Renner–Teller intersections along the collinear axes of polyatomic molecules: H2CN as a case study

The tetra-atomic C2H2+ cation is known to form Renner–Teller-type intersections along its collinear axis. Not too long ago, we studied the nonadiabatic coupling terms (NACTs) of this molecule [G. J. Halász et al., J. Chem. Phys. 126, 154309 (2007)] and revealed two kinds of intersections. (i) By emp...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 133; no. 8; p. 084107
Main Authors Das, Anita, Mukhopadhyay, Debasis, Adhikari, Satrajit, Baer, Michael
Format Journal Article
LanguageEnglish
Published United States 28.08.2010
Online AccessGet full text

Cover

Loading…
Abstract The tetra-atomic C2H2+ cation is known to form Renner–Teller-type intersections along its collinear axis. Not too long ago, we studied the nonadiabatic coupling terms (NACTs) of this molecule [G. J. Halász et al., J. Chem. Phys. 126, 154309 (2007)] and revealed two kinds of intersections. (i) By employing one of the hydrogens as a test particle, we revealed the fact that indeed the corresponding (angular) NACTs produce topological (Berry) phases that are equal to 2π, which is a result anticipated in the case of Renner–Teller intersections. (ii) However, to our big surprise, repeating this study when one of the atoms (in this case a hydrogen) is shifted from the collinear arrangement yields for the corresponding topological phase a value that equals π (and not 2π). In other words, shifting (even slightly) one of the atoms from the collinear arrangement causes the intersection to change its character and become a Jahn–Teller intersection. This somewhat unexpected novel result was later further analyzed and confirmed by other groups [e.g., T. Vertesi and R. Englman, J. Phys. B 41, 025102 (2008)]. The present article is devoted to another tetra-atomic molecule, namely, the H2CN molecule, which just like the C2H2+ ion, is characterized by Renner–Teller intersections along its collinear axis. Indeed, we revealed the existence of Renner–Teller intersections along the collinear axis, but in contrast to the C2H2+ case a shift of one atom from the collinear arrangement did not form Jahn–Teller intersections. What we found instead is that the noncollinear molecule was not affected by the shift and kept its Renner–Teller character. Another issue treated in this article is the extension of (the two-state) Berry (topological) phase to situations with numerous strongly interacting states. So far the relevance of the Berry phase was tested for systems characterized by two isolated interacting states, although it is defined for any number of interacting states [M. V. Berry, Proc. R. Soc. London, Ser. A 392, 45 (1984)]. We intend to show how to overcome this limitation and get a valid, fully justified definition of a Berry phase for an isolated system of any number of interacting states (as is expected).
AbstractList The tetra-atomic C(2)H(2)(+) cation is known to form Renner-Teller-type intersections along its collinear axis. Not too long ago, we studied the nonadiabatic coupling terms (NACTs) of this molecule [G. J. Halász et al., J. Chem. Phys. 126, 154309 (2007)] and revealed two kinds of intersections. (i) By employing one of the hydrogens as a test particle, we revealed the fact that indeed the corresponding (angular) NACTs produce topological (Berry) phases that are equal to 2pi, which is a result anticipated in the case of Renner-Teller intersections. (ii) However, to our big surprise, repeating this study when one of the atoms (in this case a hydrogen) is shifted from the collinear arrangement yields for the corresponding topological phase a value that equals pi (and not 2pi). In other words, shifting (even slightly) one of the atoms from the collinear arrangement causes the intersection to change its character and become a Jahn-Teller intersection. This somewhat unexpected novel result was later further analyzed and confirmed by other groups [e.g., T. Vertesi and R. Englman, J. Phys. B 41, 025102 (2008)]. The present article is devoted to another tetra-atomic molecule, namely, the H(2)CN molecule, which just like the C(2)H(2)(+) ion, is characterized by Renner-Teller intersections along its collinear axis. Indeed, we revealed the existence of Renner-Teller intersections along the collinear axis, but in contrast to the C(2)H(2)(+) case a shift of one atom from the collinear arrangement did not form Jahn-Teller intersections. What we found instead is that the noncollinear molecule was not affected by the shift and kept its Renner-Teller character. Another issue treated in this article is the extension of (the two-state) Berry (topological) phase to situations with numerous strongly interacting states. So far the relevance of the Berry phase was tested for systems characterized by two isolated interacting states, although it is defined for any number of interacting states [M. V. Berry, Proc. R. Soc. London, Ser. A 392, 45 (1984)]. We intend to show how to overcome this limitation and get a valid, fully justified definition of a Berry phase for an isolated system of any number of interacting states (as is expected).
The tetra-atomic C2H2+ cation is known to form Renner–Teller-type intersections along its collinear axis. Not too long ago, we studied the nonadiabatic coupling terms (NACTs) of this molecule [G. J. Halász et al., J. Chem. Phys. 126, 154309 (2007)] and revealed two kinds of intersections. (i) By employing one of the hydrogens as a test particle, we revealed the fact that indeed the corresponding (angular) NACTs produce topological (Berry) phases that are equal to 2π, which is a result anticipated in the case of Renner–Teller intersections. (ii) However, to our big surprise, repeating this study when one of the atoms (in this case a hydrogen) is shifted from the collinear arrangement yields for the corresponding topological phase a value that equals π (and not 2π). In other words, shifting (even slightly) one of the atoms from the collinear arrangement causes the intersection to change its character and become a Jahn–Teller intersection. This somewhat unexpected novel result was later further analyzed and confirmed by other groups [e.g., T. Vertesi and R. Englman, J. Phys. B 41, 025102 (2008)]. The present article is devoted to another tetra-atomic molecule, namely, the H2CN molecule, which just like the C2H2+ ion, is characterized by Renner–Teller intersections along its collinear axis. Indeed, we revealed the existence of Renner–Teller intersections along the collinear axis, but in contrast to the C2H2+ case a shift of one atom from the collinear arrangement did not form Jahn–Teller intersections. What we found instead is that the noncollinear molecule was not affected by the shift and kept its Renner–Teller character. Another issue treated in this article is the extension of (the two-state) Berry (topological) phase to situations with numerous strongly interacting states. So far the relevance of the Berry phase was tested for systems characterized by two isolated interacting states, although it is defined for any number of interacting states [M. V. Berry, Proc. R. Soc. London, Ser. A 392, 45 (1984)]. We intend to show how to overcome this limitation and get a valid, fully justified definition of a Berry phase for an isolated system of any number of interacting states (as is expected).
The tetra-atomic C(2)H(2)(+) cation is known to form Renner-Teller-type intersections along its collinear axis. Not too long ago, we studied the nonadiabatic coupling terms (NACTs) of this molecule [G. J. Halász et al., J. Chem. Phys. 126, 154309 (2007)] and revealed two kinds of intersections. (i) By employing one of the hydrogens as a test particle, we revealed the fact that indeed the corresponding (angular) NACTs produce topological (Berry) phases that are equal to 2pi, which is a result anticipated in the case of Renner-Teller intersections. (ii) However, to our big surprise, repeating this study when one of the atoms (in this case a hydrogen) is shifted from the collinear arrangement yields for the corresponding topological phase a value that equals pi (and not 2pi). In other words, shifting (even slightly) one of the atoms from the collinear arrangement causes the intersection to change its character and become a Jahn-Teller intersection. This somewhat unexpected novel result was later further analyzed and confirmed by other groups [e.g., T. Vertesi and R. Englman, J. Phys. B 41, 025102 (2008)]. The present article is devoted to another tetra-atomic molecule, namely, the H(2)CN molecule, which just like the C(2)H(2)(+) ion, is characterized by Renner-Teller intersections along its collinear axis. Indeed, we revealed the existence of Renner-Teller intersections along the collinear axis, but in contrast to the C(2)H(2)(+) case a shift of one atom from the collinear arrangement did not form Jahn-Teller intersections. What we found instead is that the noncollinear molecule was not affected by the shift and kept its Renner-Teller character. Another issue treated in this article is the extension of (the two-state) Berry (topological) phase to situations with numerous strongly interacting states. So far the relevance of the Berry phase was tested for systems characterized by two isolated interacting states, although it is defined for any number of interacting states [M. V. Berry, Proc. R. Soc. London, Ser. A 392, 45 (1984)]. We intend to show how to overcome this limitation and get a valid, fully justified definition of a Berry phase for an isolated system of any number of interacting states (as is expected).The tetra-atomic C(2)H(2)(+) cation is known to form Renner-Teller-type intersections along its collinear axis. Not too long ago, we studied the nonadiabatic coupling terms (NACTs) of this molecule [G. J. Halász et al., J. Chem. Phys. 126, 154309 (2007)] and revealed two kinds of intersections. (i) By employing one of the hydrogens as a test particle, we revealed the fact that indeed the corresponding (angular) NACTs produce topological (Berry) phases that are equal to 2pi, which is a result anticipated in the case of Renner-Teller intersections. (ii) However, to our big surprise, repeating this study when one of the atoms (in this case a hydrogen) is shifted from the collinear arrangement yields for the corresponding topological phase a value that equals pi (and not 2pi). In other words, shifting (even slightly) one of the atoms from the collinear arrangement causes the intersection to change its character and become a Jahn-Teller intersection. This somewhat unexpected novel result was later further analyzed and confirmed by other groups [e.g., T. Vertesi and R. Englman, J. Phys. B 41, 025102 (2008)]. The present article is devoted to another tetra-atomic molecule, namely, the H(2)CN molecule, which just like the C(2)H(2)(+) ion, is characterized by Renner-Teller intersections along its collinear axis. Indeed, we revealed the existence of Renner-Teller intersections along the collinear axis, but in contrast to the C(2)H(2)(+) case a shift of one atom from the collinear arrangement did not form Jahn-Teller intersections. What we found instead is that the noncollinear molecule was not affected by the shift and kept its Renner-Teller character. Another issue treated in this article is the extension of (the two-state) Berry (topological) phase to situations with numerous strongly interacting states. So far the relevance of the Berry phase was tested for systems characterized by two isolated interacting states, although it is defined for any number of interacting states [M. V. Berry, Proc. R. Soc. London, Ser. A 392, 45 (1984)]. We intend to show how to overcome this limitation and get a valid, fully justified definition of a Berry phase for an isolated system of any number of interacting states (as is expected).
Author Baer, Michael
Mukhopadhyay, Debasis
Das, Anita
Adhikari, Satrajit
Author_xml – sequence: 1
  givenname: Anita
  surname: Das
  fullname: Das, Anita
– sequence: 2
  givenname: Debasis
