In vivo Realization of Dual Photodynamic and Photothermal Therapy for Melanoma by Mitochondria Targeting Dinuclear Ruthenium Complexes under Civil Infrared Low‐power Laser

A series of dinuclear RuII complexes with extremely high TPA cross sections in the range of 800–900 nm have been designed. The amphiphilic complex Ru3 containing tert‐butyl groups has balanced performance in singlet oxygen generation and photothermal conversion and becomes the ideal drug candidate o...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 61; no. 38; pp. e202208721 - n/a
Main Authors Wang, Meng‐Fan, Yang, Rong, Tang, Shi‐Jie, Deng, Yu‐Ang, Li, Guo‐Kui, Zhang, Dan, Chen, Daomei, Ren, Xiaoxia, Gao, Feng
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 19.09.2022
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A series of dinuclear RuII complexes with extremely high TPA cross sections in the range of 800–900 nm have been designed. The amphiphilic complex Ru3 containing tert‐butyl groups has balanced performance in singlet oxygen generation and photothermal conversion and becomes the ideal drug candidate of the series. Ru3 targets mitochondria without penetrating the nucleus, which substantially increases its photodynamic therapy activity and reduces its dark cytotoxicity. Ru3 successfully suppresses melanoma tumor growth in vitro and in vivo with combined photodynamic and photothermal therapy under low light dose irradiation of an 808 nm low‐power laser, avoiding the known PDT resistance in melanoma. The excellent therapeutic effect of Ru3 facilitates its applications in further human trials for larger or deeper buried tumors, thereby becoming a prospective candidate for a new generation of low‐power IR‐driven dual PDT/PTT drugs. Dinuclear ruthenium complexes with high two‐photon absorption in the IR region and photothermal conversion efficiency have been developed to target mitochondria without penetrating the nucleus for tumor therapy. They show suppressed melanoma tumor growth in vitro and in vivo with dual two‐photon photodynamic and photothermal therapy.
AbstractList A series of dinuclear RuII complexes with extremely high TPA cross sections in the range of 800–900 nm have been designed. The amphiphilic complex Ru3 containing tert‐butyl groups has balanced performance in singlet oxygen generation and photothermal conversion and becomes the ideal drug candidate of the series. Ru3 targets mitochondria without penetrating the nucleus, which substantially increases its photodynamic therapy activity and reduces its dark cytotoxicity. Ru3 successfully suppresses melanoma tumor growth in vitro and in vivo with combined photodynamic and photothermal therapy under low light dose irradiation of an 808 nm low‐power laser, avoiding the known PDT resistance in melanoma. The excellent therapeutic effect of Ru3 facilitates its applications in further human trials for larger or deeper buried tumors, thereby becoming a prospective candidate for a new generation of low‐power IR‐driven dual PDT/PTT drugs.
A series of dinuclear Ru II complexes with extremely high TPA cross sections in the range of 800–900 nm have been designed. The amphiphilic complex Ru3 containing tert‐butyl groups has balanced performance in singlet oxygen generation and photothermal conversion and becomes the ideal drug candidate of the series. Ru3 targets mitochondria without penetrating the nucleus, which substantially increases its photodynamic therapy activity and reduces its dark cytotoxicity. Ru3 successfully suppresses melanoma tumor growth in vitro and in vivo with combined photodynamic and photothermal therapy under low light dose irradiation of an 808 nm low‐power laser, avoiding the known PDT resistance in melanoma. The excellent therapeutic effect of Ru3 facilitates its applications in further human trials for larger or deeper buried tumors, thereby becoming a prospective candidate for a new generation of low‐power IR‐driven dual PDT/PTT drugs.
