Characteristics of Raindrop Size Distributions during Meiyu Season in Mount Lushan, Eastern China
Meiyu front precipitation makes the region prone to frequent floods, mudslides, landslides, and other disasters and has been the focus of ongoing and challenging meteorological research. Investigation of the Raindrop size distribution (RSD) is essential for exploring the characteristics and underlyi...
Saved in:
Published in | Journal of the Meteorological Society of Japan Vol. 100; no. 1; pp. 57 - 76 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Meteorological Society of Japan
2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Meiyu front precipitation makes the region prone to frequent floods, mudslides, landslides, and other disasters and has been the focus of ongoing and challenging meteorological research. Investigation of the Raindrop size distribution (RSD) is essential for exploring the characteristics and underlying physical precipitation processes. In this study, the precipitation characteristics in Lushan mountainous areas during the Meiyu season were investigated using laser disdrometer observed RSD data from 2016 to 2020. For the average spectra of five rain rate classes, the concentrations of large raindrops (> 0.5 mm) increased with rain rate (R), whereas the concentrations of small raindrops (< 0.5 mm) increased only under rain rates higher than 10 mm h−1. The gamma distribution parameters of N0 (intercept parameter) and Λ (slope parameter) increased/decreased with rain rate, and the shape parameter µ exhibited negative values in different rain rate classes. The distribution pattern features were N(D) =721D−1.79e−1.20D. Distributions of the frequency for mass-weighted mean diameter (Dm) and the logarithm of the generalized intercept parameter (log10 Nw) both showed a unique bimodal type, and an exceptionally high Nw (log10Nw > 4.5) subset with small Dm was determined. The stratiform and convective rains of RSD were also investigated. Dm–R and Nw–R showed similar variations in two types of precipitation. The lower µ values resulted in higher primary and constant coefficients in the quadratic polynomial fitting for the µ–Λ relationship (Λ = 0.0347µ2 + 1.180µ + 2.495). The Z–R relationship (Z for radar reflectivity factor) in stratiform precipitation characteristics was Z = 203R1.59. Further investigations showed that high Nw values usually occurred in persistent precipitation. The RSD can be characterized as high concentrations of the first two diameter classes with a narrow spectrum width (< 1 mm), which were captured during in-cloud rain with a low but continuous rain rate (< 5 mm h−1). The mountainous topography plays an important role in reshaping the characteristics of RSD and physical processes of precipitation. |
---|---|
AbstractList | Meiyu front precipitation makes the region prone to frequent floods, mudslides, landslides, and other disasters and has been the focus of ongoing and challenging meteorological research. Investigation of the Raindrop size distribution (RSD) is essential for exploring the characteristics and underlying physical precipitation processes. In this study, the precipitation characteristics in Lushan mountainous areas during the Meiyu season were investigated using laser disdrometer observed RSD data from 2016 to 2020. For the average spectra of five rain rate classes, the concentrations of large raindrops (> 0.5 mm) increased with rain rate (R), whereas the concentrations of small raindrops (< 0.5 mm) increased only under rain rates higher than 10 mm h−1. The gamma distribution parameters of N0 (intercept parameter) and Λ (slope parameter) increased/decreased with rain rate, and the shape parameter µ exhibited negative values in different rain rate classes. The distribution pattern features were N(D) =721D−1.79e−1.20D. Distributions of the frequency for mass-weighted mean diameter (Dm) and the logarithm of the generalized intercept parameter (log10 Nw) both showed a unique bimodal type, and an exceptionally high Nw (log10Nw > 4.5) subset with small Dm was determined. The stratiform and convective rains of RSD were also investigated. Dm–R and Nw–R showed similar variations in two types of precipitation. The lower µ values resulted in higher primary and constant coefficients in the quadratic polynomial fitting for the µ–Λ relationship (Λ = 0.0347µ2 + 1.180µ + 2.495). The Z–R relationship (Z for radar reflectivity factor) in stratiform precipitation characteristics was Z = 203R1.59. Further investigations showed that high Nw values usually occurred in persistent precipitation. The RSD can be characterized as high concentrations of the first two diameter classes with a narrow spectrum width (< 1 mm), which were captured during in-cloud rain with a low but continuous rain rate (< 5 mm h−1). The mountainous topography plays an important role in reshaping the characteristics of RSD and physical processes of precipitation. |
ArticleNumber | 2022-003 |
Author | CHANG, Yi GUO, Lijun LOU, Xiaofeng DUAN, Jing LI, Jun MA, Qianrong GUO, Xueliang ZHANG, Xiaopeng CHEN, Baojun |
Author_xml | – sequence: 1 orcidid: 0000-0003-3595-021X fullname: CHANG, Yi organization: State Key Laboratory of Severe Weather (LASW) and Key Laboratory for Cloud Physics of China Meteorological Administration, Chinese Academy of Meteorological Sciences, China – sequence: 2 fullname: MA, Qianrong organization: School of Physical Science and Technology, Yangzhou University, China – sequence: 3 fullname: GUO, Lijun organization: State Key Laboratory of Severe Weather (LASW) and Key Laboratory for Cloud Physics of China Meteorological Administration, Chinese Academy of Meteorological Sciences, China – sequence: 4 fullname: DUAN, Jing organization: State Key Laboratory of Severe Weather (LASW) and Key Laboratory for Cloud Physics of China Meteorological Administration, Chinese Academy of Meteorological Sciences, China – sequence: 5 fullname: LI, Jun organization: State Key Laboratory of Severe Weather (LASW) and Key Laboratory for Cloud Physics of China Meteorological Administration, Chinese Academy of Meteorological Sciences, China – sequence: 6 fullname: ZHANG, Xiaopeng organization: Lushan Meteorological Bureau, China – sequence: 7 fullname: GUO, Xueliang organization: Institute of Atmospheric Physics, Chinese Academy of Sciences, China – sequence: 8 fullname: LOU, Xiaofeng organization: State Key Laboratory of Severe Weather (LASW) and Key Laboratory for Cloud Physics of China Meteorological Administration, Chinese Academy of Meteorological Sciences, China – sequence: 9 fullname: CHEN, Baojun organization: State Key Laboratory of Severe Weather (LASW) and Key Laboratory for Cloud Physics of China Meteorological Administration, Chinese Academy of Meteorological Sciences, China |
BookMark | eNp1kM1OwzAQhC1UJNrCkbsfgBT_JHFyRKEUpFZIFM6W7WxaR61T2cmhPD0JhR6QuOxqNTO72m-CRq5xgNAtJTNGE3pf70M9Y4SxiBB-gcaMZmmUk0SM0JgQlkaUpskVmoRQD2Ms0jFSxVZ5ZVrwNrTWBNxU-E1ZV_rmgNf2E_BjL3iru9Y2LuCy89Zt8ArsscNrUKFx2Dq8ajrX4mUXtsrd4bkK_UKHi6116hpdVmoX4OanT9HH0_y9eI6Wr4uX4mEZGZYRHqXMGKFNZjKd6MrkHBIgTFcgNGVlBXmsSaxzyEVs8kyTzBgqQAtalSlozvkURae9xjcheKjkwdu98kdJiRz4yIGPHPjInk_v53_8xrZq-LL1yu7-Tc1PqTq0agPnG8r39HZwclNCJP2uv7mzbnrcEhz_AjfDht4 |
CitedBy_id | crossref_primary_10_1016_j_atmosres_2023_107024 crossref_primary_10_1016_j_atmosres_2024_107482 crossref_primary_10_1016_j_atmosres_2022_106248 crossref_primary_10_1016_j_atmosres_2024_107900 crossref_primary_10_1016_j_atmosres_2022_106332 crossref_primary_10_1007_s00703_024_01012_4 crossref_primary_10_3390_rs15205068 |
Cites_doi | 10.1002/env.841 10.2151/jmsj.84.705 10.1016/j.atmosres.2013.01.005 10.1016/j.atmosres.2017.07.023 10.2151/jmsj.2020-038 10.1175/2009JAMC2208.1 10.2151/jmsj.84.783 10.1016/j.atmosres.2018.12.019 10.1175/2009JTECHA1258.1 10.1007/978-1-878220-36-3_9 10.5194/hess-22-2811-2018 10.1175/1520-0450(1996)035<0003:PTRSD>2.0.CO;2 10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2 10.1016/j.scitotenv.2020.144198 10.1175/JCLI-D-16-0169.1 10.1002/2017JD027233 10.2151/jmsj.2021-011 10.3390/rs11121479 10.1175/JAMC-D-15-0127.1 10.1175/2010JAMC2269.1 10.1175/JAS-D-17-0242.1 10.1029/1998JD200098 10.1029/2010JD015305 10.1175/1520-0450(1996)035<0355:EFTRSO>2.0.CO;2 10.3390/rs11040432 10.1175/2009JTECHA1332.1 10.1256/smsqj.54105 10.1175/1520-0450(1997)036<0847:MORSDO>2.0.CO;2 10.1175/MWR2887.1 10.1029/RG011i001p00001 10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2 10.1016/j.atmosres.2014.07.005 10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2 10.1029/2006GL026824 10.2151/jmsj.2020-030 10.1029/2009JD011957 10.1007/s13143-011-1003-x 10.1029/2019JD031954 10.1175/1520-0469(1995)052<1070:TSOADS>2.0.CO;2 10.1029/2010GL044120 10.1016/j.atmosres.2018.09.010 10.1175/JHM-D-13-033.1 10.1175/JAM2406.1 10.1175/JTECH-D-12-00254.1 10.1175/JAS-D-14-0206.1 10.1175/1520-0426(1987)004<0464:SORRAS>2.0.CO;2 10.1029/2018JD028307 10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2 10.1007/978-1-878220-36-3_10 10.2151/jmsj.83.641 10.5194/egusphere-egu2020-3111 10.1016/j.atmosres.2020.105292 10.1175/JAM2254.1 10.1175/2009JTECHA1236.1 10.1109/36.917906 10.1007/s11356-012-0742-2 10.1002/2015JD024160 10.1175/1520-0426(2003)020<1106:TSRIOG>2.0.CO;2 10.1175/1520-0450(2001)040<1118:TCONDT>2.0.CO;2 10.5194/hess-15-943-2011 10.2151/jmsj.81.871 10.1175/2010JHM1244.1 10.1175/1520-0450(1998)037<0912:RMARPA>2.0.CO;2 10.1175/JAS3535.1 10.1029/2008GL035867 10.1016/j.atmosres.2007.07.006 10.1175/1520-0477(1981)062<0023:OEOTIO>2.0.CO;2 10.1016/j.atmosres.2020.104895 10.2151/jmsj.2013-208 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.2151/jmsj.2022-003 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology |
EISSN | 2186-9057 |
EndPage | 76 |
ExternalDocumentID | 10_2151_jmsj_2022_003 article_jmsj_100_1_100_2022_003_article_char_en |
GroupedDBID | 29L 2WC 5GY 7.U ABEFU ABTAH AENEX AI. ALMA_UNASSIGNED_HOLDINGS CS3 DU5 E3Z EBS ECGQY EJD GROUPED_DOAJ JSF KQ8 OK1 P2P RJT RNS RYR TKC VH1 VOH ZY4 ~02 AAYXX CITATION |
ID | FETCH-LOGICAL-c2803-62cc7bc8c8b5bfc93e5e02bfe7b12dfe94b04b9e974c98b08cc17eb71fd6eb333 |
ISSN | 0026-1165 |
IngestDate | Thu Apr 24 23:10:47 EDT 2025 Tue Jul 01 02:00:22 EDT 2025 Wed Apr 05 07:32:27 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2803-62cc7bc8c8b5bfc93e5e02bfe7b12dfe94b04b9e974c98b08cc17eb71fd6eb333 |
ORCID | 0000-0003-3595-021X |
OpenAccessLink | http://dx.doi.org/10.2151/jmsj.2022-003 |
PageCount | 20 |
ParticipantIDs | crossref_primary_10_2151_jmsj_2022_003 crossref_citationtrail_10_2151_jmsj_2022_003 jstage_primary_article_jmsj_100_1_100_2022_003_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-00-00 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 2022-00-00 |
PublicationDecade | 2020 |
PublicationTitle | Journal of the Meteorological Society of Japan |
PublicationYear | 2022 |
Publisher | Meteorological Society of Japan |
Publisher_xml | – name: Meteorological Society of Japan |
References | Bringi, V. N., C. R. Williams, M. Thurai, and P. T. May, 2009: Using dual-polarized radar and dual-frequency profiler for DSD characterization: A case study from Darwin, Australia. J. Atmos. Oceanic Technol., 26, 2107-2122. Friedrich, K., S. Higgins, F. J. Masters, and C. R. Lopez, 2013: Articulating and stationary PARSIVEL disdrometer measurements in conditions with strong winds and heavy rainfall. J. Atmos. Oceanic Technol., 30, 2063-2080. Li, Y., J. Tang, X. Yu, X. Xu, H. Cheng, and S. Wang, 2012: Characteristics of precipitation chemistry at Lushan Mountain, east China: 1992–2009. Environ. Sci. Pollut. Res., 19, 2329-2343. Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 3065-3081. Angulo-Martínez, M., S. Beguería, B. Latorre, and M. Fernández-Raga, 2018: Comparison of precipitation measurements by OTT Parsivel2 and Thies LPM optical disdrometers. Hydrol. Earth Syst. Sci., 22, 2811-2837. Seela, B. K., J. Janapati, P.-L. Lin, P. K. Wang, and M.-T. Lee, 2018: Raindrop size distribution characteristics of summer and winter season rainfall over north Taiwan. J. Geophys. Res.: Atmos., 123, 11602-11624. Atlas, D., R. C. Srivastava, and R. S. Sekhon, 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys., 11, 1-35. Luo, L., H. Xiao, H. Yang, H. Chen, J. Guo, Y. Sun, and L. Feng, 2020: Raindrop size distribution and microphysical characteristics of a great rainstorm in 2016 in Beijing, China. Atmos. Res., 239, 104895, doi:10.1016/j.atmosres.2020.104895 Guo, L., X. Guo, X. Lou, G. Lu, K. Lü, H. Sun, J. Li, and X. Zhang, 2019: An observational study of diurnal and seasonal variations, and macroscopic and microphysical properties of clouds and precipitation over Mount Lu, Jiangxi, China. Acta Meteor. Sin., 77, 923-937 (in Chinese). Brawn, D., and G. Upton, 2008: Estimation of an atmospheric gamma drop size distribution using disdrometer data. Atmos. Res., 87, 66-79. Chang, W.-Y., T.-C. C. Wang, and P.-L. Lin, 2009: Characteristics of the raindrop size distribution and drop shape relation in typhoon systems in the western Pacific from the 2D video disdrometer and NCU C-band polarimetric radar. J. Atmos. Oceanic Technol., 26, 1973-1993. Yasunari, T., and T. Miwa, 2006: Convective cloud systems over the Tibetan Plateau and their impact on mesoscale disturbances in the Meiyu/Baiu frontal zone—A case study in 1998—. J. Meteor. Soc. Japan, 84, 783-803. Zhao, G., R. Chu, T. Zhang, J. Li, J. Shen, and Z. Wu, 2011: Improving the rainfall rate estimation in the midstream of the Heihe River Basin using raindrop size distribution. Hydrol. Earth Syst. Sci., 15, 943-951. Jaffrain, J., and A. Berne, 2011: Experimental quantification of the sampling uncertainty associated with measurements from PARSIVEL disdrometers. J. Hydrometeor., 12, 352-370. Chen, J., X. Wu, Y. Yin, Q. Huang, and H. Xiao, 2017: Characteristics of cloud systems over the Tibetan Plateau and east China during boreal summer. J. Climate, 30, 3117-3137. Ding, Y., 1994: Monsoons over China. Atmospheric and Oceanographic Sciences Library book series, vol. 16, Springer Netherlands, 420 pp. Ji, L., H. Chen, L. Li, B. Chen, X. Xiao, M. Chen, and G. Zhang, 2019: Raindrop size distributions and rain characteristics observed by a PARSIVEL disdrometer in Beijing, northern China. Remote Sens., 11, 1479, doi:10.3390/rs11121479. Tapiador, F. J., J.-L. Sánchez, and E. García-Ortega, 2019: Empirical values and assumptions in the microphysics of numerical models. Atmos. Res., 215, 214-238. Thomas, A., V. P. Kanawade, K. Chakravarty, and A. K. Srivastava, 2021: Characterization of raindrop size distributions and its response to cloud microphysical properties. Atmos. Res., 249, 105292, doi:10.1016/j.atmosres.2020.105292. Yamaji, M., H. G. Takahashi, T. Kubota, R. Oki, A. Hamada, and Y. N. Takayabu, 2020: 4-year climatology of global drop size distribution and its seasonal variability observed by spaceborne Dual-frequency Precipitation Radar. J. Meteor. Soc. Japan, 98, 755-773. Rotstayn, L. D., 1997: A physically based scheme for the treatment of stratiform clouds and precipitation in large-scale models. I: Description and evaluation of the microphysical processes. Quart. J. Roy. Meteor. Soc., 123, 1227-1282. Thompson, E. J., S. A. Rutledge, B. Dolan, and M. Thurai, 2015: Drop size distributions and radar observations of convective and stratiform rain over the equatorial Indian and west Pacific Oceans. J. Atmos. Sci., 72, 4091-4125. Xu, X., C. Lu, X. Shi, and S. Gao, 2008: World water tower: An atmospheric perspective. Geophys. Res. Lett., 35, L035867, doi:10.1029/2008GL035867. Wen, G., H. Xiao, H. Yang, Y. Bi, and W. Xu, 2017: Characteristics of summer and winter precipitation over northern China. Atmos. Res., 197, 390-406. Yuter, S. E., and R. A. Houze, Jr., 1997: Measurements of raindrop size distributions over the Pacific warm pool and implications for Z–R relations. J. Appl. Meteor., 36, 847-867. Seto, S., T. Iguchi, R. Meneghini, J. Awaka, T. Kubota, T. Masaki, and N. Takahashi, 2021: The precipitation rate retrieval algorithms for the GPM Dual-frequency Precipitation Radar. J. Meteor. Soc. Japan, 99, 205-237. Chakravarty, K., and P. E. Raj, 2013: Raindrop size distributions and their association with characteristics of clouds and precipitation during monsoon and post-monsoon periods over a tropical Indian station. Atmos. Res., 124, 181-189. Yuter, S. E., D. E. Kingsmill, L. B. Nance, and M. Löffler-Mang, 2006: Observations of precipitation size and fall speed characteristics within coexisting rain and wet snow. J. Appl. Meteor. Climatol., 45, 1450-1464. Tapiador, F. J., Z. S. Haddad, and J. Turk, 2014: A probabilistic view on raindrop size distribution modeling: A physical interpretation of rain microphysics. J. Hydrometeor., 15, 427-443. Zhang, G., J. Vivekanandan, and E. Brandes, 2001: A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans. Geosci. Remote Sens., 39, 830-841. Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Appl. Meteor., 22, 1764-1775. Hashimoto, A., and T. Harimaya, 2005: Characteristics of raindrop size distribution dependent on the life stage of a convective precipitation cloud in the Baiu season. J. Meteor. Soc. Japan, 83, 641-649. Chen, B., W. Hu, and J. Pu, 2011: Characteristics of the raindrop size distribution for freezing precipitation observed in southern China. J. Geophys. Res., 116, D06201, doi:10.1029/2010JD015305. Chandrasekar, V., and V. N. Bringi, 1987: Simulation of radar reflectivity and surface measurements of rainfall. J. Atmos. Oceanic Technol., 4, 464-478. Zhao, Y., X. Xu, L. Liu, R. Zhang, H. Xu, Y. Wang, and J. Li, 2019: Effects of convection over the Tibetan Plateau on rainstorms downstream of the Yangtze River Basin. Atmos. Res., 219, 24-35. Tao, S.-Y., and Y.-H. Ding, 1981: Observational evidence of the influence of the Qinghai-Xizang (Tibet) Plateau on the occurrence of heavy rain and severe convective storms in China. Bull. Amer. Meteor. Soc., 62, 23-30. Bringi, V. N., V. Chandrasekar, J. Hubbert, E. Gorgucci, W. L. Randeu, and M. Schoenhuber, 2003: Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci., 60, 354-365. Sun, J., 2005: Initialization and numerical forecasting of a supercell storm observed during STEPS. Mon. Wea. Rev., 133, 793-813. Testud, J., S. Oury, R. A. Black, P. Amayenc, and X. Dou, 2001: The concept of “normalized” distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor., 40, 1118-1140. Rosenfeld, D., and C. W. Ulbrich, 2003: Cloud microphysical properties, processes, and rainfall estimation opportunities. Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas. Wakimoto, R. M., and R. Srivastava (eds.), Meteor. Monogr., Amer. Meteor. Soc., 237-258. Oue, M., H. Uyeda, and D.-I. Lee, 2011: Raindrop size distribution parameters estimated from polarimetric radar variables in convective cells around Okinawa Island during the Baiu period. Asia-Pac. J. Atmos. Sci., 47, 33-44. Tokay, A., and D. A. Short, 1996: Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteor., 35, 355-371. Seifert, A., 2005: On the shape–slope relation of drop size distributions in convective rain. J. Appl. Meteor., 44, 1146-1151. Sauvageot, H., and J.-P. Lacaux, 1995: The shape of averaged drop size distributions. J. Atmos. Sci., 52, 1070-1083. Ulbrich, C. W., and D. Atlas, 1998. Rainfall microphysics and radar properties: Analysis methods for drop size spectra. J. Appl. Meteor., 37, 912-923. Duan, J., Y. Chen, W. Wang, J. Li, X. Zhang, G. Lu, Y. Che, S. Zhong, S. Ma, P. Li, J. An, and P. Fu, 2021: Cable-car measurements of vertical aerosol profiles impacted by mountain-valley breezes in Lushan Mountain, East China. Sci. Total Environ., 768, 144198, doi:10.1016/j.scitotenv.2020.144198. Fu, Z., X. Dong, L. Zhou, W. Cui, J. Wang, R. Wan, L. Leng, and B. Xi, 2020: Statistical characteristics of raindrop size distributions and parameters in central China during the Meiyu seasons. J. Geophys. Res.: Atmos., 125, e2019JD031954, doi:10.1029/2019JD031954 Niu, S., X. Jia, J. Sang, X. Liu, C. Lu, and Y. Liu, 2010: Distributions of raindrop sizes and fall velocities in a semiarid plateau climate: Convective versus stratiform rains. J. Appl. Meteor. Climatol., 49, 632-645. Atlas, D., and C. Ulbrich, 2006: Drop size spectra and integral remote sensing parameters in the transition from convective to stratiform rain. Geophys. Res. Lett., 33, L16803, doi: 10.1029/2006GL026824. Porcù, F., L. P. D'Adderio, F. Prodi, and C. Caracciolo, 2014: Rain drop size distribution over the Tibetan Plateau. Atmos. Res., 150, 21-30. Chen, B., J. Yang, and J 44 45 46 47 48 49 50 51 52 53 10 54 11 55 12 56 13 57 14 58 15 59 16 17 18 19 1 2 3 4 5 6 7 8 9 60 61 62 63 20 64 21 65 22 66 23 67 24 68 25 69 26 27 28 29 70 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
References_xml | – reference: Seto, S., T. Iguchi, R. Meneghini, J. Awaka, T. Kubota, T. Masaki, and N. Takahashi, 2021: The precipitation rate retrieval algorithms for the GPM Dual-frequency Precipitation Radar. J. Meteor. Soc. Japan, 99, 205-237. – reference: Tapiador, F. J., J.-L. Sánchez, and E. García-Ortega, 2019: Empirical values and assumptions in the microphysics of numerical models. Atmos. Res., 215, 214-238. – reference: Guo, L., X. Guo, X. Lou, G. Lu, K. Lü, H. Sun, J. Li, and X. Zhang, 2019: An observational study of diurnal and seasonal variations, and macroscopic and microphysical properties of clouds and precipitation over Mount Lu, Jiangxi, China. Acta Meteor. Sin., 77, 923-937 (in Chinese). – reference: Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 3065-3081. – reference: Battaglia, A., E. Rustemeier, A. Tokay, U. Blahak, and C. Simmer, 2010: PARSIVEL snow observations: A critical assessment. J. Atmos. Oceanic Technol., 27, 333-344. – reference: Rotstayn, L. D., 1997: A physically based scheme for the treatment of stratiform clouds and precipitation in large-scale models. I: Description and evaluation of the microphysical processes. Quart. J. Roy. Meteor. Soc., 123, 1227-1282. – reference: Li, Y., J. Tang, X. Yu, X. Xu, H. Cheng, and S. Wang, 2012: Characteristics of precipitation chemistry at Lushan Mountain, east China: 1992–2009. Environ. Sci. Pollut. Res., 19, 2329-2343. – reference: Yamaji, M., H. G. Takahashi, T. Kubota, R. Oki, A. Hamada, and Y. N. Takayabu, 2020: 4-year climatology of global drop size distribution and its seasonal variability observed by spaceborne Dual-frequency Precipitation Radar. J. Meteor. Soc. Japan, 98, 755-773. – reference: Chakravarty, K., and P. E. Raj, 2013: Raindrop size distributions and their association with characteristics of clouds and precipitation during monsoon and post-monsoon periods over a tropical Indian station. Atmos. Res., 124, 181-189. – reference: Zhao, G., R. Chu, T. Zhang, J. Li, J. Shen, and Z. Wu, 2011: Improving the rainfall rate estimation in the midstream of the Heihe River Basin using raindrop size distribution. Hydrol. Earth Syst. Sci., 15, 943-951. – reference: Hashimoto, A., and T. Harimaya, 2003: Characteristics of the variation of raindrop size distribution in Baiu season. J. Meteor. Soc. Japan, 81, 871-878. – reference: Chen, J., X. Wu, Y. Yin, Q. Huang, and H. Xiao, 2017: Characteristics of cloud systems over the Tibetan Plateau and east China during boreal summer. J. Climate, 30, 3117-3137. – reference: Wen, G., H. Xiao, H. Yang, Y. Bi, and W. Xu, 2017: Characteristics of summer and winter precipitation over northern China. Atmos. Res., 197, 390-406. – reference: Xu, X., C. Lu, X. Shi, and S. Gao, 2008: World water tower: An atmospheric perspective. Geophys. Res. Lett., 35, L035867, doi:10.1029/2008GL035867. – reference: Atlas, D., and C. Ulbrich, 2006: Drop size spectra and integral remote sensing parameters in the transition from convective to stratiform rain. Geophys. Res. Lett., 33, L16803, doi: 10.1029/2006GL026824. – reference: Atlas, D., R. C. Srivastava, and R. S. Sekhon, 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys., 11, 1-35. – reference: Atlas, D., C. W. Ulbrich, F. D. Marks, Jr., E. Amitai, and C. R. Williams, 1999: Systematic variation of drop size and radar-rainfall relations. J. Geophys. Res., 104, 6155-6169. – reference: Oue, M., H. Uyeda, and Y. Shusse, 2010: Two types of precipitation particle distribution in convective cells accompanying a Baiu frontal rainband around Okinawa Island, Japan. J. Geophys. Res., 115, D02201, doi:10.1029/2009JD011957. – reference: Thompson, E. J., S. A. Rutledge, B. Dolan, and M. Thurai, 2015: Drop size distributions and radar observations of convective and stratiform rain over the equatorial Indian and west Pacific Oceans. J. Atmos. Sci., 72, 4091-4125. – reference: Tapiador, F. J., R. Checa, and M. de Castro, 2010: An experiment to measure the spatial variability of rain drop size distribution using sixteen laser disdrometers. Geophys. Res. Lett., 37, L044120, doi:10.1029/2010GL044120. – reference: Yuter, S. E., and R. A. Houze, Jr., 1997: Measurements of raindrop size distributions over the Pacific warm pool and implications for Z–R relations. J. Appl. Meteor., 36, 847-867. – reference: Ulbrich, C. W., and D. Atlas, 1998. Rainfall microphysics and radar properties: Analysis methods for drop size spectra. J. Appl. Meteor., 37, 912-923. – reference: Luo, L., H. Xiao, H. Yang, H. Chen, J. Guo, Y. Sun, and L. Feng, 2020: Raindrop size distribution and microphysical characteristics of a great rainstorm in 2016 in Beijing, China. Atmos. Res., 239, 104895, doi:10.1016/j.atmosres.2020.104895 – reference: Angulo-Martínez, M., S. Beguería, B. Latorre, and M. Fernández-Raga, 2018: Comparison of precipitation measurements by OTT Parsivel2 and Thies LPM optical disdrometers. Hydrol. Earth Syst. Sci., 22, 2811-2837. – reference: Haddad, Z. S., S. L. Durden, and E. Im, 1996: Parameterizing the raindrop size distribution. J. Appl. Meteor., 35, 3-13. – reference: Testud, J., S. Oury, R. A. Black, P. Amayenc, and X. Dou, 2001: The concept of “normalized” distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor., 40, 1118-1140. – reference: Zhang, G., J. Vivekanandan, and E. Brandes, 2001: A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans. Geosci. Remote Sens., 39, 830-841. – reference: Chandrasekar, V., and V. N. Bringi, 1987: Simulation of radar reflectivity and surface measurements of rainfall. J. Atmos. Oceanic Technol., 4, 464-478. – reference: Yasunari, T., and T. Miwa, 2006: Convective cloud systems over the Tibetan Plateau and their impact on mesoscale disturbances in the Meiyu/Baiu frontal zone—A case study in 1998—. J. Meteor. Soc. Japan, 84, 783-803. – reference: Chandrasekar, V., R. Meneghini, and I. Zawadzki, 2003: Global and local precipitation measurements by radar. Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas. Wakimoto, R. M., and R. Srivastava (eds.), Meteor. Monogr., Amer. Meteor. Soc., 215-236. – reference: Friedrich, K., S. Higgins, F. J. Masters, and C. R. Lopez, 2013: Articulating and stationary PARSIVEL disdrometer measurements in conditions with strong winds and heavy rainfall. J. Atmos. Oceanic Technol., 30, 2063-2080. – reference: Chen, B., J. Wang, and D. Gong, 2016: Raindrop size distribution in a midlatitude continental squall line measured by Thies optical disdrometers over east China. J. Appl. Meteor. Climatol., 55, 621-634. – reference: Duan, J., Y. Chen, W. Wang, J. Li, X. Zhang, G. Lu, Y. Che, S. Zhong, S. Ma, P. Li, J. An, and P. Fu, 2021: Cable-car measurements of vertical aerosol profiles impacted by mountain-valley breezes in Lushan Mountain, East China. Sci. Total Environ., 768, 144198, doi:10.1016/j.scitotenv.2020.144198. – reference: Ji, L., H. Chen, L. Li, B. Chen, X. Xiao, M. Chen, and G. Zhang, 2019: Raindrop size distributions and rain characteristics observed by a PARSIVEL disdrometer in Beijing, northern China. Remote Sens., 11, 1479, doi:10.3390/rs11121479. – reference: Porcù, F., L. P. D'Adderio, F. Prodi, and C. Caracciolo, 2014: Rain drop size distribution over the Tibetan Plateau. Atmos. Res., 150, 21-30. – reference: Zhang, G., J. Vivekanandan, E. A. Brandes, R. Meneghini, and T. Kozu, 2003: The shape–slope relation in observed gamma raindrop size distributions: Statistical error or useful information? J. Atmos. Oceanic Technol., 20, 1106-1119. – reference: Hashimoto, A., and T. Harimaya, 2005: Characteristics of raindrop size distribution dependent on the life stage of a convective precipitation cloud in the Baiu season. J. Meteor. Soc. Japan, 83, 641-649. – reference: Marshall, J. S., and W. McK. Palmer, 1948: The distribution of raindrops with size. J. Atmos. Sci., 5, 165-166. – reference: Brawn, D., and G. Upton, 2007: Closed-form parameter estimates for a truncated gamma distribution. Environmetrics, 18, 633-645. – reference: Sauvageot, H., and J.-P. Lacaux, 1995: The shape of averaged drop size distributions. J. Atmos. Sci., 52, 1070-1083. – reference: Dolan, B., B. Fuchs, S. A. Rutledge, E. A. Barnes, and E. J. Thompson, 2018: Primary modes of global drop size distributions. J. Atmos. Sci., 75, 1453-1476. – reference: Niu, S., X. Jia, J. Sang, X. Liu, C. Lu, and Y. Liu, 2010: Distributions of raindrop sizes and fall velocities in a semiarid plateau climate: Convective versus stratiform rains. J. Appl. Meteor. Climatol., 49, 632-645. – reference: Ding, Y., 1994: Monsoons over China. Atmospheric and Oceanographic Sciences Library book series, vol. 16, Springer Netherlands, 420 pp. – reference: Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Appl. Meteor., 22, 1764-1775. – reference: Bringi, V. N., V. Chandrasekar, J. Hubbert, E. Gorgucci, W. L. Randeu, and M. Schoenhuber, 2003: Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci., 60, 354-365. – reference: Oue, M., H. Uyeda, and D.-I. Lee, 2011: Raindrop size distribution parameters estimated from polarimetric radar variables in convective cells around Okinawa Island during the Baiu period. Asia-Pac. J. Atmos. Sci., 47, 33-44. – reference: Zhang, A., J. Hu, S. Chen, D. Hu, Z. Liang, C. Huang, L. Xiao, C. Min, and H. Li, 2019: Statistical characteristics of raindrop size distribution in the monsoon season observed in southern China. Remote Sens., 11, 432, doi:10.3390/rs11040432. – reference: Thomas, A., V. P. Kanawade, K. Chakravarty, and A. K. Srivastava, 2021: Characterization of raindrop size distributions and its response to cloud microphysical properties. Atmos. Res., 249, 105292, doi:10.1016/j.atmosres.2020.105292. – reference: Chen, B., Z. Hu, L. Liu, and G. Zhang, 2017: Raindrop size distribution measurements at 4,500 m on the Tibetan Plateau during TIPEX-III. J. Geophys. Res.: Atmos., 122, 11,092-11,106. – reference: Sun, J., 2005: Initialization and numerical forecasting of a supercell storm observed during STEPS. Mon. Wea. Rev., 133, 793-813. – reference: Tokay, A., and P. G. Bashor, 2010: An experimental study of small-scale variability of raindrop size distribution. J. Appl. Meteor. Climatol., 49, 2348-2365. – reference: Seela, B. K., J. Janapati, P.-L. Lin, P. K. Wang, and M.-T. Lee, 2018: Raindrop size distribution characteristics of summer and winter season rainfall over north Taiwan. J. Geophys. Res.: Atmos., 123, 11602-11624. – reference: Tapiador, F. J., Z. S. Haddad, and J. Turk, 2014: A probabilistic view on raindrop size distribution modeling: A physical interpretation of rain microphysics. J. Hydrometeor., 15, 427-443. – reference: Chang, W.-Y., T.-C. C. Wang, and P.-L. Lin, 2009: Characteristics of the raindrop size distribution and drop shape relation in typhoon systems in the western Pacific from the 2D video disdrometer and NCU C-band polarimetric radar. J. Atmos. Oceanic Technol., 26, 1973-1993. – reference: Tokay, A., and D. A. Short, 1996: Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteor., 35, 355-371. – reference: Rosenfeld, D., and C. W. Ulbrich, 2003: Cloud microphysical properties, processes, and rainfall estimation opportunities. Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas. Wakimoto, R. M., and R. Srivastava (eds.), Meteor. Monogr., Amer. Meteor. Soc., 237-258. – reference: Jaffrain, J., and A. Berne, 2011: Experimental quantification of the sampling uncertainty associated with measurements from PARSIVEL disdrometers. J. Hydrometeor., 12, 352-370. – reference: Brawn, D., and G. Upton, 2008: Estimation of an atmospheric gamma drop size distribution using disdrometer data. Atmos. Res., 87, 66-79. – reference: Chen, B., J. Yang, and J. Pu, 2013: Statistical characteristics of raindrop size distribution in the Meiyu season observed in eastern China. J. Meteor. Soc. Japan, 91, 215-227. – reference: Zhao, Y., X. Xu, L. Liu, R. Zhang, H. Xu, Y. Wang, and J. Li, 2019: Effects of convection over the Tibetan Plateau on rainstorms downstream of the Yangtze River Basin. Atmos. Res., 219, 24-35. – reference: Bringi, V. N., C. R. Williams, M. Thurai, and P. T. May, 2009: Using dual-polarized radar and dual-frequency profiler for DSD characterization: A case study from Darwin, Australia. J. Atmos. Oceanic Technol., 26, 2107-2122. – reference: Yuter, S. E., D. E. Kingsmill, L. B. Nance, and M. Löffler-Mang, 2006: Observations of precipitation size and fall speed characteristics within coexisting rain and wet snow. J. Appl. Meteor. Climatol., 45, 1450-1464. – reference: Fu, Z., X. Dong, L. Zhou, W. Cui, J. Wang, R. Wan, L. Leng, and B. Xi, 2020: Statistical characteristics of raindrop size distributions and parameters in central China during the Meiyu seasons. J. Geophys. Res.: Atmos., 125, e2019JD031954, doi:10.1029/2019JD031954 – reference: Fulton, R. A., J. P. Breidenbach, D.-J. Seo, D. A. Miller, and T. O'Bannon, 1998: The WSR-88D rainfall algorithm. Wea. Forecasting, 13, 377-395. – reference: Tao, S.-Y., and Y.-H. Ding, 1981: Observational evidence of the influence of the Qinghai-Xizang (Tibet) Plateau on the occurrence of heavy rain and severe convective storms in China. Bull. Amer. Meteor. Soc., 62, 23-30. – reference: Radhakrishna, B., K. Saikranthi, and T. N. Rao, 2020: Regional differences in raindrop size distribution within Indian subcontinent and adjoining seas as inferred from global precipitation measurement dual-frequency precipitation radar. J. Meteor. Soc. Japan, 98, 573-584. – reference: Wen, L., K. Zhao, G. Zhang, M. Xue, B. Zhou, S. Liu, and X. Chen, 2016: Statistical characteristics of raindrop size distributions observed in East China during the Asian summer monsoon season using 2-D video disdrometer and Micro Rain Radar data. J. Geophys. Res.: Atmos., 121, 2265-2282. – reference: Bringi, V. N., M. Thurai, K. Nakagawa, G. J. Huang, T. Kobayashi, A. Adachi, H. Hanado, and S. Sekizawa, 2006: Rainfall estimation from C-band polarimetric radar in Okinawa, Japan: Comparisons with 2D-video disdrometer and 400 MHz wind profiler. J. Meteor. Soc. Japan, 84, 705-724. – reference: Chen, B., W. Hu, and J. Pu, 2011: Characteristics of the raindrop size distribution for freezing precipitation observed in southern China. J. Geophys. Res., 116, D06201, doi:10.1029/2010JD015305. – reference: Seifert, A., 2005: On the shape–slope relation of drop size distributions in convective rain. J. Appl. Meteor., 44, 1146-1151. – ident: 6 doi: 10.1002/env.841 – ident: 9 doi: 10.2151/jmsj.84.705 – ident: 11 doi: 10.1016/j.atmosres.2013.01.005 – ident: 59 doi: 10.1016/j.atmosres.2017.07.023 – ident: 62 doi: 10.2151/jmsj.2020-038 – ident: 36 doi: 10.1175/2009JAMC2208.1 – ident: 63 doi: 10.2151/jmsj.84.783 – ident: 70 doi: 10.1016/j.atmosres.2018.12.019 – ident: 10 doi: 10.1175/2009JTECHA1258.1 – ident: 13 doi: 10.1007/978-1-878220-36-3_9 – ident: 1 doi: 10.5194/hess-22-2811-2018 – ident: 27 doi: 10.1175/1520-0450(1996)035<0003:PTRSD>2.0.CO;2 – ident: 34 doi: 10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2 – ident: 22 doi: 10.1016/j.scitotenv.2020.144198 – ident: 19 doi: 10.1175/JCLI-D-16-0169.1 – ident: 18 doi: 10.1002/2017JD027233 – ident: 46 doi: 10.2151/jmsj.2021-011 – ident: 31 doi: 10.3390/rs11121479 – ident: 17 doi: 10.1175/JAMC-D-15-0127.1 – ident: 56 doi: 10.1175/2010JAMC2269.1 – ident: 21 doi: 10.1175/JAS-D-17-0242.1 – ident: 4 doi: 10.1029/1998JD200098 – ident: 15 doi: 10.1029/2010JD015305 – ident: 55 doi: 10.1175/1520-0450(1996)035<0355:EFTRSO>2.0.CO;2 – ident: 66 doi: 10.3390/rs11040432 – ident: 5 doi: 10.1175/2009JTECHA1332.1 – ident: 42 doi: 10.1256/smsqj.54105 – ident: 64 doi: 10.1175/1520-0450(1997)036<0847:MORSDO>2.0.CO;2 – ident: 47 doi: 10.1175/MWR2887.1 – ident: 3 doi: 10.1029/RG011i001p00001 – ident: 8 doi: 10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2 – ident: 39 doi: 10.1016/j.atmosres.2014.07.005 – ident: 57 doi: 10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2 – ident: 2 doi: 10.1029/2006GL026824 – ident: 40 doi: 10.2151/jmsj.2020-030 – ident: 37 doi: 10.1029/2009JD011957 – ident: 38 doi: 10.1007/s13143-011-1003-x – ident: 24 doi: 10.1029/2019JD031954 – ident: 43 doi: 10.1175/1520-0469(1995)052<1070:TSOADS>2.0.CO;2 – ident: 49 doi: 10.1029/2010GL044120 – ident: 51 doi: 10.1016/j.atmosres.2018.09.010 – ident: 50 doi: 10.1175/JHM-D-13-033.1 – ident: 65 doi: 10.1175/JAM2406.1 – ident: 23 doi: 10.1175/JTECH-D-12-00254.1 – ident: 54 doi: 10.1175/JAS-D-14-0206.1 – ident: 12 doi: 10.1175/1520-0426(1987)004<0464:SORRAS>2.0.CO;2 – ident: 44 doi: 10.1029/2018JD028307 – ident: 25 doi: 10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2 – ident: 41 doi: 10.1007/978-1-878220-36-3_10 – ident: 29 doi: 10.2151/jmsj.83.641 – ident: 26 doi: 10.5194/egusphere-egu2020-3111 – ident: 53 doi: 10.1016/j.atmosres.2020.105292 – ident: 20 – ident: 45 doi: 10.1175/JAM2254.1 – ident: 14 doi: 10.1175/2009JTECHA1236.1 – ident: 67 doi: 10.1109/36.917906 – ident: 32 doi: 10.1007/s11356-012-0742-2 – ident: 60 doi: 10.1002/2015JD024160 – ident: 68 doi: 10.1175/1520-0426(2003)020<1106:TSRIOG>2.0.CO;2 – ident: 52 doi: 10.1175/1520-0450(2001)040<1118:TCONDT>2.0.CO;2 – ident: 69 doi: 10.5194/hess-15-943-2011 – ident: 28 doi: 10.2151/jmsj.81.871 – ident: 30 doi: 10.1175/2010JHM1244.1 – ident: 58 doi: 10.1175/1520-0450(1998)037<0912:RMARPA>2.0.CO;2 – ident: 35 doi: 10.1175/JAS3535.1 – ident: 61 doi: 10.1029/2008GL035867 – ident: 7 doi: 10.1016/j.atmosres.2007.07.006 – ident: 48 doi: 10.1175/1520-0477(1981)062<0023:OEOTIO>2.0.CO;2 – ident: 33 doi: 10.1016/j.atmosres.2020.104895 – ident: 16 doi: 10.2151/jmsj.2013-208 |
SSID | ssj0026476 ssib026971113 |
Score | 2.3733754 |
Snippet | Meiyu front precipitation makes the region prone to frequent floods, mudslides, landslides, and other disasters and has been the focus of ongoing and... |
SourceID | crossref jstage |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 57 |
SubjectTerms | Meiyu season Mount Lushan raindrop size distribution stratiform and convective rain |
Title | Characteristics of Raindrop Size Distributions during Meiyu Season in Mount Lushan, Eastern China |
URI | https://www.jstage.jst.go.jp/article/jmsj/100/1/100_2022-003/_article/-char/en |
Volume | 100 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of the Meteorological Society of Japan. Ser. II, 2022, Vol.100(1), pp.57-76 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLaqwQMviKsoDOQHtJctw0mci1-QqjJUVRSEWKXxFMWOo6UazdQ2D9uP2G_mHDtxLxRp8BI1ju20OV_PxTn-DiHv0wjMlODci-Ii9rhQAXJARp6fSx7nOkTGFsy2-BqPpnx8EV30encbWUvNSp6q2737Sv5HqtAGcsVdsv8gWTcpNMBnkC8cQcJwvJeMhztsy0gsApF-saivj39Utxq5NV1Fq2W3JXGiq5sGlES-tGmOEywXcfylWV7axdCz3JAnrEtr73Fe0V2dgL9dL5zy7PI_4eoYLLAD3XA0sPuiflZOugM8_45cQ3VrOTEFaPrNrhLMGjf403Rg8hDGnYVtFyiCzdVKCPA85Pexxsa0YQ0sTzDLSu1UMGN_YM0q1LafNc22Usyu0kenBZX-r-XsFO_vMRaurVv3Rn_H6LlURAiCcIIMh2c4PDPksQ8CCDv8jRAd9FMQiwRMg7P04Eua4oXuZ1oOV5zuw9a32fJ5Hs7A7e9SBo0Xc_6EPG4lSAcWS09JT8-fkf5akjf0iA6vKghjzNlzku9gjNYl7TBGEWN0C2PUYowajFGLMVrNqcEYtRg7oS3CqEHYCzL9fHY-HHltWQ5PYSkzLw6USqRKVSojWSoR6kizQJY6kX5QlFpwybgUGiJVJVLJUqX8RMvEL4tYyzAMX5KDeT3XrwiFZ6OFCCRXquBhnKcyZar0o0JFrCxT3Scn3YPLVMtZj6VTrrK9YuuTI9f92pK1_K3jRysF1639D9tuAMfMN8dugLuOeyFB9by-753ekEcWBbhod0gOVotGvwU3diXfGWz9Bjxxnuc |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characteristics+of+Raindrop+Size+Distributions+during+Meiyu+Season+in+Mount+Lushan%2C+Eastern+China&rft.jtitle=Journal+of+the+Meteorological+Society+of+Japan&rft.au=CHANG%2C+Yi&rft.au=MA%2C+Qianrong&rft.au=GUO%2C+Lijun&rft.au=DUAN%2C+Jing&rft.date=2022&rft.issn=0026-1165&rft.eissn=2186-9057&rft.volume=100&rft.issue=1&rft.spage=57&rft.epage=76&rft_id=info:doi/10.2151%2Fjmsj.2022-003&rft.externalDBID=n%2Fa&rft.externalDocID=10_2151_jmsj_2022_003 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-1165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-1165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-1165&client=summon |