  surname: Mukhopadhyay
  fullname: Mukhopadhyay, Debasis
– sequence: 3
  givenname: Satrajit
  surname: Adhikari
  fullname: Adhikari, Satrajit
– sequence: 4
  givenname: Michael
  surname: Baer
  fullname: Baer, Michael
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20815560$$D View this record in MEDLINE/PubMed
BookMark eNptkMtKxTAQhoMoerwsfAHJTlxUZ9I2PXEnB28gCqLrEtOpVtLkmKTg2fkOvqFPYsWjC3E1P8P3D8y3yVadd8TYLsIhgsyP8DAvKpUrtcImCFOVVVLBKpsACMyUBLnBNmN8BgCsRLHONgRMsSwlTFhzS85R-Hh7vyNrKfDOJQqRTOq8i1xb7x55eiJuvLWdIx24fqXIfcvn3i508n1neO8tmcFSPOYXYnbN9djkRkfiMQ3NYputtdpG2lnOLXZ_dno3u8iubs4vZydXmRFTSBkaJVGDUUqbCmUhp0rklSyaQpQtqFwjKj3GB2gbLAkR89YIIQmVqMZNvsX2v-_Og38ZKKa676IZ_9KO_BDrqhwdlZVSI7m3JIeHnpp6Hrpeh0X9I2YEDr4BE3yMgdpfBKH-kl5jvZQ-skd_WNMl_SUwBd3ZfxqfwD6COA
CitedBy_id crossref_primary_10_1016_j_comptc_2019_03_011
crossref_primary_10_1063_1_3679406
crossref_primary_10_1080_00268976_2015_1093183
crossref_primary_10_1080_00268976_2018_1459917
crossref_primary_10_1002_qua_23296
crossref_primary_10_1016_j_chemphys_2013_02_006
crossref_primary_10_1016_j_cplett_2011_03_087
crossref_primary_10_1080_00268976_2020_1811907
crossref_primary_10_1002_qua_23272
crossref_primary_10_1140_epjd_e2017_80327_y
crossref_primary_10_1016_j_cplett_2011_01_050
crossref_primary_10_1140_epjd_e2011_20297_6
crossref_primary_10_1007_s12039_015_1022_8
crossref_primary_10_1016_j_cplett_2011_09_072
crossref_primary_10_1016_j_cplett_2012_03_018
crossref_primary_10_1002_qua_24734
crossref_primary_10_1021_jp403068v
crossref_primary_10_1063_1_4773352
crossref_primary_10_1063_1_3651081
crossref_primary_10_1140_epjd_e2020_10152_2
crossref_primary_10_1021_jp208684p
crossref_primary_10_1002_qua_24130
crossref_primary_10_1063_1_3625917
crossref_primary_10_1002_qua_26195
crossref_primary_10_1063_1_5064519
crossref_primary_10_1021_acs_jpca_5b08921
crossref_primary_10_1080_00268976_2018_1445876
crossref_primary_10_1016_j_chemphys_2012_12_007
Cites_doi 10.1080/00268978000101291
10.1088/0953-4075/43/5/051001
10.1021/jp992742o
10.1039/b313883f
10.1098/rspa.1984.0023
10.1063/1.1515768
10.1080/00268978000102091
10.1063/1.1389842
10.1039/df9633500077
10.1063/1.444780
10.1002/andp.19273892002
10.1063/1.1591729
10.1016/S0009-2614(00)00195-0
10.1103/PhysRevB.81.115433
10.1098/rspa.1937.0142
10.1080/00268978000101321
10.1103/PhysRevA.62.032506
10.1063/1.1536925
10.1088/0953-4075/41/2/025102
10.1080/00268977400101071
10.1063/1.475619
10.1098/rspa.1975.0095
10.1063/1.472972
10.1063/1.2336219
10.1021/jp905038t
10.1080/00268970110109475
10.1063/1.448333
10.1002/0471433462.ch5
10.1063/1.2717934
10.1063/1.2338912
10.1063/1.434032
10.1016/0009-2614(75)85599-0
10.1007/BF01350054
10.1063/1.2884348
10.1080/00268979200100231
10.1098/rsta.1961.0017
10.1088/1751-8113/40/15/F01
10.1063/1.2755665
10.1063/1.1814936
10.1063/1.1808695
10.1002/0471433462
10.1021/jp044195z
10.1016/j.cplett.2004.05.043
10.1002/9780470142769.ch2
10.1063/1.480848
10.1080/00268979000102621
10.1002/0471433462.ch11
10.1103/PhysRevLett.104.073001
10.1080/00268978600102741
10.1063/1.2170089
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1063/1.3479399
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1089-7690
ExternalDocumentID 20815560
10_1063_1_3479399
Genre Journal Article
GroupedDBID ---
-DZ
-ET
-~X
123
1UP
2-P
29K
4.4
53G
5VS
6TJ
85S
AAAAW
AABDS
AAGWI
AAPUP
AAYIH
AAYXX
ABJGX
ABPPZ
ABRJW
ABZEH
ACBRY
ACLYJ
ACNCT
ACZLF
ADCTM
ADMLS
ADXHL
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BDMKI
