A Staggered Semi-analytic Method for Simulating Dust Grains Subject to Gas Drag
Numerical simulations of dust-gas dynamics are one of the fundamental tools in astrophysical research, such as the study of star and planet formation. It is common to find tightly coupled dust and gas in astrophysical systems, which demands that any practical integration method be able to take time...
Saved in:
Published in | The Astrophysical journal. Supplement series Vol. 244; no. 2; pp. 42 - 52 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Saskatoon
The American Astronomical Society
01.10.2019
IOP Publishing |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Numerical simulations of dust-gas dynamics are one of the fundamental tools in astrophysical research, such as the study of star and planet formation. It is common to find tightly coupled dust and gas in astrophysical systems, which demands that any practical integration method be able to take time steps, , much longer than the stopping time, , due to drag. A number of methods have been developed to ensure stability in this stiff regime, but there remains large room for improvement in terms of accuracy. In this paper, we describe an easy-to-implement method, the "staggered semi-analytic method" (SSA), and conduct numerical tests to compare it to other implicit and semi-analytic methods, including the second-order implicit method and the Verlet method. SSA makes use of a staggered step to better approximate the terminal velocity in the stiff regime. In applications to protoplanetary disks, this not only leads to orders of magnitude higher accuracy than the other methods, but also provides greater stability, making it possible to take time steps 100 times larger in some situations. SSA is also second-order accurate and symplectic when . More generally, the robustness of SSA makes it applicable to linear dust-gas drag in virtually any context. |
---|---|
AbstractList | Numerical simulations of dust-gas dynamics are one of the fundamental tools in astrophysical research, such as the study of star and planet formation. It is common to find tightly coupled dust and gas in astrophysical systems, which demands that any practical integration method be able to take time steps, , much longer than the stopping time, , due to drag. A number of methods have been developed to ensure stability in this stiff regime, but there remains large room for improvement in terms of accuracy. In this paper, we describe an easy-to-implement method, the "staggered semi-analytic method" (SSA), and conduct numerical tests to compare it to other implicit and semi-analytic methods, including the second-order implicit method and the Verlet method. SSA makes use of a staggered step to better approximate the terminal velocity in the stiff regime. In applications to protoplanetary disks, this not only leads to orders of magnitude higher accuracy than the other methods, but also provides greater stability, making it possible to take time steps 100 times larger in some situations. SSA is also second-order accurate and symplectic when . More generally, the robustness of SSA makes it applicable to linear dust-gas drag in virtually any context. Numerical simulations of dust–gas dynamics are one of the fundamental tools in astrophysical research, such as the study of star and planet formation. It is common to find tightly coupled dust and gas in astrophysical systems, which demands that any practical integration method be able to take time steps, , much longer than the stopping time, , due to drag. A number of methods have been developed to ensure stability in this stiff regime, but there remains large room for improvement in