Asymmetric Decoy State Measurement-Device-Independent Quantum Cryptographic Conferencing

Measurement-device-independent quantum cryptographic conferencing (MDI-QCC) protocol suggests an important scheme for practical multiparty quantum communication. As far as we know, MDI-QCC or MDI-quantum key distribution protocols always assume that the decoy state strategies used at each user's sid...

Full description

Saved in:
Bibliographic Details
Published inChinese physics letters Vol. 34; no. 8; pp. 11 - 15
Main Author 陈瑞柯 鲍皖苏 包海泽 周淳 江木生 李宏伟
Format Journal Article
LanguageEnglish
Published 01.07.2017
Subjects
Online AccessGet full text
ISSN0256-307X
1741-3540
DOI10.1088/0256-307X/34/8/080301

Cover

Loading…
Abstract Measurement-device-independent quantum cryptographic conferencing (MDI-QCC) protocol suggests an important scheme for practical multiparty quantum communication. As far as we know, MDI-QCC or MDI-quantum key distribution protocols always assume that the decoy state strategies used at each user's side are the same. In this study, to mitigate the system complexity and to improve the performance of MDI-QCC protocol in the finite-key case, we propose an asymmetric decoy state method for MDI-QCC protocol, and present security analysis and numerical simulations. From numerical simulations, our protocol can achieve better performance in the finite-key case. That is, with a finite data size of 10111011, it can achieve nonzero secret key rate over 43.6km.
AbstractList Measurement-device-independent quantum cryptographic conferencing (MDI-QCC) protocol suggests an important scheme for practical multiparty quantum communication. As far as we know, MDI-QCC or MDI-quantum key distribution protocols always assume that the decoy state strategies used at each user's side are the same. In this study, to mitigate the system complexity and to improve the performance of MDI-QCC protocol in the finite-key case, we propose an asymmetric decoy state method for MDI-QCC protocol, and present security analysis and numerical simulations. From numerical simulations, our protocol can achieve better performance in the finite-key case. That is, with a finite data size of 10111011, it can achieve nonzero secret key rate over 43.6km.
Author 陈瑞柯 鲍皖苏 包海泽 周淳 江木生 李宏伟
AuthorAffiliation Henan Key Laboratory of Quantum Information and Cryptography, Zhengzhou 450001 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026
Author_xml – sequence: 1
  fullname: 陈瑞柯 鲍皖苏 包海泽 周淳 江木生 李宏伟
BookMark eNqFUE1LAzEUDFLBWv0JwuJ97csmmw14Kls_ChURFXpb0uSlXelmazYV9t-baunBi5f3GJiZ92bOycC1Dgm5onBDQcoxZLlIGRSLMePjCCUwoCdkSAtOU5ZzGJDhkXNGzrvuA4BSSemQLCZd3zQYfK2TKeq2T16DCpg8oep2Hht0IZ3iV60xnTmDW4zDheRlp1zYNUnp-21oV15t19GgbJ1Fj07XbnVBTq3adHh52CPyfn_3Vj6m8-eHWTmZpzqTEFLOQYEwVCzt0uQmfmiNzjKuGebSGqtRSKvAFiDQCMQi41xmmC9NpBRo2Ijkv77at13n0VZbXzfK9xWFal9PtY9e7aNXjFcR_tQTdbd_dLqOyevWBa_qzb_q64N63brVZ8x7PCsKRilkXLBvDG57Aw
CitedBy_id crossref_primary_10_1109_ACCESS_2021_3113939
Cites_doi 10.1080/09500340.2015.1021725
10.1103/PhysRevLett.94.230503
10.1038/nphoton.2015.209
10.1103/PhysRevA.86.062319
10.1103/PhysRevA.91.022313
10.1103/PhysRevLett.108.130502
10.1103/PhysRevLett.108.130503
10.1103/PhysRevA.84.062308
10.1038/nphoton.2016.50
10.1038/ncomms4732
10.1103/PhysRevA.89.022315
10.1103/PhysRevLett.94.230504
10.1038/nphoton.2015.83
10.1103/PhysRevLett.112.190503
10.1364/OE.24.006594
10.1038/nphoton.2010.214
10.1103/PhysRevLett.114.090501
10.1103/PhysRevLett.113.190501
10.1103/PhysRevLett.91.057901
10.1103/PhysRevLett.85.441
10.1088/0256-307X/25/10/008
10.1038/srep17449
10.1126/science.283.5410.2050
10.1103/PhysRevA.91.032318
10.1103/PhysRevA.93.042324
10.1103/PhysRevLett.115.160502
10.1103/PhysRevLett.117.190501
10.1103/PhysRevA.89.052333
10.1103/PhysRevLett.111.130501
10.1103/PhysRevLett.111.130502
10.1103/PhysRevA.88.062322
ContentType Journal Article
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
DOI 10.1088/0256-307X/34/8/080301
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Asymmetric Decoy State Measurement-Device-Independent Quantum Cryptographic Conferencing
EISSN 1741-3540
EndPage 15
ExternalDocumentID 10_1088_0256_307X_34_8_080301
673110246
GroupedDBID 02O
042
1JI
1PV
1WK
29B
2RA
4.4
5B3
5GY
5VR
5VS
5ZH
7.M
7.Q
92L
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFUIB
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CEBXE
CJUJL
CQIGP
CRLBU
CS3
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FEDTE
HAK
HVGLF
IHE
IJHAN
IOP
IZVLO
JCGBZ
KNG
KOT
LAP
M45
N5L
N9A
NS0
NT-
NT.
P2P
PJBAE
Q02
R4D
RIN
RNS
RO9
ROL
RPA
RW3
S3P
SY9
T37
UCJ
W28
XPP
~02
~WA
-SA
-S~
AAYXX
ACARI
ADEQX
AERVB
AGQPQ
AOAED
ARNYC
CAJEA
CITATION
Q--
TGP
U1G
U5K
ID FETCH-LOGICAL-c280t-440a06d16bfbd5d307fdc224c3e58fdfce68fa0f706ed6ee724482e5bd4c37ed3
ISSN 0256-307X
IngestDate Tue Jul 01 01:35:32 EDT 2025
Thu Apr 24 23:04:48 EDT 2025
Wed Feb 14 09:57:18 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License http://iopscience.iop.org/info/page/text-and-data-mining
http://iopscience.iop.org/page/copyright
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c280t-440a06d16bfbd5d307fdc224c3e58fdfce68fa0f706ed6ee724482e5bd4c37ed3
Notes Rui-Ke Chen1,2, Wan-Su Bao1,2, Hai-Ze Bao1,2, Chun Zhou1,2, Mu-Sheng Jiang1,2, Hong-Wei Li1,2(1.Henan Key Laboratory of Quantum Information and Cryptography, Zhengzhou 450001;2.Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026)
11-1959/O4
Measurement-device-independent quantum cryptographic conferencing (MDI-QCC) protocol suggests an important scheme for practical multiparty quantum communication. As far as we know, MDI-QCC or MDI-quantum key distribution protocols always assume that the decoy state strategies used at each user's side are the same. In this study, to mitigate the system complexity and to improve the performance of MDI-QCC protocol in the finite-key case, we propose an asymmetric decoy state method for MDI-QCC protocol, and present security analysis and numerical simulations. From numerical simulations, our protocol can achieve better performance in the finite-key case. That is, with a finite data size of 10111011, it can achieve nonzero secret key rate over 43.6km.
PageCount 5
ParticipantIDs crossref_primary_10_1088_0256_307X_34_8_080301
crossref_citationtrail_10_1088_0256_307X_34_8_080301
chongqing_primary_673110246
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-07-01
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-01
  day: 01
PublicationDecade 2010
PublicationTitle Chinese physics letters
PublicationTitleAlternate Chinese Physics Letters
PublicationYear 2017
References 22
23
24
25
26
Bennett C H (1) 1984
27
28
Xu F (17) 2013; 15
29
Yin Z Q (2) 2008; 25
Ma H X (10) 2016; 25
30
31
11
33
12
34
13
35
14
36
15
16
18
19
Huang D (3) 2013; 30
4
5
6
Tang Y L (32) 2016; 6
7
8
9
20
21
References_xml – ident: 28
  doi: 10.1080/09500340.2015.1021725
– ident: 14
  doi: 10.1103/PhysRevLett.94.230503
– ident: 5
  doi: 10.1038/nphoton.2015.209
– ident: 16
  doi: 10.1103/PhysRevA.86.062319
– ident: 21
  doi: 10.1103/PhysRevA.91.022313
– ident: 11
  doi: 10.1103/PhysRevLett.108.130502
– ident: 12
  doi: 10.1103/PhysRevLett.108.130503
– ident: 9
  doi: 10.1103/PhysRevA.84.062308
– ident: 31
  doi: 10.1038/nphoton.2016.50
– volume: 6
  year: 2016
  ident: 32
  publication-title: Phys. Rev.
– ident: 19
  doi: 10.1038/ncomms4732
– ident: 4
  doi: 10.1103/PhysRevA.89.022315
– ident: 15
  doi: 10.1103/PhysRevLett.94.230504
– ident: 29
  doi: 10.1038/nphoton.2015.83
– ident: 26
  doi: 10.1103/PhysRevLett.112.190503
– ident: 35
  doi: 10.1364/OE.24.006594
– ident: 8
  doi: 10.1038/nphoton.2010.214
– start-page: 175
  year: 1984
  ident: 1
– ident: 34
  doi: 10.1103/PhysRevLett.114.090501
– ident: 27
  doi: 10.1103/PhysRevLett.113.190501
– ident: 13
  doi: 10.1103/PhysRevLett.91.057901
– ident: 7
  doi: 10.1103/PhysRevLett.85.441
– volume: 25
  start-page: 3547
  issn: 0256-307X
  year: 2008
  ident: 2
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/25/10/008
– ident: 36
  doi: 10.1038/srep17449
– ident: 6
  doi: 10.1126/science.283.5410.2050
– volume: 15
  issn: 1367-2630
  year: 2013
  ident: 17
  publication-title: New J. Phys.
– ident: 22
  doi: 10.1103/PhysRevA.91.032318
– ident: 23
  doi: 10.1103/PhysRevA.93.042324
– volume: 25
  year: 2016
  ident: 10
  publication-title: Chin. Phys. Lett.
– ident: 30
  doi: 10.1103/PhysRevLett.115.160502
– ident: 33
  doi: 10.1103/PhysRevLett.117.190501
– ident: 20
  doi: 10.1103/PhysRevA.89.052333
– ident: 24
  doi: 10.1103/PhysRevLett.111.130501
– ident: 25
  doi: 10.1103/PhysRevLett.111.130502
– ident: 18
  doi: 10.1103/PhysRevA.88.062322
– volume: 30
  issn: 0256-307X
  year: 2013
  ident: 3
  publication-title: Chin. Phys. Lett.
SSID ssj0011811
Score 2.1474876
Snippet Measurement-device-independent quantum cryptographic conferencing (MDI-QCC) protocol suggests an important scheme for practical multiparty quantum...
SourceID crossref
chongqing
SourceType Enrichment Source
Index Database
Publisher
StartPage 11
SubjectTerms 测量装置
状态
设备无关
诱骗
量子密码
量子密钥分配协议
量子通信
非对称
Title Asymmetric Decoy State Measurement-Device-Independent Quantum Cryptographic Conferencing
URI http://lib.cqvip.com/qk/84212X/201708/673110246.html
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIiQuiKcoCygH5lRlN4mdeHxM2lS7SAscdqXeojwcONB22c0eyu_mBzB2Hg0CVcAlcmbiL4lnOv7ijm3G3hXCK4hYcDcvcuWKnL5Z88jLXfpR5gH6ee7Z3JyLD9HZlXi_CleTyY9R1tJdU5yU3_84r-R_rEoysquZJfsPlh1ASUBlsi8dycJ0_Csbx7e79dpsiVVS3Ci3u5Y6zi72437uQptQ4J4Pu902Jo-TOpr1bH6zu27aFasJYJj61_dlHWOFVECCEC8gDUElkFBBAiqIlSkoDzAyqmQJcQJpBBhDHEK6hGQOKoYUAamWb1SKtLKrjkMOLaQKlBFYPB9Uaq8lvOXM6JIA0N6U0AihBUSjCwHngKG5PKEnkLbA6RGtjqBitCJJ0pkt-QbXoM-tjjAFSaxOLQBTUy9OCd2-Nr3Acjws4sshhbaPnsTlzMDaqu3o2uhO9Mk1A13j8N-NpbZujqNY3nUCLSto55z-1t-QJ9ulObp7UZkLOlghmq_NfTc7JD9GkhPnCkR0j90PpLTJBecfPw3_fRHnsvs89qD9vDPE00F2ysUpndpbmFVBvmw3n7-Rf4zY1YgmXT5mj7rvGydunfUJm-jNU_bA5hmXt8_Yau-yjnVZx7qsc9hlnc5lnV9c1hm77HN2tUwv52dut7mHWwboNa4QHgWGyo-KuqjCil6qrkrikyXXIdZVXeoI69yrpRfpKtJaEg_FQIdFRZdIXfEX7Giz3eiXzOFcIa-kKEOKDVXt5wJVLkOd8yqsI49P2fHQQNl1u4hLNlhhykTfZFnZrYtvtmf5mtn8DMTMtHpmWj3jIqNT2-pTdjJU6zEPVnh18CmO2cO9F79mR83NnX5DdLcp3lrv-AmZLobF
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asymmetric+Decoy+State+Measurement-Device-Independent+Quantum+Cryptographic+Conferencing&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%89%A9%E7%90%86%E5%BF%AB%E6%8A%A5%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E9%99%88%E7%91%9E%E6%9F%AF+%E9%B2%8D%E7%9A%96%E8%8B%8F+%E5%8C%85%E6%B5%B7%E6%B3%BD+%E5%91%A8%E6%B7%B3+%E6%B1%9F%E6%9C%A8%E7%94%9F+%E6%9D%8E%E5%AE%8F%E4%BC%9F&rft.date=2017-07-01&rft.issn=0256-307X&rft.eissn=1741-3540&rft.volume=34&rft.issue=8&rft.spage=11&rft.epage=15&rft_id=info:doi/10.1088%2F0256-307X%2F34%2F8%2F080301&rft.externalDocID=673110246
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84212X%2F84212X.jpg