BPZLN
CITATION
CS3
D-I
DU5
EBS
EJD
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
MVM
N9A
NPSNA
O-B
P0-
P2P
RIP
RNS
ROL
RQS
TN5
TWZ
UPT
UQL
WH7
YQT
YZZ
~02
NPM
7X8
ID FETCH-LOGICAL-c280t-1c961a0c99ac716468923764d425f093a119a25fb0fd15e1113fc226e1927d153
ISSN 0021-9606
1089-7690
IngestDate Fri Jul 11 11:15:39 EDT 2025
Thu Apr 03 07:00:20 EDT 2025
Tue Jul 01 00:44:09 EDT 2025
Thu Apr 24 23:13:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c280t-1c961a0c99ac716468923764d425f093a119a25fb0fd15e1113fc226e1927d153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 20815560
PQID 753995799
PQPubID 23479
ParticipantIDs proquest_miscellaneous_753995799
pubmed_primary_20815560
crossref_primary_10_1063_1_3479399
crossref_citationtrail_10_1063_1_3479399
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-08-28
2010-Aug-28
20100828
PublicationDateYYYYMMDD 2010-08-28
PublicationDate_xml – month: 08
  year: 2010
  text: 2010-08-28
  day: 28
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of chemical physics
PublicationTitleAlternate J Chem Phys
PublicationYear 2010
References (2023062605113824700_c20a) 1980; 40
(2023062605113824700_c11b) 1961; 254
Rao (2023062605113824700_c6c) 1977
(2023062605113824700_c8) 1983; 52
(2023062605113824700_c11d) 1975; 344
(2023062605113824700_c14c) 2010; 114
(2023062605113824700_c25b) 1996; 105
(2023062605113824700_c3) 1934; 92
(2023062605113824700_c20d) 2002; 117
(2023062605113824700_c7b) 1990; 70
2023062605113824700_c22e
2023062605113824700_c10b
(2023062605113824700_c11a) 1937; 161
(2023062605113824700_c7a) 1974; 27
(2023062605113824700_c13b) 1985; 82
(2023062605113824700_c14b) 2004; 392
(2023062605113824700_c25d) 2008; 128
(2023062605113824700_c18a) 1927; 84
(2023062605113824700_c22a) 1977; 66
(2023062605113824700_c23d) 2002; 124
(2023062605113824700_c25a) 2004; 127
(2023062605113824700_c21a) 2000; 319
(2023062605113824700_c9) 2006
(2023062605113824700_c18b) 1951; K1
(2023062605113824700_c7c) 1998; 108
2023062605113824700_c21c
(2023062605113824700_c22b) 2000; 104
(2023062605113824700_c24a) 1984; 392
(2023062605113824700_c22d) 2006; 124
(2023062605113824700_c24b) 1992; 75
(2023062605113824700_c25c) 2004; 121
(2023062605113824700_c14a) 2001; 115
(2023062605113824700_c25f) 2010; 104
(2023062605113824700_c13c) 2000; 112
(2023062605113824700_c20c) 2004; 121
Herzberg (2023062605113824700_c4) 1991
(2023062605113824700_c21b) 2000; 62
2023062605113824700_c16
2023062605113824700_c17
(2023062605113824700_c2a) 2007; 126
(2023062605113824700_c13e) 2003; 119
(2023062605113824700_c19a) 1975; 35
(2023062605113824700_c23b) 2010; 43
(2023062605113824700_c6b) 1980; 40
2023062605113824700_c20b
(2023062605113824700_c15) 2008; 41
(2023062605113824700_c18c) 1954
(2023062605113824700_c25e) 2007; 127
(2023062605113824700_c23c) 2006; 125
(2023062605113824700_c5b) 1986; 59
Baer (2023062605113824700_c10a) 2002
(2023062605113824700_c2b) 2007; 40
(2023062605113824700_c6a) 1980; 40
(2023062605113824700_c22c) 2005; 109
2023062605113824700_c19b
2023062605113824700_c19c
(2023062605113824700_c13d) 2003; 118
(2023062605113824700_c12) 1972
(2023062605113824700_c13a) 1983; 78
(2023062605113824700_c1) 2006; 125
(2023062605113824700_c11c) 1963; 35
(2023062605113824700_c21d) 2002; 100
(2023062605113824700_c23a) 2010; 81
(2023062605113824700_c5a) 2002; 124
References_xml – volume: 40
  start-page: 1
  year: 1980
  ident: 2023062605113824700_c6a
  publication-title: Mol. Phys.
