Quantum dynamics of Gaudin magnets

Quantum dynamics of many-body systems is a fascinating and significant subject for both theory and experiment. The question of how an isolated many-body system evolves to its steady state after a sudden perturbation or quench still remains challenging. In this paper, using the Bethe ansatz wave func...

Full description

Saved in:
Bibliographic Details
Published inCommunications in theoretical physics Vol. 74; no. 9; pp. 95102 - 95111
Main Authors He, Wen-Bin, Chesi, Stefano, Lin, Hai-Qing, Guan, Xi-Wen
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.09.2022
Subjects
Online AccessGet full text
ISSN0253-6102
1572-9494
DOI10.1088/1572-9494/ac5417

Cover

Loading…
Abstract Quantum dynamics of many-body systems is a fascinating and significant subject for both theory and experiment. The question of how an isolated many-body system evolves to its steady state after a sudden perturbation or quench still remains challenging. In this paper, using the Bethe ansatz wave function, we study the quantum dynamics of an inhomogeneous Gaudin magnet. We derive explicit analytical expressions for various local dynamic quantities with an arbitrary number of flipped bath spins, such as: the spin distribution function, the spin–spin correlation function, and the Loschmidt echo. We also numerically study the relaxation behavior of these dynamic properties, gaining considerable insight into coherence and entanglement between the central spin and the bath. In particular, we find that the spin–spin correlations relax to their steady value via a nearly logarithmic scaling, whereas the Loschmidt echo shows an exponential relaxation to its steady value. Our results advance the understanding of relaxation dynamics and quantum correlations of long-range interacting models of the Gaudin type.
AbstractList Quantum dynamics of many-body systems is a fascinating and significant subject for both theory and experiment. The question of how an isolated many-body system evolves to its steady state after a sudden perturbation or quench still remains challenging. In this paper, using the Bethe ansatz wave function, we study the quantum dynamics of an inhomogeneous Gaudin magnet. We derive explicit analytical expressions for various local dynamic quantities with an arbitrary number of flipped bath spins, such as: the spin distribution function, the spin–spin correlation function, and the Loschmidt echo. We also numerically study the relaxation behavior of these dynamic properties, gaining considerable insight into coherence and entanglement between the central spin and the bath. In particular, we find that the spin–spin correlations relax to their steady value via a nearly logarithmic scaling, whereas the Loschmidt echo shows an exponential relaxation to its steady value. Our results advance the understanding of relaxation dynamics and quantum correlations of long-range interacting models of the Gaudin type.
Author Lin, Hai-Qing
Chesi, Stefano
Guan, Xi-Wen
He, Wen-Bin
Author_xml – sequence: 1
  givenname: Wen-Bin
  surname: He
  fullname: He, Wen-Bin
  organization: The Abdus Salam International Center for Theoretical Physics , Strada Costiera 11, I-34151 Trieste, Italy
– sequence: 2
  givenname: Stefano
  surname: Chesi
  fullname: Chesi, Stefano
  organization: Beijing Normal University Department of Physics, Beijing 100875, China
– sequence: 3
  givenname: Hai-Qing
  surname: Lin
  fullname: Lin, Hai-Qing
  organization: Beijing Normal University Department of Physics, Beijing 100875, China
– sequence: 4
  givenname: Xi-Wen
  surname: Guan
  fullname: Guan, Xi-Wen
  organization: Australian National University Department of Theoretical Physics, Research School of Physics and Engineering, Canberra ACT 0200, Australia
BookMark eNp9z89LwzAUwPEgE-ymd4_Fs3UvP9o0Rxk6hYEIeg6vaSIZazKa9rD_3pXJDoKeHjze98FnTmYhBkvILYUHCnW9pKVkhRJKLNGUgsoLkp1XM5IBK3lRUWBXZJ7SFgCYrGhG7t5HDMPY5e0hYOdNyqPL1zi2PuQdfgU7pGty6XCX7M3PXJDP56eP1UuxeVu_rh43hWE1DAUvuZSKIqJyXDWiUQ2rWyusMJJzKilTrRFSGlCqdUpSrKBxzpSupiUwwxekOv01fUypt04bP-DgYxh69DtNQU9SPbH0xNIn6TGEX-G-9x32h_-S-1Pi415v49iHo-zv828zSGQY
CitedBy_id crossref_primary_10_1103_PhysRevA_108_042210
crossref_primary_10_1002_apxr_202300078
crossref_primary_10_1088_1751_8121_ad043a
Cites_doi 10.21468/SciPostPhys.3.4.028
10.1103/PhysRevB.94.014310
10.1103/PhysRevB.98.161122
10.1103/PhysRevB.77.064503
10.1038/nature10748
10.1103/PhysRevE.50.888
10.1103/PhysRevLett.110.040405
10.1016/j.aop.2010.09.012
10.1103/PhysRevB.70.195340
10.1103/PhysRevB.96.054503
10.1063/1.1704046
10.1103/PhysRevB.90.064301
10.1007/BF01645779
10.1103/PhysRevB.67.195329
10.1103/PhysRevLett.91.147902
10.1088/1751-8113/45/48/485202
10.1103/PhysRevLett.123.086602
10.1103/PhysRevLett.102.057601
10.1103/PhysRevB.88.085323
10.1103/PhysRevLett.92.034101
10.1103/RevModPhys.76.643
10.1103/RevModPhys.83.863
10.1103/PhysRevE.89.022915
10.1103/PhysRevE.71.016209
10.1103/PhysRevB.85.115130
10.1103/PhysRevLett.98.050405
10.1103/PhysRevA.43.2046
10.1103/PhysRevLett.88.186802
10.1038/317505a0
10.1103/RevModPhys.85.1633
10.1103/PhysRevB.101.155145
10.1103/PhysRevB.76.014304
10.1103/PhysRevLett.33.589
10.1103/PhysRevResearch.1.033189
10.1103/PhysRevB.99.174308
10.1103/PhysRevB.65.060502
10.1103/PhysRevB.81.165315
10.1103/PhysRevB.90.060301
10.1103/PhysRevLett.113.187203
10.1038/nature04693
10.1103/RevModPhys.88.041001
10.1103/PhysRevLett.110.135704
10.1038/ncomms3291
10.1.1.556.5398
10.1103/PhysRevLett.122.040604
10.1103/PhysRevE.67.056702
10.1103/PhysRevLett.124.160603
10.1103/PhysRevLett.89.284102
10.1002/pssb.200945229
10.1103/PhysRevResearch.2.032052
10.1088/0034-4885/80/1/016001
10.1103/PhysRevLett.112.257204
10.1103/PhysRevLett.113.117202
10.1103/PhysRevB.88.155305
10.1103/PhysRevLett.127.080401
10.1103/PhysRevB.102.115301
ContentType Journal Article
Copyright 2022 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing
Copyright_xml – notice: 2022 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing
DBID AAYXX
CITATION
DOI 10.1088/1572-9494/ac5417
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1572-9494
ExternalDocumentID 10_1088_1572_9494_ac5417
ctpac5417
GrantInformation_xml – fundername: National Science Association Funds
  grantid: U1930402
– fundername: National Key R&D Program of China
  grantid: 2016YFA0301200; 2017YFA0304500
– fundername: NSFC
  grantid: 11534014; 1171101295; 11734002; 11874393; 1974040
GroupedDBID -SA
-S~
1JI
4.4
5B3
5GY
5VR
5VS
7.M
AAGCD
AAJIO
AATNI
AAXDM
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CAJEA
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CRLBU
CS3
CW9
DU5
E3Z
EBS
EDWGO
EMSAF
EPQRW
EQZZN
FA0
FRP
HAK
IJHAN
IOP
IZVLO
KOT
M45
N5L
NS0
P2P
PJBAE
Q--
RIN
RO9
ROL
RPA
SY9
U1G
U5K
UCJ
W28
AAYXX
ADEQX
CITATION
ID FETCH-LOGICAL-c280t-3537791aaa9f39b4b9b28de4e4c73317129dc477c099df971a60bffc5f81502c3
IEDL.DBID IOP
ISSN 0253-6102
IngestDate Thu Apr 24 23:06:30 EDT 2025
Tue Jul 01 01:36:06 EDT 2025
Wed Aug 21 03:35:03 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c280t-3537791aaa9f39b4b9b28de4e4c73317129dc477c099df971a60bffc5f81502c3
Notes CTP-211148.R1
PageCount 10
ParticipantIDs crossref_citationtrail_10_1088_1572_9494_ac5417
iop_journals_10_1088_1572_9494_ac5417
crossref_primary_10_1088_1572_9494_ac5417
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Communications in theoretical physics
PublicationTitleAbbrev CTP
PublicationTitleAlternate Commun. Theor. Phys
PublicationYear 2022
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References El Araby (ctpac5417bib38) 2012; 85
Faribault (ctpac5417bib40) 2012; 45
Emerson (ctpac5417bib56) 2002; 89
Wouters (ctpac5417bib45) 2014; 113
Dobrovitski (ctpac5417bib33) 2003; 67
Schering (ctpac5417bib28) 2019; 1
Suter (ctpac5417bib57) 2016; 88
Lieb (ctpac5417bib43) 1972; 28
Schollwock (ctpac5417bib52) 2011; 326
Wu (ctpac5417bib32) 2020; 101
Hetterich (ctpac5417bib14) 2018; 98
Yan (ctpac5417bib50) 2020; 124
Landau (ctpac5417bib2) 1957; 5
Vidal (ctpac5417bib51) 2003; 91
Dukelsky (ctpac5417bib35) 2004; 76
Weinstein (ctpac5417bib55) 2005; 71
Faribault (ctpac5417bib24) 2013; 110
Coish (ctpac5417bib20) 2004; 70
Faribault (ctpac5417bib25) 2013; 88
Coish (ctpac5417bib22) 2010; 81
Pyka (ctpac5417bib7) 2016; 4
Deutsch (ctpac5417bib8) 1991; 43
Yang (ctpac5417bib17) 2017; 80
Landau (ctpac5417bib3) 1959; 8
Luther (ctpac5417bib4) 1974; 33
Coish (ctpac5417bib16) 2009; 246
Stanek (ctpac5417bib27) 2014; 90
Guan (ctpac5417bib11) 2013; 85
von Keyserlingk (ctpac5417bib59) 2018; 8
Cywiński (ctpac5417bib21) 2009; 102
Zhou (ctpac5417bib36) 2002; 65
Liu (ctpac5417bib42) 2014; 112
ctpac5417bib53
Faribault (ctpac5417bib39) 2008; 77
Rigol (ctpac5417bib13) 2007; 98
Claeys (ctpac5417bib41) 2017; 3
He (ctpac5417bib30) 2019; 99
Landau (ctpac5417bib1) 1957; 3
Kinoshita (ctpac5417bib12) 2006; 440
Villazon (ctpac5417bib31) 2020; 2
Uhrig (ctpac5417bib34) 2014; 90
Dubertrand (ctpac5417bib49) 2014; 89
Srednicki (ctpac5417bib9) 1994; 50
Zurek (ctpac5417bib6) 1985; 317
Tonielli (ctpac5417bib48) 2019; 122
Veble (ctpac5417bib54) 2004; 92
Shen (ctpac5417bib58) 2017; 96
Guan (ctpac5417bib37)
Niknam (ctpac5417bib61) 2021; 127
Bortz (ctpac5417bib23) 2007; 76
Smith (ctpac5417bib60) 2019; 123
Khaetskii (ctpac5417bib19) 2003; 67
Cheneau (ctpac5417bib44) 2012; 481
Stanek (ctpac5417bib26) 2013; 88
Bonnes (ctpac5417bib15) 2014; 113
Heyl (ctpac5417bib46) 2013; 110
Polkovnikov (ctpac5417bib10) 2011; 83
Schering (ctpac5417bib29) 2020; 102
Lupo (ctpac5417bib47) 2016; 94
Khaetskii (ctpac5417bib18) 2002; 88
Luttinger (ctpac5417bib5) 1963; 4
References_xml – volume: 3
  start-page: 028
  year: 2017
  ident: ctpac5417bib41
  publication-title: SciPost. Phys.
  doi: 10.21468/SciPostPhys.3.4.028
– volume: 94
  year: 2016
  ident: ctpac5417bib47
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.014310
– volume: 8
  start-page: 70
  year: 1959
  ident: ctpac5417bib3
  publication-title: Sov. Phys. JETP
– volume: 3
  start-page: 920
  year: 1957
  ident: ctpac5417bib1
  publication-title: Sov. Phys. JETP
– volume: 98
  year: 2018
  ident: ctpac5417bib14
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.98.161122
– volume: 77
  year: 2008
  ident: ctpac5417bib39
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.77.064503
– volume: 481
  start-page: 484
  year: 2012
  ident: ctpac5417bib44
  publication-title: Nature
  doi: 10.1038/nature10748
– volume: 50
  start-page: 888
  year: 1994
  ident: ctpac5417bib9
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.50.888
– volume: 110
  year: 2013
  ident: ctpac5417bib24
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.040405
– volume: 326
  start-page: 96
  year: 2011
  ident: ctpac5417bib52
  publication-title: Ann. Phys.
  doi: 10.1016/j.aop.2010.09.012
– volume: 70
  year: 2004
  ident: ctpac5417bib20
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.70.195340
– ident: ctpac5417bib53
– volume: 96
  year: 2017
  ident: ctpac5417bib58
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.96.054503
– volume: 4
  start-page: 1154
  year: 1963
  ident: ctpac5417bib5
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1704046
– volume: 90
  year: 2014
  ident: ctpac5417bib27
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.064301
– volume: 28
  start-page: 251
  year: 1972
  ident: ctpac5417bib43
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01645779
– volume: 67
  year: 2003
  ident: ctpac5417bib19
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.67.195329
– volume: 5
  start-page: 101
  year: 1957
  ident: ctpac5417bib2
  publication-title: Sov. Phys. JETP
– volume: 91
  year: 2003
  ident: ctpac5417bib51
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.91.147902
– volume: 45
  year: 2012
  ident: ctpac5417bib40
  publication-title: J. Phys. A: Math. Theor.
  doi: 10.1088/1751-8113/45/48/485202
– volume: 123
  year: 2019
  ident: ctpac5417bib60
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.086602
– volume: 102
  year: 2009
  ident: ctpac5417bib21
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.057601
– volume: 88
  year: 2013
  ident: ctpac5417bib25
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.085323
– volume: 92
  year: 2004
  ident: ctpac5417bib54
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.034101
– volume: 76
  start-page: 643
  year: 2004
  ident: ctpac5417bib35
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.76.643
– volume: 83
  start-page: 863
  year: 2011
  ident: ctpac5417bib10
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.83.863
– volume: 89
  year: 2014
  ident: ctpac5417bib49
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.89.022915
– volume: 71
  year: 2005
  ident: ctpac5417bib55
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.71.016209
– volume: 85
  year: 2012
  ident: ctpac5417bib38
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.115130
– volume: 98
  year: 2007
  ident: ctpac5417bib13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.050405
– volume: 43
  start-page: 2046
  year: 1991
  ident: ctpac5417bib8
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.43.2046
– volume: 88
  year: 2002
  ident: ctpac5417bib18
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.186802
– volume: 317
  start-page: 10
  year: 1985
  ident: ctpac5417bib6
  publication-title: Nature
  doi: 10.1038/317505a0
– volume: 85
  start-page: 1633
  year: 2013
  ident: ctpac5417bib11
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.85.1633
– volume: 101
  year: 2020
  ident: ctpac5417bib32
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.101.155145
– volume: 76
  year: 2007
  ident: ctpac5417bib23
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.76.014304
– volume: 33
  start-page: 589
  year: 1974
  ident: ctpac5417bib4
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.33.589
– volume: 1
  year: 2019
  ident: ctpac5417bib28
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.1.033189
– volume: 99
  year: 2019
  ident: ctpac5417bib30
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.174308
– volume: 65
  year: 2002
  ident: ctpac5417bib36
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.65.060502
– volume: 81
  year: 2010
  ident: ctpac5417bib22
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.81.165315
– volume: 8
  year: 2018
  ident: ctpac5417bib59
  publication-title: Phys. Rev. X
– volume: 90
  year: 2014
  ident: ctpac5417bib34
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.060301
– volume: 113
  year: 2014
  ident: ctpac5417bib15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.187203
– volume: 440
  start-page: 900
  year: 2006
  ident: ctpac5417bib12
  publication-title: Nature
  doi: 10.1038/nature04693
– volume: 88
  year: 2016
  ident: ctpac5417bib57
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.88.041001
– volume: 110
  year: 2013
  ident: ctpac5417bib46
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.135704
– volume: 4
  start-page: 2291
  year: 2016
  ident: ctpac5417bib7
  publication-title: Nat Commun.
  doi: 10.1038/ncomms3291
– ident: ctpac5417bib37
  article-title: Exact results for BCS systems
  publication-title: JHEP Proc.
  doi: 10.1.1.556.5398
– volume: 122
  year: 2019
  ident: ctpac5417bib48
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.040604
– volume: 67
  year: 2003
  ident: ctpac5417bib33
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.67.056702
– volume: 124
  year: 2020
  ident: ctpac5417bib50
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.160603
– volume: 89
  year: 2002
  ident: ctpac5417bib56
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.89.284102
– volume: 246
  start-page: 2203
  year: 2009
  ident: ctpac5417bib16
  publication-title: Phys. Status Solidi B
  doi: 10.1002/pssb.200945229
– volume: 2
  year: 2020
  ident: ctpac5417bib31
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.2.032052
– volume: 80
  year: 2017
  ident: ctpac5417bib17
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/80/1/016001
– volume: 112
  year: 2014
  ident: ctpac5417bib42
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.257204
– volume: 113
  year: 2014
  ident: ctpac5417bib45
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.117202
– volume: 88
  year: 2013
  ident: ctpac5417bib26
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.155305
– volume: 127
  year: 2021
  ident: ctpac5417bib61
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.127.080401
– volume: 102
  year: 2020
  ident: ctpac5417bib29
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.102.115301
SSID ssj0002761
Score 2.3327832
Snippet Quantum dynamics of many-body systems is a fascinating and significant subject for both theory and experiment. The question of how an isolated many-body system...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 95102
SubjectTerms Bethe ansatz
central spin model
Gaudin magnets
Loschmidt echo
spin polarization
spin–spin correlation
Title Quantum dynamics of Gaudin magnets
URI https://iopscience.iop.org/article/10.1088/1572-9494/ac5417
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH5sE8GL06ls_qKIHjx0W5u0SfAk4pyCv8DBDkJJ0sSDrhu2vfjXm7TdUGEi3np4bcPX5r2v9HvfAzgmBGmTET03pCpwMRfSZX0euoIZduBJQ6KV7Ua-vQuHI3wzDsY1OFv0wkxnVervmsPSKLiEsBLE0Z4XEN9lmOEelwH2SB1WEA1DO7fh-v5hkYZ9UpilmpqOzPeRlfG0l13hW02qm_t-KTGDJjzPF1cqS167eSa68uOHb-M_V78B6xX1dM7L0E2oqaQFzYqGOtUmT1uwWqhCZboFR4-5AT6fOHE5tz51ptq54rmpd86EvyQqS7dhNLh8uhi61VAFV_q0n7kosBaDHuecacQEFkz4NFZYYWnHNxJT_2OJCZGGOsaaEY-HfaG1DDQ13NGXaAcayTRRbXCweZjK10gpj2OqQk44wiLWQcy06POgA705rJGsHMft4Iu3qPjzTWlkwYgsGFEJRgdOF2fMSreNX2JPDMZRteXSpXG7f4zbgzXftjYU-rF9aGTvuTowhCMTh8WL9Qlf6cmo
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB3RIhAXyirKGiE4cEjbxHYcHxFQWnYkkHoLtmNzANqKJBe-HjsxFSCBkLjlMNmeY8-LPPMewB6lSJsVMfCjWBEfcyF91uGRL5hhB4E0JFrZbuTLq6h3j88GZOB8TstemNHYLf0tc1gJBVcQuoK4uB0QGvoMM9zmkuCAtseprsE0QRGyFgb965vJUhzSUjDV5HVk_pFsKc_aT1f5kpdq5t6f0ky3AQ8fD1hVlzy1ily05Ns37cZ_vMECzDsK6h1W4YswpYZL0HB01HOTPVuCmbI6VGbLsHtbmAEoXry08q_PvJH2Tnlh8p73wh-HKs9W4L57cnfU8525gi_DuJP7iFipwYBzzjRiAgsmwjhVWGFpbRyp4QGpxJRKQyFTzWjAo47QWhIdGw4ZSrQK9eFoqNbAw2ZQVaiRUgHHsYo45QiLVJOUadHhpAntD2gT6ZTHrQHGc1LugMdxYgFJLCBJBUgTDiZnjCvVjV9i9w3OiZt62Y9x63-M24HZm-NuctG_Ot-AudB2O5QlZZtQz18LtWU4SC62y-_sHchCzww
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+dynamics+of+Gaudin+magnets&rft.jtitle=Communications+in+theoretical+physics&rft.au=He%2C+Wen-Bin&rft.au=Chesi%2C+Stefano&rft.au=Lin%2C+Hai-Qing&rft.au=Guan%2C+Xi-Wen&rft.date=2022-09-01&rft.issn=0253-6102&rft.eissn=1572-9494&rft.volume=74&rft.issue=9&rft.spage=95102&rft_id=info:doi/10.1088%2F1572-9494%2Fac5417&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1572_9494_ac5417
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0253-6102&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0253-6102&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0253-6102&client=summon