A series of dinuclear RuII complexes with extremely high TPA cross sections in the range of 800–900 nm have been designed. The amphiphilic complex Ru3 containing tert‐butyl groups has balanced performance in singlet oxygen generation and photothermal conversion and becomes the ideal drug candidate of the series. Ru3 targets mitochondria without penetrating the nucleus, which substantially increases its photodynamic therapy activity and reduces its dark cytotoxicity. Ru3 successfully suppresses melanoma tumor growth in vitro and in vivo with combined photodynamic and photothermal therapy under low light dose irradiation of an 808 nm low‐power laser, avoiding the known PDT resistance in melanoma. The excellent therapeutic effect of Ru3 facilitates its applications in further human trials for larger or deeper buried tumors, thereby becoming a prospective candidate for a new generation of low‐power IR‐driven dual PDT/PTT drugs. Dinuclear ruthenium complexes with high two‐photon absorption in the IR region and photothermal conversion efficiency have been developed to target mitochondria without penetrating the nucleus for tumor therapy. They show suppressed melanoma tumor growth in vitro and in vivo with dual two‐photon photodynamic and photothermal therapy.
A series of dinuclear RuII complexes with extremely high TPA cross sections in the range of 800-900 nm have been designed. The amphiphilic complex Ru3 containing tert-butyl groups has balanced performance in singlet oxygen generation and photothermal conversion and becomes the ideal drug candidate of the series. Ru3 targets mitochondria without penetrating the nucleus, which substantially increases its photodynamic therapy activity and reduces its dark cytotoxicity. Ru3 successfully suppresses melanoma tumor growth in vitro and in vivo with combined photodynamic and photothermal therapy under low light dose irradiation of an 808 nm low-power laser, avoiding the known PDT resistance in melanoma. The excellent therapeutic effect of Ru3 facilitates its applications in further human trials for larger or deeper buried tumors, thereby becoming a prospective candidate for a new generation of low-power IR-driven dual PDT/PTT drugs.A series of dinuclear RuII complexes with extremely high TPA cross sections in the range of 800-900 nm have been designed. The amphiphilic complex Ru3 containing tert-butyl groups has balanced performance in singlet oxygen generation and photothermal conversion and becomes the ideal drug candidate of the series. Ru3 targets mitochondria without penetrating the nucleus, which substantially increases its photodynamic therapy activity and reduces its dark cytotoxicity. Ru3 successfully suppresses melanoma tumor growth in vitro and in vivo with combined photodynamic and photothermal therapy under low light dose irradiation of an 808 nm low-power laser, avoiding the known PDT resistance in melanoma. The excellent therapeutic effect of Ru3 facilitates its applications in further human trials for larger or deeper buried tumors, thereby becoming a prospective candidate for a new generation of low-power IR-driven dual PDT/PTT drugs.
Author Tang, Shi‐Jie
Li, Guo‐Kui
Yang, Rong
Wang, Meng‐Fan
Deng, Yu‐Ang
Chen, Daomei
Ren, Xiaoxia
Gao, Feng
Zhang, Dan
Author_xml – sequence: 1
  givenname: Meng‐Fan
  surname: Wang
  fullname: Wang, Meng‐Fan
  organization: Yunnan University
– sequence: 2
  givenname: Rong
  surname: Yang
  fullname: Yang, Rong
  organization: Yunnan University
– sequence: 3
  givenname: Shi‐Jie
  surname: Tang
  fullname: Tang, Shi‐Jie
  organization: Yunnan University
– sequence: 4
  givenname: Yu‐Ang
  surname: Deng
  fullname: Deng, Yu‐Ang
  organization: Yunnan University
– sequence: 5
  givenname: Guo‐Kui
  surname: Li
  fullname: Li, Guo‐Kui
  organization: Yunnan University
– sequence: 6
  givenname: Dan
  surname: Zhang
  fullname: Zhang, Dan
  organization: First Affiliated Hospital of Kunming Medical University
– sequence: 7
  givenname: Daomei
  surname: Chen
  fullname: Chen, Daomei
  organization: Yunnan University
– sequence: 8
  givenname: Xiaoxia
  surname: Ren
  fullname: Ren, Xiaoxia
  organization: Yunnan University
– sequence: 9
  givenname: Feng
  orcidid: 0000-0001-7490-4887
  surname: Gao
  fullname: Gao, Feng
  email: gaofeng@ynu.edu.cn
  organization: Yunnan University
BookMark eNqFkc1u1DAQxyNUJNrClbMlLlyy-CMfzrHaFlhpC6haztGsM-66cuxgJ7uEE4_Ai_BSPAkui0CqhDiN5fn9RmP_z7IT5x1m2XNGF4xS_gqcwQWnnFNZc_YoO2UlZ7moa3GSzoUQeS1L9iQ7i_Eu8VLS6jT7vnJkb_ae3CBY8wVG4x3xmlxOYMmHnR99NzvojSLguuPFuMPQp-4mVRhmon0g12jB-R7IdibXZvRq510XDJANhFscjbsll8ZNyiIEcjOlEc5MPVn6frD4GSOZXIeBLM3eWLJyOkDAjqz94cfXb4M_pNYaIoan2WMNNuKz3_U8-_j6arN8m6_fv1ktL9a54pKyXFed3iKUXFGodaG1UthIrQTnvKqrWomSN6i3DZWKClF0JWiJTJSSA6UgxHn28jh3CP7ThHFsexMV2vRI9FNsedVUsmwaXib0xQP0zk_Bpe1aXjNe16zgVaKKI6WCjzGgbpUZf332GMDYltH2PsP2PsP2T4ZJWzzQhmB6CPO_heYoHIzF-T90e_FudfXX_QkQL7Xg
CitedBy_id crossref_primary_10_1002_smtd_202400563
crossref_primary_10_1016_j_cej_2024_148616
crossref_primary_10_1021_acsnano_4c11024
crossref_primary_10_3390_ijms241713306
crossref_primary_10_1002_cbic_202400801
crossref_primary_10_1002_ange_202402028
crossref_primary_10_1016_j_carbpol_2024_122945
crossref_primary_10_1002_adhm_202403868
crossref_primary_10_1039_D3OB01130E
crossref_primary_10_1002_adfm_202408594
crossref_primary_10_1002_smll_202408437
crossref_primary_10_1002_cmdc_202300131
crossref_primary_10_1002_ange_202301344
crossref_primary_10_1007_s11696_023_03184_6
crossref_primary_10_1021_acsomega_4c01111
crossref_primary_10_1039_D3QI00903C
crossref_primary_10_1002_adhm_202304067
crossref_primary_10_1039_D4CC00072B
crossref_primary_10_1021_acs_inorgchem_3c02364
crossref_primary_10_1021_acs_inorgchem_3c00585
crossref_primary_10_1021_acsnano_4c07514
crossref_primary_10_1016_j_ijbiomac_2024_137544
crossref_primary_10_1039_D2CC05230J
crossref_primary_10_1186_s12951_023_02010_1
crossref_primary_10_1002_adhm_202301227
crossref_primary_10_1007_s11426_024_2533_4
crossref_primary_10_1002_adhm_202403563
crossref_primary_10_1002_anie_202402028
crossref_primary_10_1002_anie_202301344
crossref_primary_10_1155_bca_8899727
crossref_primary_10_1134_S1070363223140372
crossref_primary_10_1002_chem_202402861
crossref_primary_10_1016_j_biomaterials_2022_121947
crossref_primary_10_1021_acs_inorgchem_4c01815
crossref_primary_10_1111_php_13899
Cites_doi 10.1002/anie.201507800
10.1039/C7CS00522A
10.1038/s41467-020-16993-0
10.1002/ange.201309427
10.1002/cphc.200700397
10.1039/C7CC06133A
10.7150/thno.16088
10.1021/acs.jmedchem.1c01736
10.1021/acs.accounts.7b00180
10.1126/science.aaf5549
10.1039/9781782626824
10.1039/c2dt12264b
10.1021/acs.inorgchem.8b01581
10.1002/ange.201507800
10.1007/s00775-020-01829-5
10.1021/acs.inorgchem.0c01509
10.1039/b926014p
10.1039/b912178a
10.1039/C6CC10330H
10.1021/jacs.9b11313
10.1201/9781003066897
10.1021/acs.chemrev.8b00211
10.1158/1535-7163.MCT-12-1130
10.1002/adma.201907855
10.1021/jm00398a028
10.1002/ange.202008292
10.1002/chem.201701392
10.1021/acs.chemmater.8b03762
10.1002/chem.201202827
10.1111/j.1751-1097.2007.00185.x
10.1016/B978-0-12-397176-0.00003-0
10.1016/j.ccr.2018.01.010
10.1016/j.ccr.2018.03.002
10.1021/jacs.6b13399
10.1039/C7CS00680B
10.1002/anie.201500286
10.1039/C6CS00442C
10.1021/ja01030a006
10.1021/acs.chemrev.1c00357
10.1002/anie.202008292
10.1002/anie.201309427
10.1016/j.biomaterials.2020.120459
10.1039/c0cs00114g
10.1021/jp509569s
10.1039/C6SC04094B
10.1021/acsami.6b13808
10.1021/jacs.8b12280
10.1021/ic900902f
10.1002/smll.201702299
10.1002/ange.201500286
10.1002/adfm.202101625
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7TM
K9.
7X8
DOI 10.1002/anie.202208721
DatabaseName CrossRef
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
CrossRef

MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 10_1002_anie_202208721
ANIE202208721
Genre article
GrantInformation_xml – fundername: Applied Basic Research Foundation of Yunnan Province
  funderid: 2018FB022
– fundername: National Natural Science Foundation of China
  funderid: 22167022
– fundername: Ten Thousand Talent Plans for Young Top-notch Talents of Yunnan Province
  funderid: 2018-057
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
7TM
K9.
7X8
ID FETCH-LOGICAL-c2801-f6dfbea52c0a7f4ffcce98fc32226767c3529efb908c0334d5af8e13582a00a33
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 03:45:51 EDT 2025
Fri Jul 25 11:54:16 EDT 2025
Thu Apr 24 22:52:57 EDT 2025
Tue Jul 01 01:18:26 EDT 2025
Wed Jan 22 16:24:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 38
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2801-f6dfbea52c0a7f4ffcce98fc32226767c3529efb908c0334d5af8e13582a00a33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7490-4887
PQID 2712771426
PQPubID 946352
PageCount 9
ParticipantIDs proquest_miscellaneous_2696859925
proquest_journals_2712771426
crossref_citationtrail_10_1002_anie_202208721
crossref_primary_10_1002_anie_202208721
wiley_primary_10_1002_anie_202208721_ANIE202208721
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 19, 2022
PublicationDateYYYYMMDD 2022-09-19
PublicationDate_xml – month: 09
  year: 2022
  text: September 19, 2022
  day: 19
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014 2014; 53 126
2018; 363
2017; 8
2018; 360
2019; 31
1969; 91
2020; 142
2021; 269
2010; 39
2017; 46
2011; 40
2017; 23
2008; 9
2020 2020; 59 132
2020; 59
2022; 65
2020; 11
2020; 32
1988; 31
2019; 141
2017; 9
2009; 48
2017; 139
2018; 47
2013; 19
2022; 122
2017; 50
2009; 11
2016; 6
2017; 53
2021; 31
2020
2013; 12
2017; 13
2015 2015; 54 127
2016; 353
2020; 25
2016
2019; 119
2015; 119
2007; 83
2013
2016; 45
2012; 41
2018; 57
e_1_2_8_28_2
e_1_2_8_24_2
e_1_2_8_45_2
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_47_2
e_1_2_8_9_2
e_1_2_8_5_1
e_1_2_8_3_2
e_1_2_8_7_2
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_41_2
e_1_2_8_22_1
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_38_2
e_1_2_8_19_1
e_1_2_8_13_2
e_1_2_8_59_2
e_1_2_8_15_1
e_1_2_8_55_3
e_1_2_8_57_1
e_1_2_8_36_2
e_1_2_8_55_2
e_1_2_8_11_1
e_1_2_8_32_3
e_1_2_8_34_1
e_1_2_8_32_2
e_1_2_8_53_2
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_48_3
e_1_2_8_29_2
e_1_2_8_46_1
e_1_2_8_25_2
e_1_2_8_48_2
e_1_2_8_25_3
e_1_2_8_27_1
e_1_2_8_2_2
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_2
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_44_2
e_1_2_8_23_1
e_1_2_8_40_2
e_1_2_8_39_2
e_1_2_8_18_1
e_1_2_8_12_2
e_1_2_8_58_2
e_1_2_8_35_1
e_1_2_8_14_2
e_1_2_8_37_2
e_1_2_8_56_2
e_1_2_8_16_1
e_1_2_8_31_1
e_1_2_8_10_2
e_1_2_8_33_2
e_1_2_8_52_2
e_1_2_8_54_1
e_1_2_8_50_1
References_xml – volume: 54 127
  start-page: 14049 14255
  year: 2015 2015
  end-page: 14052 14258
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  start-page: 3726
  year: 2017
  end-page: 3740
  publication-title: Chem. Sci.
