Particle Filtering and Gaussian Mixtures – On a Localized Mixture Coefficients Particle Filter (LMCPF) for Global NWP

In a global numerical weather prediction (NWP) modeling framework we study the implementation of Gaussian uncertainty of individual particles into the assimilation step of a localized adaptive particle filter (LAPF). We obtain a local representation of the prior distribution as a mixture of basis fu...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Meteorological Society of Japan Vol. 101; no. 4; pp. 233 - 253
Main Authors ROJAHN, Anne, LEEUWEN, Peter Jan VAN, POTTHAST, Roland, SCHENK, Nora
Format Journal Article
LanguageEnglish
Published Meteorological Society of Japan 2023
Subjects
Online AccessGet full text
ISSN0026-1165
2186-9057
DOI10.2151/jmsj.2023-015

Cover

Loading…
Abstract In a global numerical weather prediction (NWP) modeling framework we study the implementation of Gaussian uncertainty of individual particles into the assimilation step of a localized adaptive particle filter (LAPF). We obtain a local representation of the prior distribution as a mixture of basis functions. In the assimilation step, the filter calculates the individual weight coefficients and new particle locations. It can be viewed as a combination of the LAPF and a localized version of a Gaussian mixture filter, i.e., a “Localized Mixture Coefficients Particle Filter (LMCPF)”.Here, we investigate the feasibility of the LMCPF within a global operational framework and evaluate the relationship between prior and posterior distributions and observations. Our simulations are carried out in a standard pre-operational experimental set-up with the full global observing system, 52 km global resolution and 106 model variables. Statistics of particle movement in the assimilation step are calculated. The mixture approach is able to deal with the discrepancy between prior distributions and observation location in a real-world framework and to pull the particles towards the observations in a much better way than the pure LAPF. This shows that using Gaussian uncertainty can be an important tool to improve the analysis and forecast quality in a particle filter framework.
AbstractList In a global numerical weather prediction (NWP) modeling framework we study the implementation of Gaussian uncertainty of individual particles into the assimilation step of a localized adaptive particle filter (LAPF). We obtain a local representation of the prior distribution as a mixture of basis functions. In the assimilation step, the filter calculates the individual weight coefficients and new particle locations. It can be viewed as a combination of the LAPF and a localized version of a Gaussian mixture filter, i.e., a “Localized Mixture Coefficients Particle Filter (LMCPF)”.Here, we investigate the feasibility of the LMCPF within a global operational framework and evaluate the relationship between prior and posterior distributions and observations. Our simulations are carried out in a standard pre-operational experimental set-up with the full global observing system, 52 km global resolution and 106 model variables. Statistics of particle movement in the assimilation step are calculated. The mixture approach is able to deal with the discrepancy between prior distributions and observation location in a real-world framework and to pull the particles towards the observations in a much better way than the pure LAPF. This shows that using Gaussian uncertainty can be an important tool to improve the analysis and forecast quality in a particle filter framework.
ArticleNumber 2023-015
Author LEEUWEN, Peter Jan VAN
ROJAHN, Anne
SCHENK, Nora
POTTHAST, Roland
Author_xml – sequence: 1
  fullname: ROJAHN, Anne
  organization: Data Assimilation Unit, Deutscher Wetterdienst, Germany
– sequence: 1
  fullname: LEEUWEN, Peter Jan VAN
  organization: Departement of Atmospheric Science, Colorado State University, Colorado, USA
– sequence: 1
  fullname: POTTHAST, Roland
  organization: Data Assimilation Unit, Deutscher Wetterdienst, Germany
– sequence: 1
  fullname: SCHENK, Nora
  organization: Data Assimilation Unit, Deutscher Wetterdienst, Germany
BookMark eNp1kMtOwzAQRS1UJNrCkr2XsEjxI3GcJaragpTSLkAsLdexi6PUQXYqHiv-gT_kS2joY1GJzYxG994ZzemBjqudBuASowHBCb4pV6EcEERohHByAroEcxZlKEk7oIsQYRHGLDkDvRDKdoxT1gVvc-kbqyoNx7ZqtLduCaUr4ESuQ7DSwal9b9ZeB_jz9Q1nDkqY10pW9lMXew0Oa22MVVa7JsCjhfAqnw7n42toag8nVb2QFXx4np-DUyOroC92vQ-exqPH4V2Uzyb3w9s8UoSjJJJYFxmjihPOlTJZZnickJgmKSZMK8oVMoWimJhi83e6yDRDMqWIshgnNOO0D6LtXuXrELw24tXblfQfAiPRUhMtNdFSExtqGz898ivbyMbWrvHSVv-mRttUGRq51IcbOxRbN0ZYxH91nzvo6kV6oR39BdsUi9g
CitedBy_id crossref_primary_10_1002_qj_4706
crossref_primary_10_3934_dcdsb_2024168
crossref_primary_10_1016_j_cma_2024_117447
crossref_primary_10_2151_jmsj_2024_027
Cites_doi 10.3389/fams.2022.920186
10.1007/978-3-319-18347-3
10.1175/MWR-D-18-0367.1
10.1002/qj.2742
10.1029/94JC00572
10.1002/qj.3116
10.1214/074921708000000228
10.1016/j.jhydrol.2016.01.048
10.1080/16000870.2018.1445364
10.1093/biomet/ast020
10.1175/MWR-D-15-0322.1
10.1175/2007MWR1927.1
10.1175/2009MWR2835.1
10.1175/1520-0493(2000)128<1852:AEKSFN>2.0.CO;2
10.1175/2008MWR2529.1
10.1007/978-0-387-76896-0
10.1002/qj.49712656417
10.1029/2002JD002900
10.1017/CBO9781107706804
10.1175/MWR-D-15-0144.1
10.1088/978-0-7503-1218-9
10.1002/qj.2378
10.1002/qj.3551
10.1007/978-3-642-03711-5
10.1175/MWR-D-14-00292.1
10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2
10.1175/MWR-D-16-0298.1
10.5194/npg-25-765-2018
10.1175/MWR-D-18-0028.1
10.1002/qj.699
10.1016/j.physd.2006.11.008
10.5194/npg-23-391-2016
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.2151/jmsj.2023-015
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 2186-9057
EndPage 253
ExternalDocumentID 10_2151_jmsj_2023_015
article_jmsj_101_4_101_2023_015_article_char_en
GroupedDBID 29L
2WC
5GY
7.U
ABEFU
AENEX
AI.
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
E3Z
EBS
ECGQY
EJD
GROUPED_DOAJ
JSF
KQ8
OK1
P2P
RJT
RNS
TKC
VH1
VOH
ZY4
~02
AAYXX
CITATION
ID FETCH-LOGICAL-c2805-a1ed963c8288ccf99f84524357126ec38c0fdc312fd0237b9e60a730364153983
ISSN 0026-1165
IngestDate Thu Apr 24 23:00:20 EDT 2025
Tue Jul 01 02:42:19 EDT 2025
Wed Sep 03 06:30:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2805-a1ed963c8288ccf99f84524357126ec38c0fdc312fd0237b9e60a730364153983
OpenAccessLink http://dx.doi.org/10.2151/jmsj.2023-015
PageCount 21
ParticipantIDs crossref_primary_10_2151_jmsj_2023_015
crossref_citationtrail_10_2151_jmsj_2023_015
jstage_primary_article_jmsj_101_4_101_2023_015_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-00-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023-00-00
PublicationDecade 2020
PublicationTitle Journal of the Meteorological Society of Japan
PublicationYear 2023
Publisher Meteorological Society of Japan
Publisher_xml – name: Meteorological Society of Japan
References Liu, B., M. E. Gharamti, and I. Hoteit, 2016b: Assessing clustering strategies for Gaussian mixture filtering a subsurface contaminant model. J. Hydrol., 535, 1–21.
Bickel, P., B. Li, and T. Bengtsson, 2008: Sharp failure rates for the bootstrap particle filter in high dimensions. Pushing the Limits of Contemporary Statistics: Contributions in Honor of Jayanta K. Ghosh. vol.3, IMS Collections, 318–329.
Potthast, R., A. Walter, and A. Rhodin, 2019: A localized adaptive particle filter within an operational nwp framework. Mon. Wea. Rev., 147, 345–362.
Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10143–10162.
van Leeuwen, P. J., 2010: Nonlinear data assimilation in geosciences: An extremely efficient particle filter. Quart. J. Roy. Meteor. Soc., 136, 1991–1999.
Liu, B., B. Ait-El-Fquih, and I. Hoteit, 2016a: Efficient kernel-based ensemble Gaussian mixture filtering. Mon. Wea. Rev., 144, 781–800.
Frei, M., and H. Künsch, 2013: Bridging the ensemble Kalman and particle filters. Biometrika, 100, 781–800.
Snyder, C., T. Bengtsson, and M. Morzfeld, 2015: Performance bounds for particle filters using the optimal proposal. Mon. Wea. Rev., 143, 4750–4761.
Crisan, D., and B. Rozovskii, 2011: The Oxford Handbook of Nonlinear Filtering. Oxford University Press, 1063 pp.
Zängl, G., D. Reinert, P. Rípodas, and M. Baldauf, 2014: The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core. Quart. J. Meteor. Soc., 141, 563–579.
Bishop, C. H., 2016: The GIGG-EnKF: Ensemble Kalamn filtering for highly skewed non-negative uncertainty distributions. Quart. J. Roy. Meteor. Soc., 142, 1395–1412.
van Leeuwen, P. J., 2009: Particle filtering in geophysical systems. Mon. Wea. Rev., 137, 4089–4114.
Evensen, G., and P. J. van Leeuwen, 2000: An ensemble Kalman smoother for nonlinear dynamics. Mon. Wea. Rev., 128, 1852–1867.
Kawabata, T., and G. Ueno, 2020: Non-Gaussian probability densities of convection initiation and development investigated using a particle filter with a storm-scale numerical weather prediction model. Mon. Wea. Rev., 148, 3–20.
Robert, S., D. Leuenberger, and H. R. Künsch, 2017: A local ensemble transform Kalman particle filter for convective-scale data assimilation. Quart. J. Roy. Meteor. Soc., 144, 1279–1296.
Evensen, G., 2009: Data Assimilation: The Ensemble Kalman Filter. Earth and Environmental Science, Springer, 307 pp.
Nakamura, G., and R. Potthast, 2015: Inverse Modeling. IOP Publishing, 506 pp.
Poterjoy, J., and J. L. Anderson, 2016: Efficient assimilation of simulated observations in a high-dimensional geophysical system using a localized particle filter. Mon. Wea. Rev., 144, 2007–2020.
van Leeuwen, P. J., H. R. Künsch, L. Nerger, R. Potthast, and S. Reich, 2019: Particle filters for high-dimensional geoscience applications: A review. Quart. J. Roy. Meteor. Soc., 145, 2335–2365.
Penny, S. G., and T. Miyoshi, 2016: A local particle filter for high-dimensional geophysical systems. Nonlinear Processes Geophys., 23, 391–405.
van Leeuwen, P. J., Y. Cheng, and S. Reich, 2015: Nonlinear Data Assimilation. Frontiers in Applied Dynamical Systems: Reviews and Tutorials, vol. 2, Springer Cham, 130 pp.
Poterjoy, J., R. A. Sobash, and J. L. Anderson, 2017: Convective-scale data assimilation for the weather research forecasting model using the local particle filter. Mon. Wea. Rev., 145, 1897–1918.
Vetra-Carvalho, S., P. J. van Leeuwen, L. Nerger, A. Barth, M. U. Altaf, P. Brasseur, P. Kirchgessner, and J.-M. Beckers, 2018: State-of-the-art stochastic data assimilation methods for high-dimensional non-Gaussian problems. Tellus A, 70, 1–43.
Hoteit, I., D.-T. Pham, G. Triantafyllou, and G. Korres, 2008: A new approximate solution of the optimal nonlinear filter for data assimilation in meteorology and oceanography. Mon. Wea. Rev., 136, 317–334.
Bain, A., and D. Crisan, 2009: Fundamentals of Stochastic Filtering. Stochastic Modelling and Applied Probability, vol. 60, Springer, 403 pp.
Bengtsson, T., C. Snyder, and D. Nychka, 2003: Toward a nonlinear ensemble filter for high-dimensional systems. J. Geophys. Res., 108, D24, doi:10.1029/2002JD002900.
Klinker, E., F. Rabier, G. Kelly, and J.-F. Mahfouf, 2000: The ECMWF operational implementation of four-dimensional variational assimilation. III: Experimental results and diagnostics with operational configuration. Quart. J. Roy. Meteor. Soc., 126, 1191–1215.
Farchi, A., and M. Bocquet, 2018: Comparison of local particle filters and new implementations. Nonlinear Processes Geophys., 25, 765–807.
Schenk, N., R. Potthast, and A. Rojahn, 2022: On two localized particle filter methods for Lorenz 1963 and 1996 models. Front. Appl. Math. Stat., 8, doi:10.3389/fams.2022.920186.
Anderson, J. L., and S. L. Anderson, 1999: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Wea. Rev., 127, 2741–2758.
Snyder, C., T. Bengtsson, P. Bickel, and J. Anderson, 2008: Obstacles to high-dimensional particle filtering. Mon. Wea. Rev., 136, 4629–4640.
Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Phys. D, 230, 112–126.
Reich, S., and C. Cotter, 2015: Probabilistic Forecatsing and Bayesian Data Assimilation. Cambridge University Press, 308 pp.
22
23
24
25
26
27
28
29
30
31
10
32
11
33
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: Nakamura, G., and R. Potthast, 2015: Inverse Modeling. IOP Publishing, 506 pp.
– reference: Evensen, G., 2009: Data Assimilation: The Ensemble Kalman Filter. Earth and Environmental Science, Springer, 307 pp.
– reference: Bengtsson, T., C. Snyder, and D. Nychka, 2003: Toward a nonlinear ensemble filter for high-dimensional systems. J. Geophys. Res., 108, D24, doi:10.1029/2002JD002900.
– reference: van Leeuwen, P. J., Y. Cheng, and S. Reich, 2015: Nonlinear Data Assimilation. Frontiers in Applied Dynamical Systems: Reviews and Tutorials, vol. 2, Springer Cham, 130 pp.
– reference: Snyder, C., T. Bengtsson, and M. Morzfeld, 2015: Performance bounds for particle filters using the optimal proposal. Mon. Wea. Rev., 143, 4750–4761.
– reference: van Leeuwen, P. J., H. R. Künsch, L. Nerger, R. Potthast, and S. Reich, 2019: Particle filters for high-dimensional geoscience applications: A review. Quart. J. Roy. Meteor. Soc., 145, 2335–2365.
– reference: Snyder, C., T. Bengtsson, P. Bickel, and J. Anderson, 2008: Obstacles to high-dimensional particle filtering. Mon. Wea. Rev., 136, 4629–4640.
– reference: Liu, B., B. Ait-El-Fquih, and I. Hoteit, 2016a: Efficient kernel-based ensemble Gaussian mixture filtering. Mon. Wea. Rev., 144, 781–800.
– reference: Schenk, N., R. Potthast, and A. Rojahn, 2022: On two localized particle filter methods for Lorenz 1963 and 1996 models. Front. Appl. Math. Stat., 8, doi:10.3389/fams.2022.920186.
– reference: van Leeuwen, P. J., 2009: Particle filtering in geophysical systems. Mon. Wea. Rev., 137, 4089–4114.
– reference: Crisan, D., and B. Rozovskii, 2011: The Oxford Handbook of Nonlinear Filtering. Oxford University Press, 1063 pp.
– reference: Bickel, P., B. Li, and T. Bengtsson, 2008: Sharp failure rates for the bootstrap particle filter in high dimensions. Pushing the Limits of Contemporary Statistics: Contributions in Honor of Jayanta K. Ghosh. vol.3, IMS Collections, 318–329.
– reference: Anderson, J. L., and S. L. Anderson, 1999: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Wea. Rev., 127, 2741–2758.
– reference: Evensen, G., and P. J. van Leeuwen, 2000: An ensemble Kalman smoother for nonlinear dynamics. Mon. Wea. Rev., 128, 1852–1867.
– reference: Klinker, E., F. Rabier, G. Kelly, and J.-F. Mahfouf, 2000: The ECMWF operational implementation of four-dimensional variational assimilation. III: Experimental results and diagnostics with operational configuration. Quart. J. Roy. Meteor. Soc., 126, 1191–1215.
– reference: Zängl, G., D. Reinert, P. Rípodas, and M. Baldauf, 2014: The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core. Quart. J. Meteor. Soc., 141, 563–579.
– reference: Bain, A., and D. Crisan, 2009: Fundamentals of Stochastic Filtering. Stochastic Modelling and Applied Probability, vol. 60, Springer, 403 pp.
– reference: Liu, B., M. E. Gharamti, and I. Hoteit, 2016b: Assessing clustering strategies for Gaussian mixture filtering a subsurface contaminant model. J. Hydrol., 535, 1–21.
– reference: Bishop, C. H., 2016: The GIGG-EnKF: Ensemble Kalamn filtering for highly skewed non-negative uncertainty distributions. Quart. J. Roy. Meteor. Soc., 142, 1395–1412.
– reference: Hoteit, I., D.-T. Pham, G. Triantafyllou, and G. Korres, 2008: A new approximate solution of the optimal nonlinear filter for data assimilation in meteorology and oceanography. Mon. Wea. Rev., 136, 317–334.
– reference: Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Phys. D, 230, 112–126.
– reference: Potthast, R., A. Walter, and A. Rhodin, 2019: A localized adaptive particle filter within an operational nwp framework. Mon. Wea. Rev., 147, 345–362.
– reference: Penny, S. G., and T. Miyoshi, 2016: A local particle filter for high-dimensional geophysical systems. Nonlinear Processes Geophys., 23, 391–405.
– reference: van Leeuwen, P. J., 2010: Nonlinear data assimilation in geosciences: An extremely efficient particle filter. Quart. J. Roy. Meteor. Soc., 136, 1991–1999.
– reference: Frei, M., and H. Künsch, 2013: Bridging the ensemble Kalman and particle filters. Biometrika, 100, 781–800.
– reference: Reich, S., and C. Cotter, 2015: Probabilistic Forecatsing and Bayesian Data Assimilation. Cambridge University Press, 308 pp.
– reference: Poterjoy, J., R. A. Sobash, and J. L. Anderson, 2017: Convective-scale data assimilation for the weather research forecasting model using the local particle filter. Mon. Wea. Rev., 145, 1897–1918.
– reference: Vetra-Carvalho, S., P. J. van Leeuwen, L. Nerger, A. Barth, M. U. Altaf, P. Brasseur, P. Kirchgessner, and J.-M. Beckers, 2018: State-of-the-art stochastic data assimilation methods for high-dimensional non-Gaussian problems. Tellus A, 70, 1–43.
– reference: Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10143–10162.
– reference: Farchi, A., and M. Bocquet, 2018: Comparison of local particle filters and new implementations. Nonlinear Processes Geophys., 25, 765–807.
– reference: Kawabata, T., and G. Ueno, 2020: Non-Gaussian probability densities of convection initiation and development investigated using a particle filter with a storm-scale numerical weather prediction model. Mon. Wea. Rev., 148, 3–20.
– reference: Poterjoy, J., and J. L. Anderson, 2016: Efficient assimilation of simulated observations in a high-dimensional geophysical system using a localized particle filter. Mon. Wea. Rev., 144, 2007–2020.
– reference: Robert, S., D. Leuenberger, and H. R. Künsch, 2017: A local ensemble transform Kalman particle filter for convective-scale data assimilation. Quart. J. Roy. Meteor. Soc., 144, 1279–1296.
– ident: 25
  doi: 10.3389/fams.2022.920186
– ident: 30
  doi: 10.1007/978-3-319-18347-3
– ident: 14
  doi: 10.1175/MWR-D-18-0367.1
– ident: 5
  doi: 10.1002/qj.2742
– ident: 7
  doi: 10.1029/94JC00572
– ident: 24
  doi: 10.1002/qj.3116
– ident: 4
  doi: 10.1214/074921708000000228
– ident: 17
  doi: 10.1016/j.jhydrol.2016.01.048
– ident: 32
  doi: 10.1080/16000870.2018.1445364
– ident: 11
  doi: 10.1093/biomet/ast020
– ident: 20
  doi: 10.1175/MWR-D-15-0322.1
– ident: 12
  doi: 10.1175/2007MWR1927.1
– ident: 28
  doi: 10.1175/2009MWR2835.1
– ident: 9
  doi: 10.1175/1520-0493(2000)128<1852:AEKSFN>2.0.CO;2
– ident: 26
  doi: 10.1175/2008MWR2529.1
– ident: 2
  doi: 10.1007/978-0-387-76896-0
– ident: 15
  doi: 10.1002/qj.49712656417
– ident: 3
  doi: 10.1029/2002JD002900
– ident: 23
  doi: 10.1017/CBO9781107706804
– ident: 27
  doi: 10.1175/MWR-D-15-0144.1
– ident: 18
  doi: 10.1088/978-0-7503-1218-9
– ident: 33
  doi: 10.1002/qj.2378
– ident: 31
  doi: 10.1002/qj.3551
– ident: 8
  doi: 10.1007/978-3-642-03711-5
– ident: 16
  doi: 10.1175/MWR-D-14-00292.1
– ident: 1
  doi: 10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2
– ident: 21
  doi: 10.1175/MWR-D-16-0298.1
– ident: 10
  doi: 10.5194/npg-25-765-2018
– ident: 22
  doi: 10.1175/MWR-D-18-0028.1
– ident: 29
  doi: 10.1002/qj.699
– ident: 6
– ident: 13
  doi: 10.1016/j.physd.2006.11.008
– ident: 19
  doi: 10.5194/npg-23-391-2016
SSID ssj0026476
ssib026971113
Score 2.3426137
Snippet In a global numerical weather prediction (NWP) modeling framework we study the implementation of Gaussian uncertainty of individual particles into the...
SourceID crossref
jstage
SourceType Enrichment Source
Index Database
Publisher
StartPage 233
SubjectTerms data assimilation
high dimensional
Non-Gaussian
numerical weather prediction
particle filter
Title Particle Filtering and Gaussian Mixtures – On a Localized Mixture Coefficients Particle Filter (LMCPF) for Global NWP
URI https://www.jstage.jst.go.jp/article/jmsj/101/4/101_2023-015/_article/-char/en
Volume 101
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of the Meteorological Society of Japan. Ser. II, 2023, Vol.101(4), pp.233-253
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3battAEF1M2oe-lF5p0gv7UEKLqnStm6WXgjF2jRtfIHaTN6FdrcAhVUps0zZP_Yd-Uv-kX9KZvdkxCaQFI6zVaixrDjtndmdmCXldxUICeGM_5Uz6EXAAH9wg6TNexBwseMi4CpAdJf1ZNDiJTxqN3xtRS6slPxCX1-aV_I9WoQ30ilmy_6BZJxQa4DvoF46gYTjeSscT0-b15rjobfMNPxarhcqNHM6_4wLBwrMhDaE3rr3CO0QDNr8Erml6wLAgVS0Jle-2JVbt-jHsTHo4g4BRiXqfAG90PLmB2iKZHQIbP79wQ6uNDoWrA7DP6_yz8aDd16EG9XqF_6jT744-mXUlZzg-t0feYbc7O-6OXGgxSHOyJuPptN8-muqIcbM3iZvT0AnHLrsg8bEkkLZPqg23zfIzpgtZu1HbzIHMN-ck9BisK2sYcx7oWsTblgKZDlqKL4vTA3wCnzXjtUm0YQBbltLFL4LnhAJyvD3H23OGhQ7uBOCrsA2_Hga1IMlaYE8cPQACqnY8dH9UF35Fce-vPM0VonT3FHwFG2eoqM_0AblvFEvbGhUPSUPWj8juWsE_6D7tnM3B91Fnj8k3iyDqgElBG9QCk1pg0j8_f9FxTQvqIGmv0U1I0i2B9I0C5FsKcKQajhTg-ITMet1pp--bHT58EaQs9oumLMECCHD7UyGqLKvSKA6AwbeaQSJFmApWlSJsBlUJb6XFM5mwooWsC3hnmKXhU7JTn9fyGaFps8IlZRazQkQyLDkH6lq14pLxMpE82iXv7OvMhSl_j7uwnOXXKnOX7LvuX3Xdl5s6ftC6cd3MC9HdAKZ5pI72Bncd0yphFNu77S89J_cMNuDzguwsL1byJTDiJX-lEPcXvVGylA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Particle+Filtering+and+Gaussian+Mixtures+%E2%80%93+On+a+Localized+Mixture+Coefficients+Particle+Filter+%28LMCPF%29+for+Global+NWP&rft.jtitle=Journal+of+the+Meteorological+Society+of+Japan&rft.au=ROJAHN%2C+Anne&rft.au=SCHENK%2C+Nora&rft.au=VAN+LEEUWEN%2C+Peter+Jan&rft.au=POTTHAST%2C+Roland&rft.date=2023&rft.issn=0026-1165&rft.eissn=2186-9057&rft.volume=101&rft.issue=4&rft.spage=233&rft.epage=253&rft_id=info:doi/10.2151%2Fjmsj.2023-015&rft.externalDBID=n%2Fa&rft.externalDocID=10_2151_jmsj_2023_015
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-1165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-1165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-1165&client=summon