Renner–Teller intersections along the collinear axes of polyatomic molecules: H2CN as a case study
The tetra-atomic C2H2+ cation is known to form Renner–Teller-type intersections along its collinear axis. Not too long ago, we studied the nonadiabatic coupling terms (NACTs) of this molecule [G. J. Halász et al., J. Chem. Phys. 126, 154309 (2007)] and revealed two kinds of intersections. (i) By emp...
Saved in:
Published in | The Journal of chemical physics Vol. 133; no. 8; p. 084107 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
28.08.2010
|
Online Access | Get full text |
Cover
Loading…
Abstract | The tetra-atomic C2H2+ cation is known to form Renner–Teller-type intersections along its collinear axis. Not too long ago, we studied the nonadiabatic coupling terms (NACTs) of this molecule [G. J. Halász et al., J. Chem. Phys. 126, 154309 (2007)] and revealed two kinds of intersections. (i) By employing one of the hydrogens as a test particle, we revealed the fact that indeed the corresponding (angular) NACTs produce topological (Berry) phases that are equal to 2π, which is a result anticipated in the case of Renner–Teller intersections. (ii) However, to our big surprise, repeating this study when one of the atoms (in this case a hydrogen) is shifted from the collinear arrangement yields for the corresponding topological phase a value that equals π (and not 2π). In other words, shifting (even slightly) one of the atoms from the collinear arrangement causes the intersection to change its character and become a Jahn–Teller intersection. This somewhat unexpected novel result was later further analyzed and confirmed by other groups [e.g., T. Vertesi and R. Englman, J. Phys. B 41, 025102 (2008)]. The present article is devoted to another tetra-atomic molecule, namely, the H2CN molecule, which just like the C2H2+ ion, is characterized by Renner–Teller intersections along its collinear axis. Indeed, we revealed the existence of Renner–Teller intersections along the collinear axis, but in contrast to the C2H2+ case a shift of one atom from the collinear arrangement did not form Jahn–Teller intersections. What we found instead is that the noncollinear molecule was not affected by the shift and kept its Renner–Teller character. Another issue treated in this article is the extension of (the two-state) Berry (topological) phase to situations with numerous strongly interacting states. So far the relevance of the Berry phase was tested for systems characterized by two isolated interacting states, although it is defined for any number of interacting states [M. V. Berry, Proc. R. Soc. London, Ser. A 392, 45 (1984)]. We intend to show how to overcome this limitation and get a valid, fully justified definition of a Berry phase for an isolated system of any number of interacting states (as is expected). |
---|---|
AbstractList | The tetra-atomic C(2)H(2)(+) cation is known to form Renner-Teller-type intersections along its collinear axis. Not too long ago, we studied the nonadiabatic coupling terms (NACTs) of this molecule [G. J. Halász et al., J. Chem. Phys. 126, 154309 (2007)] and revealed two kinds of intersections. (i) By employing one of the hydrogens as a test particle, we revealed the fact that indeed the corresponding (angular) NACTs produce topological (Berry) phases that are equal to 2pi, which is a result anticipated in the case of Renner-Teller intersections. (ii) However, to our big surprise, repeating this study when one of the atoms (in this case a hydrogen) is shifted from the collinear arrangement yields for the