127 ref11 ref99 ref124 ref10 ref98 ref125 ref17 ref16 ref19 ref18 ref93 ref92 ref95 ref94 ref91 ref90 ref89 ref86 ref85 ref88 ref87 ref82 ref81 ref84 ref83 ref80 ref79 ref108 ref78 ref109 ref106 ref107 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref103 ref2 ref1 ref71 ref111 ref70 ref112 ref73 ref72 ref110 ref68 ref119 ref67 ref117 ref69 ref118 ref64 ref115 ref63 ref116 ref66 ref113 ref65 ref114 ref60 ref122 ref123 ref62 ref120 ref61 ref121 |
References_xml | – ident: ref42 doi: 10.1016/j.jia.2023.06.030 – ident: ref14 doi: 10.1016/j.foodchem.2022.134565 – ident: ref22 doi: 10.3390/plants10122599 – ident: ref26 doi: 10.1016/j.jtemb.2008.07.002 – ident: ref48 doi: 10.3389/fpls.2022.903819 – ident: ref53 doi: 10.1371/journal.pone.0192026 – ident: ref59 doi: 10.3389/fpls.2021.748523 – ident: ref45 doi: 10.1007/s11010-022-04638-3 – ident: ref64 doi: 10.1134/S2079059717040062 – ident: ref17 doi: 10.21285/2227-2925-2020-10-3-496-505 – ident: ref6 doi: 10.18697/ajfand.78.HarvestPlus05 – ident: ref71 doi: 10.1016/j.foodchem.2015.02.025 – ident: ref89 doi: 10.1016/j.lwt.2021.112802 – ident: ref35 doi: 10.3390/ijerph17030679 – ident: ref30 – ident: ref115 doi: 10.1007/s11104-016-3025-8 – ident: ref122 doi: 10.3389/fpls.2020.01114 – ident: ref12 doi: 10.1080/00380768.2004.10408573 – ident: ref39 doi: 10.1007/s00122-020-03583-3 – ident: ref67 doi: 10.1007/s10681-008-9681-x – ident: ref77 doi: 10.18699/vjgb-24-51 – ident: ref117 doi: 10.3945/jn.117.255901 – ident: ref69 doi: 10.1016/j.eja.2006.04.011 – ident: ref109 doi: 10.1126/science.1133649 – ident: ref9 doi: 10.1016/j.gfs.2017.01.009 – ident: ref125 doi: 10.1002/jsfa.13328 – ident: ref86 doi: 10.18699/VJ18.335 – ident: ref32 doi: 10.3389/fpls.2018.00937 – ident: ref100 doi: 10.1007/s00122-014-2327-6 – ident: ref79 doi: 10.1016/S2095-3119(13)60640-1 – ident: ref57 doi: 10.1016/j.jcs.2010.10.006 – ident: ref47 doi: 10.1016/j.cbi.2022.110173 – ident: ref60 doi: 10.1111/nbu.12347 – ident: ref16 doi: 10.1093/aob/mcq024 – ident: ref103 doi: 10.3389/fnut.2021.704030 – ident: ref112 doi: 10.1016/j.jcs.2013.09.001 – ident: ref13 doi: 10.1094/CCHEM-87-1-0010 – ident: ref121 doi: 10.3389/fnut.2021.680391 – ident: ref41 doi: 10.1007/s11032-014-0147-7 – ident: ref98 doi: 10.1038/s41598-022-24868-1 – ident: ref74 – ident: ref66 doi: 10.3390/plants11162173 – ident: ref46 doi: 10.1155/2018/5013825 – ident: ref58 doi: 10.3389/fpls.2021.651283 – ident: ref113 doi: 10.1016/j.fcr.2017.09.030 – ident: ref126 doi: 10.1016/j.jcs.2008.11.007 – ident: ref8 doi: 10.3390/ijms19103237 – ident: ref63 – ident: ref123 doi: 10.1016/j.plaphy.2020.02.039 – ident: ref111 – ident: ref40 doi: 10.1007/s00122-020-03709-7 – ident: ref10 doi: 10.1108/00346650410544855 – ident: ref78 doi: 10.4103/2277-8632.158577 – ident: ref34 doi: 10.1002/jsfa.2601 – ident: ref29 doi: 10.1021/jf5003683 – ident: ref106 doi: 10.1016/j.jcs.2018.07.018 – ident: ref21 doi: 10.3389/fpls.2017.01800 – ident: ref19 doi: 10.1098/rstb.2007.2170 – ident: ref65 doi: 10.1177/156482650002100409 – ident: ref88 doi: 10.3389/fpls.2021.709817 – ident: ref102 doi: 10.1007/s00122-023-04467-y – ident: ref44 doi: 10.1007/978-3-030-34163-3_12 – ident: ref37 – ident: ref92 doi: 10.1093/jxb/erp058 – ident: ref110 doi: 10.3402/fnr.v58.22100 – ident: ref99 doi: 10.1007/s12298-022-01149-9 – ident: ref11 doi: 10.3389/fpls.2024.1305196 – ident: ref83 doi: 10.1038/s41598-022-10618-w – ident: ref96 doi: 10.1186/s12870-022-03602-z – ident: ref43 – ident: ref3 doi: 10.3389/fpls.2017.01797 – ident: ref116 doi: 10.1007/s42729-021-00473-5 – ident: ref80 doi: 10.3389/fpls.2021.756741 – ident: ref56 doi: 10.3390/molecules25215071 – ident: ref23 doi: 10.1016/j.foodchem.2016.07.015 – ident: ref55 doi: 10.3389/fnut.2021.669444 – ident: ref120 doi: 10.1186/s12870-021-03105-3 – ident: ref33 doi: 10.3389/fnut.2018.00012 – ident: ref97 doi: 10.1007/s12571-013-0263-y – ident: ref24 doi: 10.1016/j.tifs.2021.04.037 – ident: ref51 doi: 10.17076/eb1701 – ident: ref36 doi: 10.18619/2072-9146-2017-2-81-85 – ident: ref4 doi: 10.3390/ijms20010076 – ident: ref82 doi: 10.1016/j.ejsobi.2012.01.005 – ident: ref73 doi: 10.1007/s00122-009-1044-z – ident: ref70 doi: 10.1080/10408398.2022.2119366 – ident: ref5 doi: 10.1007/s00122-017-3042-x – ident: ref101 doi: 10.4067/S0718-58392016000200012 – ident: ref76 doi: 10.3390/plants12173019 – ident: ref84 doi: 10.1007/978-3-030-77388-5_5 – ident: ref114 doi: 10.1007/s11738-017-2509-3 – ident: ref54 – ident: ref75 doi: 10.17221/259/2017-PSE – ident: ref124 doi: 10.1007/s00122-021-04013-8 – ident: ref31 doi: 10.28983/asj.y2023i7pp48-55 – ident: ref62 doi: 10.1371/journal.pone.0169416 – ident: ref28 doi: 10.1016/j.fcr.2008.12.010 – ident: ref118 doi: 10.1371/journal.pone.0184351 – ident: ref7 – ident: ref18 doi: 10.3390/agronomy11010108 – ident: ref27 doi: 10.1139/gen-2013-0204 – ident: ref1 doi: 10.1016/j.jtemin.2023.100076 – ident: ref87 doi: 10.18699/VJ21.061 – ident: ref95 doi: 10.1016/j.jcs.2009.11.008 – ident: ref50 doi: 10.1007/s11033-023-08800-y – ident: ref15 doi: 10.1023/B:EUPH.0000003849.10595.ac – ident: ref25 doi: 10.2147/NDS.S43523 – ident: ref81 doi: 10.5601/jelem.2012.17.1.10 – ident: ref91 doi: 10.3390/plants11020149 – ident: ref94 doi: 10.1016/j.foodchem.2023.136312 – ident: ref108 doi: 10.1093/jhered/esp030 – ident: ref52 doi: 10.1002/tpg2.20362 – ident: ref93 doi: 10.1111/j.1467-3010.2009.01747.x – ident: ref107 doi: 10.1002/tpg2.20077 – ident: ref72 doi: 10.1007/s11104-007-9417-z – ident: ref127 doi: 10.1007/s11104-012-1369-2 – ident: ref2 doi: 10.3389/fpls.2023.1140454 – ident: ref105 doi: 10.1007/s00438-023-02074-6 – ident: ref119 doi: 10.1270/jsbbs.61.189 – ident: ref68 doi: 10.3390/agronomy9050250 – ident: ref104 – ident: ref61 doi: 10.1016/j.apsoil.2018.11.007 – ident: ref85 doi: 10.3390/agronomy13020566 – ident: ref90 doi: 10.1371/journal.pone.0194367 – ident: ref38 doi: 10.3389/fnut.2022.826131 – ident: ref49 doi: 10.3390/genes13122298 – ident: ref20 doi: 10.1111/aab.12276 |
SSID | ssj0001759984 |
Score | 2.3151753 |
Snippet | Low intake of micro- and macroelements and vitamins in food negatively affects the health of more than two billion people around the world provoking chronic... Low intake of micro- and macroelements and vitamins in food negatively affects the health of more than two billion people around the world provoking chronic... |
SourceID | doaj proquest crossref pubmed |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 523 |
SubjectTerms | agronomy biofortification breeding macroelements microelements wheat |
Title | Prospects for mineral biofortification of wheat: classical breeding and agronomy |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39280848 https://www.proquest.com/docview/3106038811 https://doaj.org/article/665a890d064a4001a02a0040473a63e9 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA0iCF7Eb9cvIngtNu00TbypKCIoHhS8hclHRcFWdlfFf28mrbIX8eKxpdDy3pB5k2beMHbo6gqbMleZK31FLTlVZivnMlkIRKyxyANt6F_fyMt7uHqoHmZGfdGZsN4euAfuSMoKlc59TJ0Y401gXiBFHtQlyjL0rXu5nimm0u5KXcU6AoaGPCW1Pnp_frRZARm5ks6koOTU_7u8TGnmYpktDfqQn_TftcLmQrvKFvqJkZ9r7PZ23KXmyAmPapO_PCXTaG6funiZjv0kpHnX8A9aZo-5I3lMTPBY_KZMxbH1HB_HqZ1hnd1fnN-dXWbDUITMFSqfZuCFFQiArpS0ODQBQ3JQQbDaIkgfAjQIGJyvG--Us1i6CH9MRdoClBtsvu3asMU4KCG8C42AmoaOeGysrkNQoHxe6iaMIpUDTua1974wVDMQnIbgNAWYSo_YKWH48wgZVqcbkUYz0Gj-onHEDr4ZMDHA6a8FtqF7m5ioPyVZ1ggxYps9NT-viuJO0UCA7f_4hB22WETF0h8g22Xz0_Fb2IuKY2r3U3Dtp62gL4aI1Cw |
link.rule.ids | 315,783,787,867,2109,27936,27937 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prospects+for+mineral+biofortification+of+wheat%3A+classical+breeding+and+agronomy&rft.jtitle=Vavilovski%C4%AD+zhurnal+genetiki+i+selekt%CD%A1s%EF%B8%A1ii&rft.au=I.+N.+Leonova&rft.au=E.+V.+Ageeva&rft.au=V.+K.+Shumny&rft.date=2024-09-01&rft.pub=Siberian+Branch+of+the+Russian+Academy+of+Sciences%2C+Federal+Research+Center+Institute+of+Cytology+and+Genetics%2C+The+Vavilov+Society+of+Geneticists+and+Breeders&rft.eissn=2500-3259&rft.volume=28&rft.issue=5&rft.spage=523&rft.epage=535&rft_id=info:doi/10.18699%2Fvjgb-24-59&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_665a890d064a4001a02a0040473a63e9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2500-0462&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2500-0462&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2500-0462&client=summon |