terms of accuracy. In this paper, we describe an easy-to-implement method, the “staggered semi-analytic method” (SSA), and conduct numerical tests to compare it to other implicit and semi-analytic methods, including the second-order implicit method and the Verlet method. SSA makes use of a staggered step to better approximate the terminal velocity in the stiff regime. In applications to protoplanetary disks, this not only leads to orders of magnitude higher accuracy than the other methods, but also provides greater stability, making it possible to take time steps 100 times larger in some situations. SSA is also second-order accurate and symplectic when . More generally, the robustness of SSA makes it applicable to linear dust–gas drag in virtually any context. Numerical simulations of dust–gas dynamics are one of the fundamental tools in astrophysical research, such as the study of star and planet formation. It is common to find tightly coupled dust and gas in astrophysical systems, which demands that any practical integration method be able to take time steps, \({\rm{\Delta }}t\), much longer than the stopping time, \({t}_{{\rm{s}}}\), due to drag. A number of methods have been developed to ensure stability in this stiff \(({\rm{\Delta }}t\gg {t}_{{\rm{s}}})\) regime, but there remains large room for improvement in terms of accuracy. In this paper, we describe an easy-to-implement method, the “staggered semi-analytic method” (SSA), and conduct numerical tests to compare it to other implicit and semi-analytic methods, including the second-order implicit method and the Verlet method. SSA makes use of a staggered step to better approximate the terminal velocity in the stiff regime. In applications to protoplanetary disks, this not only leads to orders of magnitude higher accuracy than the other methods, but also provides greater stability, making it possible to take time steps 100 times larger in some situations. SSA is also second-order accurate and symplectic when \({\rm{\Delta }}t\ll {t}_{{\rm{s}}}\). More generally, the robustness of SSA makes it applicable to linear dust–gas drag in virtually any context. |
Author | Muley, Dhruv Fung, Jeffrey |
Author_xml | – sequence: 1 givenname: Jeffrey surname: Fung fullname: Fung, Jeffrey email: fung@ias.edu organization: Institute for Advanced Study , 1 Einstein Drive, Princeton, NJ 08540, USA – sequence: 2 givenname: Dhruv surname: Muley fullname: Muley, Dhruv organization: University of California Department of Astronomy, Campbell Hall, Berkeley, CA 94720-3411, USA |
BookMark | eNp9kM9LwzAYhoNMcJvePQa8Wk3zo2mOY9MpTHaonkOapjWja2aSHvbf21FREPT0wcf7fLzfMwOTznUGgOsU3ZGc8vuUkTyhJGP3qqSsJmdg-r2agClCGU8QouICzELYIYQ4I2IKtgtYRNU0xpsKFmZvE9Wp9hithi8mvrsK1s7Dwu77VkXbNXDVhwjXXtkuwKIvd0ZHGB1cqwBXXjWX4LxWbTBXX3MO3h4fXpdPyWa7fl4uNonGOYoJxYzTMseCEsRzWmFFRIVTRCtKFDOYqpQYxQ3iGmfIaFZXjAsmsiqrS6EVmYOb8e7Bu4_ehCh3rvdD9SAxYTxDlHMxpNCY0t6F4E0tD97ulT_KFMmTNnlyJE-O5KhtQLJfiLZxeN11cXi6_Q-8HUHrDj9l_ox_AkHaf9A |
CitedBy_id | crossref_primary_10_1017_S1743921319008974 crossref_primary_10_3847_1538_4365_ac76cb crossref_primary_10_3847_1538_4365_ad14f9 crossref_primary_10_1093_mnras_staa1366 crossref_primary_10_3847_1538_4357_ac53ac |
Cites_doi | 10.1051/0004-6361:20054449 10.1093/mnras/stw691 10.1051/0004-6361:20042249 10.1093/mnras/sty1752 10.1093/mnras/stw396 10.3847/1538-4357/aadadd 10.3847/1538-4357/aa92cd 10.3847/1538-4357/aa7edb 10.3847/0004-637X/831/1/82 10.1093/mnras/stv2262 10.1006/jcph.2000.6605 10.1093/mnras/stw2946 10.3847/1538-4357/aa72f2 10.3847/2041-8213/ab2596 10.3847/1538-4365/ab0a0e 10.1093/mnras/stv2527 10.1111/j.1365-2966.2011.20201.x 10.3847/2515-5172/aaeac9 10.3847/1538-4357/aaca99 10.1111/j.1365-2966.2011.20202.x 10.1093/mnras/stu1367 10.3847/1538-4357/ab1265 10.1088/0067-0049/190/2/297 10.3847/1538-4357/aa8620 10.1093/mnras/stw202 10.1093/mnras/stx2395 10.1088/0004-637X/755/1/6 10.3847/0067-0049/224/2/39 10.1088/2041-8205/795/2/L39 10.1016/j.jcp.2010.01.034 10.1093/mnras/stx2833 10.1051/0004-6361/201628441 |
ContentType | Journal Article |
Copyright | 2019. The American Astronomical Society. All rights reserved. Copyright IOP Publishing Oct 2019 |
Copyright_xml | – notice: 2019. The American Astronomical Society. All rights reserved. – notice: Copyright IOP Publishing Oct 2019 |
DBID | AAYXX CITATION 7TG 8FD H8D KL. L7M |
DOI | 10.3847/1538-4365/ab45f3 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
DocumentTitleAlternate | A Staggered Semi-analytic Method for Simulating Dust Grains Subject to Gas Drag |
EISSN | 1538-4365 |
ExternalDocumentID | 10_3847_1538_4365_ab45f3 apjsab45f3 |
GroupedDBID | -~X 123 1JI 23N 4.4 6J9 85S AAFWJ AAGCD AAJIO ABCQX ABHWH ACBEA ACGFO ACGFS ACHIP ADACN AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU E3Z EBS F5P FRP GROUPED_DOAJ IJHAN IOP KOT L7B M~E N5L O3W O43 OK1 P2P PJBAE RIN RNP RNS ROL SY9 T37 UPT AAYXX CITATION 7TG 8FD AEINN H8D KL. L7M |
ID | FETCH-LOGICAL-c280t-42574b829430784d2a39d2104d43a5e24a13ea7e07c260ec5fd579596d6fb9ca3 |
IEDL.DBID | IOP |
ISSN | 0067-0049 |
IngestDate | Wed Aug 13 11:24:31 EDT 2025 Thu Apr 24 22:56:12 EDT 2025 Tue Jul 01 00:17:58 EDT 2025 Wed Aug 21 03:33:56 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c280t-42574b829430784d2a39d2104d43a5e24a13ea7e07c260ec5fd579596d6fb9ca3 |
Notes | AAS18977 Interstellar Matter and the Local Universe ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://iopscience.iop.org/article/10.3847/1538-4365/ab45f3/pdf |
PQID | 2357604779 |
PQPubID | 4562442 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_3847_1538_4365_ab45f3 crossref_citationtrail_10_3847_1538_4365_ab45f3 proquest_journals_2357604779 iop_journals_10_3847_1538_4365_ab45f3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-01 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Saskatoon |
PublicationPlace_xml | – name: Saskatoon |
PublicationTitle | The Astrophysical journal. Supplement series |
PublicationTitleAbbrev | APJS |
PublicationTitleAlternate | Astrophys. J. Suppl |
PublicationYear | 2019 |
Publisher | The American Astronomical Society IOP Publishing |
Publisher_xml | – name: The American Astronomical Society – name: IOP Publishing |
References | Pinilla (apjsab45f3bib26) 2016; 596 Ishiki (apjsab45f3bib13) 2018; 474 Laibe (apjsab45f3bib16) 2012b; 420 Miniati (apjsab45f3bib23) 2010; 229 Gárate (apjsab45f3bib11) 2019 Yang (apjsab45f3bib35) 2016; 224 Dong (apjsab45f3bib9) 2018; 866 Laibe (apjsab45f3bib17) 2014; 444 Pinilla (apjsab45f3bib27) 2017; 845 Surville (apjsab45f3bib32) 2016; 831 Lin (apjsab45f3bib19) 2017; 849 Bai (apjsab45f3bib2) 2010; 190 Auffinger (apjsab45f3bib1) 2018; 473 Cridland (apjsab45f3bib6) 2017; 465 Fu (apjsab45f3bib10) 2014; 795 Lorén-Aguilar (apjsab45f3bib20) 2015; 454 Laibe (apjsab45f3bib15) 2012a; 420 Lyra (apjsab45f3bib21) 2018; 2 Xu (apjsab45f3bib34) 2017; 847 Zhu (apjsab45f3bib38) 2012; 755 Han (apjsab45f3bib12) 2016 Sierra (apjsab45f3bib30) 2019; 876 Dong (apjsab45f3bib8) 2017; 843 Benéz-Llambay (apjsab45f3bib5) 2019; 241 Rosotti (apjsab45f3bib29) 2016; 459 Li (apjsab45f3bib18) 2018; 862 Mignone (apjsab45f3bib22) 2019 Paardekooper (apjsab45f3bib25) 2006; 453 Zhang (apjsab45f3bib36) 2019; 233 Cuello (apjsab45f3bib7) 2016; 458 Mott (apjsab45f3bib24) 2000; 164 Umurhan (apjsab45f3bib33) 2019 Popovas (apjsab45f3bib28) 2018; 479 Barrière-Fouchet (apjsab45f3bib3) 2005; 443 Stoyanovskaya (apjsab45f3bib31) 2018; 25 Zhu (apjsab45f3bib37) 2016; 458 Krapp (apjsab45f3bib14) 2019; 878 Baruteau (apjsab45f3bib4) 2016; 458 |
References_xml | – volume: 453 start-page: 1129 year: 2006 ident: apjsab45f3bib25 publication-title: A&A doi: 10.1051/0004-6361:20054449 – start-page: 49 year: 2016 ident: apjsab45f3bib12 – volume: 459 start-page: 2790 year: 2016 ident: apjsab45f3bib29 publication-title: MNRAS doi: 10.1093/mnras/stw691 – volume: 233 start-page: 317.03 year: 2019 ident: apjsab45f3bib36 publication-title: AAS Meeting – volume: 443 start-page: 185 year: 2005 ident: apjsab45f3bib3 publication-title: A&A doi: 10.1051/0004-6361:20042249 – volume: 479 start-page: 5136 year: 2018 ident: apjsab45f3bib28 publication-title: MNRAS doi: 10.1093/mnras/sty1752 – volume: 458 start-page: 2140 year: 2016 ident: apjsab45f3bib7 publication-title: MNRAS doi: 10.1093/mnras/stw396 – volume: 866 start-page: 110 year: 2018 ident: apjsab45f3bib9 publication-title: ApJ doi: 10.3847/1538-4357/aadadd – volume: 849 start-page: 129 year: 2017 ident: apjsab45f3bib19 publication-title: ApJ doi: 10.3847/1538-4357/aa92cd – volume: 845 start-page: 68 year: 2017 ident: apjsab45f3bib27 publication-title: ApJ doi: 10.3847/1538-4357/aa7edb – volume: 831 start-page: 82 year: 2016 ident: apjsab45f3bib32 publication-title: ApJ doi: 10.3847/0004-637X/831/1/82 – volume: 454 start-page: 4114 year: 2015 ident: apjsab45f3bib20 publication-title: MNRAS doi: 10.1093/mnras/stv2262 – volume: 164 start-page: 407 year: 2000 ident: apjsab45f3bib24 publication-title: JCoPh doi: 10.1006/jcph.2000.6605 – volume: 465 start-page: 3865 year: 2017 ident: apjsab45f3bib6 publication-title: MNRAS doi: 10.1093/mnras/stw2946 – volume: 843 start-page: 127 year: 2017 ident: apjsab45f3bib8 publication-title: ApJ doi: 10.3847/1538-4357/aa72f2 – volume: 878 start-page: L30 year: 2019 ident: apjsab45f3bib14 publication-title: ApJL doi: 10.3847/2041-8213/ab2596 – year: 2019 ident: apjsab45f3bib22 – volume: 241 start-page: 25 year: 2019 ident: apjsab45f3bib5 publication-title: ApJS doi: 10.3847/1538-4365/ab0a0e – volume: 458 start-page: 3927 year: 2016 ident: apjsab45f3bib4 publication-title: MNRAS doi: 10.1093/mnras/stv2527 – volume: 420 start-page: 2365 year: 2012b ident: apjsab45f3bib16 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.20201.x – volume: 2 start-page: 195 year: 2018 ident: apjsab45f3bib21 publication-title: RNAAS doi: 10.3847/2515-5172/aaeac9 – year: 2019 ident: apjsab45f3bib33 – volume: 862 start-page: 14 year: 2018 ident: apjsab45f3bib18 publication-title: ApJ doi: 10.3847/1538-4357/aaca99 – volume: 420 start-page: 2345 year: 2012a ident: apjsab45f3bib15 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.20202.x – volume: 444 start-page: 1940 year: 2014 ident: apjsab45f3bib17 publication-title: MNRAS doi: 10.1093/mnras/stu1367 – volume: 876 start-page: 7 year: 2019 ident: apjsab45f3bib30 publication-title: ApJ doi: 10.3847/1538-4357/ab1265 – volume: 190 start-page: 297 year: 2010 ident: apjsab45f3bib2 publication-title: ApJS doi: 10.1088/0067-0049/190/2/297 – volume: 847 start-page: 52 year: 2017 ident: apjsab45f3bib34 publication-title: ApJ doi: 10.3847/1538-4357/aa8620 – volume: 458 start-page: 3918 year: 2016 ident: apjsab45f3bib37 publication-title: MNRAS doi: 10.1093/mnras/stw202 – volume: 25 start-page: 25 year: 2018 ident: apjsab45f3bib31 publication-title: A&C – year: 2019 ident: apjsab45f3bib11 – volume: 473 start-page: 796 year: 2018 ident: apjsab45f3bib1 publication-title: MNRAS doi: 10.1093/mnras/stx2395 – volume: 755 start-page: 6 year: 2012 ident: apjsab45f3bib38 publication-title: ApJ doi: 10.1088/0004-637X/755/1/6 – volume: 224 start-page: 39 year: 2016 ident: apjsab45f3bib35 publication-title: ApJS doi: 10.3847/0067-0049/224/2/39 – volume: 795 start-page: L39 year: 2014 ident: apjsab45f3bib10 publication-title: ApJL doi: 10.1088/2041-8205/795/2/L39 – volume: 229 start-page: 3916 year: 2010 ident: apjsab45f3bib23 publication-title: JCoPh doi: 10.1016/j.jcp.2010.01.034 – volume: 474 start-page: 1935 year: 2018 ident: apjsab45f3bib13 publication-title: MNRAS doi: 10.1093/mnras/stx2833 – volume: 596 start-page: A81 year: 2016 ident: apjsab45f3bib26 publication-title: A&A doi: 10.1051/0004-6361/201628441 |
SSID | ssj0007539 |
Score | 2.326321 |
Snippet | Numerical simulations of dust-gas dynamics are one of the fundamental tools in astrophysical research, such as the study of star and planet formation. It is... Numerical simulations of dust–gas dynamics are one of the fundamental tools in astrophysical research, such as the study of star and planet formation. It is... |
SourceID | proquest crossref iop |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 42 |
SubjectTerms | Astrophysical dust processes Astrophysical research Circumstellar dust Circumstellar matter Computational astronomy Computational methods Computer simulation Debris disks Drag Dust Exoplanet formation Gas dynamics Interstellar dust Interstellar dust processes Mathematical analysis Methods Numerical simulations Planet formation Protoplanetary disks Protoplanets Robustness (mathematics) Stability Terminal velocity Very small grains |
Title | A Staggered Semi-analytic Method for Simulating Dust Grains Subject to Gas Drag |
URI | https://iopscience.iop.org/article/10.3847/1538-4365/ab45f3 https://www.proquest.com/docview/2357604779 |
Volume | 244 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED5BERIv24AhGGzyw0DiIW0a23GsPVVjgCZBkQDBw6TIjpMKQVvUpA_sr99dnHbihxDiJfLDxUnOvvN3F_s7gO9CR5ZHqsDJq2QgVKgDRBlJoLqRcaoQUljKd5ycxseX4ve1vF6AH_OzMOP7xvW3semJgr0Kyb45-tJObaOCx7JjrJAFX4QlnuDCSaf3-mdzN4w43GNf9ASEg_0_yhd7eLQmLeJznznmerU5_Ah_Zu_pN5nctqeVbWd_n1A4vvNDPsGHBoWynhddhYV8tAabvZLy4uPhA9tjddunPco1WD7zrXXo9xji08GASnyy83x4ExiiNcF-2EldjJohCmbnN8O6LNhowA6mZcWOqBBFydBLUdqHVWN2ZEp2MDGDz3B5-Ovi53HQFGUIsigJq4BsXNgkItp2lQgXGa4dxo3CCW5kHgnT5blReagyDJXyTBZOUj3z2MWF1ZnhG9AajUf5JrCuNFZLl3AnKUp0OiwiWYiY226SaeG2oDMbljRrGMupcMZdipELaTAlDaakwdRrcAv253fce7aOV2R3cWDSxmTLV-R2ZnPhvzCRBMWhUEp_eWM327CCWEv7fYA70Kom0_wr4pnKfqvnLV77_OofF3DqUg |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xUKteKh6tgELrAyD1kG7Wjzg-cFh1u0B5ShSVW-rEzgqJfYgEVfyq_kVm4rBV1Qr1ws0Hx0o-z-ObsTMDsC0NzwXXJQqvVpHUsYmQZaSR7nLrdCmVzCnfcXKaHFzKr1fqag5-zf6FmUxb0_8Jh6FQcICQ9FugLe00OipFojo2l6oUnakr21uVR_7-J8Zs1d5hHzd4h_PBl2-fD6K2rUBU8DSuI5JSmaecCo_rVDpuhXEY-UgnhVWeS9sV3mof6wLJvi9U6RR15E5cUuamsALXnYdFJdC1oQKdie8z04_cP_BttD7EvcO56D_f-g8_OI_f-pczaDzcYAlet9SU9QIQyzDnxyuw1qsoWT4Z3bNd1oxDLqRagRfnYbQKZz2GpHU4pL6f7MKPriNLtU5wHXbSdKhmSI3ZxfWo6RU2HrL-XVWzfepOUTE0XZQLYvWE7duK9W_t8A1cPgukb2FhPBn7NWBdZXOjXCqcotDRmbjkqpSJyLtpYaRbh84jblnRljGnbho3GYYzhHRGSGeEdBaQXoePsyemoYTHE3N3cCuyVo-rJ-ZtPm7W78lUOSiJpdZm4z-X-QAvz_uD7Pjw9OgdvEIuZsI9wU1YqG_v_BbynTp_38gYgx_PLdQP2EgG1w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Staggered+Semi-analytic+Method+for+Simulating+Dust+Grains+Subject+to+Gas+Drag&rft.jtitle=The+Astrophysical+journal.+Supplement+series&rft.au=Fung%2C+Jeffrey&rft.au=Muley%2C+Dhruv&rft.date=2019-10-01&rft.issn=0067-0049&rft.eissn=1538-4365&rft.volume=244&rft.issue=2&rft.spage=42&rft_id=info:doi/10.3847%2F1538-4365%2Fab45f3&rft.externalDBID=n%2Fa&rft.externalDocID=10_3847_1538_4365_ab45f3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0067-0049&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0067-0049&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0067-0049&client=summon |