Stochastic bifurcations of generalized Duffing–van der Pol system with fractional derivative under colored noise
The stochastic bifurcation of a generalized Duffing–van der Pol system with fractional derivative under color noise excitation is studied. Firstly, fractional derivative in a form of generalized integral with time-delay is approximated by a set of periodic functions. Based on this work, the stochast...
Saved in:
Published in | Chinese physics B Vol. 26; no. 9; pp. 62 - 69 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.08.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 |
DOI | 10.1088/1674-1056/26/9/090501 |
Cover
Abstract | The stochastic bifurcation of a generalized Duffing–van der Pol system with fractional derivative under color noise excitation is studied. Firstly, fractional derivative in a form of generalized integral with time-delay is approximated by a set of periodic functions. Based on this work, the stochastic averaging method is applied to obtain the FPK equation and the stationary probability density of the amplitude. After that, the critical parameter conditions of stochastic P-bifurcation are obtained based on the singularity theory. Different types of stationary probability densities of the amplitude are also obtained. The study finds that the change of noise intensity, fractional order, and correlation time will lead to the stochastic bifurcation. |
---|---|
AbstractList | The stochastic bifurcation of a generalized Duffing–van der Pol system with fractional derivative under color noise excitation is studied. Firstly, fractional derivative in a form of generalized integral with time-delay is approximated by a set of periodic functions. Based on this work, the stochastic averaging method is applied to obtain the FPK equation and the stationary probability density of the amplitude. After that, the critical parameter conditions of stochastic P-bifurcation are obtained based on the singularity theory. Different types of stationary probability densities of the amplitude are also obtained. The study finds that the change of noise intensity, fractional order, and correlation time will lead to the stochastic bifurcation. |
Author | 李伟 张美婷 赵俊锋 |
AuthorAffiliation | School of Mathematics and Statistics, Xidian University, Xi' an 710071, China Applied Mathematics Department, School of Science, Northwestern Polytechnical University, Xi' an 710072, China |
Author_xml | – sequence: 1 fullname: 李伟 张美婷 赵俊锋 |
BookMark | eNqFkM1KAzEURoNUsK0-ghDcj3OTNJkUV1J_oaCgrodMmrSRaaLJtFJXvoNv6JM4o6ULN67uhfudD-4ZoJ4P3iB0TOCUgJQ5EcUoI8BFTkU-zmEMHMge6lPgMmOSjXqov8scoEFKzwCCAGV9FB-aoBcqNU7jytlV1KpxwSccLJ4bb6Kq3buZ4YuVtc7Pvz4-18rjmYn4PtQ4bVJjlvjNNQtso9Idquru7NZtz9rgle-yOtQhti0-uGQO0b5VdTJH2zlET1eXj5ObbHp3fTs5n2aaSmgyoiqhLBScj7iiTDPNheSFnM2EpqRqVwCiC1IoY6mw1agCAUISLQBAKsuG6Oy3V8eQUjS21K75-a6JytUlgbLTV3Zqyk5NSUU5Ln_1tTT_Q79Et1Rx8y93suUWwc9fW2c7UBQMGEhK2DdXJYO2 |
CitedBy_id | crossref_primary_10_1016_j_chaos_2021_111650 crossref_primary_10_2298_TSCI2303155L crossref_primary_10_21595_jve_2019_20118 crossref_primary_10_1007_s11071_024_09289_1 crossref_primary_10_21595_jve_2017_18863 crossref_primary_10_1007_s11071_021_06806_4 crossref_primary_10_1155_2018_6935095 crossref_primary_10_2298_TSCI2203727L crossref_primary_10_1063_5_0246296 crossref_primary_10_1177_14613484241230832 crossref_primary_10_2298_TSCI2203713L crossref_primary_10_2298_TSCI2403189L crossref_primary_10_3389_fphy_2023_1238901 crossref_primary_10_1007_s10409_020_01020_8 crossref_primary_10_1016_j_ress_2024_110206 |
Cites_doi | 10.1016/j.ijnonlinmec.2011.09.012 10.7498/aps.54.2557 10.1016/j.probengmech.2010.07.008 10.1016/j.chaos.2006.05.010 10.1016/j.cnsns.2009.12.034 10.1360/132012-692 10.1007/978-3-662-12878-7 10.1016/j.jsv.2008.06.026 10.1103/PhysRevE.83.056215 10.1016/j.chaos.2005.11.066 10.7498/aps.65.210501 10.1007/s11071-015-2345-1 10.1103/PhysRevE.81.011106 |
ContentType | Journal Article |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION |
DOI | 10.1088/1674-1056/26/9/090501 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库- 镜像站点 CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | Stochastic bifurcations of generalized Duffing–van der Pol system with fractional derivative under colored noise |
EISSN | 2058-3834 |
EndPage | 69 |
ExternalDocumentID | 10_1088_1674_1056_26_9_090501 673030821 |
GroupedDBID | 02O 1JI 1WK 29B 2RA 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q 92L AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFUIB AFYNE AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BBWZM CCEZO CCVFK CEBXE CHBEP CJUJL CQIGP CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN FA0 FEDTE HAK HVGLF IJHAN IOP IZVLO JCGBZ KNG KOT M45 N5L NT- NT. PJBAE Q02 RIN RNS ROL RPA RW3 SY9 TCJ TGP UCJ W28 ~WA -SA -S~ AAYXX ACARI ADEQX AERVB AGQPQ AOAED ARNYC CAJEA CITATION Q-- U1G U5K |
ID | FETCH-LOGICAL-c280t-1ab6af075545a23c3c568578dd6c21b857001c717aef26fb4b060681c60008af3 |
ISSN | 1674-1056 |
IngestDate | Thu Apr 24 23:07:57 EDT 2025 Tue Jul 01 02:55:22 EDT 2025 Wed Feb 14 09:57:33 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | http://iopscience.iop.org/info/page/text-and-data-mining http://iopscience.iop.org/page/copyright |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c280t-1ab6af075545a23c3c568578dd6c21b857001c717aef26fb4b060681c60008af3 |
Notes | stochastic bifurcation fractional derivative color noise stochastic averaging method The stochastic bifurcation of a generalized Duffing–van der Pol system with fractional derivative under color noise excitation is studied. Firstly, fractional derivative in a form of generalized integral with time-delay is approximated by a set of periodic functions. Based on this work, the stochastic averaging method is applied to obtain the FPK equation and the stationary probability density of the amplitude. After that, the critical parameter conditions of stochastic P-bifurcation are obtained based on the singularity theory. Different types of stationary probability densities of the amplitude are also obtained. The study finds that the change of noise intensity, fractional order, and correlation time will lead to the stochastic bifurcation. 11-5639/O4 |
PageCount | 8 |
ParticipantIDs | crossref_citationtrail_10_1088_1674_1056_26_9_090501 crossref_primary_10_1088_1674_1056_26_9_090501 chongqing_primary_673030821 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-08-01 |
PublicationDateYYYYMMDD | 2017-08-01 |
PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Chinese physics B |
PublicationTitleAlternate | Chinese Physics |
PublicationYear | 2017 |
References | 12 Gu R C (7) 2011; 60 13 14 15 16 Wu Z Q (10) 2015; 64 Zhu W Q (17) 1992 19 Hao Y (8) 2013; 45 Xu W (11) 2016; 65 Wang X D (3) 2005; 54 Rong H W (4) 2006; 27 1 2 5 6 9 Ling F H (18) 1987 |
References_xml | – ident: 14 doi: 10.1016/j.ijnonlinmec.2011.09.012 – volume: 54 start-page: 2557 issn: 0372-736X year: 2005 ident: 3 publication-title: Acta Phys. Sin. doi: 10.7498/aps.54.2557 – volume: 45 start-page: 257 year: 2013 ident: 8 publication-title: Chin. J. Theor. Appl. Mech. – ident: 13 doi: 10.1016/j.probengmech.2010.07.008 – volume: 64 issn: 0372-736X year: 2015 ident: 10 publication-title: Acta Phys. Sin. – volume: 27 start-page: 1373 year: 2006 ident: 4 publication-title: Chin. J. Appl. Mech. – year: 1992 ident: 17 publication-title: Random Vibration – volume: 60 issn: 0372-736X year: 2011 ident: 7 publication-title: Acta Phys. Sin. – ident: 16 doi: 10.1016/j.chaos.2006.05.010 – ident: 2 doi: 10.1016/j.cnsns.2009.12.034 – ident: 9 doi: 10.1360/132012-692 – ident: 1 doi: 10.1007/978-3-662-12878-7 – ident: 12 doi: 10.1016/j.jsv.2008.06.026 – ident: 6 doi: 10.1103/PhysRevE.83.056215 – ident: 15 doi: 10.1016/j.chaos.2005.11.066 – volume: 65 start-page: 210501 issn: 0372-736X year: 2016 ident: 11 publication-title: Acta Phys. Sin. doi: 10.7498/aps.65.210501 – ident: 19 doi: 10.1007/s11071-015-2345-1 – ident: 5 doi: 10.1103/PhysRevE.81.011106 – start-page: 4 year: 1987 ident: 18 publication-title: Catastrophe Theory and its Applications |
SSID | ssj0061023 |
Score | 2.2572057 |
Snippet | The stochastic bifurcation of a generalized Duffing–van der Pol system with fractional derivative under color noise excitation is studied. Firstly, fractional... |
SourceID | crossref chongqing |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 62 |
SubjectTerms | l系统 van 分数阶导数 广义 有色噪声 概率密度 随机分岔 |
Title | Stochastic bifurcations of generalized Duffing–van der Pol system with fractional derivative under colored noise |
URI | http://lib.cqvip.com/qk/85823A/201709/673030821.html |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagCIkL4imWAvKBW5Xuxkkc51jxUEEqrMRW9BbZTrwbqUogzXLoif_Qf8gvYcaOk5SiinKxVll5NvJ8Ox7P4zMhr8GDj8AumkAyTDMyWQQqLGVQRGGZKpVqybAb-egTPzyOP54kJ2NM13aXdGpfn_-1r-R_tArPQK_YJXsDzQ5C4QF8Bv3CCBqG8Z90_KVr9EYi0_Keqsy21WNd29rRSVfn4FC-3RqDfc19XUOELUtIIbFsTnsmZxeONa3rcsC8Dbz-D8cJjl1m7R6SW2Opet1UZ5fpDTb2Ess-RHI2ucXZ1gl8LasrsemjsgpWfst0X7j8z7YOYH3X00gE7G6-Ds4bT57GYNYdUbi3rq4fvkdRNjGV2SJxk68YcTB8GE_w0rBnBYfMJpr8rMvU2X9saUOhoU2xC5GjsByF5YznWe7E3CZ3WJra5P6Hz0u_f3Mks8Bjuv993_clxHx4Nmd8ns2dGGTl2DT1-jss3MS7mbgpqwfkfn--oAcOLA_JrbJ-RO4unXIek3aEDJ1ChjaGTiBDe8j8-nkBYKEAAApgoQ4sFMFCR7DQESzUgoX2YKEWLE_I8ft3qzeHQX_tRqCZWHRBKBWXBlxJcK7hH6wjnXABhr0ouGahsjcihDoNU1kaxo2K1QJOwSLUHB1KaaKnZKdu6vIZoYyFXMahFHEBB3eRiFThzV7WsVdGJzOyOyxd_s3Rq2CloSVRCmck9ouZ656xHi9OOc2vVeuM7A_TvMxrJzy_6YRdcm_E_wuy07Xb8iX4pp16ZaH0G1Brh9E |
linkProvider | IOP Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+bifurcations+of+generalized+Duffing%E2%80%93van+der+Pol+system+with+fractional+derivative+under+colored+noise&rft.jtitle=Chinese+physics+B&rft.au=Li%2C+Wei&rft.au=Zhang%2C+Mei-Ting&rft.au=Zhao%2C+Jun-Feng&rft.date=2017-08-01&rft.issn=1674-1056&rft.volume=26&rft.issue=9&rft.spage=90501&rft_id=info:doi/10.1088%2F1674-1056%2F26%2F9%2F090501&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1674_1056_26_9_090501 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg |