A Staggered Semi-analytic Method for Simulating Dust Grains Subject to Gas Drag

Numerical simulations of dust-gas dynamics are one of the fundamental tools in astrophysical research, such as the study of star and planet formation. It is common to find tightly coupled dust and gas in astrophysical systems, which demands that any practical integration method be able to take time...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal. Supplement series Vol. 244; no. 2; pp. 42 - 52
Main Authors Fung, Jeffrey, Muley, Dhruv
Format Journal Article
LanguageEnglish
Published Saskatoon The American Astronomical Society 01.10.2019
IOP Publishing
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Numerical simulations of dust-gas dynamics are one of the fundamental tools in astrophysical research, such as the study of star and planet formation. It is common to find tightly coupled dust and gas in astrophysical systems, which demands that any practical integration method be able to take time steps, , much longer than the stopping time, , due to drag. A number of methods have been developed to ensure stability in this stiff regime, but there remains large room for improvement in terms of accuracy. In this paper, we describe an easy-to-implement method, the "staggered semi-analytic method" (SSA), and conduct numerical tests to compare it to other implicit and semi-analytic methods, including the second-order implicit method and the Verlet method. SSA makes use of a staggered step to better approximate the terminal velocity in the stiff regime. In applications to protoplanetary disks, this not only leads to orders of magnitude higher accuracy than the other methods, but also provides greater stability, making it possible to take time steps 100 times larger in some situations. SSA is also second-order accurate and symplectic when . More generally, the robustness of SSA makes it applicable to linear dust-gas drag in virtually any context.
AbstractList Numerical simulations of dust-gas dynamics are one of the fundamental tools in astrophysical research, such as the study of star and planet formation. It is common to find tightly coupled dust and gas in astrophysical systems, which demands that any practical integration method be able to take time steps, , much longer than the stopping time, , due to drag. A number of methods have been developed to ensure stability in this stiff regime, but there remains large room for improvement in terms of accuracy. In this paper, we describe an easy-to-implement method, the "staggered semi-analytic method" (SSA), and conduct numerical tests to compare it to other implicit and semi-analytic methods, including the second-order implicit method and the Verlet method. SSA makes use of a staggered step to better approximate the terminal velocity in the stiff regime. In applications to protoplanetary disks, this not only leads to orders of magnitude higher accuracy than the other methods, but also provides greater stability, making it possible to take time steps 100 times larger in some situations. SSA is also second-order accurate and symplectic when . More generally, the robustness of SSA makes it applicable to linear dust-gas drag in virtually any context.
Numerical simulations of dust–gas dynamics are one of the fundamental tools in astrophysical research, such as the study of star and planet formation. It is common to find tightly coupled dust and gas in astrophysical systems, which demands that any practical integration method be able to take time steps, , much longer than the stopping time, , due to drag. A number of methods have been developed to ensure stability in this stiff regime, but there remains large room for improvement in terms of accuracy. In this paper, we describe an easy-to-implement method, the “staggered semi-analytic method” (SSA), and conduct numerical tests to compare it to other implicit and semi-analytic methods, including the second-order implicit method and the Verlet method. SSA makes use of a staggered step to better approximate the terminal velocity in the stiff regime. In applications to protoplanetary disks, this not only leads to orders of magnitude higher accuracy than the other methods, but also provides greater stability, making it possible to take time steps 100 times larger in some situations. SSA is also second-order accurate and symplectic when . More generally, the robustness of SSA makes it applicable to linear dust–gas drag in virtually any context.
Numerical simulations of dust–gas dynamics are one of the fundamental tools in astrophysical research, such as the study of star and planet formation. It is common to find tightly coupled dust and gas in astrophysical systems, which demands that any practical integration method be able to take time steps, \({\rm{\Delta }}t\), much longer than the stopping time, \({t}_{{\rm{s}}}\), due to drag. A number of methods have been developed to ensure stability in this stiff \(({\rm{\Delta }}t\gg {t}_{{\rm{s}}})\) regime, but there remains large room for improvement in terms of accuracy. In this paper, we describe an easy-to-implement method, the “staggered semi-analytic method” (SSA), and conduct numerical tests to compare it to other implicit and semi-analytic methods, including the second-order implicit method and the Verlet method. SSA makes use of a staggered step to better approximate the terminal velocity in the stiff regime. In applications to protoplanetary disks, this not only leads to orders of magnitude higher accuracy than the other methods, but also provides greater stability, making it possible to take time steps 100 times larger in some situations. SSA is also second-order accurate and symplectic when \({\rm{\Delta }}t\ll {t}_{{\rm{s}}}\). More generally, the robustness of SSA makes it applicable to linear dust–gas drag in virtually any context.
