Stochastic population dynamics in spatially extended predator-prey systems
Spatially extended population dynamics models that incorporate demographic noise serve as case studies for the crucial role of fluctuations and correlations in biological systems. Numerical and analytic tools from non-equilibrium statistical physics capture the stochastic kinetics of these complex i...
Saved in:
Published in | Journal of physics. A, Mathematical and theoretical Vol. 51; no. 6; pp. 63001 - 63047 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
09.02.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Spatially extended population dynamics models that incorporate demographic noise serve as case studies for the crucial role of fluctuations and correlations in biological systems. Numerical and analytic tools from non-equilibrium statistical physics capture the stochastic kinetics of these complex interacting many-particle systems beyond rate equation approximations. Including spatial structure and stochastic noise in models for predator-prey competition invalidates the neutral Lotka-Volterra population cycles. Stochastic models yield long-lived erratic oscillations stemming from a resonant amplification mechanism. Spatially extended predator-prey systems display noise-stabilized activity fronts that generate persistent correlations. Fluctuation-induced renormalizations of the oscillation parameters can be analyzed perturbatively via a Doi-Peliti field theory mapping of the master equation; related tools allow detailed characterization of extinction pathways. The critical steady-state and non-equilibrium relaxation dynamics at the predator extinction threshold are governed by the directed percolation universality class. Spatial predation rate variability results in more localized clusters, enhancing both competing species' population densities. Affixing variable interaction rates to individual particles and allowing for trait inheritance subject to mutations induces fast evolutionary dynamics for the rate distributions. Stochastic spatial variants of three-species competition with 'rock-paper-scissors' interactions metaphorically describe cyclic dominance. These models illustrate intimate connections between population dynamics and evolutionary game theory, underscore the role of fluctuations to drive populations toward extinction, and demonstrate how space can support species diversity. Two-dimensional cyclic three-species May-Leonard models are characterized by the emergence of spiraling patterns whose properties are elucidated by a mapping onto a complex Ginzburg-Landau equation. Multiple-species extensions to general 'food networks' can be classified on the mean-field level, providing both fundamental understanding of ensuing cooperativity and profound insight into the rich spatio-temporal features and coarsening kinetics in the corresponding spatially extended systems. Novel space-time patterns emerge as a result of the formation of competing alliances; e.g. coarsening domains that each incorporate rock-paper-scissors competition games. |
---|---|
AbstractList | Spatially extended population dynamics models that incorporate demographic noise serve as case studies for the crucial role of fluctuations and correlations in biological systems. Numerical and analytic tools from non-equilibrium statistical physics capture the stochastic kinetics of these complex interacting many-particle systems beyond rate equation approximations. Including spatial structure and stochastic noise in models for predator-prey competition invalidates the neutral Lotka-Volterra population cycles. Stochastic models yield long-lived erratic oscillations stemming from a resonant amplification mechanism. Spatially extended predator-prey systems display noise-stabilized activity fronts that generate persistent correlations. Fluctuation-induced renormalizations of the oscillation parameters can be analyzed perturbatively via a Doi-Peliti field theory mapping of the master equation; related tools allow detailed characterization of extinction pathways. The critical steady-state and non-equilibrium relaxation dynamics at the predator extinction threshold are governed by the directed percolation universality class. Spatial predation rate variability results in more localized clusters, enhancing both competing species' population densities. Affixing variable interaction rates to individual particles and allowing for trait inheritance subject to mutations induces fast evolutionary dynamics for the rate distributions. Stochastic spatial variants of three-species competition with 'rock-paper-scissors' interactions metaphorically describe cyclic dominance. These models illustrate intimate connections between population dynamics and evolutionary game theory, underscore the role of fluctuations to drive populations toward extinction, and demonstrate how space can support species diversity. Two-dimensional cyclic three-species May-Leonard models are characterized by the emergence of spiraling patterns whose properties are elucidated by a mapping onto a complex Ginzburg-Landau equation. Multiple-species extensions to general 'food networks' can be classified on the mean-field level, providing both fundamental understanding of ensuing cooperativity and profound insight into the rich spatio-temporal features and coarsening kinetics in the corresponding spatially extended systems. Novel space-time patterns emerge as a result of the formation of competing alliances; e.g. coarsening domains that each incorporate rock-paper-scissors competition games. |
Author | Täuber, Uwe C Pleimling, Michel Mobilia, Mauro Dobramysl, Ulrich |
Author_xml | – sequence: 1 givenname: Ulrich orcidid: 0000-0001-9363-654X surname: Dobramysl fullname: Dobramysl, Ulrich email: u.dobramysl@gurdon.cam.uc.uk organization: University of Cambridge Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge CB2 1QN, United Kingdom – sequence: 2 givenname: Mauro orcidid: 0000-0002-1424-567X surname: Mobilia fullname: Mobilia, Mauro email: m.mobilia@leeds.ac.uk organization: University of Leeds Department of Applied Mathematics, School of Mathematics, Leeds LS2 9JT, United Kingdom – sequence: 3 givenname: Michel orcidid: 0000-0003-3191-3390 surname: Pleimling fullname: Pleimling, Michel email: pleim@vt.edu organization: Virginia Tech Academy of Integrated Science (MC 0405), 300 Turner Street NW, Blacksburg, VA 24061, United States of America – sequence: 4 givenname: Uwe C orcidid: 0000-0001-7854-2254 surname: Täuber fullname: Täuber, Uwe C email: tauber@vt.edu organization: Virginia Tech Department of Physics (MC 0435) and Center for Soft Matter and Biological Physics, Robeson Hall, 850 West Campus Drive, Blacksburg, VA 24061, United States of America |
BookMark | eNp9kEFLAzEQhYNUsK3ePeYHuHay2-xmj1LUKgUP6jlksxNM2SZLkoL7791a6UHQuczjMd8wb2Zk4rxDQq4Z3DIQYsEqzjLBcrZQqua6OiPTkzU5aVZckFmMWwC-hDqfkufX5PWHislq2vt-36lkvaPt4NTO6kito7EfPdV1A8XPhK7FlvYBW5V8yEYx0DjEhLt4Sc6N6iJe_fQ5eX-4f1uts83L49PqbpPpXEDKloIVIKDJxzI1CARWF4pXmqNpEBk3lSiWFWugNE0JmpuyxlpoJoRoTC6KOSmPe3XwMQY0Utv0fXYKynaSgTx8RB4iy0N8efzICMIvsA92p8LwH3JzRKzv5dbvgxuT_T3-BQBudGA |
CODEN | JPHAC5 |
CitedBy_id | crossref_primary_10_1088_1751_8121_acd0e4 crossref_primary_10_1063_1_5021145 crossref_primary_10_7554_eLife_103877_3 crossref_primary_10_1038_s41598_021_04178_8 crossref_primary_10_1016_j_biosystems_2024_105342 crossref_primary_10_1103_PhysRevE_101_012305 crossref_primary_10_1140_epjs_s11734_021_00184_z crossref_primary_10_1371_journal_pcbi_1006445 crossref_primary_10_1209_0295_5075_121_18002 crossref_primary_10_11948_20190212 crossref_primary_10_1063_5_0140102 crossref_primary_10_1016_j_mbs_2018_03_017 crossref_primary_10_1371_journal_pcbi_1009934 crossref_primary_10_1103_PhysRevResearch_5_L022004 crossref_primary_10_1088_1751_8121_acd288 crossref_primary_10_1103_PhysRevE_107_064144 crossref_primary_10_1103_PhysRevE_99_062116 crossref_primary_10_1103_PhysRevLett_125_048105 crossref_primary_10_1016_j_jtbi_2019_110084 crossref_primary_10_1080_14689367_2024_2307515 crossref_primary_10_1016_j_chaos_2021_111255 crossref_primary_10_1088_1367_2630_abf205 crossref_primary_10_1103_PhysRevLett_121_268101 crossref_primary_10_1063_5_0138150 crossref_primary_10_1103_PhysRevE_102_062142 crossref_primary_10_1103_PhysRevResearch_2_043026 crossref_primary_10_1088_1402_4896_ad2b2f crossref_primary_10_1088_2632_072X_ad5e2e crossref_primary_10_1038_s41598_024_67098_3 crossref_primary_10_3389_fmicb_2022_1037407 crossref_primary_10_1038_s41598_021_91532_5 crossref_primary_10_1103_PhysRevE_104_044408 crossref_primary_10_1103_PhysRevE_99_052310 crossref_primary_10_1038_s41598_021_91994_7 crossref_primary_10_1209_0295_5075_131_58002 crossref_primary_10_3390_e21080773 crossref_primary_10_1002_ecy_2623 crossref_primary_10_1103_PhysRevResearch_1_023008 crossref_primary_10_1103_PhysRevB_108_024307 crossref_primary_10_1140_epjp_s13360_023_04111_0 crossref_primary_10_1063_5_0238999 crossref_primary_10_1038_s41598_024_84819_w crossref_primary_10_1111_oik_11017 crossref_primary_10_21105_joss_01168 crossref_primary_10_1016_j_chaos_2023_113656 crossref_primary_10_1140_epjs_s11734_024_01230_2 crossref_primary_10_1142_S0218339022500255 crossref_primary_10_1103_PhysRevE_98_032117 crossref_primary_10_1007_s10955_022_02912_8 crossref_primary_10_1103_PhysRevE_99_052408 crossref_primary_10_1088_1751_8121_aab165 crossref_primary_10_1103_PhysRevResearch_6_023087 crossref_primary_10_1016_j_amc_2022_127568 crossref_primary_10_1088_1751_8121_ad4ad6 crossref_primary_10_1088_1742_5468_ad2922 crossref_primary_10_1016_j_chaos_2018_12_035 crossref_primary_10_1063_5_0144989 crossref_primary_10_1016_j_chaos_2019_109549 crossref_primary_10_1016_j_chaos_2022_113004 crossref_primary_10_1209_0295_5075_124_68001 crossref_primary_10_1016_j_ecocom_2018_05_003 crossref_primary_10_1016_j_physa_2019_04_144 crossref_primary_10_1088_1361_6544_ad0212 crossref_primary_10_1088_1751_8121_ad56e2 crossref_primary_10_7554_eLife_103877 crossref_primary_10_1016_j_chaos_2023_113949 crossref_primary_10_1016_j_amc_2022_127739 crossref_primary_10_1103_PRXLife_2_013014 crossref_primary_10_1088_1367_2630_ad0d36 crossref_primary_10_1088_1751_8121_aca3df crossref_primary_10_1103_PhysRevE_105_054401 crossref_primary_10_1140_epjb_s10051_021_00168_x crossref_primary_10_1209_0295_5075_131_68001 crossref_primary_10_3389_fnetp_2023_1276401 crossref_primary_10_1007_s11071_024_10619_6 crossref_primary_10_1103_PhysRevE_110_014124 crossref_primary_10_1103_PhysRevE_98_062105 crossref_primary_10_1016_j_physa_2021_126547 crossref_primary_10_1088_1751_8121_aaad6f crossref_primary_10_1209_0295_5075_126_18003 crossref_primary_10_1007_s10955_022_03036_9 crossref_primary_10_1103_PhysRevE_97_022406 crossref_primary_10_1007_s13235_018_0276_4 crossref_primary_10_1063_1_5045366 crossref_primary_10_1115_1_4045405 crossref_primary_10_1209_0295_5075_132_68001 crossref_primary_10_1016_j_chaos_2020_110356 crossref_primary_10_1016_j_physrep_2023_03_005 crossref_primary_10_1103_PhysRevE_108_034404 crossref_primary_10_1007_s44198_024_00238_5 crossref_primary_10_1016_j_chaos_2018_06_021 crossref_primary_10_1209_0295_5075_126_68002 crossref_primary_10_1016_j_chaos_2020_109816 crossref_primary_10_1103_PhysRevE_110_044132 crossref_primary_10_1038_s41598_021_90892_2 crossref_primary_10_24072_pci_ecology_100027 crossref_primary_10_1098_rsta_2019_0252 crossref_primary_10_1103_PhysRevE_98_042402 crossref_primary_10_1002_qute_202300065 crossref_primary_10_1209_0295_5075_132_48003 |
Cites_doi | 10.1021/ja01453a010 10.1103/PhysRevE.84.021912 10.1103/PhysRevE.87.042702 10.1038/nature00823 10.1103/PhysRevE.81.021917 10.1126/science.309.5731.90 10.1103/PhysRevLett.77.2125 10.1103/PhysRevE.77.011906 10.1103/PhysRevE.87.052710 10.1103/PhysRevLett.110.048105 10.1088/0305-4470/13/12/002 10.1088/1478-3975/13/2/025005 10.1016/j.jtbi.2012.10.024 10.1103/PhysRevE.89.032133 10.1103/PhysRevE.69.031911 10.1038/ncomms7977 10.1103/PhysRevE.86.031119 10.1007/978-90-481-2869-3 10.1016/j.physa.2013.05.033 10.1098/rsif.2014.0735 10.1016/j.jtbi.2017.07.025 10.1016/S0960-9822(95)00184-9 10.1016/j.jtbi.2015.09.036 10.1103/RevModPhys.65.851 10.1140/epjb/e2012-20918-4 10.1201/b14069 10.1103/PhysRevE.96.012147 10.1103/PhysRevLett.94.088101 10.1093/oso/9780198540663.001.0001 10.1016/j.physrep.2007.04.004 10.1073/pnas.0407111101 10.1073/pnas.72.12.5160 10.1098/rspb.2001.1670 10.1017/CBO9780511806292 10.1063/1.1778376 10.1038/nature01767 10.1007/BF02477883 10.1103/PhysRevLett.101.058102 10.1103/PhysRevE.93.042408 10.1088/1742-5468/2012/06/P06014 10.1088/0953-8984/19/6/065139 10.1038/nrmicro2405 10.1017/S0305004100033193 10.1088/1742-5468/2013/08/P08011 10.1006/hbeh.2000.1622 10.1007/978-3-540-36351-4_9 10.1103/PhysRevE.50.4531 10.1140/epje/i2002-10112-3 10.1073/pnas.1100296108 10.1137/0129022 10.1103/PhysRevE.82.052901 10.1016/j.biosystems.2009.10.003 10.1007/BF00276112 10.5962/bhl.title.4489 10.1006/bulm.1997.0008 10.1103/PhysRevE.76.051921 10.1103/PhysRevE.87.032148 10.2307/j.ctvjghw98 10.1143/JPSJ.57.2588 10.1103/PhysRevE.65.036204 10.1209/0295-5075/92/58003 10.1103/PhysRevLett.94.218102 10.1126/science.278.5343.1619 10.1103/PhysRevE.65.036115 10.1103/PhysRevE.83.011917 10.1103/PhysRevE.95.012320 10.1103/PhysRevE.88.022123 10.1088/1742-5468/2011/01/L01003 10.3390/g7030024 10.1017/CBO9780511627200 10.1016/j.jtbi.2007.06.022 10.1016/S0378-4371(99)00482-3 10.4064/bc80-0-17 10.1103/PhysRevE.78.031906 10.1103/PhysRevE.91.052135 10.1103/PhysRevE.78.051911 10.1016/j.physa.2010.02.047 10.1007/978-3-642-88338-5 10.1103/PhysRevE.63.051909 10.1103/PhysRevE.63.061907 10.1103/PhysRevLett.102.048102 10.1103/PhysRevE.90.032704 10.1103/PhysRevE.85.051903 10.1088/1751-8113/47/16/165001 10.1088/0305-4470/38/17/R01 10.1088/1751-8113/45/40/405002 10.1103/RevModPhys.66.1481 10.1007/s10955-010-0049-y 10.1371/journal.pbio.0050235 10.1016/j.physleta.2004.09.015 10.1103/PhysRevE.82.051909 10.1103/PhysRevLett.63.2688 10.1142/S0129183105008382 10.1023/A:1010300703724 10.1007/978-0-85729-115-8_16 10.1103/PhysRevE.49.5073 10.1088/1742-5468/2012/07/P07014 10.1038/nature02429 10.1088/1742-5468/2013/10/P10001 10.1103/PhysRevE.82.066211 10.1143/ptp/88.6.1035 10.1098/rstb.1997.0003 10.1103/PhysRevE.84.011112 10.1016/0040-5809(77)90034-X 10.1093/ije/dyl185 10.1016/j.physleta.2017.01.038 10.3138/9781487583064 10.1038/srep07486 10.1088/1751-8121/aa87a8 10.1093/besa/15.3.237 10.1103/PhysRevE.91.052907 10.1103/PhysRevLett.100.058104 10.1016/S0096-3003(00)00155-7 10.1038/259659a0 10.1103/PhysRevE.89.042710 10.1017/CBO9781139173179 10.1073/pnas.6.7.410 10.1103/PhysRevE.83.051108 10.1016/S0378-4371(00)00127-8 10.1103/PhysRevE.89.012721 10.1017/CBO9780511812149 10.1209/0295-5075/117/48006 10.3733/hilg.v27n14p343 10.1103/PhysRevE.63.061904 10.1103/PhysRevLett.101.258102 10.1016/j.aop.2004.09.011 10.1103/PhysRevE.86.036112 10.1016/S0378-4371(98)00612-8 10.1063/1.478746 10.1103/PhysRevE.65.016204 10.1103/RevModPhys.76.663 10.1371/journal.pone.0157938 10.1017/CBO9780511780516 10.1103/PhysRevE.88.022133 10.1103/PhysRevE.54.6186 10.1103/PhysRevE.75.052102 10.1103/PhysRevLett.104.218102 10.1103/PhysRevE.80.030902 10.1098/rstb.1952.0012 10.1038/370290a0 10.1006/jtbi.2003.3127 10.1088/0305-4470/38/30/005 10.1103/PhysRevE.66.066107 10.1006/jtbi.1996.0292 10.1103/PhysRevE.50.3401 10.1103/RevModPhys.74.99 10.1016/j.jtbi.2008.05.014 10.1016/0375-9601(93)90923-N 10.1016/j.jtbi.2010.01.008 10.1088/1742-5468/2016/11/113402 10.1103/PhysRevE.89.022704 10.1088/1751-8121/aa669a 10.1103/PhysRevE.64.042902 10.1007/s10955-006-9146-3 10.1006/tpbi.1997.1338 10.1007/BF02511547 10.1017/CBO9781139046213 10.1038/380240a0 10.1038/246015a0 10.1103/PhysRevE.60.5179 10.1088/0305-4470/37/7/006 10.1103/PhysRevE.63.056119 10.1038/nature06095 10.1016/j.jtbi.2016.05.009 10.1038/nphys3548 10.1017/S0013091500034428 10.1016/j.physleta.2013.11.041 10.1137/S0036144599354707 10.1103/PhysRevE.77.041919 10.1038/118558a0 10.1016/j.physa.2017.09.039 10.1103/PhysRevE.67.047102 10.1007/BF00167155 10.1103/PhysRevE.73.040903 10.1103/PhysRevE.81.060901 10.1093/genetics/49.4.561 10.1007/s002850050122 10.1103/PhysRevLett.110.168106 10.1016/j.physa.2012.10.011 10.1016/j.jtbi.2010.09.035 10.1080/00018730050198152 10.1007/s10867-008-9101-4 10.1209/0295-5075/102/28012 10.1143/JPSJ.66.38 10.1103/PhysRevLett.99.238105 10.1103/PhysRevE.74.051907 10.1023/B:JOSS.0000013958.15218.47 10.1140/epjb/e2011-20259-x 10.1098/rsif.2014.0172 10.1103/PhysRevE.80.021129 10.1038/nature04864 10.1103/PhysRevE.86.021911 10.1016/0021-9991(76)90041-3 10.1088/0305-4470/31/15/001 10.1021/nn3043572 |
ContentType | Journal Article |
Copyright | 2018 IOP Publishing Ltd |
Copyright_xml | – notice: 2018 IOP Publishing Ltd |
DBID | AAYXX CITATION |
DOI | 10.1088/1751-8121/aa95c7 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | Stochastic population dynamics in spatially extended predator-prey systems |
EISSN | 1751-8121 |
ExternalDocumentID | 10_1088_1751_8121_aa95c7 aaa95c7 |
GrantInformation_xml | – fundername: Division of Materials Research grantid: DMR-1205309; DMR-1606814 funderid: https://doi.org/10.13039/100000078 – fundername: Alexander von Humboldt-Stiftung grantid: GBR/1119205 STP funderid: https://doi.org/10.13039/100005156 |
GroupedDBID | 1JI 4.4 5B3 5GY 5VS 5ZH 7.M 7.Q AAGCD AAGID AAJIO AAJKP AALHV AATNI ABCXL ABHWH ABQJV ABVAM ACAFW ACGFS ACHIP ACNCT AEFHF AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 EBS EDWGO EJD EMSAF EPQRW EQZZN HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L NT- NT. PJBAE RIN RNS RO9 ROL RPA SY9 TN5 W28 AAYXX ADEQX CITATION |
ID | FETCH-LOGICAL-c280t-4813080b2222f908e0193a57c5efbee15f783471b06fb60c5f69e98c1888bf283 |
IEDL.DBID | IOP |
ISSN | 1751-8113 |
IngestDate | Tue Jul 01 02:32:41 EDT 2025 Thu Apr 24 22:59:51 EDT 2025 Wed Aug 21 03:33:51 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c280t-4813080b2222f908e0193a57c5efbee15f783471b06fb60c5f69e98c1888bf283 |
Notes | JPhysA-108727.R1 |
ORCID | 0000-0001-7854-2254 0000-0001-9363-654X 0000-0003-3191-3390 0000-0002-1424-567X |
PageCount | 47 |
ParticipantIDs | crossref_citationtrail_10_1088_1751_8121_aa95c7 crossref_primary_10_1088_1751_8121_aa95c7 iop_journals_10_1088_1751_8121_aa95c7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-09 |
PublicationDateYYYYMMDD | 2018-02-09 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-09 day: 09 |
PublicationDecade | 2010 |
PublicationTitle | Journal of physics. A, Mathematical and theoretical |
PublicationTitleAbbrev | JPhysA |
PublicationTitleAlternate | J. Phys. A: Math. Theor |
PublicationYear | 2018 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Szabó G (180) 2004; 37 110 111 112 113 Hewitt C G (29) 1921 114 115 Serrao S R (152) 2017; 50 116 117 118 119 11 12 13 Maynard Smith J (2) 1974 18 19 Lotka A J (15) 1925 120 121 Labavić D (151) 2016; 2016 122 123 3 124 125 126 7 Kolmogorov A N (25) 1936; 7 128 129 9 20 22 23 24 27 Verhulst P-F (14) 1838; 10 130 131 132 133 134 136 137 138 139 Malthus T R (10) 1798 30 33 34 Van Kampen N G (59) 1992 36 37 38 39 Assaf M (63) 2017; 50 Henkel M (96) 2008 Volterra V (17) 1926; 2 140 141 143 145 148 149 Kingsland S E (6) 1985 40 Szczesny B (69) 2013; 102 41 42 Jiang L-L (142) 2009; 11 43 44 45 46 47 48 49 May R M (1) 1973 150 Szczesny B (147) 2012 153 155 157 158 159 50 51 52 53 Täuber U C (62) 2014 55 56 57 58 Postlethwaite C M (154) 2016; 117 161 162 163 164 165 166 167 169 60 61 Kimura M (32) 1964; 49 64 65 68 Kimura M (31) 1953; 3 Chen S (66) 2016; 13 171 172 173 174 175 176 177 179 Pearl R (16) 1925 70 72 73 74 75 76 77 78 79 Datla U S (223) 2017 181 Zia R K P (194) 2011 182 183 184 185 186 187 188 80 West R (170) 2017 81 82 83 84 85 86 87 88 Frachebourg L (127) 1998; 31 89 192 Mowlaei S (195) 2014; 47 193 Roman A (190) 2012; 2012 196 197 198 199 Gardiner C (156) 1985 Miller P (178) 2006 Broom M (160) 2013 90 92 93 94 95 97 99 Pigolotti S (221) 2017 Washenberger M J (67) 2007; 19 Täuber U C (54) 2012; 45 Hanski I A (8) 2004 MacLulich D A (28) 1937 Dobramysl U (21) 2013; 2013 Nowak M A (35) 2006 Murray J D (4) 2002 Szczesny B (71) 2014 Intoy B (191) 2013; 2013 200 201 202 203 204 205 206 207 208 209 Brown B L (219) 2017 Case S O (168) 2010; 92 Täuber U C (91) 2005; 38 210 211 212 213 Rulands S (144) 2011; 2011 215 216 217 Cardy J L (98) 1980; 13 218 Avelino P P (135) 2017 McKendrick A G (26) 1926; 44 Neal D (5) 2004 Szabó G (214) 2005; 38 220 100 101 222 102 103 104 105 Hanski I (146) 1999 106 107 108 109 Durney C H (189) 2012; 2012 |
References_xml | – ident: 20 doi: 10.1021/ja01453a010 – ident: 153 doi: 10.1103/PhysRevE.84.021912 – ident: 133 doi: 10.1103/PhysRevE.87.042702 – ident: 106 doi: 10.1038/nature00823 – ident: 131 doi: 10.1103/PhysRevE.81.021917 – ident: 105 doi: 10.1126/science.309.5731.90 – ident: 47 doi: 10.1103/PhysRevLett.77.2125 – volume: 10 start-page: 110 year: 1838 ident: 14 publication-title: Corr. Math. Phys. – ident: 188 doi: 10.1103/PhysRevE.77.011906 – ident: 149 doi: 10.1103/PhysRevE.87.052710 – ident: 85 doi: 10.1103/PhysRevLett.110.048105 – volume: 13 start-page: L423 issn: 0305-4470 year: 1980 ident: 98 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/13/12/002 – volume: 13 issn: 1478-3975 year: 2016 ident: 66 publication-title: Phys. Biol. doi: 10.1088/1478-3975/13/2/025005 – ident: 86 – year: 2004 ident: 8 publication-title: Ecology, Genetics, and Evolution of Metapopulations – ident: 209 doi: 10.1016/j.jtbi.2012.10.024 – ident: 210 doi: 10.1103/PhysRevE.89.032133 – ident: 185 doi: 10.1103/PhysRevE.69.031911 – volume: 3 start-page: 62 year: 1953 ident: 31 publication-title: Ann. Rep. Natl Inst. Genet. Japan – ident: 162 doi: 10.1038/ncomms7977 – ident: 200 doi: 10.1103/PhysRevE.86.031119 – ident: 99 doi: 10.1007/978-90-481-2869-3 – ident: 182 doi: 10.1016/j.physa.2013.05.033 – ident: 150 doi: 10.1098/rsif.2014.0735 – ident: 166 doi: 10.1016/j.jtbi.2017.07.025 – ident: 173 doi: 10.1016/S0960-9822(95)00184-9 – ident: 208 doi: 10.1016/j.jtbi.2015.09.036 – ident: 12 doi: 10.1103/RevModPhys.65.851 – ident: 175 doi: 10.1140/epjb/e2012-20918-4 – year: 2013 ident: 160 publication-title: Game-Theoretical Models in Biology doi: 10.1201/b14069 – ident: 197 doi: 10.1103/PhysRevE.96.012147 – ident: 9 doi: 10.1103/PhysRevLett.94.088101 – year: 1999 ident: 146 publication-title: Metapopulation Ecology doi: 10.1093/oso/9780198540663.001.0001 – ident: 158 doi: 10.1016/j.physrep.2007.04.004 – ident: 174 doi: 10.1073/pnas.0407111101 – ident: 109 doi: 10.1073/pnas.72.12.5160 – ident: 110 doi: 10.1098/rspb.2001.1670 – ident: 39 doi: 10.1017/CBO9780511806292 – ident: 68 doi: 10.1063/1.1778376 – ident: 103 doi: 10.1038/nature01767 – year: 1798 ident: 10 publication-title: An Essay on the Principle of Population – ident: 42 doi: 10.1007/BF02477883 – ident: 145 doi: 10.1103/PhysRevLett.101.058102 – ident: 134 doi: 10.1103/PhysRevE.93.042408 – volume: 2012 issn: 1742-5468 year: 2012 ident: 189 publication-title: J. Stat. Mech. doi: 10.1088/1742-5468/2012/06/P06014 – volume: 19 issn: 0953-8984 year: 2007 ident: 67 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/19/6/065139 – ident: 155 doi: 10.1038/nrmicro2405 – ident: 34 doi: 10.1017/S0305004100033193 – volume: 2013 issn: 1742-5468 year: 2013 ident: 191 publication-title: J. Stat. Mech. doi: 10.1088/1742-5468/2013/08/P08011 – ident: 108 doi: 10.1006/hbeh.2000.1622 – ident: 24 doi: 10.1007/978-3-540-36351-4_9 – year: 2012 ident: 147 – year: 1973 ident: 1 publication-title: Stability and Complexity in Model Ecosystems – ident: 46 doi: 10.1103/PhysRevE.50.4531 – ident: 111 doi: 10.1140/epje/i2002-10112-3 – year: 2017 ident: 223 publication-title: Sci. Rep. – ident: 107 doi: 10.1073/pnas.1100296108 – year: 2011 ident: 194 – year: 2017 ident: 219 – ident: 40 doi: 10.1137/0129022 – ident: 113 doi: 10.1103/PhysRevE.82.052901 – ident: 179 doi: 10.1016/j.biosystems.2009.10.003 – ident: 43 doi: 10.1007/BF00276112 – ident: 22 doi: 10.5962/bhl.title.4489 – ident: 56 doi: 10.1006/bulm.1997.0008 – ident: 187 doi: 10.1103/PhysRevE.76.051921 – ident: 181 doi: 10.1103/PhysRevE.87.032148 – year: 2006 ident: 35 publication-title: Evolutionary Dynamics doi: 10.2307/j.ctvjghw98 – ident: 124 doi: 10.1143/JPSJ.57.2588 – ident: 65 doi: 10.1103/PhysRevE.65.036204 – volume: 92 start-page: 58003 issn: 0295-5075 year: 2010 ident: 168 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/92/58003 – ident: 57 doi: 10.1103/PhysRevLett.94.218102 – ident: 120 doi: 10.1126/science.278.5343.1619 – ident: 128 doi: 10.1103/PhysRevE.65.036115 – ident: 143 doi: 10.1103/PhysRevE.83.011917 – ident: 217 doi: 10.1103/PhysRevE.95.012320 – ident: 206 doi: 10.1103/PhysRevE.88.022123 – volume: 2011 issn: 1742-5468 year: 2011 ident: 144 publication-title: J. Stat. Mech. doi: 10.1088/1742-5468/2011/01/L01003 – ident: 72 doi: 10.3390/g7030024 – ident: 13 doi: 10.1017/CBO9780511627200 – ident: 216 doi: 10.1016/j.jtbi.2007.06.022 – year: 1921 ident: 29 publication-title: The Conservation of the Wild Life of Canada – ident: 77 doi: 10.1016/S0378-4371(99)00482-3 – ident: 112 doi: 10.4064/bc80-0-17 – ident: 141 doi: 10.1103/PhysRevE.78.031906 – ident: 193 doi: 10.1103/PhysRevE.91.052135 – ident: 177 doi: 10.1103/PhysRevE.78.051911 – ident: 159 doi: 10.1016/j.physa.2010.02.047 – ident: 52 doi: 10.1007/978-3-642-88338-5 – year: 2017 ident: 170 – ident: 79 doi: 10.1103/PhysRevE.63.051909 – ident: 89 doi: 10.1103/PhysRevE.63.061907 – ident: 129 doi: 10.1103/PhysRevLett.102.048102 – ident: 70 doi: 10.1103/PhysRevE.90.032704 – ident: 61 doi: 10.1103/PhysRevE.85.051903 – volume: 47 issn: 1751-8113 year: 2014 ident: 195 publication-title: J. Phys. A: Math. Theor. doi: 10.1088/1751-8113/47/16/165001 – issn: 0022-4715 year: 2017 ident: 221 publication-title: J. Stat. Phys. – volume: 38 start-page: R79 issn: 0305-4470 year: 2005 ident: 91 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/38/17/R01 – volume: 45 issn: 1751-8113 year: 2012 ident: 54 publication-title: J. Phys. A: Math. Theor. doi: 10.1088/1751-8113/45/40/405002 – ident: 117 doi: 10.1103/RevModPhys.66.1481 – ident: 64 doi: 10.1007/s10955-010-0049-y – ident: 104 doi: 10.1371/journal.pbio.0050235 – ident: 90 doi: 10.1016/j.physleta.2004.09.015 – ident: 114 doi: 10.1103/PhysRevE.82.051909 – ident: 125 doi: 10.1103/PhysRevLett.63.2688 – ident: 186 doi: 10.1142/S0129183105008382 – ident: 97 doi: 10.1023/A:1010300703724 – ident: 27 doi: 10.1007/978-0-85729-115-8_16 – ident: 45 doi: 10.1103/PhysRevE.49.5073 – volume: 2012 issn: 1742-5468 year: 2012 ident: 190 publication-title: J. Stat. Mech. doi: 10.1088/1742-5468/2012/07/P07014 – ident: 123 doi: 10.1038/nature02429 – volume: 2013 issn: 1742-5468 year: 2013 ident: 21 publication-title: J. Stat. Mech. doi: 10.1088/1742-5468/2013/10/P10001 – ident: 130 doi: 10.1103/PhysRevE.82.066211 – ident: 44 doi: 10.1143/ptp/88.6.1035 – ident: 55 doi: 10.1098/rstb.1997.0003 – ident: 88 doi: 10.1103/PhysRevE.84.011112 – ident: 37 doi: 10.1016/0040-5809(77)90034-X – ident: 11 doi: 10.1093/ije/dyl185 – ident: 204 doi: 10.1016/j.physleta.2017.01.038 – year: 1937 ident: 28 publication-title: Fluctuations in the Numbers of the Varying Hare (Lepus Americanus) doi: 10.3138/9781487583064 – ident: 207 doi: 10.1038/srep07486 – year: 1925 ident: 15 publication-title: Elements of Physical Biology – volume: 50 issn: 1751-8113 year: 2017 ident: 152 publication-title: J. Phys. A: Math. Theor. doi: 10.1088/1751-8121/aa87a8 – year: 1974 ident: 2 publication-title: Models in Ecology – ident: 36 doi: 10.1093/besa/15.3.237 – year: 1985 ident: 156 publication-title: Handbook of Stochastic Methods – ident: 165 doi: 10.1103/PhysRevE.91.052907 – year: 1925 ident: 16 publication-title: The Biology of Population Growth – ident: 171 doi: 10.1103/PhysRevLett.100.058104 – ident: 184 doi: 10.1016/S0096-3003(00)00155-7 – ident: 118 doi: 10.1038/259659a0 – ident: 203 doi: 10.1103/PhysRevE.89.042710 – ident: 3 doi: 10.1017/CBO9781139173179 – ident: 19 doi: 10.1073/pnas.6.7.410 – ident: 169 doi: 10.1103/PhysRevE.83.051108 – ident: 78 doi: 10.1016/S0378-4371(00)00127-8 – ident: 211 doi: 10.1103/PhysRevE.89.012721 – ident: 92 doi: 10.1017/CBO9780511812149 – volume: 117 start-page: 48006 year: 2016 ident: 154 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/117/48006 – year: 2008 ident: 96 publication-title: Non-Equilibrium Phase Transitions – ident: 30 doi: 10.3733/hilg.v27n14p343 – ident: 215 doi: 10.1103/PhysRevE.63.061904 – ident: 84 doi: 10.1103/PhysRevLett.101.258102 – ident: 95 doi: 10.1016/j.aop.2004.09.011 – ident: 201 doi: 10.1103/PhysRevE.86.036112 – ident: 75 doi: 10.1016/S0378-4371(98)00612-8 – ident: 74 doi: 10.1063/1.478746 – ident: 81 doi: 10.1103/PhysRevE.65.016204 – ident: 94 doi: 10.1103/RevModPhys.76.663 – ident: 212 doi: 10.1371/journal.pone.0157938 – year: 2004 ident: 5 publication-title: Introduction to Population Biology – ident: 157 doi: 10.1017/CBO9780511780516 – ident: 192 doi: 10.1103/PhysRevE.88.022133 – ident: 48 doi: 10.1103/PhysRevE.54.6186 – ident: 198 doi: 10.1103/PhysRevE.75.052102 – year: 1985 ident: 6 publication-title: Modeling Nature – volume: 2 start-page: 31 year: 1926 ident: 17 publication-title: Mem. Accad. Lincei Roma – ident: 164 doi: 10.1103/PhysRevLett.104.218102 – volume: 11 issn: 1367-2630 year: 2009 ident: 142 publication-title: New J. Phys. – ident: 87 doi: 10.1103/PhysRevE.80.030902 – ident: 116 doi: 10.1098/rstb.1952.0012 – ident: 119 doi: 10.1038/370290a0 – ident: 49 doi: 10.1006/jtbi.2003.3127 – year: 2006 ident: 178 publication-title: Applied Asymptotic Analysis, Graduate Studies in Mathematics – volume: 38 start-page: 6689 issn: 0305-4470 year: 2005 ident: 214 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/38/30/005 – ident: 82 doi: 10.1103/PhysRevE.66.066107 – ident: 136 doi: 10.1006/jtbi.1996.0292 – ident: 126 doi: 10.1103/PhysRevE.50.3401 – ident: 176 doi: 10.1103/RevModPhys.74.99 – ident: 140 doi: 10.1016/j.jtbi.2008.05.014 – ident: 167 doi: 10.1016/0375-9601(93)90923-N – ident: 163 doi: 10.1016/j.jtbi.2010.01.008 – volume: 2016 issn: 1742-5468 year: 2016 ident: 151 publication-title: J. Stat. Mech. doi: 10.1088/1742-5468/2016/11/113402 – volume: 7 start-page: 74 year: 1936 ident: 25 publication-title: Giorn. Istituto Ital. d. Attuari – ident: 218 doi: 10.1103/PhysRevE.89.022704 – volume: 50 issn: 1751-8113 year: 2017 ident: 63 publication-title: J. Phys. A: Math. Theor. doi: 10.1088/1751-8121/aa669a – ident: 213 doi: 10.1103/PhysRevE.64.042902 – ident: 53 doi: 10.1007/s10955-006-9146-3 – ident: 137 doi: 10.1006/tpbi.1997.1338 – ident: 23 doi: 10.1007/BF02511547 – year: 2014 ident: 62 publication-title: Critical Dynamics—a Field Theory Approach to Equilibrium and Non-Equilibrium Scaling Behavior doi: 10.1017/CBO9781139046213 – year: 2014 ident: 71 – ident: 41 doi: 10.1038/380240a0 – ident: 38 doi: 10.1038/246015a0 – ident: 76 doi: 10.1103/PhysRevE.60.5179 – volume: 37 start-page: 2599 issn: 0305-4470 year: 2004 ident: 180 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/37/7/006 – ident: 80 doi: 10.1103/PhysRevE.63.056119 – ident: 138 doi: 10.1038/nature06095 – ident: 196 doi: 10.1016/j.jtbi.2016.05.009 – ident: 220 doi: 10.1038/nphys3548 – volume: 44 start-page: 98 year: 1926 ident: 26 publication-title: Proc. Ed. Math. Soc. doi: 10.1017/S0013091500034428 – ident: 202 doi: 10.1016/j.physleta.2013.11.041 – ident: 33 doi: 10.1137/S0036144599354707 – ident: 199 doi: 10.1103/PhysRevE.77.041919 – ident: 18 doi: 10.1038/118558a0 – ident: 102 doi: 10.1016/j.physa.2017.09.039 – ident: 50 doi: 10.1103/PhysRevE.67.047102 – ident: 100 doi: 10.1007/BF00167155 – year: 2017 ident: 135 – ident: 83 doi: 10.1103/PhysRevE.73.040903 – ident: 132 doi: 10.1103/PhysRevE.81.060901 – volume: 49 start-page: 561 issn: 0016-6731 year: 1964 ident: 32 publication-title: Genetics doi: 10.1093/genetics/49.4.561 – year: 1992 ident: 59 publication-title: Stochastic Processes in Physics and Chemistry – ident: 101 doi: 10.1007/s002850050122 – ident: 161 doi: 10.1103/PhysRevLett.110.168106 – year: 2002 ident: 4 – ident: 205 doi: 10.1016/j.physa.2012.10.011 – ident: 172 doi: 10.1016/j.jtbi.2010.09.035 – ident: 93 doi: 10.1080/00018730050198152 – ident: 7 doi: 10.1007/s10867-008-9101-4 – volume: 102 start-page: 28012 issn: 0295-5075 year: 2013 ident: 69 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/102/28012 – ident: 183 doi: 10.1143/JPSJ.66.38 – ident: 139 doi: 10.1103/PhysRevLett.99.238105 – ident: 73 doi: 10.1103/PhysRevE.74.051907 – ident: 51 doi: 10.1023/B:JOSS.0000013958.15218.47 – ident: 115 doi: 10.1140/epjb/e2011-20259-x – ident: 121 doi: 10.1098/rsif.2014.0172 – ident: 60 doi: 10.1103/PhysRevE.80.021129 – ident: 122 doi: 10.1038/nature04864 – ident: 148 doi: 10.1103/PhysRevE.86.021911 – ident: 58 doi: 10.1016/0021-9991(76)90041-3 – volume: 31 start-page: L287 issn: 0305-4470 year: 1998 ident: 127 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/31/15/001 – ident: 222 doi: 10.1021/nn3043572 |
SSID | ssj0054092 |
Score | 2.5889163 |
SecondaryResourceType | review_article |
Snippet | Spatially extended population dynamics models that incorporate demographic noise serve as case studies for the crucial role of fluctuations and correlations in... |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 63001 |
SubjectTerms | cyclic species competition extinction threshold fluctuation phenomena noise in biological systems pattern formation population dynamics predator-prey models |
Title | Stochastic population dynamics in spatially extended predator-prey systems |
URI | https://iopscience.iop.org/article/10.1088/1751-8121/aa95c7 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qRfDiW6wv9qAHD2k3TTbZ4EnEUgs-QAs9CGF3M0GxpKFJD_XXO5tHUVERb3uYJMuwu_NNdub7CDnxPY_F4GNuEmiw3C4A7jkwWi_aBW6aMZnpRr659fpDdzDiowY5X_TCTNLq6G_jsCQKLl1YFcSJDgY828K4ZHekDLj2l8iyIzzPyBdc393XxzAikUIRubK2neqO8rs3fIpJS_jdDyGmt06e6smVlSWv7Vmu2vrtC2_jP2e_QdYq6EkvStNN0oBki6wUJaA62yaDh3yin6XhbabpQtaLRqVkfUZfEpqZ8ms5Hs9p_e-cplOITN5u4WBOS17obIcMe1ePl32rUlqwdFew3HIFhjLBFIKFbhwwAQj8HMl9zSFWADaPjR6HbyvmxcpjmsdeAIHQNubPKkaEskuaySSBPUJ90JypyLDug8tiJQMRSESlQmppKydqkU7t61BXNORGDWMcFtfhQoTGQ6HxUFh6qEXOFk-kJQXHL7an6Piw2ofZj3b7f7Q7IKuIkERRph0ckmY-ncERopBcHRer7R0XudQZ |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVYBOLCjtjxAQ4c0jpNnDhHBFRQVgmQuAXbGQtE1UZNOMDXM07cChAgJG4-jLOMYs-beOY9QnbjKGIGYsxNEg1e2ALANQdW60WHwG0zJrPdyBeX0cld2Lnn907ntOqF6edu62_gsCYKrl3oCuJEEwOe72Fc8ptSJlzHzTwz42SSB1FgyfNPr66HWzGikUoV2c3wA3dO-d1VPsWlcbz3hzDTniMPwwesq0ueGy-laui3L9yN_3iDeTLrICg9qM0XyBj0FslUVQqqiyXSuSn7-lFa_maaj-S9aFZL1xf0qUcLW4Ytu91XOvyHTvMBZDZ_93DwSmt-6GKZ3LWPbw9PPKe44OmWYKUXCgxpgikEDS2TMAEIAAPJY83BKACfG6vLEfuKRUZFTHMTJZAI7WMerQwilRUy0ev3YJXQGDRnKrPs-xAyo2QiEonoVEgtfRVka6Q59HeqHR25VcXoptWxuBCp9VJqvZTWXloj-6MZeU3F8YvtHjo_deux-NFu_Y92O2T6-qidnp9enm2QGQRNoqrcTjbJRDl4gS0EJqXarj6-dzJ42X0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+population+dynamics+in+spatially+extended+predator%E2%80%93prey+systems&rft.jtitle=Journal+of+physics.+A%2C+Mathematical+and+theoretical&rft.au=Dobramysl%2C+Ulrich&rft.au=Mobilia%2C+Mauro&rft.au=Pleimling%2C+Michel&rft.au=T%C3%A4uber%2C+Uwe+C&rft.date=2018-02-09&rft.issn=1751-8113&rft.eissn=1751-8121&rft.volume=51&rft.issue=6&rft.spage=63001&rft_id=info:doi/10.1088%2F1751-8121%2Faa95c7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1751_8121_aa95c7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8113&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8113&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8113&client=summon |