  doi: 10.1080/00268978000101291
– volume: 43
  start-page: 051001
  year: 2010
  ident: 2023062605113824700_c23b
  publication-title: J. Phys. B
  doi: 10.1088/0953-4075/43/5/051001
– volume: 104
  start-page: 389
  year: 2000
  ident: 2023062605113824700_c22b
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp992742o
– volume: 127
  start-page: 337
  year: 2004
  ident: 2023062605113824700_c25a
  publication-title: Faraday Discuss.
  doi: 10.1039/b313883f
– volume-title: Beyond Born Oppenheimer: Electronic Non-Adiabatic Coupling Terms and Conical Intersections
  year: 2006
  ident: 2023062605113824700_c9
– volume: 392
  start-page: 45
  year: 1984
  ident: 2023062605113824700_c24a
  publication-title: Proc. R. Soc. London, Ser. A
  doi: 10.1098/rspa.1984.0023
– volume: 117
  start-page: 7405
  year: 2002
  ident: 2023062605113824700_c20d
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1515768
– volume: 40
  start-page: 1011
  year: 1980
  ident: 2023062605113824700_c20a
  publication-title: Mol. Phys.
  doi: 10.1080/00268978000102091
– volume-title: Molecular Spectra and Molecular Structure
  year: 1991
  ident: 2023062605113824700_c4
– volume: 115
  start-page: 3673
  year: 2001
  ident: 2023062605113824700_c14a
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1389842
– volume: 35
  start-page: 77
  year: 1963
  ident: 2023062605113824700_c11c
  publication-title: Discuss. Faraday Soc.
  doi: 10.1039/df9633500077
– volume: 78
  start-page: 807
  year: 1983
  ident: 2023062605113824700_c13a
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.444780
– volume: 84
  start-page: 457
  year: 1927
  ident: 2023062605113824700_c18a
  publication-title: Ann. Phys.
  doi: 10.1002/andp.19273892002
– ident: 2023062605113824700_c16
– volume: 119
  start-page: 5058
  year: 2003
  ident: 2023062605113824700_c13e
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1591729
– volume: 319
  start-page: 489
  year: 2000
  ident: 2023062605113824700_c21a
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(00)00195-0
– volume: 81
  start-page: 115433
  year: 2010
  ident: 2023062605113824700_c23a
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.81.115433
– volume: 161
  start-page: 220
  year: 1937
  ident: 2023062605113824700_c11a
  publication-title: Proc. R. Soc. London, Ser. A
  doi: 10.1098/rspa.1937.0142
– volume: 40
  start-page: 95
  year: 1980
  ident: 2023062605113824700_c6b
  publication-title: Mol. Phys.
  doi: 10.1080/00268978000101321
– volume: 62
  start-page: 032506
  year: 2000
  ident: 2023062605113824700_c21b
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.62.032506
– volume: 118
  start-page: 3052
  year: 2003
  ident: 2023062605113824700_c13d
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1536925
– volume: 41
  start-page: 025102
  year: 2008
  ident: 2023062605113824700_c15
  publication-title: J. Phys. B
  doi: 10.1088/0953-4075/41/2/025102
– volume-title: The Jahn-Teller Effect in Molecules and Crystals
  year: 1972
  ident: 2023062605113824700_c12
– volume: 27
  start-page: 1217
  year: 1974
  ident: 2023062605113824700_c7a
  publication-title: Mol. Phys.
  doi: 10.1080/00268977400101071
– volume: 108
  start-page: 2336
  year: 1998
  ident: 2023062605113824700_c7c
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.475619
– volume: 344
  start-page: 147
  year: 1975
  ident: 2023062605113824700_c11d
  publication-title: Proc. R. Soc. London, Ser. A
  doi: 10.1098/rspa.1975.0095
– ident: 2023062605113824700_c19b
– volume: 105
  start-page: 10456
  year: 1996
  ident: 2023062605113824700_c25b
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.472972
– volume: 125
  start-page: 094102
  year: 2006
  ident: 2023062605113824700_c1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2336219
– volume: 114
  start-page: 2991
  year: 2010
  ident: 2023062605113824700_c14c
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp905038t
– ident: 2023062605113824700_c10b
– volume: K1
  start-page: 1
  year: 1951
  ident: 2023062605113824700_c18b
  publication-title: Festschrift Göttingen Nach. Math. Phys.
– volume: 100
  start-page: 1011
  year: 2002
  ident: 2023062605113824700_c21d
  publication-title: Mol. Phys.
  doi: 10.1080/00268970110109475
– volume: 82
  start-page: 2392
  year: 1985
  ident: 2023062605113824700_c13b
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.448333
– start-page: 127
  volume-title: Molecular Spectroscopy: Modern Research
  year: 1977
  ident: 2023062605113824700_c6c
– volume: 124
  start-page: 323
  year: 2002
  ident: 2023062605113824700_c23d
  publication-title: Adv. Chem. Phys.
  doi: 10.1002/0471433462.ch5
– volume: 126
  start-page: 154309
  year: 2007
  ident: 2023062605113824700_c2a
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2717934
– ident: 2023062605113824700_c20b
– ident: 2023062605113824700_c22e
– volume: 125
  start-page: 104105
  year: 2006
  ident: 2023062605113824700_c23c
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2338912
– volume: 66
  start-page: 1363
  year: 1977
  ident: 2023062605113824700_c22a
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.434032
– volume: 35
  start-page: 112
  year: 1975
  ident: 2023062605113824700_c19a
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(75)85599-0
– volume-title: Dynamical Theory of Crystal Lattices
  year: 1954
  ident: 2023062605113824700_c18c
– ident: 2023062605113824700_c19c
– volume: 92
  start-page: 172
  year: 1934
  ident: 2023062605113824700_c3
  publication-title: Z. Phys.
  doi: 10.1007/BF01350054
– volume: 128
  start-page: 144111
  year: 2008
  ident: 2023062605113824700_c25d
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2884348
– volume: 75
  start-page: 293
  year: 1992
  ident: 2023062605113824700_c24b
  publication-title: Mol. Phys.
  doi: 10.1080/00268979200100231
– volume: 254
  start-page: 259
  year: 1961
  ident: 2023062605113824700_c11b
  publication-title: Philos. Trans. R. Soc. London, Ser. A
  doi: 10.1098/rsta.1961.0017
– volume: 40
  start-page: F267
  year: 2007
  ident: 2023062605113824700_c2b
  publication-title: J. Phys. A: Math. Theor.
  doi: 10.1088/1751-8113/40/15/F01
– volume: 127
  start-page: 064103
  year: 2007
  ident: 2023062605113824700_c25e
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2755665
– volume: 121
  start-page: 11629
  year: 2004
  ident: 2023062605113824700_c25c
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1814936
– volume: 121
  start-page: 10370
  year: 2004
  ident: 2023062605113824700_c20c
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1808695
– volume-title: The Role of Degenerate States in Chemistry
  year: 2002
  ident: 2023062605113824700_c10a
  article-title: Advances in Chemical Physics
  doi: 10.1002/0471433462
– volume: 109
  start-page: 3476
  year: 2005
  ident: 2023062605113824700_c22c
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp044195z
– volume: 392
  start-page: 17
  year: 2004
  ident: 2023062605113824700_c14b
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2004.05.043
– volume: 52
  start-page: 117
  year: 1983
  ident: 2023062605113824700_c8
  publication-title: Adv. Chem. Phys.
