Quantum dynamics of Gaudin magnets
Quantum dynamics of many-body systems is a fascinating and significant subject for both theory and experiment. The question of how an isolated many-body system evolves to its steady state after a sudden perturbation or quench still remains challenging. In this paper, using the Bethe ansatz wave func...
Saved in:
Published in | Communications in theoretical physics Vol. 74; no. 9; pp. 95102 - 95111 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.09.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0253-6102 1572-9494 |
DOI | 10.1088/1572-9494/ac5417 |
Cover
Loading…
Abstract | Quantum dynamics of many-body systems is a fascinating and significant subject for both theory and experiment. The question of how an isolated many-body system evolves to its steady state after a sudden perturbation or quench still remains challenging. In this paper, using the Bethe ansatz wave function, we study the quantum dynamics of an inhomogeneous Gaudin magnet. We derive explicit analytical expressions for various local dynamic quantities with an arbitrary number of flipped bath spins, such as: the spin distribution function, the spin–spin correlation function, and the Loschmidt echo. We also numerically study the relaxation behavior of these dynamic properties, gaining considerable insight into coherence and entanglement between the central spin and the bath. In particular, we find that the spin–spin correlations relax to their steady value via a nearly logarithmic scaling, whereas the Loschmidt echo shows an exponential relaxation to its steady value. Our results advance the understanding of relaxation dynamics and quantum correlations of long-range interacting models of the Gaudin type. |
---|---|
AbstractList | Quantum dynamics of many-body systems is a fascinating and significant subject for both theory and experiment. The question of how an isolated many-body system evolves to its steady state after a sudden perturbation or quench still remains challenging. In this paper, using the Bethe ansatz wave function, we study the quantum dynamics of an inhomogeneous Gaudin magnet. We derive explicit analytical expressions for various local dynamic quantities with an arbitrary number of flipped bath spins, such as: the spin distribution function, the spin–spin correlation function, and the Loschmidt echo. We also numerically study the relaxation behavior of these dynamic properties, gaining considerable insight into coherence and entanglement between the central spin and the bath. In particular, we find that the spin–spin correlations relax to their steady value via a nearly logarithmic scaling, whereas the Loschmidt echo shows an exponential relaxation to its steady value. Our results advance the understanding of relaxation dynamics and quantum correlations of long-range interacting models of the Gaudin type. |
Author | Lin, Hai-Qing Chesi, Stefano Guan, Xi-Wen He, Wen-Bin |
Author_xml | – sequence: 1 givenname: Wen-Bin surname: He fullname: He, Wen-Bin organization: The Abdus Salam International Center for Theoretical Physics , Strada Costiera 11, I-34151 Trieste, Italy – sequence: 2 givenname: Stefano surname: Chesi fullname: Chesi, Stefano organization: Beijing Normal University Department of Physics, Beijing 100875, China – sequence: 3 givenname: Hai-Qing surname: Lin fullname: Lin, Hai-Qing organization: Beijing Normal University Department of Physics, Beijing 100875, China – sequence: 4 givenname: Xi-Wen surname: Guan fullname: Guan, Xi-Wen organization: Australian National University Department of Theoretical Physics, Research School of Physics and Engineering, Canberra ACT 0200, Australia |
BookMark | eNp9z89LwzAUwPEgE-ymd4_Fs3UvP9o0Rxk6hYEIeg6vaSIZazKa9rD_3pXJDoKeHjze98FnTmYhBkvILYUHCnW9pKVkhRJKLNGUgsoLkp1XM5IBK3lRUWBXZJ7SFgCYrGhG7t5HDMPY5e0hYOdNyqPL1zi2PuQdfgU7pGty6XCX7M3PXJDP56eP1UuxeVu_rh43hWE1DAUvuZSKIqJyXDWiUQ2rWyusMJJzKilTrRFSGlCqdUpSrKBxzpSupiUwwxekOv01fUypt04bP-DgYxh69DtNQU9SPbH0xNIn6TGEX-G-9x32h_-S-1Pi415v49iHo-zv828zSGQY |
CitedBy_id | crossref_primary_10_1103_PhysRevA_108_042210 crossref_primary_10_1002_apxr_202300078 crossref_primary_10_1088_1751_8121_ad043a |
Cites_doi | 10.21468/SciPostPhys.3.4.028 10.1103/PhysRevB.94.014310 10.1103/PhysRevB.98.161122 10.1103/PhysRevB.77.064503 10.1038/nature10748 10.1103/PhysRevE.50.888 10.1103/PhysRevLett.110.040405 10.1016/j.aop.2010.09.012 10.1103/PhysRevB.70.195340 10.1103/PhysRevB.96.054503 10.1063/1.1704046 10.1103/PhysRevB.90.064301 10.1007/BF01645779 10.1103/PhysRevB.67.195329 10.1103/PhysRevLett.91.147902 10.1088/1751-8113/45/48/485202 10.1103/PhysRevLett.123.086602 10.1103/PhysRevLett.102.057601 10.1103/PhysRevB.88.085323 10.1103/PhysRevLett.92.034101 10.1103/RevModPhys.76.643 10.1103/RevModPhys.83.863 10.1103/PhysRevE.89.022915 10.1103/PhysRevE.71.016209 10.1103/PhysRevB.85.115130 10.1103/PhysRevLett.98.050405 10.1103/PhysRevA.43.2046 10.1103/PhysRevLett.88.186802 10.1038/317505a0 10.1103/RevModPhys.85.1633 10.1103/PhysRevB.101.155145 10.1103/PhysRevB.76.014304 10.1103/PhysRevLett.33.589 10.1103/PhysRevResearch.1.033189 10.1103/PhysRevB.99.174308 10.1103/PhysRevB.65.060502 10.1103/PhysRevB.81.165315 10.1103/PhysRevB.90.060301 10.1103/PhysRevLett.113.187203 10.1038/nature04693 10.1103/RevModPhys.88.041001 10.1103/PhysRevLett.110.135704 10.1038/ncomms3291 10.1.1.556.5398 10.1103/PhysRevLett.122.040604 10.1103/PhysRevE.67.056702 10.1103/PhysRevLett.124.160603 10.1103/PhysRevLett.89.284102 10.1002/pssb.200945229 10.1103/PhysRevResearch.2.032052 10.1088/0034-4885/80/1/016001 10.1103/PhysRevLett.112.257204 10.1103/PhysRevLett.113.117202 10.1103/PhysRevB.88.155305 10.1103/PhysRevLett.127.080401 10.1103/PhysRevB.102.115301 |
ContentType | Journal Article |
Copyright | 2022 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing |
Copyright_xml | – notice: 2022 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing |
DBID | AAYXX CITATION |
DOI | 10.1088/1572-9494/ac5417 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1572-9494 |
ExternalDocumentID | 10_1088_1572_9494_ac5417 ctpac5417 |
GrantInformation_xml | – fundername: National Science Association Funds grantid: U1930402 – fundername: National Key R&D Program of China grantid: 2016YFA0301200; 2017YFA0304500 – fundername: NSFC grantid: 11534014; 1171101295; 11734002; 11874393; 1974040 |
GroupedDBID | -SA -S~ 1JI 4.4 5B3 5GY 5VR 5VS 7.M AAGCD AAJIO AATNI AAXDM ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CAJEA CCEZO CCVFK CEBXE CHBEP CJUJL CRLBU CS3 CW9 DU5 E3Z EBS EDWGO EMSAF EPQRW EQZZN FA0 FRP HAK IJHAN IOP IZVLO KOT M45 N5L NS0 P2P PJBAE Q-- RIN RO9 ROL RPA SY9 U1G U5K UCJ W28 AAYXX ADEQX CITATION |
ID | FETCH-LOGICAL-c280t-3537791aaa9f39b4b9b28de4e4c73317129dc477c099df971a60bffc5f81502c3 |
IEDL.DBID | IOP |
ISSN | 0253-6102 |
IngestDate | Thu Apr 24 23:06:30 EDT 2025 Tue Jul 01 01:36:06 EDT 2025 Wed Aug 21 03:35:03 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c280t-3537791aaa9f39b4b9b28de4e4c73317129dc477c099df971a60bffc5f81502c3 |
Notes | CTP-211148.R1 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1088_1572_9494_ac5417 iop_journals_10_1088_1572_9494_ac5417 crossref_primary_10_1088_1572_9494_ac5417 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Communications in theoretical physics |
PublicationTitleAbbrev | CTP |
PublicationTitleAlternate | Commun. Theor. Phys |
PublicationYear | 2022 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | El Araby (ctpac5417bib38) 2012; 85 Faribault (ctpac5417bib40) 2012; 45 Emerson (ctpac5417bib56) 2002; 89 Wouters (ctpac5417bib45) 2014; 113 Dobrovitski (ctpac5417bib33) 2003; 67 Schering (ctpac5417bib28) 2019; 1 Suter (ctpac5417bib57) 2016; 88 Lieb (ctpac5417bib43) 1972; 28 Schollwock (ctpac5417bib52) 2011; 326 Wu (ctpac5417bib32) 2020; 101 Hetterich (ctpac5417bib14) 2018; 98 Yan (ctpac5417bib50) 2020; 124 Landau (ctpac5417bib2) 1957; 5 Vidal (ctpac5417bib51) 2003; 91 Dukelsky (ctpac5417bib35) 2004; 76 Weinstein (ctpac5417bib55) 2005; 71 Faribault (ctpac5417bib24) 2013; 110 Coish (ctpac5417bib20) 2004; 70 Faribault (ctpac5417bib25) 2013; 88 Coish (ctpac5417bib22) 2010; 81 Pyka (ctpac5417bib7) 2016; 4 Deutsch (ctpac5417bib8) 1991; 43 Yang (ctpac5417bib17) 2017; 80 Landau (ctpac5417bib3) 1959; 8 Luther (ctpac5417bib4) 1974; 33 Coish (ctpac5417bib16) 2009; 246 Stanek (ctpac5417bib27) 2014; 90 Guan (ctpac5417bib11) 2013; 85 von Keyserlingk (ctpac5417bib59) 2018; 8 Cywiński (ctpac5417bib21) 2009; 102 Zhou (ctpac5417bib36) 2002; 65 Liu (ctpac5417bib42) 2014; 112 ctpac5417bib53 Faribault (ctpac5417bib39) 2008; 77 Rigol (ctpac5417bib13) 2007; 98 Claeys (ctpac5417bib41) 2017; 3 He (ctpac5417bib30) 2019; 99 Landau (ctpac5417bib1) 1957; 3 Kinoshita (ctpac5417bib12) 2006; 440 Villazon (ctpac5417bib31) 2020; 2 Uhrig (ctpac5417bib34) 2014; 90 Dubertrand (ctpac5417bib49) 2014; 89 Srednicki (ctpac5417bib9) 1994; 50 Zurek (ctpac5417bib6) 1985; 317 Tonielli (ctpac5417bib48) 2019; 122 Veble (ctpac5417bib54) 2004; 92 Shen (ctpac5417bib58) 2017; 96 Guan (ctpac5417bib37) Niknam (ctpac5417bib61) 2021; 127 Bortz (ctpac5417bib23) 2007; 76 Smith (ctpac5417bib60) 2019; 123 Khaetskii (ctpac5417bib19) 2003; 67 Cheneau (ctpac5417bib44) 2012; 481 Stanek (ctpac5417bib26) 2013; 88 Bonnes (ctpac5417bib15) 2014; 113 Heyl (ctpac5417bib46) 2013; 110 Polkovnikov (ctpac5417bib10) 2011; 83 Schering (ctpac5417bib29) 2020; 102 Lupo (ctpac5417bib47) 2016; 94 Khaetskii (ctpac5417bib18) 2002; 88 Luttinger (ctpac5417bib5) 1963; 4 |
References_xml | – volume: 3 start-page: 028 year: 2017 ident: ctpac5417bib41 publication-title: SciPost. Phys. doi: 10.21468/SciPostPhys.3.4.028 – volume: 94 year: 2016 ident: ctpac5417bib47 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.014310 – volume: 8 start-page: 70 year: 1959 ident: ctpac5417bib3 publication-title: Sov. Phys. JETP – volume: 3 start-page: 920 year: 1957 ident: ctpac5417bib1 publication-title: Sov. Phys. JETP – volume: 98 year: 2018 ident: ctpac5417bib14 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.161122 – volume: 77 year: 2008 ident: ctpac5417bib39 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.77.064503 – volume: 481 start-page: 484 year: 2012 ident: ctpac5417bib44 publication-title: Nature doi: 10.1038/nature10748 – volume: 50 start-page: 888 year: 1994 ident: ctpac5417bib9 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.50.888 – volume: 110 year: 2013 ident: ctpac5417bib24 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.040405 – volume: 326 start-page: 96 year: 2011 ident: ctpac5417bib52 publication-title: Ann. Phys. doi: 10.1016/j.aop.2010.09.012 – volume: 70 year: 2004 ident: ctpac5417bib20 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.70.195340 – ident: ctpac5417bib53 – volume: 96 year: 2017 ident: ctpac5417bib58 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.96.054503 – volume: 4 start-page: 1154 year: 1963 ident: ctpac5417bib5 publication-title: J. Math. Phys. doi: 10.1063/1.1704046 – volume: 90 year: 2014 ident: ctpac5417bib27 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.064301 – volume: 28 start-page: 251 year: 1972 ident: ctpac5417bib43 publication-title: Commun. Math. Phys. doi: 10.1007/BF01645779 – volume: 67 year: 2003 ident: ctpac5417bib19 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.67.195329 – volume: 5 start-page: 101 year: 1957 ident: ctpac5417bib2 publication-title: Sov. Phys. JETP – volume: 91 year: 2003 ident: ctpac5417bib51 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.91.147902 – volume: 45 year: 2012 ident: ctpac5417bib40 publication-title: J. Phys. A: Math. Theor. doi: 10.1088/1751-8113/45/48/485202 – volume: 123 year: 2019 ident: ctpac5417bib60 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.086602 – volume: 102 year: 2009 ident: ctpac5417bib21 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.057601 – volume: 88 year: 2013 ident: ctpac5417bib25 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.085323 – volume: 92 year: 2004 ident: ctpac5417bib54 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.92.034101 – volume: 76 start-page: 643 year: 2004 ident: ctpac5417bib35 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.76.643 – volume: 83 start-page: 863 year: 2011 ident: ctpac5417bib10 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.83.863 – volume: 89 year: 2014 ident: ctpac5417bib49 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.89.022915 – volume: 71 year: 2005 ident: ctpac5417bib55 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.71.016209 – volume: 85 year: 2012 ident: ctpac5417bib38 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.115130 – volume: 98 year: 2007 ident: ctpac5417bib13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.050405 – volume: 43 start-page: 2046 year: 1991 ident: ctpac5417bib8 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.43.2046 – volume: 88 year: 2002 ident: ctpac5417bib18 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.186802 – volume: 317 start-page: 10 year: 1985 ident: ctpac5417bib6 publication-title: Nature doi: 10.1038/317505a0 – volume: 85 start-page: 1633 year: 2013 ident: ctpac5417bib11 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.85.1633 – volume: 101 year: 2020 ident: ctpac5417bib32 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.101.155145 – volume: 76 year: 2007 ident: ctpac5417bib23 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.76.014304 – volume: 33 start-page: 589 year: 1974 ident: ctpac5417bib4 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.33.589 – volume: 1 year: 2019 ident: ctpac5417bib28 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.1.033189 – volume: 99 year: 2019 ident: ctpac5417bib30 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.174308 – volume: 65 year: 2002 ident: ctpac5417bib36 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.65.060502 – volume: 81 year: 2010 ident: ctpac5417bib22 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.165315 – volume: 8 year: 2018 ident: ctpac5417bib59 publication-title: Phys. Rev. X – volume: 90 year: 2014 ident: ctpac5417bib34 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.060301 – volume: 113 year: 2014 ident: ctpac5417bib15 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.187203 – volume: 440 start-page: 900 year: 2006 ident: ctpac5417bib12 publication-title: Nature doi: 10.1038/nature04693 – volume: 88 year: 2016 ident: ctpac5417bib57 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.88.041001 – volume: 110 year: 2013 ident: ctpac5417bib46 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.135704 – volume: 4 start-page: 2291 year: 2016 ident: ctpac5417bib7 publication-title: Nat Commun. doi: 10.1038/ncomms3291 – ident: ctpac5417bib37 article-title: Exact results for BCS systems publication-title: JHEP Proc. doi: 10.1.1.556.5398 – volume: 122 year: 2019 ident: ctpac5417bib48 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.040604 – volume: 67 year: 2003 ident: ctpac5417bib33 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.67.056702 – volume: 124 year: 2020 ident: ctpac5417bib50 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.160603 – volume: 89 year: 2002 ident: ctpac5417bib56 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.89.284102 – volume: 246 start-page: 2203 year: 2009 ident: ctpac5417bib16 publication-title: Phys. Status Solidi B doi: 10.1002/pssb.200945229 – volume: 2 year: 2020 ident: ctpac5417bib31 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.2.032052 – volume: 80 year: 2017 ident: ctpac5417bib17 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/80/1/016001 – volume: 112 year: 2014 ident: ctpac5417bib42 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.257204 – volume: 113 year: 2014 ident: ctpac5417bib45 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.117202 – volume: 88 year: 2013 ident: ctpac5417bib26 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.155305 – volume: 127 year: 2021 ident: ctpac5417bib61 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.127.080401 – volume: 102 year: 2020 ident: ctpac5417bib29 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.102.115301 |
SSID | ssj0002761 |
Score | 2.3327832 |
Snippet | Quantum dynamics of many-body systems is a fascinating and significant subject for both theory and experiment. The question of how an isolated many-body system... |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 95102 |
SubjectTerms | Bethe ansatz central spin model Gaudin magnets Loschmidt echo spin polarization spin–spin correlation |
Title | Quantum dynamics of Gaudin magnets |
URI | https://iopscience.iop.org/article/10.1088/1572-9494/ac5417 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH5sE8GL06ls_qKIHjx0W5u0SfAk4pyCv8DBDkJJ0sSDrhu2vfjXm7TdUGEi3np4bcPX5r2v9HvfAzgmBGmTET03pCpwMRfSZX0euoIZduBJQ6KV7Ua-vQuHI3wzDsY1OFv0wkxnVervmsPSKLiEsBLE0Z4XEN9lmOEelwH2SB1WEA1DO7fh-v5hkYZ9UpilmpqOzPeRlfG0l13hW02qm_t-KTGDJjzPF1cqS167eSa68uOHb-M_V78B6xX1dM7L0E2oqaQFzYqGOtUmT1uwWqhCZboFR4-5AT6fOHE5tz51ptq54rmpd86EvyQqS7dhNLh8uhi61VAFV_q0n7kosBaDHuecacQEFkz4NFZYYWnHNxJT_2OJCZGGOsaaEY-HfaG1DDQ13NGXaAcayTRRbXCweZjK10gpj2OqQk44wiLWQcy06POgA705rJGsHMft4Iu3qPjzTWlkwYgsGFEJRgdOF2fMSreNX2JPDMZRteXSpXG7f4zbgzXftjYU-rF9aGTvuTowhCMTh8WL9Qlf6cmo |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB3RIhAXyirKGiE4cEjbxHYcHxFQWnYkkHoLtmNzANqKJBe-HjsxFSCBkLjlMNmeY8-LPPMewB6lSJsVMfCjWBEfcyF91uGRL5hhB4E0JFrZbuTLq6h3j88GZOB8TstemNHYLf0tc1gJBVcQuoK4uB0QGvoMM9zmkuCAtseprsE0QRGyFgb965vJUhzSUjDV5HVk_pFsKc_aT1f5kpdq5t6f0ky3AQ8fD1hVlzy1ily05Ns37cZ_vMECzDsK6h1W4YswpYZL0HB01HOTPVuCmbI6VGbLsHtbmAEoXry08q_PvJH2Tnlh8p73wh-HKs9W4L57cnfU8525gi_DuJP7iFipwYBzzjRiAgsmwjhVWGFpbRyp4QGpxJRKQyFTzWjAo47QWhIdGw4ZSrQK9eFoqNbAw2ZQVaiRUgHHsYo45QiLVJOUadHhpAntD2gT6ZTHrQHGc1LugMdxYgFJLCBJBUgTDiZnjCvVjV9i9w3OiZt62Y9x63-M24HZm-NuctG_Ot-AudB2O5QlZZtQz18LtWU4SC62y-_sHchCzww |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+dynamics+of+Gaudin+magnets&rft.jtitle=Communications+in+theoretical+physics&rft.au=He%2C+Wen-Bin&rft.au=Chesi%2C+Stefano&rft.au=Lin%2C+Hai-Qing&rft.au=Guan%2C+Xi-Wen&rft.date=2022-09-01&rft.issn=0253-6102&rft.eissn=1572-9494&rft.volume=74&rft.issue=9&rft.spage=95102&rft_id=info:doi/10.1088%2F1572-9494%2Fac5417&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1572_9494_ac5417 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0253-6102&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0253-6102&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0253-6102&client=summon |