Author Muley, Dhruv
Fung, Jeffrey
Author_xml – sequence: 1
  givenname: Jeffrey
  surname: Fung
  fullname: Fung, Jeffrey
  email: fung@ias.edu
  organization: Institute for Advanced Study , 1 Einstein Drive, Princeton, NJ 08540, USA
– sequence: 2
  givenname: Dhruv
  surname: Muley
  fullname: Muley, Dhruv
  organization: University of California Department of Astronomy, Campbell Hall, Berkeley, CA 94720-3411, USA
BookMark eNp9kM9LwzAYhoNMcJvePQa8Wk3zo2mOY9MpTHaonkOapjWja2aSHvbf21FREPT0wcf7fLzfMwOTznUGgOsU3ZGc8vuUkTyhJGP3qqSsJmdg-r2agClCGU8QouICzELYIYQ4I2IKtgtYRNU0xpsKFmZvE9Wp9hithi8mvrsK1s7Dwu77VkXbNXDVhwjXXtkuwKIvd0ZHGB1cqwBXXjWX4LxWbTBXX3MO3h4fXpdPyWa7fl4uNonGOYoJxYzTMseCEsRzWmFFRIVTRCtKFDOYqpQYxQ3iGmfIaFZXjAsmsiqrS6EVmYOb8e7Bu4_ehCh3rvdD9SAxYTxDlHMxpNCY0t6F4E0tD97ulT_KFMmTNnlyJE-O5KhtQLJfiLZxeN11cXi6_Q-8HUHrDj9l_ox_AkHaf9A
CitedBy_id crossref_primary_10_1017_S1743921319008974
crossref_primary_10_3847_1538_4365_ac76cb
crossref_primary_10_3847_1538_4365_ad14f9
crossref_primary_10_1093_mnras_staa1366
crossref_primary_10_3847_1538_4357_ac53ac
Cites_doi 10.1051/0004-6361:20054449
10.1093/mnras/stw691
10.1051/0004-6361:20042249
10.1093/mnras/sty1752
10.1093/mnras/stw396
10.3847/1538-4357/aadadd
10.3847/1538-4357/aa92cd
10.3847/1538-4357/aa7edb
10.3847/0004-637X/831/1/82
10.1093/mnras/stv2262
10.1006/jcph.2000.6605
10.1093/mnras/stw2946
10.3847/1538-4357/aa72f2
10.3847/2041-8213/ab2596
10.3847/1538-4365/ab0a0e
10.1093/mnras/stv2527
10.1111/j.1365-2966.2011.20201.x
10.3847/2515-5172/aaeac9
10.3847/1538-4357/aaca99
10.1111/j.1365-2966.2011.20202.x
10.1093/mnras/stu1367
10.3847/1538-4357/ab1265
10.1088/0067-0049/190/2/297
10.3847/1538-4357/aa8620
10.1093/mnras/stw202
10.1093/mnras/stx2395
10.1088/0004-637X/755/1/6
10.3847/0067-0049/224/2/39
10.1088/2041-8205/795/2/L39
10.1016/j.jcp.2010.01.034
10.1093/mnras/stx2833
10.1051/0004-6361/201628441
ContentType Journal Article
Copyright 2019. The American Astronomical Society. All rights reserved.
Copyright IOP Publishing Oct 2019
Copyright_xml – notice: 2019. The American Astronomical Society. All rights reserved.
– notice: Copyright IOP Publishing Oct 2019
DBID AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
DOI 10.3847/1538-4365/ab45f3
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
CrossRef
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
DocumentTitleAlternate A Staggered Semi-analytic Method for Simulating Dust Grains Subject to Gas Drag
EISSN 1538-4365
ExternalDocumentID 10_3847_1538_4365_ab45f3
apjsab45f3
GroupedDBID -~X
123
1JI
23N
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
ABCQX
ABHWH
ACBEA
ACGFO
ACGFS
ACHIP
ADACN
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
E3Z
EBS
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
L7B
M~E
N5L
O3W
O43
OK1
P2P
PJBAE
RIN
RNP
RNS
ROL
SY9
T37
UPT
AAYXX
CITATION
7TG
8FD
AEINN
H8D
KL.
L7M
ID FETCH-LOGICAL-c280t-42574b829430784d2a39d2104d43a5e24a13ea7e07c260ec5fd579596d6fb9ca3
IEDL.DBID IOP
ISSN 0067-0049
IngestDate Wed Aug 13 11:24:31 EDT 2025
Thu Apr 24 22:56:12 EDT 2025
Tue Jul 01 00:17:58 EDT 2025
Wed Aug 21 03:33:56 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c280t-42574b829430784d2a39d2104d43a5e24a13ea7e07c260ec5fd579596d6fb9ca3
Notes AAS18977
Interstellar Matter and the Local Universe
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://iopscience.iop.org/article/10.3847/1538-4365/ab45f3/pdf
PQID 2357604779
PQPubID 4562442
PageCount 11
ParticipantIDs crossref_primary_10_3847_1538_4365_ab45f3
crossref_citationtrail_10_3847_1538_4365_ab45f3
proquest_journals_2357604779
iop_journals_10_3847_1538_4365_ab45f3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Saskatoon
PublicationPlace_xml – name: Saskatoon
PublicationTitle The Astrophysical journal. Supplement series
PublicationTitleAbbrev APJS
PublicationTitleAlternate Astrophys. J. Suppl
PublicationYear 2019
Publisher The American Astronomical Society
IOP Publishing
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
References Pinilla (apjsab45f3bib26) 2016; 596
Ishiki (apjsab45f3bib13) 2018; 474
Laibe (apjsab45f3bib16) 2012b; 420
Miniati (apjsab45f3bib23) 2010; 229
Gárate (apjsab45f3bib11) 2019
Yang (apjsab45f3bib35) 2016; 224
Dong (apjsab45f3bib9) 2018; 866
Laibe (apjsab45f3bib17) 2014; 444
Pinilla (apjsab45f3bib27) 2017; 845
Surville (apjsab45f3bib32) 2016; 831
Lin (apjsab45f3bib19) 2017; 849
Bai (apjsab45f3bib2) 2010; 190
Auffinger (apjsab45f3bib1) 2018; 473
Cridland (apjsab45f3bib6) 2017; 465
Fu (apjsab45f3bib10) 2014; 795
Lorén-Aguilar (apjsab45f3bib20) 2015; 454
Laibe (apjsab45f3bib15) 2012a; 420
Lyra (apjsab45f3bib21) 2018; 2
Xu (apjsab45f3bib34) 2017; 847
Zhu (apjsab45f3bib38) 2012; 755
Han (apjsab45f3bib12) 2016
Sierra (apjsab45f3bib30) 2019; 876
Dong (apjsab45f3bib8) 2017; 843
Benéz-Llambay (apjsab45f3bib5) 2019; 241
Rosotti (apjsab45f3bib29) 2016; 459
Li (apjsab45f3bib18) 2018; 862
Mignone (apjsab45f3bib22) 2019
Paardekooper (apjsab45f3bib25) 2006; 453
Zhang (apjsab45f3bib36) 2019; 233
Cuello (apjsab45f3bib7) 2016; 458
Mott (apjsab45f3bib24) 2000; 164
Umurhan (apjsab45f3bib33) 2019
Popovas (apjsab45f3bib28) 2018; 479
Barrière-Fouchet (apjsab45f3bib3) 2005; 443
Stoyanovskaya (apjsab45f3bib31) 2018; 25
Zhu (apjsab45f3bib37) 2016; 458
Krapp (apjsab45f3bib14) 2019; 878
Baruteau (apjsab45f3bib4) 2016; 458
References_xml – volume: 453
  start-page: 1129
  year: 2006
  ident: apjsab45f3bib25
  publication-title: A&A
  doi: 10.1051/0004-6361:20054449
– start-page: 49
  year: 2016
  ident: apjsab45f3bib12
– volume: 459
  start-page: 2790
  year: 2016
  ident: apjsab45f3bib29
  publication-title: MNRAS
  doi: 10.1093/mnras/stw691
– volume: 233
  start-page: 317.03
  year: 2019
  ident: apjsab45f3bib36
  publication-title: AAS Meeting
– volume: 443
  start-page: 185
  year: 2005
  ident: apjsab45f3bib3
  publication-title: A&A
  doi: 10.1051/0004-6361:20042249
– volume: 479
  start-page: 5136
  year: 2018
  ident: apjsab45f3bib28
  publication-title: MNRAS
  doi: 10.1093/mnras/sty1752
– volume: 458
  start-page: 2140
  year: 2016
  ident: apjsab45f3bib7
  publication-title: MNRAS
  doi: 10.1093/mnras/stw396
– volume: 866
  start-page: 110
  year: 2018
  ident: apjsab45f3bib9
  publication-title: ApJ
  doi: 10.3847/1538-4357/aadadd
– volume: 849
  start-page: 129
  year: 2017
  ident: apjsab45f3bib19
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa92cd
– volume: 845
  start-page: 68
  year: 2017
  ident: apjsab45f3bib27
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa7edb
– volume: 831
  start-page: 82
  year: 2016
  ident: apjsab45f3bib32
  publication-title: ApJ
  doi: 10.3847/0004-637X/831/1/82
– volume: 454
  start-page: 4114
  year: 2015
  ident: apjsab45f3bib20
  publication-title: MNRAS
  doi: 10.1093/mnras/stv2262
– volume: 164
  start-page: 407
  year: 2000
  ident: apjsab45f3bib24
  publication-title: JCoPh
  doi: 10.1006/jcph.2000.6605
– volume: 465
  start-page: 3865
  year: 2017
  ident: apjsab45f3bib6
  publication-title: MNRAS
  doi: 10.1093/mnras/stw2946
– volume: 843
  start-page: 127
  year: 2017
  ident: apjsab45f3bib8
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa72f2
– volume: 878
  start-page: L30
  year: 2019
  ident: apjsab45f3bib14
  publication-title: ApJL
  doi: 10.3847/2041-8213/ab2596
– year: 2019
  ident: apjsab45f3bib22
– volume: 241
  start-page: 25
  year: 2019
  ident: apjsab45f3bib5
  publication-title: ApJS
  doi: 10.3847/1538-4365/ab0a0e
– volume: 458
  start-page: 3927
  year: 2016
  ident: apjsab45f3bib4
  publication-title: MNRAS
  doi: 10.1093/mnras/stv2527
– volume: 420
  start-page: 2365
  year: 2012b
  ident: apjsab45f3bib16
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.20201.x
– volume: 2
  start-page: 195
  year: 2018
  ident: apjsab45f3bib21
  publication-title: RNAAS
  doi: 10.3847/2515-5172/aaeac9
– year: 2019
  ident: apjsab45f3bib33
– volume: 862
  start-page: 14
  year: 2018
  ident: apjsab45f3bib18
  publication-title: ApJ
  doi: 10.3847/1538-4357/aaca99
– volume: 420
  start-page: 2345
  year: 2012a
  ident: apjsab45f3bib15
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.20202.x
– volume: 444
  start-page: 1940
  year: 2014
  ident: apjsab45f3bib17
  publication-title: MNRAS
  doi: 10.1093/mnras/stu1367
– volume: 876
  start-page: 7
  year: 2019
  ident: apjsab45f3bib30
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab1265
– volume: 190
  start-page: 297
  year: 2010
  ident: apjsab45f3bib2
  publication-title: ApJS
  doi: 10.1088/0067-0049/190/2/297
– volume: 847
  start-page: 52
  year: 2017
  ident: apjsab45f3bib34
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa8620
– volume: 458
  start-page: 3918
  year: 2016
  ident: apjsab45f3bib37
  publication-title: MNRAS
  doi: 10.1093/mnras/stw202
– volume: 25
  start-page: 25
  year: 2018
  ident: apjsab45f3bib31
  publication-title: A&C
– year: 2019
  ident: apjsab45f3bib11
– volume: 473
  start-page: 796
  year: 2018
  ident: apjsab45f3bib1
  publication-title: MNRAS
  doi: 10.1093/mnras/stx2395
– volume: 755
  start-page: 6
  year: 2012
  ident: apjsab45f3bib38
  publication-title: ApJ
  doi: 10.1088/0004-637X/755/1/6
– volume: 224
  start-page: 39
  year: 2016
  ident: apjsab45f3bib35
  publication-title: ApJS
  doi: 10.3847/0067-0049/224/2/39
– volume: 795
  start-page: L39
  year: 2014
  ident: apjsab45f3bib10
  publication-title: ApJL
  doi: 10.1088/2041-8205/795/2/L39
– volume: 229
  start-page: 3916
  year: 2010
  ident: apjsab45f3bib23
  publication-title: JCoPh
  doi: 10.1016/j.jcp.2010.01.034
– volume: 474
  start-page: 1935
  year: 2018
  ident: apjsab45f3bib13
  publication-title: MNRAS
  doi: 10.1093/mnras/stx2833
– volume: 596
  start-page: A81
  year: 2016
  ident: apjsab45f3bib26
  publication-title: A&A
  doi: 10.1051/0004-6361/201628441
SSID ssj0007539
Score 2.326321
Snippet Numerical simulations of dust-gas dynamics are one of the fundamental tools in astrophysical research, such as the study of star and planet formation. It is...
Numerical simulations of dust–gas dynamics are one of the fundamental tools in astrophysical research, such as the study of star and planet formation. It is...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 42
SubjectTerms Astrophysical dust processes
Astrophysical research
Circumstellar dust
Circumstellar matter
Computational astronomy
Computational methods
Computer simulation
Debris disks
Drag
Dust
Exoplanet formation
Gas dynamics
Interstellar dust
Interstellar dust processes
Mathematical analysis
Methods
Numerical simulations
Planet formation
Protoplanetary disks
Protoplanets
Robustness (mathematics)
Stability
Terminal velocity
Very small grains
Title A Staggered Semi-analytic Method for Simulating Dust Grains Subject to Gas Drag
URI https://iopscience.iop.org/article/10.3847/1538-4365/ab45f3
https://www.proquest.com/docview/2357604779
Volume 244
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED5BERIv24AhGGzyw0DiIW0a23GsPVVjgCZBkQDBw6TIjpMKQVvUpA_sr99dnHbihxDiJfLDxUnOvvN3F_s7gO9CR5ZHqsDJq2QgVKgDRBlJoLqRcaoQUljKd5ycxseX4ve1vF6AH_OzMOP7xvW3semJgr0Kyb45-tJObaOCx7JjrJAFX4QlnuDCSaf3-mdzN4w43GNf9ASEg_0_yhd7eLQmLeJznznmerU5_Ah_Zu_pN5nctqeVbWd_n1A4vvNDPsGHBoWynhddhYV8tAabvZLy4uPhA9tjddunPco1WD7zrXXo9xji08GASnyy83x4ExiiNcF-2EldjJohCmbnN8O6LNhowA6mZcWOqBBFydBLUdqHVWN2ZEp2MDGDz3B5-Ovi53HQFGUIsigJq4BsXNgkItp2lQgXGa4dxo3CCW5kHgnT5blReagyDJXyTBZOUj3z2MWF1ZnhG9AajUf5JrCuNFZLl3AnKUp0OiwiWYiY226SaeG2oDMbljRrGMupcMZdipELaTAlDaakwdRrcAv253fce7aOV2R3cWDSxmTLV-R2ZnPhvzCRBMWhUEp_eWM327CCWEv7fYA70Kom0_wr4pnKfqvnLV77_OofF3DqUg
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xUKteKh6tgELrAyD1kG7Wjzg-cFh1u0B5ShSVW-rEzgqJfYgEVfyq_kVm4rBV1Qr1ws0Hx0o-z-ObsTMDsC0NzwXXJQqvVpHUsYmQZaSR7nLrdCmVzCnfcXKaHFzKr1fqag5-zf6FmUxb0_8Jh6FQcICQ9FugLe00OipFojo2l6oUnakr21uVR_7-J8Zs1d5hHzd4h_PBl2-fD6K2rUBU8DSuI5JSmaecCo_rVDpuhXEY-UgnhVWeS9sV3mof6wLJvi9U6RR15E5cUuamsALXnYdFJdC1oQKdie8z04_cP_BttD7EvcO56D_f-g8_OI_f-pczaDzcYAlet9SU9QIQyzDnxyuw1qsoWT4Z3bNd1oxDLqRagRfnYbQKZz2GpHU4pL6f7MKPriNLtU5wHXbSdKhmSI3ZxfWo6RU2HrL-XVWzfepOUTE0XZQLYvWE7duK9W_t8A1cPgukb2FhPBn7NWBdZXOjXCqcotDRmbjkqpSJyLtpYaRbh84jblnRljGnbho3GYYzhHRGSGeEdBaQXoePsyemoYTHE3N3cCuyVo-rJ-ZtPm7W78lUOSiJpdZm4z-X-QAvz_uD7Pjw9OgdvEIuZsI9wU1YqG_v_BbynTp_38gYgx_PLdQP2EgG1w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Staggered+Semi-analytic+Method+for+Simulating+Dust+Grains+Subject+to+Gas+Drag&rft.jtitle=The+Astrophysical+journal.+Supplement+series&rft.au=Fung%2C+Jeffrey&rft.au=Muley%2C+Dhruv&rft.date=2019-10-01&rft.issn=0067-0049&rft.eissn=1538-4365&rft.volume=244&rft.issue=2&rft.spage=42&rft_id=info:doi/10.3847%2F1538-4365%2Fab45f3&rft.externalDBID=n%2Fa&rft.externalDocID=10_3847_1538_4365_ab45f3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0067-0049&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0067-0049&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0067-0049&client=summon