Construction of gait adaptation model in human splitbelt treadmill walking

There are a huge number of studies that measure kinematics, dynamics, the oxygen uptake and so on in human walking on the treadmill. Especially in walking on the splitbelt treadmill where the speed of the right and left belt is different, remarkable differences in kinematics are seen between normal...

Full description

Saved in:
Bibliographic Details
Published inApplied bionics and biomechanics Vol. 6; no. 3-4; pp. 269 - 284
Main Authors Otoda, Yuji, Kimura, Hiroshi, Takase, Kunikatsu
Format Journal Article
LanguageEnglish
Published Amsterdam John Wiley & Sons, Inc 2009
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract There are a huge number of studies that measure kinematics, dynamics, the oxygen uptake and so on in human walking on the treadmill. Especially in walking on the splitbelt treadmill where the speed of the right and left belt is different, remarkable differences in kinematics are seen between normal and cerebellar disease subjects. In order to construct the gait adaptation model of such human splitbelt treadmill walking, we proposed a simple control model and made a newly developed 2D biped robot walk on the splitbelt treadmill. We combined the conventional limit-cycle based control consisting of joint PD-control, cyclic motion trajectory planning and a stepping reflex with a newly proposed adjustment of P-gain at the hip joint of the stance leg. We showed that the data of robot (normal subject model and cerebellum disease subject model) experiments had high similarities with the data of normal subjects and cerebellum disease subjects experiments carried out by Reisman et al. (2005) and Morton and Bastian (2006) in ratios and patterns. We also showed that P-gain at the hip joint of the stance leg was the control parameter of adaptation for symmetric gaits in splitbelt walking and P-gain adjustment corresponded to muscle stiffness adjustment by the cerebellum. Consequently, we successfully proposed the gait adaptation model in human splitbelt treadmill walking and confirmed the validity of our hypotheses and the proposed model using the biped robot. [PUBLICATION ABSTRACT]
AbstractList There are a huge number of studies that measure kinematics, dynamics, the oxygen uptake and so on in human walking on the treadmill. Especially in walking on the splitbelt treadmill where the speed of the right and left belt is different, remarkable differences in kinematics are seen between normal and cerebellar disease subjects. In order to construct the gait adaptation model of such human splitbelt treadmill walking, we proposed a simple control model and made a newly developed 2D biped robot walk on the splitbelt treadmill. We combined the conventional limit-cycle based control consisting of joint PD-control, cyclic motion trajectory planning and a stepping reflex with a newly proposed adjustment of P-gain at the hip joint of the stance leg. We showed that the data of robot (normal subject model and cerebellum disease subject model) experiments had high similarities with the data of normal subjects and cerebellum disease subjects experiments carried out by Reisman et al. (2005) and Morton and Bastian (2006) in ratios and patterns. We also showed that P-gain at the hip joint of the stance leg was the control parameter of adaptation for symmetric gaits in splitbelt walking and P-gain adjustment corresponded to muscle stiffness adjustment by the cerebellum. Consequently, we successfully proposed the gait adaptation model in human splitbelt treadmill walking and confirmed the validity of our hypotheses and the proposed model using the biped robot.
There are a huge number of studies that measure kinematics, dynamics, the oxygen uptake and so on in human walking on the treadmill. Especially in walking on the splitbelt treadmill where the speed of the right and left belt is different, remarkable differences in kinematics are seen between normal and cerebellar disease subjects. In order to construct the gait adaptation model of such human splitbelt treadmill walking, we proposed a simple control model and made a newly developed 2D biped robot walk on the splitbelt treadmill. We combined the conventional limit-cycle based control consisting of joint PD-control, cyclic motion trajectory planning and a stepping reflex with a newly proposed adjustment of P-gain at the hip joint of the stance leg. We showed that the data of robot (normal subject model and cerebellum disease subject model) experiments had high similarities with the data of normal subjects and cerebellum disease subjects experiments carried out by Reisman et al. (2005) and Morton and Bastian (2006) in ratios and patterns. We also showed that P-gain at the hip joint of the stance leg was the control parameter of adaptation for symmetric gaits in splitbelt walking and P-gain adjustment corresponded to muscle stiffness adjustment by the cerebellum. Consequently, we successfully proposed the gait adaptation model in human splitbelt treadmill walking and confirmed the validity of our hypotheses and the proposed model using the biped robot. [PUBLICATION ABSTRACT]
Author Otoda, Yuji
Takase, Kunikatsu
Kimura, Hiroshi
Author_xml – sequence: 1
  givenname: Yuji
  surname: Otoda
  fullname: Otoda, Yuji
– sequence: 2
  givenname: Hiroshi
  surname: Kimura
  fullname: Kimura, Hiroshi
– sequence: 3
  givenname: Kunikatsu
  surname: Takase
  fullname: Takase, Kunikatsu
BookMark eNplkUuLFTEQhYOM4MzoD3DXuHHVWnl00lnKxcfIgBtdh-okfc01nVyTNOK_N84VF7qq4tTH4RTnhlylnDwhzym8ojDDa0qVZJyBBqaFEEo-ItdUTWJkFPhV3_t97AB7Qm5qPQFMVAC_Jh8POdVWdttCTkNehyOGNqDDc8MHacvOxyGk4eu-YRrqOYa2-NiGVjy6LcQ4_MD4LaTjU_J4xVj9sz_zlnx59_bz4cN4_-n93eHN_WjZDHKcKSrFJs9XhRNHRCvtQrWzAIwhSpis1F1ljnK30IUpO1mhYV49Wxku_JbcXXxdxpM5l7Bh-WkyBvMg5HI0WFqw0Rth9byu4FBrJkAqbeU8czchCuYQbPd6efE6l_x997WZLVTrY8Tk816Nmricpaaqky_-IU95L6k_alhPTjlI2SF6gWzJtRa__o1HwfzuyfzXE_8FdqqGVg
Cites_doi 10.1093/brain/awl376
10.1152/physrev.00028.2005
10.1093/gerona/58.1.M46
10.1152/jn.00089.2005
10.1177/02783640122067561
10.1007/s10514-005-4051-1
10.1023/A:1008848227206
10.1523/JNEUROSCI.2622-06.2006
10.1007/BF00198086
10.1126/science.1138353
10.1007/BF03027080
10.1023/A:1008858507550
10.1016/j.neunet.2008.03.014
10.1177/0278364904042194
10.1109/MEX.1986.4307016
10.1177/0278364906063822
10.1016/j.neunet.2008.03.010
10.1177/0278364906069187
10.1016/j.neunet.2008.04.002
10.1007/978-3-540-77457-0_51
10.1177/027836498400300206
10.1109/TRO.2008.915457
ContentType Journal Article
Copyright Copyright Taylor & Francis Ltd. Sep 2009
Copyright_xml – notice: Copyright Taylor & Francis Ltd. Sep 2009
DBID AAYXX
CITATION
7QO
7TB
7TK
8FD
FR3
P64
DOA
DOI 10.1080/11762320902944476
DatabaseName CrossRef
Biotechnology Research Abstracts
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Engineering Research Database
Engineering Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1754-2103
EndPage 284
ExternalDocumentID oai_doaj_org_article_4c98ff0da99240679c6883d5aa42da0c
1912922271
10_1080_11762320902944476
Genre Feature
GroupedDBID .DC
0R~
23M
24P
4.4
53G
5GY
5VS
8FH
AAFWJ
AAJEY
AAYXX
ACCMX
ACGOD
ACIWK
ACPQW
ACPRK
ADBBV
ADMLS
ADRAZ
ADZMO
AENEX
AFPKN
AFRAH
AFRHK
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BHPHI
BPHCQ
CAG
CITATION
COF
CS3
EBD
EBS
EJD
GROUPED_DOAJ
H13
HCIFZ
HZ~
I-F
IOS
IPNFZ
KQ8
M2P
M48
M4Z
M7P
MET
MIO
MK~
ML~
MV1
O9-
OK1
P2P
PGMZT
PIMPY
RIG
RPM
TDBHL
TFW
TWF
TWQ
7QO
7TB
7TK
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
P64
ID FETCH-LOGICAL-c2806-81a7725e3f7a53aaac6cb19dc0022aa605c69aac2d13db1b27c5c4908fe2f2ab3
IEDL.DBID M48
ISSN 1176-2322
IngestDate Wed Aug 27 01:32:21 EDT 2025
Fri Jul 11 02:12:27 EDT 2025
Fri Jul 25 11:00:41 EDT 2025
Tue Jul 01 03:30:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3-4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2806-81a7725e3f7a53aaac6cb19dc0022aa605c69aac2d13db1b27c5c4908fe2f2ab3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/4c98ff0da99240679c6883d5aa42da0c
PQID 200213066
PQPubID 28075
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_4c98ff0da99240679c6883d5aa42da0c
proquest_miscellaneous_753686917
proquest_journals_200213066
crossref_primary_10_1080_11762320902944476
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-00-00
PublicationDateYYYYMMDD 2009-01-01
PublicationDate_xml – year: 2009
  text: 2009-00-00
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Applied bionics and biomechanics
PublicationYear 2009
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References Rogers M W (CIT0022) 2003; 58
CIT0030
CIT0010
CIT0031
CIT0012
Wisse M (CIT0032) 2006
CIT0034
CIT0011
CIT0033
Orlovsky G (CIT0018) 1999
CIT0014
CIT0013
CIT0016
CIT0015
Raibert M H (CIT0020) 1986
CIT0017
CIT0019
Sano A (CIT0024) 1990; 3
CIT0021
CIT0001
CIT0023
CIT0003
CIT0025
CIT0002
CIT0005
CIT0027
CIT0004
CIT0026
CIT0007
CIT0029
CIT0006
CIT0028
CIT0009
CIT0008
References_xml – ident: CIT0010
  doi: 10.1093/brain/awl376
– ident: CIT0023
  doi: 10.1152/physrev.00028.2005
– volume: 58
  start-page: 46
  year: 2003
  ident: CIT0022
  publication-title: J Gerontol Ser A: Biol Sci Med Sci
  doi: 10.1093/gerona/58.1.M46
– ident: CIT0021
  doi: 10.1152/jn.00089.2005
– ident: CIT0004
  doi: 10.1177/02783640122067561
– ident: CIT0001
  doi: 10.1007/s10514-005-4051-1
– ident: CIT0002
– ident: CIT0011
  doi: 10.1023/A:1008848227206
– ident: CIT0016
  doi: 10.1523/JNEUROSCI.2622-06.2006
– ident: CIT0027
  doi: 10.1007/BF00198086
– start-page: 141
  volume-title: Adaptive motion of animals and machines
  year: 2006
  ident: CIT0032
– ident: CIT0009
  doi: 10.1126/science.1138353
– ident: CIT0031
  doi: 10.1007/BF03027080
– ident: CIT0033
  doi: 10.1023/A:1008858507550
– ident: CIT0008
  doi: 10.1016/j.neunet.2008.03.014
– ident: CIT0034
  doi: 10.1177/0278364904042194
– volume-title: Legged robots that balance
  year: 1986
  ident: CIT0020
  doi: 10.1109/MEX.1986.4307016
– ident: CIT0012
– ident: CIT0006
  doi: 10.1177/0278364906063822
– ident: CIT0013
  doi: 10.1016/j.neunet.2008.03.010
– volume: 3
  start-page: 1476
  year: 1990
  ident: CIT0024
  publication-title: Proceedings of IEEE ICRA, Cincinnati
– ident: CIT0003
– ident: CIT0029
  doi: 10.1177/0278364906069187
– ident: CIT0025
  doi: 10.1016/j.neunet.2008.04.002
– ident: CIT0017
  doi: 10.1007/978-3-540-77457-0_51
– ident: CIT0026
– ident: CIT0028
– ident: CIT0007
– ident: CIT0005
– ident: CIT0030
– ident: CIT0014
  doi: 10.1177/027836498400300206
– ident: CIT0019
– ident: CIT0015
  doi: 10.1109/TRO.2008.915457
– volume-title: Neural control of locomotion
  year: 1999
  ident: CIT0018
SSID ssj0051403
Score 1.7136496
Snippet There are a huge number of studies that measure kinematics, dynamics, the oxygen uptake and so on in human walking on the treadmill. Especially in walking on...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 269
SubjectTerms Fitness equipment
Kinematics
Oxygen uptake
Robots
Velocity
Walking
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7EJ64vcvAkFDdN0qZHFR8IelHRW5lMEhCWruB68N8707QiePDidVraMJNkvsmE7xPiuHEWa4eqcNrEwngbCm9oudfKJo0K0fRah3f31c2TuX2xLz-kvvhOWKYHzo47Ndi4lKYBmoaTT91g5ZwOFsCUAabIuy_lvLGYynuwZRa6LKtSFYQZyrGf6aanbCMT30dsjDFMNvIjI_XE_b_25T7ZXK2LtQElyrM8ug2xFLtNsZJ1Iz-3xC3LbI7Er3Ke5DW8LuRZgLfcWJescDaTr53sz-jlAyHNhY-zhXwkjBhYaUg-w4xPybfF09Xl48VNMYgiFMhN0MIpIEBso041WA0AWKFXTUDOxgBUnWDVkLUMSgevfFmjRe7upVimErzeEcvdvIu7QibGAzjVNaA3NloPJlYebFL0FR3CRJyMjmnfMvdFqwZK0V9enIhzdt33i0xb3RsomO0QzPavYE7E_uj4dlhL721_jYQqG_qF_H5Ki4A7G9DF-cd7SzVX5SqqPPf-YxT7YjX3jPig5UAsUzzjIUGPhT_qZ9kX9lHSUA
  priority: 102
  providerName: Directory of Open Access Journals
Title Construction of gait adaptation model in human splitbelt treadmill walking
URI https://www.proquest.com/docview/200213066
https://www.proquest.com/docview/753686917
https://doaj.org/article/4c98ff0da99240679c6883d5aa42da0c
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fSxwxEA5WKfRF1Lb0tEoefCpse9n82N2HUlQUEexTD3xbJpNEhGPPelfU_74z2d2DotDXbMjCJJOZL98wnxDHTW2xqlEVtTaxMN6Gwhty90rZpFEhmqx1eP3TXc7M1Y292RCjvNVgwOWr0I71pGYP869Pv59_kMN_HyrkvilFHq1LrjBsjDGVeyO2KDBV7KfXZk0qWG5N12utuILmlyPJ-doS_4Sp3M3_xWWdI9DFjtgeUkd50u_1rtiI3Z5424tJPr8XV6y9OXaDlYskb-FuJSHAfc-2yyx6I-86mXX55JLSz5WP85XkYvPA8kPyEeb8dP5BzC7Of51dFoNSQoHMjBa1AsqSbdSpAqsBAB161QTkEA1AkAVdQ6NlUDp45csKLTLll2KZSvD6o9jsFl38JGTiJAGnugL0xkbrwUTnwSZFq-gQJuLLaJj2vm-I0aqhz-gLK07EKZtuPZF7WeeBxcNtO7hGa7CpU5oGaBpOL6oGXV3rYAFMGWCKE3EwGr4dz0eba0sI7tAv5PoreQbTHdDFxZ9lS0DM1Y7g6P7_pxyIdz1NxG8rn8Um7VY8pGxj5Y8ySj_KJ-kvkaTQKw
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+gait+adaptation+model+in+human+splitbelt+treadmill+walking&rft.jtitle=Applied+bionics+and+biomechanics&rft.au=Otoda%2C+Y&rft.au=Kimura%2C+H&rft.au=Takase%2C+K&rft.date=2009&rft.issn=1176-2322&rft.volume=6&rft.issue=3-4&rft.spage=269&rft.epage=284&rft_id=info:doi/10.1080%2F11762320902944476&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1176-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1176-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1176-2322&client=summon