corresponding topological phase a value that equals pi (and not 2pi). In other words, shifting (even slightly) one of the atoms from the collinear arrangement causes the intersection to change its character and become a Jahn-Teller intersection. This somewhat unexpected novel result was later further analyzed and confirmed by other groups [e.g., T. Vertesi and R. Englman, J. Phys. B 41, 025102 (2008)]. The present article is devoted to another tetra-atomic molecule, namely, the H(2)CN molecule, which just like the C(2)H(2)(+) ion, is characterized by Renner-Teller intersections along its collinear axis. Indeed, we revealed the existence of Renner-Teller intersections along the collinear axis, but in contrast to the C(2)H(2)(+) case a shift of one atom from the collinear arrangement did not form Jahn-Teller intersections. What we found instead is that the noncollinear molecule was not affected by the shift and kept its Renner-Teller character. Another issue treated in this article is the extension of (the two-state) Berry (topological) phase to situations with numerous strongly interacting states. So far the relevance of the Berry phase was tested for systems characterized by two isolated interacting states, although it is defined for any number of interacting states [M. V. Berry, Proc. R. Soc. London, Ser. A 392, 45 (1984)]. We intend to show how to overcome this limitation and get a valid, fully justified definition of a Berry phase for an isolated system of any number of interacting states (as is expected). The tetra-atomic C2H2+ cation is known to form Renner–Teller-type intersections along its collinear axis. Not too long ago, we studied the nonadiabatic coupling terms (NACTs) of this molecule [G. J. Halász et al., J. Chem. Phys. 126, 154309 (2007)] and revealed two kinds of intersections. (i) By employing one of the hydrogens as a test particle, we revealed the fact that indeed the corresponding (angular) NACTs produce topological (Berry) phases that are equal to 2π, which is a result anticipated in the case of Renner–Teller intersections. (ii) However, to our big surprise, repeating this study when one of the atoms (in this case a hydrogen) is shifted from the collinear arrangement yields for the corresponding topological phase a value that equals π (and not 2π). In other words, shifting (even slightly) one of the atoms from the collinear arrangement causes the intersection to change its character and become a Jahn–Teller intersection. This somewhat unexpected novel result was later further analyzed and confirmed by other groups [e.g., T. Vertesi and R. Englman, J. Phys. B 41, 025102 (2008)]. The present article is devoted to another tetra-atomic molecule, namely, the H2CN molecule, which just like the C2H2+ ion, is characterized by Renner–Teller intersections along its collinear axis. Indeed, we revealed the existence of Renner–Teller intersections along the collinear axis, but in contrast to the C2H2+ case a shift of one atom from the collinear arrangement did not form Jahn–Teller intersections. What we found instead is that the noncollinear molecule was not affected by the shift and kept its Renner–Teller character. Another issue treated in this article is the extension of (the two-state) Berry (topological) phase to situations with numerous strongly interacting states. So far the relevance of the Berry phase was tested for systems characterized by two isolated interacting states, although it is defined for any number of interacting states [M. V. Berry, Proc. R. Soc. London, Ser. A 392, 45 (1984)]. We intend to show how to overcome this limitation and get a valid, fully justified definition of a Berry phase for an isolated system of any number of interacting states (as is expected). The tetra-atomic C(2)H(2)(+) cation is known to form Renner-Teller-type intersections along its collinear axis. Not too long ago, we studied the nonadiabatic coupling terms (NACTs) of this molecule [G. J. Halász et al., J. Chem. Phys. 126, 154309 (2007)] and revealed two kinds of intersections. (i) By employing one of the hydrogens as a test particle, we revealed the fact that indeed the corresponding (angular) NACTs produce topological (Berry) phases that are equal to 2pi, which is a result anticipated in the case of Renner-Teller intersections. (ii) However, to our big surprise, repeating this study when one of the atoms (in this case a hydrogen) is shifted from the collinear arrangement yields for the corresponding topological phase a value that equals pi (and not 2pi). In other words, shifting (even slightly) one of the atoms from the collinear arrangement causes the intersection to change its character and become a Jahn-Teller intersection. This somewhat unexpected novel result was later further analyzed and confirmed by other groups [e.g., T. Vertesi and R. Englman, J. Phys. B 41, 025102 (2008)]. The present article is devoted to another tetra-atomic molecule, namely, the H(2)CN molecule, which just like the C(2)H(2)(+) ion, is characterized by Renner-Teller intersections along its collinear axis. Indeed, we revealed the existence of Renner-Teller intersections along the collinear axis, but in contrast to the C(2)H(2)(+) case a shift of one atom from the collinear arrangement did not form Jahn-Teller intersections. What we found instead is that the noncollinear molecule was not affected by the shift and kept its Renner-Teller character. Another issue treated in this article is the extension of (the two-state) Berry (topological) phase to situations with numerous strongly interacting states. So far the relevance of the Berry phase was tested for systems characterized by two isolated interacting states, although it is defined for any number of interacting states [M. V. Berry, Proc. R. Soc. London, Ser. A 392, 45 (1984)]. We intend to show how to overcome this limitation and get a valid, fully justified definition of a Berry phase for an isolated system of any number of interacting states (as is expected).The tetra-atomic C(2)H(2)(+) cation is known to form Renner-Teller-type intersections along its collinear axis. Not too long ago, we studied the nonadiabatic coupling terms (NACTs) of this molecule [G. J. Halász et al., J. Chem. Phys. 126, 154309 (2007)] and revealed two kinds of intersections. (i) By employing one of the hydrogens as a test particle, we revealed the fact that indeed the corresponding (angular) NACTs produce topological (Berry) phases that are equal to 2pi, which is a result anticipated in the case of Renner-Teller intersections. (ii) However, to our big surprise, repeating this study when one of the atoms (in this case a hydrogen) is shifted from the collinear arrangement yields for the corresponding topological phase a value that equals pi (and not 2pi). In other words, shifting (even slightly) one of the atoms from the collinear arrangement causes the intersection to change its character and become a Jahn-Teller intersection. This somewhat unexpected novel result was later further analyzed and confirmed by other groups [e.g., T. Vertesi and R. Englman, J. Phys. B 41, 025102 (2008)]. The present article is devoted to another tetra-atomic molecule, namely, the H(2)CN molecule, which just like the C(2)H(2)(+) ion, is characterized by Renner-Teller intersections along its collinear axis. Indeed, we revealed the existence of Renner-Teller intersections along the collinear axis, but in contrast to the C(2)H(2)(+) case a shift of one atom from the collinear arrangement did not form Jahn-Teller intersections. What we found instead is that the noncollinear molecule was not affected by the shift and kept its Renner-Teller character. Another issue treated in this article is the extension of (the two-state) Berry (topological) phase to situations with numerous strongly interacting states. So far the relevance of the Berry phase was tested for systems characterized by two isolated interacting states, although it is defined for any number of interacting states [M. V. Berry, Proc. R. Soc. London, Ser. A 392, 45 (1984)]. We intend to show how to overcome this limitation and get a valid, fully justified definition of a Berry phase for an isolated system of any number of interacting states (as is expected). |
Author | Baer, Michael Mukhopadhyay, Debasis Das, Anita Adhikari, Satrajit |
Author_xml | – sequence: 1 givenname: Anita surname: Das fullname: Das, Anita – sequence: 2 givenname: Debasis surname: Mukhopadhyay fullname: Mukhopadhyay, Debasis – sequence: 3 givenname: Satrajit surname: Adhikari fullname: Adhikari, Satrajit – sequence: 4 givenname: Michael surname: Baer fullname: Baer, Michael |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20815560$$D View this record in MEDLINE/PubMed |
BookMark | eNptkMtKxTAQhoMoerwsfAHJTlxUZ9I2PXEnB28gCqLrEtOpVtLkmKTg2fkOvqFPYsWjC3E1P8P3D8y3yVadd8TYLsIhgsyP8DAvKpUrtcImCFOVVVLBKpsACMyUBLnBNmN8BgCsRLHONgRMsSwlTFhzS85R-Hh7vyNrKfDOJQqRTOq8i1xb7x55eiJuvLWdIx24fqXIfcvn3i508n1neO8tmcFSPOYXYnbN9djkRkfiMQ3NYputtdpG2lnOLXZ_dno3u8iubs4vZydXmRFTSBkaJVGDUUqbCmUhp0rklSyaQpQtqFwjKj3GB2gbLAkR89YIIQmVqMZNvsX2v-_Og38ZKKa676IZ_9KO_BDrqhwdlZVSI7m3JIeHnpp6Hrpeh0X9I2YEDr4BE3yMgdpfBKH-kl5jvZQ-skd_WNMl_SUwBd3ZfxqfwD6COA |
CitedBy_id | crossref_primary_10_1016_j_comptc_2019_03_011 crossref_primary_10_1063_1_3679406 crossref_primary_10_1080_00268976_2015_1093183 crossref_primary_10_1080_00268976_2018_1459917 crossref_primary_10_1002_qua_23296 crossref_primary_10_1016_j_chemphys_2013_02_006 crossref_primary_10_1016_j_cplett_2011_03_087 crossref_primary_10_1080_00268976_2020_1811907 crossref_primary_10_1002_qua_23272 crossref_primary_10_1140_epjd_e2017_80327_y crossref_primary_10_1016_j_cplett_2011_01_050 crossref_primary_10_1140_epjd_e2011_20297_6 crossref_primary_10_1007_s12039_015_1022_8 crossref_primary_10_1016_j_cplett_2011_09_072 crossref_primary_10_1016_j_cplett_2012_03_018 crossref_primary_10_1002_qua_24734 crossref_primary_10_1021_jp403068v crossref_primary_10_1063_1_4773352 crossref_primary_10_1063_1_3651081 crossref_primary_10_1140_epjd_e2020_10152_2 crossref_primary_10_1021_jp208684p crossref_primary_10_1002_qua_24130 crossref_primary_10_1063_1_3625917 crossref_primary_10_1002_qua_26195 crossref_primary_10_1063_1_5064519 crossref_primary_10_1021_acs_jpca_5b08921 crossref_primary_10_1080_00268976_2018_1445876 crossref_primary_10_1016_j_chemphys_2012_12_007 |
Cites_doi | 10.1080/00268978000101291 10.1088/0953-4075/43/5/051001 10.1021/jp992742o 10.1039/b313883f 10.1098/rspa.1984.0023 10.1063/1.1515768 10.1080/00268978000102091 10.1063/1.1389842 10.1039/df9633500077 10.1063/1.444780 10.1002/andp.19273892002 10.1063/1.1591729 10.1016/S0009-2614(00)00195-0 10.1103/PhysRevB.81.115433 10.1098/rspa.1937.0142 10.1080/00268978000101321 10.1103/PhysRevA.62.032506 10.1063/1.1536925 10.1088/0953-4075/41/2/025102 10.1080/00268977400101071 10.1063/1.475619 10.1098/rspa.1975.0095 10.1063/1.472972 10.1063/1.2336219 10.1021/jp905038t 10.1080/00268970110109475 10.1063/1.448333 10.1002/0471433462.ch5 10.1063/1.2717934 10.1063/1.2338912 10.1063/1.434032 10.1016/0009-2614(75)85599-0 10.1007/BF01350054 10.1063/1.2884348 10.1080/00268979200100231 10.1098/rsta.1961.0017 10.1088/1751-8113/40/15/F01 10.1063/1.2755665 10.1063/1.1814936 10.1063/1.1808695 10.1002/0471433462 10.1021/jp044195z 10.1016/j.cplett.2004.05.043 10.1002/9780470142769.ch2 10.1063/1.480848 10.1080/00268979000102621 10.1002/0471433462.ch11 10.1103/PhysRevLett.104.073001 10.1080/00268978600102741 10.1063/1.2170089 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1063/1.3479399 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1089-7690 |
ExternalDocumentID | 20815560 10_1063_1_3479399 |
Genre | Journal Article |
GroupedDBID | --- -DZ -ET -~X 123 1UP 2-P 29K 4.4 53G 5VS 6TJ 85S AAAAW AABDS AAGWI AAPUP AAYIH AAYXX ABJGX ABPPZ ABRJW ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM ADMLS ADXHL AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BDMKI BPZLN CITATION CS3 D-I DU5 EBS EJD F5P FDOHQ FFFMQ HAM M6X M71 M73 MVM N9A NPSNA O-B P0- P2P RIP RNS ROL RQS TN5 TWZ UPT UQL WH7 YQT YZZ ~02 NPM 7X8 |
ID | FETCH-LOGICAL-c280t-1c961a0c99ac716468923764d425f093a119a25fb0fd15e1113fc226e1927d153 |
ISSN | 0021-9606 1089-7690 |
IngestDate | Fri Jul 11 11:15:39 EDT 2025 Thu Apr 03 07:00:20 EDT 2025 Tue Jul 01 00:44:09 EDT 2025 Thu Apr 24 23:13:01 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c280t-1c961a0c99ac716468923764d425f093a119a25fb0fd15e1113fc226e1927d153 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 20815560 |
PQID | 753995799 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_753995799 pubmed_primary_20815560 crossref_primary_10_1063_1_3479399 crossref_citationtrail_10_1063_1_3479399 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-08-28 2010-Aug-28 20100828 |
PublicationDateYYYYMMDD | 2010-08-28 |
PublicationDate_xml | – month: 08 year: 2010 text: 2010-08-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of chemical physics |
PublicationTitleAlternate | J Chem Phys |
PublicationYear | 2010 |
References | (2023062605113824700_c20a) 1980; 40 (2023062605113824700_c11b) 1961; 254 Rao (2023062605113824700_c6c) 1977 (2023062605113824700_c8) 1983; 52 (2023062605113824700_c11d) 1975; 344 (2023062605113824700_c14c) 2010; 114 (2023062605113824700_c25b) 1996; 105 (2023062605113824700_c3) 1934; 92 (2023062605113824700_c20d) 2002; 117 (2023062605113824700_c7b) 1990; 70 2023062605113824700_c22e 2023062605113824700_c10b (2023062605113824700_c11a) 1937; 161 (2023062605113824700_c7a) 1974; 27 (2023062605113824700_c13b) 1985; 82 (2023062605113824700_c14b) 2004; 392 (2023062605113824700_c25d) 2008; 128 (2023062605113824700_c18a) 1927; 84 (2023062605113824700_c22a) 1977; 66 (2023062605113824700_c23d) 2002; 124 (2023062605113824700_c25a) 2004; 127 (2023062605113824700_c21a) 2000; 319 (2023062605113824700_c9) 2006 (2023062605113824700_c18b) 1951; K1 (2023062605113824700_c7c) 1998; 108 2023062605113824700_c21c (2023062605113824700_c22b) 2000; 104 (2023062605113824700_c24a) 1984; 392 (2023062605113824700_c22d) 2006; 124 (2023062605113824700_c24b) 1992; 75 (2023062605113824700_c25c) 2004; 121 (2023062605113824700_c14a) 2001; 115 (2023062605113824700_c25f) 2010; 104 (2023062605113824700_c13c) 2000; 112 (2023062605113824700_c20c) 2004; 121 Herzberg (2023062605113824700_c4) 1991 (2023062605113824700_c21b) 2000; 62 2023062605113824700_c16 2023062605113824700_c17 (2023062605113824700_c2a) 2007; 126 (2023062605113824700_c13e) 2003; 119 (2023062605113824700_c19a) 1975; 35 (2023062605113824700_c23b) 2010; 43 (2023062605113824700_c6b) 1980; 40 2023062605113824700_c20b (2023062605113824700_c15) 2008; 41 (2023062605113824700_c18c) 1954 (2023062605113824700_c25e) 2007; 127 (2023062605113824700_c23c) 2006; 125 (2023062605113824700_c5b) 1986; 59 Baer (2023062605113824700_c10a) 2002 (2023062605113824700_c2b) 2007; 40 (2023062605113824700_c6a) 1980; 40 (2023062605113824700_c22c) 2005; 109 2023062605113824700_c19b 2023062605113824700_c19c (2023062605113824700_c13d) 2003; 118 (2023062605113824700_c12) 1972 (2023062605113824700_c13a) 1983; 78 (2023062605113824700_c1) 2006; 125 (2023062605113824700_c11c) 1963; 35 (2023062605113824700_c21d) 2002; 100 (2023062605113824700_c23a) 2010; 81 (2023062605113824700_c5a) 2002; 124 |
References_xml | – volume: 40 start-page: 1 year: 1980 ident: 2023062605113824700_c6a publication-title: Mol. Phys. doi: 10.1080/00268978000101291 – volume: 43 start-page: 051001 year: 2010 ident: 2023062605113824700_c23b publication-title: J. Phys. B doi: 10.1088/0953-4075/43/5/051001 – volume: 104 start-page: 389 year: 2000 ident: 2023062605113824700_c22b publication-title: J. Phys. Chem. A doi: 10.1021/jp992742o – volume: 127 start-page: 337 year: 2004 ident: 2023062605113824700_c25a publication-title: Faraday Discuss. doi: 10.1039/b313883f – volume-title: Beyond Born Oppenheimer: Electronic Non-Adiabatic Coupling Terms and Conical Intersections year: 2006 ident: 2023062605113824700_c9 – volume: 392 start-page: 45 year: 1984 ident: 2023062605113824700_c24a publication-title: Proc. R. Soc. London, Ser. A doi: 10.1098/rspa.1984.0023 – volume: 117 start-page: 7405 year: 2002 ident: 2023062605113824700_c20d publication-title: J. Chem. Phys. doi: 10.1063/1.1515768 – volume: 40 start-page: 1011 year: 1980 ident: 2023062605113824700_c20a publication-title: Mol. Phys. doi: 10.1080/00268978000102091 – volume-title: Molecular Spectra and Molecular Structure year: 1991 ident: 2023062605113824700_c4 – volume: 115 start-page: 3673 year: 2001 ident: 2023062605113824700_c14a publication-title: J. Chem. Phys. doi: 10.1063/1.1389842 – volume: 35 start-page: 77 year: 1963 ident: 2023062605113824700_c11c publication-title: Discuss. Faraday Soc. doi: 10.1039/df9633500077 – volume: 78 start-page: 807 year: 1983 ident: 2023062605113824700_c13a publication-title: J. Chem. Phys. doi: 10.1063/1.444780 – volume: 84 start-page: 457 year: 1927 ident: 2023062605113824700_c18a publication-title: Ann. Phys. doi: 10.1002/andp.19273892002 – ident: 2023062605113824700_c16 – volume: 119 start-page: 5058 year: 2003 ident: 2023062605113824700_c13e publication-title: J. Chem. Phys. doi: 10.1063/1.1591729 – volume: 319 start-page: 489 year: 2000 ident: 2023062605113824700_c21a publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(00)00195-0 – volume: 81 start-page: 115433 year: 2010 ident: 2023062605113824700_c23a publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.115433 – volume: 161 start-page: 220 year: 1937 ident: 2023062605113824700_c11a publication-title: Proc. R. Soc. London, Ser. A doi: 10.1098/rspa.1937.0142 – volume: 40 start-page: 95 year: 1980 ident: 2023062605113824700_c6b publication-title: Mol. Phys. doi: 10.1080/00268978000101321 – volume: 62 start-page: 032506 year: 2000 ident: 2023062605113824700_c21b publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.62.032506 – volume: 118 start-page: 3052 year: 2003 ident: 2023062605113824700_c13d publication-title: J. Chem. Phys. doi: 10.1063/1.1536925 – volume: 41 start-page: 025102 year: 2008 ident: 2023062605113824700_c15 publication-title: J. Phys. B doi: 10.1088/0953-4075/41/2/025102 – volume-title: The Jahn-Teller Effect in Molecules and Crystals year: 1972 ident: 2023062605113824700_c12 – volume: 27 start-page: 1217 year: 1974 ident: 2023062605113824700_c7a publication-title: Mol. Phys. doi: 10.1080/00268977400101071 – volume: 108 start-page: 2336 year: 1998 ident: 2023062605113824700_c7c publication-title: J. Chem. Phys. doi: 10.1063/1.475619 – volume: 344 start-page: 147 year: 1975 ident: 2023062605113824700_c11d publication-title: Proc. R. Soc. London, Ser. A doi: 10.1098/rspa.1975.0095 – ident: 2023062605113824700_c19b – volume: 105 start-page: 10456 year: 1996 ident: 2023062605113824700_c25b publication-title: J. Chem. Phys. doi: 10.1063/1.472972 – volume: 125 start-page: 094102 year: 2006 ident: 2023062605113824700_c1 publication-title: J. Chem. Phys. doi: 10.1063/1.2336219 – volume: 114 start-page: 2991 year: 2010 ident: 2023062605113824700_c14c publication-title: J. Phys. Chem. A doi: 10.1021/jp905038t – ident: 2023062605113824700_c10b – volume: K1 start-page: 1 year: 1951 ident: 2023062605113824700_c18b publication-title: Festschrift Göttingen Nach. Math. Phys. – volume: 100 start-page: 1011 year: 2002 ident: 2023062605113824700_c21d publication-title: Mol. Phys. doi: 10.1080/00268970110109475 – volume: 82 start-page: 2392 year: 1985 ident: 2023062605113824700_c13b publication-title: J. Chem. Phys. doi: 10.1063/1.448333 – start-page: 127 volume-title: Molecular Spectroscopy: Modern Research year: 1977 ident: 2023062605113824700_c6c – volume: 124 start-page: 323 year: 2002 ident: 2023062605113824700_c23d publication-title: Adv. Chem. Phys. doi: 10.1002/0471433462.ch5 – volume: 126 start-page: 154309 year: 2007 ident: 2023062605113824700_c2a publication-title: J. Chem. Phys. doi: 10.1063/1.2717934 – ident: 2023062605113824700_c20b – ident: 2023062605113824700_c22e – volume: 125 start-page: 104105 year: 2006 ident: 2023062605113824700_c23c publication-title: J. Chem. Phys. doi: 10.1063/1.2338912 – volume: 66 start-page: 1363 year: 1977 ident: 2023062605113824700_c22a publication-title: J. Chem. Phys. doi: 10.1063/1.434032 – volume: 35 start-page: 112 year: 1975 ident: 2023062605113824700_c19a publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(75)85599-0 – volume-title: Dynamical Theory of Crystal Lattices year: 1954 ident: 2023062605113824700_c18c – ident: 2023062605113824700_c19c – volume: 92 start-page: 172 year: 1934 ident: 2023062605113824700_c3 publication-title: Z. Phys. doi: 10.1007/BF01350054 – volume: 128 start-page: 144111 year: 2008 ident: 2023062605113824700_c25d publication-title: J. Chem. Phys. doi: 10.1063/1.2884348 – volume: 75 start-page: 293 year: 1992 ident: 2023062605113824700_c24b publication-title: Mol. Phys. doi: 10.1080/00268979200100231 – volume: 254 start-page: 259 year: 1961 ident: 2023062605113824700_c11b publication-title: Philos. Trans. R. Soc. London, Ser. A doi: 10.1098/rsta.1961.0017 – volume: 40 start-page: F267 year: 2007 ident: 2023062605113824700_c2b publication-title: J. Phys. A: Math. Theor. doi: 10.1088/1751-8113/40/15/F01 – volume: 127 start-page: 064103 year: 2007 ident: 2023062605113824700_c25e publication-title: J. Chem. Phys. doi: 10.1063/1.2755665 – volume: 121 start-page: 11629 year: 2004 ident: 2023062605113824700_c25c publication-title: J. Chem. Phys. doi: 10.1063/1.1814936 – volume: 121 start-page: 10370 year: 2004 ident: 2023062605113824700_c20c publication-title: J. Chem. Phys. doi: 10.1063/1.1808695 – volume-title: The Role of Degenerate States in Chemistry year: 2002 ident: 2023062605113824700_c10a article-title: Advances in Chemical Physics doi: 10.1002/0471433462 – volume: 109 start-page: 3476 year: 2005 ident: 2023062605113824700_c22c publication-title: J. Phys. Chem. A doi: 10.1021/jp044195z – volume: 392 start-page: 17 year: 2004 ident: 2023062605113824700_c14b publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2004.05.043 – volume: 52 start-page: 117 year: 1983 ident: 2023062605113824700_c8 publication-title: Adv. Chem. Phys. doi: 10.1002/9780470142769.ch2 – volume: 112 start-page: 2746 year: 2000 ident: 2023062605113824700_c13c publication-title: J. Chem. Phys. doi: 10.1063/1.480848 – volume: 70 start-page: 605 year: 1990 ident: 2023062605113824700_c7b publication-title: Mol. Phys. doi: 10.1080/00268979000102621 – volume: 124 start-page: 583 year: 2002 ident: 2023062605113824700_c5a publication-title: Adv. Chem. Phys. doi: 10.1002/0471433462.ch11 – volume: 104 start-page: 073001 year: 2010 ident: 2023062605113824700_c25f publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.073001 – volume: 59 start-page: 1283 year: 1986 ident: 2023062605113824700_c5b publication-title: Mol. Phys. doi: 10.1080/00268978600102741 – volume: 124 start-page: 074101 year: 2006 ident: 2023062605113824700_c22d publication-title: J. Chem. Phys. doi: 10.1063/1.2170089 – ident: 2023062605113824700_c17 – ident: 2023062605113824700_c21c |
SSID | ssj0001724 |
Score | 2.1486473 |
Snippet | The tetra-atomic C2H2+ cation is known to form Renner–Teller-type intersections along its collinear axis. Not too long ago, we studied the nonadiabatic... The tetra-atomic C(2)H(2)(+) cation is known to form Renner-Teller-type intersections along its collinear axis. Not too long ago, we studied the nonadiabatic... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 084107 |
Title | Renner–Teller intersections along the collinear axes of polyatomic molecules: H2CN as a case study |
URI | https://www.ncbi.nlm.nih.gov/pubmed/20815560 https://www.proquest.com/docview/753995799 |
Volume | 133 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9NAFB60i-iL6KrremMQH4QlNZNMbr7VukuRbhU3hb6Fk0lCu1uTJc2C9dd7JjO5FCteXkIYkiHM93HmnMk53yHkTcYF-NwJjCBJLIOnjmugF-4YduxnQsRe7AlZnHw-cydz_mnhLLpfMXV1SRUPxY-9dSX_gyqOIa6ySvYfkG0nxQG8R3zxigjj9a8w_iqtZGmE8vC9rJUfyk2dWpVvTmBd6EIoUetuS8Ee-K4kZq-L9RaDbZkW_021x1WZcRNrPJONZ-BE4ObWk5697DjV82BFIzagjkd6LepVi2O0FtABerXE-DxZbmGr7RxsVu0ro2S5ugJV9X4BVQmXqzYf5wMoWvUz_PU5hcqSs_qm1fQDw3NVc9BhumesscdKGUMTz-9ZV9PnukfuL4YfPS15BjGsC2NVy6Vdce3Z5-hsPp1G4ekivE0OLIwqrAE5GH08n160Wzd6c1xVZKjPaqSoXPtdO_WuA_ObqKT2TsIH5L4GhY4URx6SW2l-SO6Om25-h-TOF4XRIxLvsIbusIbWrKHIGtqyhkrW0CKjHWtoy5r3VHKGAr5JJWdozZnHZH52Go4nhu60YQjLNyuDicBlYIogACEDaNcPZLYUT9CiZ2ZgA2MB4G1sZglzUtwf7Uyg455ifODhiP2EDPIiT58SyjAABogtcBPBTc5ihyWeK1V3gWW-yY_J22b5IqFl6GU3lHVUp0O4dsQivdLH5HX76LXSXtn3EG0wiHBJ5e8uyNPiZhN5UnTZ8eQjRwqbdhYLHWEHff1nf375ObnXsfkFGVTlTfoS_dAqfqXZ8xNbyYkt |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Renner-Teller+intersections+along+the+collinear+axes+of+polyatomic+molecules%3A+H2CN+as+a+case+study&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Das%2C+Anita&rft.au=Mukhopadhyay%2C+Debasis&rft.au=Adhikari%2C+Satrajit&rft.au=Baer%2C+Michael&rft.date=2010-08-28&rft.issn=1089-7690&rft.eissn=1089-7690&rft.volume=133&rft.issue=8&rft.spage=084107&rft_id=info:doi/10.1063%2F1.3479399&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon |