Asymmetric Decoy State Measurement-Device-Independent Quantum Cryptographic Conferencing
Measurement-device-independent quantum cryptographic conferencing (MDI-QCC) protocol suggests an important scheme for practical multiparty quantum communication. As far as we know, MDI-QCC or MDI-quantum key distribution protocols always assume that the decoy state strategies used at each user's sid...
Saved in:
Published in | Chinese physics letters Vol. 34; no. 8; pp. 11 - 15 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.07.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0256-307X 1741-3540 |
DOI | 10.1088/0256-307X/34/8/080301 |
Cover
Loading…
Abstract | Measurement-device-independent quantum cryptographic conferencing (MDI-QCC) protocol suggests an important scheme for practical multiparty quantum communication. As far as we know, MDI-QCC or MDI-quantum key distribution protocols always assume that the decoy state strategies used at each user's side are the same. In this study, to mitigate the system complexity and to improve the performance of MDI-QCC protocol in the finite-key case, we propose an asymmetric decoy state method for MDI-QCC protocol, and present security analysis and numerical simulations. From numerical simulations, our protocol can achieve better performance in the finite-key case. That is, with a finite data size of 10111011, it can achieve nonzero secret key rate over 43.6km. |
---|---|
AbstractList | Measurement-device-independent quantum cryptographic conferencing (MDI-QCC) protocol suggests an important scheme for practical multiparty quantum communication. As far as we know, MDI-QCC or MDI-quantum key distribution protocols always assume that the decoy state strategies used at each user's side are the same. In this study, to mitigate the system complexity and to improve the performance of MDI-QCC protocol in the finite-key case, we propose an asymmetric decoy state method for MDI-QCC protocol, and present security analysis and numerical simulations. From numerical simulations, our protocol can achieve better performance in the finite-key case. That is, with a finite data size of 10111011, it can achieve nonzero secret key rate over 43.6km. |
Author | 陈瑞柯 鲍皖苏 包海泽 周淳 江木生 李宏伟 |
AuthorAffiliation | Henan Key Laboratory of Quantum Information and Cryptography, Zhengzhou 450001 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026 |
Author_xml | – sequence: 1 fullname: 陈瑞柯 鲍皖苏 包海泽 周淳 江木生 李宏伟 |
BookMark | eNqFUE1LAzEUDFLBWv0JwuJ97csmmw14Kls_ChURFXpb0uSlXelmazYV9t-baunBi5f3GJiZ92bOycC1Dgm5onBDQcoxZLlIGRSLMePjCCUwoCdkSAtOU5ZzGJDhkXNGzrvuA4BSSemQLCZd3zQYfK2TKeq2T16DCpg8oep2Hht0IZ3iV60xnTmDW4zDheRlp1zYNUnp-21oV15t19GgbJ1Fj07XbnVBTq3adHh52CPyfn_3Vj6m8-eHWTmZpzqTEFLOQYEwVCzt0uQmfmiNzjKuGebSGqtRSKvAFiDQCMQi41xmmC9NpBRo2Ijkv77at13n0VZbXzfK9xWFal9PtY9e7aNXjFcR_tQTdbd_dLqOyevWBa_qzb_q64N63brVZ8x7PCsKRilkXLBvDG57Aw |
CitedBy_id | crossref_primary_10_1109_ACCESS_2021_3113939 |
Cites_doi | 10.1080/09500340.2015.1021725 10.1103/PhysRevLett.94.230503 10.1038/nphoton.2015.209 10.1103/PhysRevA.86.062319 10.1103/PhysRevA.91.022313 10.1103/PhysRevLett.108.130502 10.1103/PhysRevLett.108.130503 10.1103/PhysRevA.84.062308 10.1038/nphoton.2016.50 10.1038/ncomms4732 10.1103/PhysRevA.89.022315 10.1103/PhysRevLett.94.230504 10.1038/nphoton.2015.83 10.1103/PhysRevLett.112.190503 10.1364/OE.24.006594 10.1038/nphoton.2010.214 10.1103/PhysRevLett.114.090501 10.1103/PhysRevLett.113.190501 10.1103/PhysRevLett.91.057901 10.1103/PhysRevLett.85.441 10.1088/0256-307X/25/10/008 10.1038/srep17449 10.1126/science.283.5410.2050 10.1103/PhysRevA.91.032318 10.1103/PhysRevA.93.042324 10.1103/PhysRevLett.115.160502 10.1103/PhysRevLett.117.190501 10.1103/PhysRevA.89.052333 10.1103/PhysRevLett.111.130501 10.1103/PhysRevLett.111.130502 10.1103/PhysRevA.88.062322 |
ContentType | Journal Article |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION |
DOI | 10.1088/0256-307X/34/8/080301 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库- 镜像站点 CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | Asymmetric Decoy State Measurement-Device-Independent Quantum Cryptographic Conferencing |
EISSN | 1741-3540 |
EndPage | 15 |
ExternalDocumentID | 10_1088_0256_307X_34_8_080301 673110246 |
GroupedDBID | 02O 042 1JI 1PV 1WK 29B 2RA 4.4 5B3 5GY 5VR 5VS 5ZH 7.M 7.Q 92L AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFUIB AFYNE AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BBWZM CEBXE CJUJL CQIGP CRLBU CS3 EBS EDWGO EJD EMSAF EPQRW EQZZN FEDTE HAK HVGLF IHE IJHAN IOP IZVLO JCGBZ KNG KOT LAP M45 N5L N9A NS0 NT- NT. P2P PJBAE Q02 R4D RIN RNS RO9 ROL RPA RW3 S3P SY9 T37 UCJ W28 XPP ~02 ~WA -SA -S~ AAYXX ACARI ADEQX AERVB AGQPQ AOAED ARNYC CAJEA CITATION Q-- TGP U1G U5K |
ID | FETCH-LOGICAL-c280t-440a06d16bfbd5d307fdc224c3e58fdfce68fa0f706ed6ee724482e5bd4c37ed3 |
ISSN | 0256-307X |
IngestDate | Tue Jul 01 01:35:32 EDT 2025 Thu Apr 24 23:04:48 EDT 2025 Wed Feb 14 09:57:18 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | http://iopscience.iop.org/info/page/text-and-data-mining http://iopscience.iop.org/page/copyright |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c280t-440a06d16bfbd5d307fdc224c3e58fdfce68fa0f706ed6ee724482e5bd4c37ed3 |
Notes | Rui-Ke Chen1,2, Wan-Su Bao1,2, Hai-Ze Bao1,2, Chun Zhou1,2, Mu-Sheng Jiang1,2, Hong-Wei Li1,2(1.Henan Key Laboratory of Quantum Information and Cryptography, Zhengzhou 450001;2.Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026) 11-1959/O4 Measurement-device-independent quantum cryptographic conferencing (MDI-QCC) protocol suggests an important scheme for practical multiparty quantum communication. As far as we know, MDI-QCC or MDI-quantum key distribution protocols always assume that the decoy state strategies used at each user's side are the same. In this study, to mitigate the system complexity and to improve the performance of MDI-QCC protocol in the finite-key case, we propose an asymmetric decoy state method for MDI-QCC protocol, and present security analysis and numerical simulations. From numerical simulations, our protocol can achieve better performance in the finite-key case. That is, with a finite data size of 10111011, it can achieve nonzero secret key rate over 43.6km. |
PageCount | 5 |
ParticipantIDs | crossref_primary_10_1088_0256_307X_34_8_080301 crossref_citationtrail_10_1088_0256_307X_34_8_080301 chongqing_primary_673110246 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-07-01 |
PublicationDateYYYYMMDD | 2017-07-01 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Chinese physics letters |
PublicationTitleAlternate | Chinese Physics Letters |
PublicationYear | 2017 |
References | 22 23 24 25 26 Bennett C H (1) 1984 27 28 Xu F (17) 2013; 15 29 Yin Z Q (2) 2008; 25 Ma H X (10) 2016; 25 30 31 11 33 12 34 13 35 14 36 15 16 18 19 Huang D (3) 2013; 30 4 5 6 Tang Y L (32) 2016; 6 7 8 9 20 21 |
References_xml | – ident: 28 doi: 10.1080/09500340.2015.1021725 – ident: 14 doi: 10.1103/PhysRevLett.94.230503 – ident: 5 doi: 10.1038/nphoton.2015.209 – ident: 16 doi: 10.1103/PhysRevA.86.062319 – ident: 21 doi: 10.1103/PhysRevA.91.022313 – ident: 11 doi: 10.1103/PhysRevLett.108.130502 – ident: 12 doi: 10.1103/PhysRevLett.108.130503 – ident: 9 doi: 10.1103/PhysRevA.84.062308 – ident: 31 doi: 10.1038/nphoton.2016.50 – volume: 6 year: 2016 ident: 32 publication-title: Phys. Rev. – ident: 19 doi: 10.1038/ncomms4732 – ident: 4 doi: 10.1103/PhysRevA.89.022315 – ident: 15 doi: 10.1103/PhysRevLett.94.230504 – ident: 29 doi: 10.1038/nphoton.2015.83 – ident: 26 doi: 10.1103/PhysRevLett.112.190503 – ident: 35 doi: 10.1364/OE.24.006594 – ident: 8 doi: 10.1038/nphoton.2010.214 – start-page: 175 year: 1984 ident: 1 – ident: 34 doi: 10.1103/PhysRevLett.114.090501 – ident: 27 doi: 10.1103/PhysRevLett.113.190501 – ident: 13 doi: 10.1103/PhysRevLett.91.057901 – ident: 7 doi: 10.1103/PhysRevLett.85.441 – volume: 25 start-page: 3547 issn: 0256-307X year: 2008 ident: 2 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/25/10/008 – ident: 36 doi: 10.1038/srep17449 – ident: 6 doi: 10.1126/science.283.5410.2050 – volume: 15 issn: 1367-2630 year: 2013 ident: 17 publication-title: New J. Phys. – ident: 22 doi: 10.1103/PhysRevA.91.032318 – ident: 23 doi: 10.1103/PhysRevA.93.042324 – volume: 25 year: 2016 ident: 10 publication-title: Chin. Phys. Lett. – ident: 30 doi: 10.1103/PhysRevLett.115.160502 – ident: 33 doi: 10.1103/PhysRevLett.117.190501 – ident: 20 doi: 10.1103/PhysRevA.89.052333 – ident: 24 doi: 10.1103/PhysRevLett.111.130501 – ident: 25 doi: 10.1103/PhysRevLett.111.130502 – ident: 18 doi: 10.1103/PhysRevA.88.062322 – volume: 30 issn: 0256-307X year: 2013 ident: 3 publication-title: Chin. Phys. Lett. |
SSID | ssj0011811 |
Score | 2.1474876 |
Snippet | Measurement-device-independent quantum cryptographic conferencing (MDI-QCC) protocol suggests an important scheme for practical multiparty quantum... |
SourceID | crossref chongqing |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 11 |
SubjectTerms | 测量装置 状态 设备无关 诱骗 量子密码 量子密钥分配协议 量子通信 非对称 |
Title | Asymmetric Decoy State Measurement-Device-Independent Quantum Cryptographic Conferencing |
URI | http://lib.cqvip.com/qk/84212X/201708/673110246.html |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIiQuiKcoCygH5lRlN4mdeHxM2lS7SAscdqXeojwcONB22c0eyu_mBzB2Hg0CVcAlcmbiL4lnOv7ijm3G3hXCK4hYcDcvcuWKnL5Z88jLXfpR5gH6ee7Z3JyLD9HZlXi_CleTyY9R1tJdU5yU3_84r-R_rEoysquZJfsPlh1ASUBlsi8dycJ0_Csbx7e79dpsiVVS3Ci3u5Y6zi72437uQptQ4J4Pu902Jo-TOpr1bH6zu27aFasJYJj61_dlHWOFVECCEC8gDUElkFBBAiqIlSkoDzAyqmQJcQJpBBhDHEK6hGQOKoYUAamWb1SKtLKrjkMOLaQKlBFYPB9Uaq8lvOXM6JIA0N6U0AihBUSjCwHngKG5PKEnkLbA6RGtjqBitCJJ0pkt-QbXoM-tjjAFSaxOLQBTUy9OCd2-Nr3Acjws4sshhbaPnsTlzMDaqu3o2uhO9Mk1A13j8N-NpbZujqNY3nUCLSto55z-1t-QJ9ulObp7UZkLOlghmq_NfTc7JD9GkhPnCkR0j90PpLTJBecfPw3_fRHnsvs89qD9vDPE00F2ysUpndpbmFVBvmw3n7-Rf4zY1YgmXT5mj7rvGydunfUJm-jNU_bA5hmXt8_Yau-yjnVZx7qsc9hlnc5lnV9c1hm77HN2tUwv52dut7mHWwboNa4QHgWGyo-KuqjCil6qrkrikyXXIdZVXeoI69yrpRfpKtJaEg_FQIdFRZdIXfEX7Giz3eiXzOFcIa-kKEOKDVXt5wJVLkOd8yqsI49P2fHQQNl1u4hLNlhhykTfZFnZrYtvtmf5mtn8DMTMtHpmWj3jIqNT2-pTdjJU6zEPVnh18CmO2cO9F79mR83NnX5DdLcp3lrv-AmZLobF |
linkProvider | IOP Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asymmetric+Decoy+State+Measurement-Device-Independent+Quantum+Cryptographic+Conferencing&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%89%A9%E7%90%86%E5%BF%AB%E6%8A%A5%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E9%99%88%E7%91%9E%E6%9F%AF+%E9%B2%8D%E7%9A%96%E8%8B%8F+%E5%8C%85%E6%B5%B7%E6%B3%BD+%E5%91%A8%E6%B7%B3+%E6%B1%9F%E6%9C%A8%E7%94%9F+%E6%9D%8E%E5%AE%8F%E4%BC%9F&rft.date=2017-07-01&rft.issn=0256-307X&rft.eissn=1741-3540&rft.volume=34&rft.issue=8&rft.spage=11&rft.epage=15&rft_id=info:doi/10.1088%2F0256-307X%2F34%2F8%2F080301&rft.externalDocID=673110246 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84212X%2F84212X.jpg |