  doi: 10.1002/9780470142769.ch2
– volume: 112
  start-page: 2746
  year: 2000
  ident: 2023062605113824700_c13c
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.480848
– volume: 70
  start-page: 605
  year: 1990
  ident: 2023062605113824700_c7b
  publication-title: Mol. Phys.
  doi: 10.1080/00268979000102621
– volume: 124
  start-page: 583
  year: 2002
  ident: 2023062605113824700_c5a
  publication-title: Adv. Chem. Phys.
  doi: 10.1002/0471433462.ch11
– volume: 104
  start-page: 073001
  year: 2010
  ident: 2023062605113824700_c25f
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.073001
– volume: 59
  start-page: 1283
  year: 1986
  ident: 2023062605113824700_c5b
  publication-title: Mol. Phys.
  doi: 10.1080/00268978600102741
– volume: 124
  start-page: 074101
  year: 2006
  ident: 2023062605113824700_c22d
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2170089
– ident: 2023062605113824700_c17
– ident: 2023062605113824700_c21c
SSID ssj0001724
Score 2.1486473
Snippet The tetra-atomic C2H2+ cation is known to form Renner–Teller-type intersections along its collinear axis. Not too long ago, we studied the nonadiabatic...
The tetra-atomic C(2)H(2)(+) cation is known to form Renner-Teller-type intersections along its collinear axis. Not too long ago, we studied the nonadiabatic...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 084107
Title Renner–Teller intersections along the collinear axes of polyatomic molecules: H2CN as a case study
URI https://www.ncbi.nlm.nih.gov/pubmed/20815560
https://www.proquest.com/docview/753995799
Volume 133
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9NAFB60i-iL6KrremMQH4QlNZNMbr7VukuRbhU3hb6Fk0lCu1uTJc2C9dd7JjO5FCteXkIYkiHM93HmnMk53yHkTcYF-NwJjCBJLIOnjmugF-4YduxnQsRe7AlZnHw-cydz_mnhLLpfMXV1SRUPxY-9dSX_gyqOIa6ySvYfkG0nxQG8R3zxigjj9a8w_iqtZGmE8vC9rJUfyk2dWpVvTmBd6EIoUetuS8Ee-K4kZq-L9RaDbZkW_021x1WZcRNrPJONZ-BE4ObWk5697DjV82BFIzagjkd6LepVi2O0FtABerXE-DxZbmGr7RxsVu0ro2S5ugJV9X4BVQmXqzYf5wMoWvUz_PU5hcqSs_qm1fQDw3NVc9BhumesscdKGUMTz-9ZV9PnukfuL4YfPS15BjGsC2NVy6Vdce3Z5-hsPp1G4ekivE0OLIwqrAE5GH08n160Wzd6c1xVZKjPaqSoXPtdO_WuA_ObqKT2TsIH5L4GhY4URx6SW2l-SO6Om25-h-TOF4XRIxLvsIbusIbWrKHIGtqyhkrW0CKjHWtoy5r3VHKGAr5JJWdozZnHZH52Go4nhu60YQjLNyuDicBlYIogACEDaNcPZLYUT9CiZ2ZgA2MB4G1sZglzUtwf7Uyg455ifODhiP2EDPIiT58SyjAABogtcBPBTc5ihyWeK1V3gWW-yY_J22b5IqFl6GU3lHVUp0O4dsQivdLH5HX76LXSXtn3EG0wiHBJ5e8uyNPiZhN5UnTZ8eQjRwqbdhYLHWEHff1nf375ObnXsfkFGVTlTfoS_dAqfqXZ8xNbyYkt
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Renner-Teller+intersections+along+the+collinear+axes+of+polyatomic+molecules%3A+H2CN+as+a+case+study&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Das%2C+Anita&rft.au=Mukhopadhyay%2C+Debasis&rft.au=Adhikari%2C+Satrajit&rft.au=Baer%2C+Michael&rft.date=2010-08-28&rft.issn=1089-7690&rft.eissn=1089-7690&rft.volume=133&rft.issue=8&rft.spage=084107&rft_id=info:doi/10.1063%2F1.3479399&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon