Prospects for mineral biofortification of wheat: classical breeding and agronomy

Low intake of micro- and macroelements and vitamins in food negatively affects the health of more than two billion people around the world provoking chronic diseases. For the majority of the world's population, these are soft and durum wheats that provide beneficial nutrients, however their mod...

Full description

Saved in:
Bibliographic Details
Published inVavilovskiĭ zhurnal genetiki i selekt͡s︡ii Vol. 28; no. 5; pp. 523 - 535
Main Authors Leonova, I N, Ageeva, E V, Shumny, V K
Format Journal Article
LanguageEnglish
Published Russia (Federation) Siberian Branch of the Russian Academy of Sciences, Federal Research Center Institute of Cytology and Genetics, The Vavilov Society of Geneticists and Breeders 01.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Low intake of micro- and macroelements and vitamins in food negatively affects the health of more than two billion people around the world provoking chronic diseases. For the majority of the world's population, these are soft and durum wheats that provide beneficial nutrients, however their modern high-yielding varieties have a significantly depleted grain mineral composition that have reduced mineral intake through food. Biofortification is a new research trend, whose main goal is to improve the nutritional qualities of agricultural crops using a set of classical (hybridization and selection) methods as well and the modern ones employing gene/QTL mapping, bioinformatic analysis, transgenesis, mutagenesis and genome editing. Using the classical breeding methods, biofortified varieties have been bred as a part of various international programs funded by HarvestPlus, CIMMYT, ICARDA. Despite the promise of transgenesis and genome editing, these labor-intensive methods require significant investments, so these technologies, when applied to wheat, are still at the development stage and cannot be applied routinely. In recent years, the interest in wheat biofortification has increased due to the advances in mapping genes and QTLs for agronomically important traits. The new markers obtained from wheat genome sequencing and application of bioinformatic methods (GWAS, meta-QTL analysis) has expanded our knowledge on the traits that determine the grain mineral concentration and has identified the key gene candidates. This review describes the current research on genetic biofortification of wheat in the world and in Russia and provides information on the use of cultivated and wild-relative germplasms to expand the genetic diversity of modern wheat varieties.
AbstractList Low intake of micro- and macroelements and vitamins in food negatively affects the health of more than two billion people around the world provoking chronic diseases. For the majority of the world’s population, these are soft and durum wheats that provide beneficial nutrients, however their modern high-yielding varieties have a significantly depleted grain mineral composition that have reduced mineral intake through food. Biofortification is a new research trend, whose main goal is to improve the nutritional qualities of agricultural crops using a set of classical (hybridization and selection) methods as well and the modern ones employing gene/QTL mapping, bioinformatic analysis, transgenesis, mutagenesis and genome editing. Using the classical breeding methods, biofortified varieties have been bred as a part of various international programs funded by HarvestPlus, CIMMYT, ICARDA. Despite the promise of transgenesis and genome editing, these labor-intensive methods require significant investments, so these technologies, when applied to wheat, are still at the development stage and cannot be applied routinely. In recent years, the interest in wheat biofortification has increased due to the advances in mapping genes and QTLs for agronomically important traits. The new markers obtained from wheat genome sequencing and application of bioinformatic methods (GWAS, meta-QTL analysis) has expanded our knowledge on the traits that determine the grain mineral concentration and has identified the key gene candidates. This review describes the current research on genetic biofortification of wheat in the world and in Russia and provides information on the use of cultivated and wild-relative germplasms to expand the genetic diversity of modern wheat varieties.
Low intake of micro- and macroelements and vitamins in food negatively affects the health of more than two billion people around the world provoking chronic diseases. For the majority of the world's population, these are soft and durum wheats that provide beneficial nutrients, however their modern high-yielding varieties have a significantly depleted grain mineral composition that have reduced mineral intake through food. Biofortification is a new research trend, whose main goal is to improve the nutritional qualities of agricultural crops using a set of classical (hybridization and selection) methods as well and the modern ones employing gene/QTL mapping, bioinformatic analysis, transgenesis, mutagenesis and genome editing. Using the classical breeding methods, biofortified varieties have been bred as a part of various international programs funded by HarvestPlus, CIMMYT, ICARDA. Despite the promise of transgenesis and genome editing, these labor-intensive methods require significant investments, so these technologies, when applied to wheat, are still at the development stage and cannot be applied routinely. In recent years, the interest in wheat biofortification has increased due to the advances in mapping genes and QTLs for agronomically important traits. The new markers obtained from wheat genome sequencing and application of bioinformatic methods (GWAS, meta-QTL analysis) has expanded our knowledge on the traits that determine the grain mineral concentration and has identified the key gene candidates. This review describes the current research on genetic biofortification of wheat in the world and in Russia and provides information on the use of cultivated and wild-relative germplasms to expand the genetic diversity of modern wheat varieties.Low intake of micro- and macroelements and vitamins in food negatively affects the health of more than two billion people around the world provoking chronic diseases. For the majority of the world's population, these are soft and durum wheats that provide beneficial nutrients, however their modern high-yielding varieties have a significantly depleted grain mineral composition that have reduced mineral intake through food. Biofortification is a new research trend, whose main goal is to improve the nutritional qualities of agricultural crops using a set of classical (hybridization and selection) methods as well and the modern ones employing gene/QTL mapping, bioinformatic analysis, transgenesis, mutagenesis and genome editing. Using the classical breeding methods, biofortified varieties have been bred as a part of various international programs funded by HarvestPlus, CIMMYT, ICARDA. Despite the promise of transgenesis and genome editing, these labor-intensive methods require significant investments, so these technologies, when applied to wheat, are still at the development stage and cannot be applied routinely. In recent years, the interest in wheat biofortification has increased due to the advances in mapping genes and QTLs for agronomically important traits. The new markers obtained from wheat genome sequencing and application of bioinformatic methods (GWAS, meta-QTL analysis) has expanded our knowledge on the traits that determine the grain mineral concentration and has identified the key gene candidates. This review describes the current research on genetic biofortification of wheat in the world and in Russia and provides information on the use of cultivated and wild-relative germplasms to expand the genetic diversity of modern wheat varieties.
Low intake of micro- and macroelements and vitamins in food negatively affects the health of more than two billion people around the world provoking chronic diseases. For the majority of the world's population, these are soft and durum wheats that provide beneficial nutrients, however their modern high-yielding varieties have a significantly depleted grain mineral composition that have reduced mineral intake through food. Biofortification is a new research trend, whose main goal is to improve the nutritional qualities of agricultural crops using a set of classical (hybridization and selection) methods as well and the modern ones employing gene/QTL mapping, bioinformatic analysis, transgenesis, mutagenesis and genome editing. Using the classical breeding methods, biofortified varieties have been bred as a part of various international programs funded by HarvestPlus, CIMMYT, ICARDA. Despite the promise of transgenesis and genome editing, these labor-intensive methods require significant investments, so these technologies, when applied to wheat, are still at the development stage and cannot be applied routinely. In recent years, the interest in wheat biofortification has increased due to the advances in mapping genes and QTLs for agronomically important traits. The new markers obtained from wheat genome sequencing and application of bioinformatic methods (GWAS, meta-QTL analysis) has expanded our knowledge on the traits that determine the grain mineral concentration and has identified the key gene candidates. This review describes the current research on genetic biofortification of wheat in the world and in Russia and provides information on the use of cultivated and wild-relative germplasms to expand the genetic diversity of modern wheat varieties.
Author Ageeva, E V
Shumny, V K
Leonova, I N
Author_xml – sequence: 1
  givenname: I N
  surname: Leonova
  fullname: Leonova, I N
  organization: Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
– sequence: 2
  givenname: E V
  surname: Ageeva
  fullname: Ageeva, E V
  organization: Siberian Research Institute of Plant Production and Breeding - Branch of the Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Krasnoobsk, Novosibirsk region, Russia
– sequence: 3
  givenname: V K
  surname: Shumny
  fullname: Shumny, V K
  organization: Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39280848$$D View this record in MEDLINE/PubMed
BookMark eNo9kc1vFDEMxSNUREvpiTuaIxIacCaebMINVXxUqkQPcI48iWfJamayJLOg_vek3aUn209PP8vPL8XZkhYW4rWE99Joaz_82W2HtsO2t8_ERdcDtKrr7dmpB9TdubgqZQcActNba_CFOFe2M2DQXIi7u5zKnv1amjHlZo4LZ5qaIaY6rnGMntaYliaNzd9fTOvHxk9USpWrKTOHuGwbWkJD25yWNN-_Es9Hmgpfneql-Pnl84_rb-3t9683159uW19Xry0GOUhCJK-02mg1MrHslK7aYAdCHZhxJCT2YTMGb_xAyvfeG5B2QFSX4ubIDYl2bp_jTPneJYruUUh566ge4Cd2WvdkLATQSFhjIOgIAAE3irRiW1lvj6x9Tr8PXFY3x-J5mmjhdChOSdCgjJGyWt8drb7mVjKPT6sluMePuIePuA5d_wB-cwIfhpnDk_d__uofQxyI8Q
Cites_doi 10.1016/j.jia.2023.06.030
10.1016/j.foodchem.2022.134565
10.3390/plants10122599
10.1016/j.jtemb.2008.07.002
10.3389/fpls.2022.903819
10.1371/journal.pone.0192026
10.3389/fpls.2021.748523
10.1007/s11010-022-04638-3
10.1134/S2079059717040062
10.21285/2227-2925-2020-10-3-496-505
10.18697/ajfand.78.HarvestPlus05
10.1016/j.foodchem.2015.02.025
10.1016/j.lwt.2021.112802
10.3390/ijerph17030679
10.1007/s11104-016-3025-8
10.3389/fpls.2020.01114
10.1080/00380768.2004.10408573
10.1007/s00122-020-03583-3
10.1007/s10681-008-9681-x
10.18699/vjgb-24-51
10.3945/jn.117.255901
10.1016/j.eja.2006.04.011
10.1126/science.1133649
10.1016/j.gfs.2017.01.009
10.1002/jsfa.13328
10.18699/VJ18.335
10.3389/fpls.2018.00937
10.1007/s00122-014-2327-6
10.1016/S2095-3119(13)60640-1
10.1016/j.jcs.2010.10.006
10.1016/j.cbi.2022.110173
10.1111/nbu.12347
10.1093/aob/mcq024
10.3389/fnut.2021.704030
10.1016/j.jcs.2013.09.001
10.1094/CCHEM-87-1-0010
10.3389/fnut.2021.680391
10.1007/s11032-014-0147-7
10.1038/s41598-022-24868-1
10.3390/plants11162173
10.1155/2018/5013825
10.3389/fpls.2021.651283
10.1016/j.fcr.2017.09.030
10.1016/j.jcs.2008.11.007
10.3390/ijms19103237
10.1016/j.plaphy.2020.02.039
10.1007/s00122-020-03709-7
10.1108/00346650410544855
10.4103/2277-8632.158577
10.1002/jsfa.2601
10.1021/jf5003683
10.1016/j.jcs.2018.07.018
10.3389/fpls.2017.01800
10.1098/rstb.2007.2170
10.1177/156482650002100409
10.3389/fpls.2021.709817
10.1007/s00122-023-04467-y
10.1007/978-3-030-34163-3_12
10.1093/jxb/erp058
10.3402/fnr.v58.22100
10.1007/s12298-022-01149-9
10.3389/fpls.2024.1305196
10.1038/s41598-022-10618-w
10.1186/s12870-022-03602-z
10.3389/fpls.2017.01797
10.1007/s42729-021-00473-5
10.3389/fpls.2021.756741
10.3390/molecules25215071
10.1016/j.foodchem.2016.07.015
10.3389/fnut.2021.669444
10.1186/s12870-021-03105-3
10.3389/fnut.2018.00012
10.1007/s12571-013-0263-y
10.1016/j.tifs.2021.04.037
10.17076/eb1701
10.18619/2072-9146-2017-2-81-85
10.3390/ijms20010076
10.1016/j.ejsobi.2012.01.005
10.1007/s00122-009-1044-z
10.1080/10408398.2022.2119366
10.1007/s00122-017-3042-x
10.4067/S0718-58392016000200012
10.3390/plants12173019
10.1007/978-3-030-77388-5_5
10.1007/s11738-017-2509-3
10.17221/259/2017-PSE
10.1007/s00122-021-04013-8
10.28983/asj.y2023i7pp48-55
10.1371/journal.pone.0169416
10.1016/j.fcr.2008.12.010
10.1371/journal.pone.0184351
10.3390/agronomy11010108
10.1139/gen-2013-0204
10.1016/j.jtemin.2023.100076
10.18699/VJ21.061
10.1016/j.jcs.2009.11.008
10.1007/s11033-023-08800-y
10.1023/B:EUPH.0000003849.10595.ac
10.2147/NDS.S43523
10.5601/jelem.2012.17.1.10
10.3390/plants11020149
10.1016/j.foodchem.2023.136312
10.1093/jhered/esp030
10.1002/tpg2.20362
10.1111/j.1467-3010.2009.01747.x
10.1002/tpg2.20077
10.1007/s11104-007-9417-z
10.1007/s11104-012-1369-2
10.3389/fpls.2023.1140454
10.1007/s00438-023-02074-6
10.1270/jsbbs.61.189
10.3390/agronomy9050250
10.1016/j.apsoil.2018.11.007
10.3390/agronomy13020566
10.1371/journal.pone.0194367
10.3389/fnut.2022.826131
10.3390/genes13122298
10.1111/aab.12276
ContentType Journal Article
Copyright Copyright © AUTHORS.
Copyright_xml – notice: Copyright © AUTHORS.
DBID NPM
AAYXX
CITATION
7X8
DOA
DOI 10.18699/vjgb-24-59
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2500-3259
EndPage 535
ExternalDocumentID oai_doaj_org_article_665a890d064a4001a02a0040473a63e9
10_18699_vjgb_24_59
39280848
Genre Journal Article
GroupedDBID 5VS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
GROUPED_DOAJ
NPM
OK1
PGMZT
RPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c280t-4d1b1a44ac363763feae12361a4b9ba46dee4fa4aecd7fdc8cba3c5cc8019b443
IEDL.DBID DOA
ISSN 2500-0462
2500-3259
IngestDate Mon Oct 21 19:39:08 EDT 2024
Sat Oct 26 03:58:15 EDT 2024
Wed Sep 04 12:44:23 EDT 2024
Sat Nov 02 12:27:26 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords macroelements
wheat
microelements
agronomy
biofortification
breeding
Language English
License Copyright © AUTHORS.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c280t-4d1b1a44ac363763feae12361a4b9ba46dee4fa4aecd7fdc8cba3c5cc8019b443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7714-5609
0000-0002-6516-0545
OpenAccessLink https://doaj.org/article/665a890d064a4001a02a0040473a63e9
PMID 39280848
PQID 3106038811
PQPubID 23479
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_665a890d064a4001a02a0040473a63e9
proquest_miscellaneous_3106038811
crossref_primary_10_18699_vjgb_24_59
pubmed_primary_39280848
PublicationCentury 2000
PublicationDate 2024-Sep
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-Sep
PublicationDecade 2020
PublicationPlace Russia (Federation)
PublicationPlace_xml – name: Russia (Federation)
PublicationTitle Vavilovskiĭ zhurnal genetiki i selekt͡s︡ii
PublicationTitleAlternate Vavilovskii Zhurnal Genet Selektsii
PublicationYear 2024
Publisher Siberian Branch of the Russian Academy of Sciences, Federal Research Center Institute of Cytology and Genetics, The Vavilov Society of Geneticists and Breeders
Publisher_xml – name: Siberian Branch of the Russian Academy of Sciences, Federal Research Center Institute of Cytology and Genetics, The Vavilov Society of Geneticists and Breeders
References ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref54
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref100
ref101
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref13
ref12
ref15
ref14
ref97
ref126
ref96
ref127
ref11
ref99
ref124
ref10
ref98
ref125
ref17
ref16
ref19
ref18
ref93
ref92
ref95
ref94
ref91
ref90
ref89
ref86
ref85
ref88
ref87
ref82
ref81
ref84
ref83
ref80
ref79
ref108
ref78
ref109
ref106
ref107
ref75
ref104
ref74
ref105
ref77
ref102
ref76
ref103
ref2
ref1
ref71
ref111
ref70
ref112
ref73
ref72
ref110
ref68
ref119
ref67
ref117
ref69
ref118
ref64
ref115
ref63
ref116
ref66
ref113
ref65
ref114
ref60
ref122
ref123
ref62
ref120
ref61
ref121
References_xml – ident: ref42
  doi: 10.1016/j.jia.2023.06.030
– ident: ref14
  doi: 10.1016/j.foodchem.2022.134565
– ident: ref22
  doi: 10.3390/plants10122599
– ident: ref26
  doi: 10.1016/j.jtemb.2008.07.002
– ident: ref48
  doi: 10.3389/fpls.2022.903819
– ident: ref53
  doi: 10.1371/journal.pone.0192026
– ident: ref59
  doi: 10.3389/fpls.2021.748523
– ident: ref45
  doi: 10.1007/s11010-022-04638-3
– ident: ref64
  doi: 10.1134/S2079059717040062
– ident: ref17
  doi: 10.21285/2227-2925-2020-10-3-496-505
– ident: ref6
  doi: 10.18697/ajfand.78.HarvestPlus05
– ident: ref71
  doi: 10.1016/j.foodchem.2015.02.025
– ident: ref89
  doi: 10.1016/j.lwt.2021.112802
– ident: ref35
  doi: 10.3390/ijerph17030679
– ident: ref30
– ident: ref115
  doi: 10.1007/s11104-016-3025-8
– ident: ref122
  doi: 10.3389/fpls.2020.01114
– ident: ref12
  doi: 10.1080/00380768.2004.10408573
– ident: ref39
  doi: 10.1007/s00122-020-03583-3
– ident: ref67
  doi: 10.1007/s10681-008-9681-x
– ident: ref77
  doi: 10.18699/vjgb-24-51
– ident: ref117
  doi: 10.3945/jn.117.255901
– ident: ref69
  doi: 10.1016/j.eja.2006.04.011
– ident: ref109
  doi: 10.1126/science.1133649
– ident: ref9
  doi: 10.1016/j.gfs.2017.01.009
– ident: ref125
  doi: 10.1002/jsfa.13328
– ident: ref86
  doi: 10.18699/VJ18.335
– ident: ref32
  doi: 10.3389/fpls.2018.00937
– ident: ref100
  doi: 10.1007/s00122-014-2327-6
– ident: ref79
  doi: 10.1016/S2095-3119(13)60640-1
– ident: ref57
  doi: 10.1016/j.jcs.2010.10.006
– ident: ref47
  doi: 10.1016/j.cbi.2022.110173
– ident: ref60
  doi: 10.1111/nbu.12347
– ident: ref16
  doi: 10.1093/aob/mcq024
– ident: ref103
  doi: 10.3389/fnut.2021.704030
– ident: ref112
  doi: 10.1016/j.jcs.2013.09.001
– ident: ref13
  doi: 10.1094/CCHEM-87-1-0010
– ident: ref121
  doi: 10.3389/fnut.2021.680391
– ident: ref41
  doi: 10.1007/s11032-014-0147-7
– ident: ref98
  doi: 10.1038/s41598-022-24868-1
– ident: ref74
– ident: ref66
  doi: 10.3390/plants11162173
– ident: ref46
  doi: 10.1155/2018/5013825
– ident: ref58
  doi: 10.3389/fpls.2021.651283
– ident: ref113
  doi: 10.1016/j.fcr.2017.09.030
– ident: ref126
  doi: 10.1016/j.jcs.2008.11.007
– ident: ref8
  doi: 10.3390/ijms19103237
– ident: ref63
– ident: ref123
  doi: 10.1016/j.plaphy.2020.02.039
– ident: ref111
– ident: ref40
  doi: 10.1007/s00122-020-03709-7
– ident: ref10
  doi: 10.1108/00346650410544855
– ident: ref78
  doi: 10.4103/2277-8632.158577
– ident: ref34
  doi: 10.1002/jsfa.2601
– ident: ref29
  doi: 10.1021/jf5003683
– ident: ref106
  doi: 10.1016/j.jcs.2018.07.018
– ident: ref21
  doi: 10.3389/fpls.2017.01800
– ident: ref19
  doi: 10.1098/rstb.2007.2170
– ident: ref65
  doi: 10.1177/156482650002100409
– ident: ref88
  doi: 10.3389/fpls.2021.709817
– ident: ref102
  doi: 10.1007/s00122-023-04467-y
– ident: ref44
  doi: 10.1007/978-3-030-34163-3_12
– ident: ref37
– ident: ref92
  doi: 10.1093/jxb/erp058
– ident: ref110
  doi: 10.3402/fnr.v58.22100
– ident: ref99
  doi: 10.1007/s12298-022-01149-9
– ident: ref11
  doi: 10.3389/fpls.2024.1305196
– ident: ref83
  doi: 10.1038/s41598-022-10618-w
– ident: ref96
  doi: 10.1186/s12870-022-03602-z
– ident: ref43
– ident: ref3
  doi: 10.3389/fpls.2017.01797
– ident: ref116
  doi: 10.1007/s42729-021-00473-5
– ident: ref80
  doi: 10.3389/fpls.2021.756741
– ident: ref56
  doi: 10.3390/molecules25215071
– ident: ref23
  doi: 10.1016/j.foodchem.2016.07.015
– ident: ref55
  doi: 10.3389/fnut.2021.669444
– ident: ref120
  doi: 10.1186/s12870-021-03105-3
– ident: ref33
  doi: 10.3389/fnut.2018.00012
– ident: ref97
  doi: 10.1007/s12571-013-0263-y
– ident: ref24
  doi: 10.1016/j.tifs.2021.04.037
– ident: ref51
  doi: 10.17076/eb1701
– ident: ref36
  doi: 10.18619/2072-9146-2017-2-81-85
– ident: ref4
  doi: 10.3390/ijms20010076
– ident: ref82
  doi: 10.1016/j.ejsobi.2012.01.005
– ident: ref73
  doi: 10.1007/s00122-009-1044-z
– ident: ref70
  doi: 10.1080/10408398.2022.2119366
– ident: ref5
  doi: 10.1007/s00122-017-3042-x
– ident: ref101
  doi: 10.4067/S0718-58392016000200012
– ident: ref76
  doi: 10.3390/plants12173019
– ident: ref84
  doi: 10.1007/978-3-030-77388-5_5
– ident: ref114
  doi: 10.1007/s11738-017-2509-3
– ident: ref54
– ident: ref75
  doi: 10.17221/259/2017-PSE
– ident: ref124
  doi: 10.1007/s00122-021-04013-8
– ident: ref31
  doi: 10.28983/asj.y2023i7pp48-55
– ident: ref62
  doi: 10.1371/journal.pone.0169416
– ident: ref28
  doi: 10.1016/j.fcr.2008.12.010
– ident: ref118
  doi: 10.1371/journal.pone.0184351
– ident: ref7
– ident: ref18
  doi: 10.3390/agronomy11010108
– ident: ref27
  doi: 10.1139/gen-2013-0204
– ident: ref1
  doi: 10.1016/j.jtemin.2023.100076
– ident: ref87
  doi: 10.18699/VJ21.061
– ident: ref95
  doi: 10.1016/j.jcs.2009.11.008
– ident: ref50
  doi: 10.1007/s11033-023-08800-y
– ident: ref15
  doi: 10.1023/B:EUPH.0000003849.10595.ac
– ident: ref25
  doi: 10.2147/NDS.S43523
– ident: ref81
  doi: 10.5601/jelem.2012.17.1.10
– ident: ref91
  doi: 10.3390/plants11020149
– ident: ref94
  doi: 10.1016/j.foodchem.2023.136312
– ident: ref108
  doi: 10.1093/jhered/esp030
– ident: ref52
  doi: 10.1002/tpg2.20362
– ident: ref93
  doi: 10.1111/j.1467-3010.2009.01747.x
– ident: ref107
  doi: 10.1002/tpg2.20077
– ident: ref72
  doi: 10.1007/s11104-007-9417-z
– ident: ref127
  doi: 10.1007/s11104-012-1369-2
– ident: ref2
  doi: 10.3389/fpls.2023.1140454
– ident: ref105
  doi: 10.1007/s00438-023-02074-6
– ident: ref119
  doi: 10.1270/jsbbs.61.189
– ident: ref68
  doi: 10.3390/agronomy9050250
– ident: ref104
– ident: ref61
  doi: 10.1016/j.apsoil.2018.11.007
– ident: ref85
  doi: 10.3390/agronomy13020566
– ident: ref90
  doi: 10.1371/journal.pone.0194367
– ident: ref38
  doi: 10.3389/fnut.2022.826131
– ident: ref49
  doi: 10.3390/genes13122298
– ident: ref20
  doi: 10.1111/aab.12276
SSID ssj0001759984
Score 2.3151753
Snippet Low intake of micro- and macroelements and vitamins in food negatively affects the health of more than two billion people around the world provoking chronic...
Low intake of micro- and macroelements and vitamins in food negatively affects the health of more than two billion people around the world provoking chronic...
SourceID doaj
proquest
crossref
pubmed
SourceType Open Website
Aggregation Database
Index Database
StartPage 523
SubjectTerms agronomy
biofortification
breeding
macroelements
microelements
wheat
Title Prospects for mineral biofortification of wheat: classical breeding and agronomy
URI https://www.ncbi.nlm.nih.gov/pubmed/39280848
https://www.proquest.com/docview/3106038811
https://doaj.org/article/665a890d064a4001a02a0040473a63e9
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA0iCF7Eb9cvIngtNu00TbypKCIoHhS8hclHRcFWdlfFf28mrbIX8eKxpdDy3pB5k2beMHbo6gqbMleZK31FLTlVZivnMlkIRKyxyANt6F_fyMt7uHqoHmZGfdGZsN4euAfuSMoKlc59TJ0Y401gXiBFHtQlyjL0rXu5nimm0u5KXcU6AoaGPCW1Pnp_frRZARm5ks6koOTU_7u8TGnmYpktDfqQn_TftcLmQrvKFvqJkZ9r7PZ23KXmyAmPapO_PCXTaG6funiZjv0kpHnX8A9aZo-5I3lMTPBY_KZMxbH1HB_HqZ1hnd1fnN-dXWbDUITMFSqfZuCFFQiArpS0ODQBQ3JQQbDaIkgfAjQIGJyvG--Us1i6CH9MRdoClBtsvu3asMU4KCG8C42AmoaOeGysrkNQoHxe6iaMIpUDTua1974wVDMQnIbgNAWYSo_YKWH48wgZVqcbkUYz0Gj-onHEDr4ZMDHA6a8FtqF7m5ioPyVZ1ggxYps9NT-viuJO0UCA7f_4hB22WETF0h8g22Xz0_Fb2IuKY2r3U3Dtp62gL4aI1Cw
link.rule.ids 315,783,787,867,2109,27936,27937
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prospects+for+mineral+biofortification+of+wheat%3A+classical+breeding+and+agronomy&rft.jtitle=Vavilovski%C4%AD+zhurnal+genetiki+i+selekt%CD%A1s%EF%B8%A1ii&rft.au=I.+N.+Leonova&rft.au=E.+V.+Ageeva&rft.au=V.+K.+Shumny&rft.date=2024-09-01&rft.pub=Siberian+Branch+of+the+Russian+Academy+of+Sciences%2C+Federal+Research+Center+Institute+of+Cytology+and+Genetics%2C+The+Vavilov+Society+of+Geneticists+and+Breeders&rft.eissn=2500-3259&rft.volume=28&rft.issue=5&rft.spage=523&rft.epage=535&rft_id=info:doi/10.18699%2Fvjgb-24-59&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_665a890d064a4001a02a0040473a63e9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2500-0462&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2500-0462&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2500-0462&client=summon