– volume: 6
  start-page: 2439
  year: 2016
  end-page: 2457
  publication-title: Theranostics
– volume: 11
  start-page: 9850
  year: 2009
  end-page: 9860
  publication-title: Phys. Chem. Chem. Phys.
– volume: 41
  start-page: 3123
  year: 2012
  end-page: 3125
  publication-title: Dalton Trans.
– volume: 119
  start-page: 65
  year: 2015
  end-page: 71
  publication-title: J. Phys. Chem. B
– volume: 19
  start-page: 621
  year: 2013
  end-page: 629
  publication-title: Chem. Eur. J.
– volume: 59
  start-page: 14920
  year: 2020
  end-page: 14931
  publication-title: Inorg. Chem.
– volume: 57
  start-page: 11537
  year: 2018
  end-page: 11542
  publication-title: Inorg. Chem.
– volume: 9
  start-page: 6761
  year: 2017
  end-page: 6771
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 3262
  year: 2020
  publication-title: Nat. Commun.
– volume: 122
  start-page: 1752
  year: 2022
  end-page: 1829
  publication-title: Chem. Rev.
– volume: 53 126
  start-page: 3367 3435
  year: 2014 2014
  end-page: 3371 3439
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 39
  start-page: 3181
  year: 2010
  end-page: 3209
  publication-title: Chem. Soc. Rev.
– volume: 119
  start-page: 797
  year: 2019
  end-page: 828
  publication-title: Chem. Rev.
– year: 2016
– volume: 31
  start-page: 774
  year: 2019
  end-page: 784
  publication-title: Chem. Mater.
– start-page: 81
  year: 2013
  end-page: 126
– volume: 141
  start-page: 4644
  year: 2019
  end-page: 4652
  publication-title: J. Am. Chem. Soc.
– volume: 23
  start-page: 9888
  year: 2017
  end-page: 9896
  publication-title: Chem. Eur. J.
– volume: 363
  start-page: 17
  year: 2018
  end-page: 28
  publication-title: Coord. Chem. Rev.
– volume: 53
  start-page: 12857
  year: 2017
  end-page: 12877
  publication-title: Chem. Commun.
– volume: 91
  start-page: 253
  year: 1969
  end-page: 257
  publication-title: J. Am. Chem. Soc.
– volume: 83
  start-page: 1441
  year: 2007
  end-page: 1448
  publication-title: Photochem. Photobiol.
– volume: 139
  start-page: 2512
  year: 2017
  end-page: 2519
  publication-title: J. Am. Chem. Soc.
– volume: 31
  start-page: 656
  year: 1988
  end-page: 671
  publication-title: J. Med. Chem.
– volume: 360
  start-page: 34
  year: 2018
  end-page: 76
  publication-title: Coord. Chem. Rev.
– volume: 46
  start-page: 7706
  year: 2017
  end-page: 7756
  publication-title: Chem. Soc. Rev.
– volume: 45
  start-page: 6725
  year: 2016
  end-page: 6741
  publication-title: Chem. Soc. Rev.
– volume: 142
  start-page: 4639
  year: 2020
  end-page: 4647
  publication-title: J. Am. Chem. Soc.
– volume: 54 127
  start-page: 5952 6050
  year: 2015 2015
  end-page: 5956 6054
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 40
  start-page: 2508
  year: 2011
  end-page: 2524
  publication-title: Chem. Soc. Rev.
– year: 2020
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 269
  year: 2021
  publication-title: Biomaterials
– volume: 353
  year: 2016
  publication-title: Science
– volume: 47
  start-page: 2280
  year: 2018
  end-page: 2297
  publication-title: Chem. Soc. Rev.
– volume: 12
  start-page: 643
  year: 2013
  end-page: 653
  publication-title: Mol. Cancer Ther.
– volume: 59 132
  start-page: 20371 20551
  year: 2020 2020
  end-page: 20375 20555
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 48
  start-page: 5599
  year: 2009
  end-page: 5601
  publication-title: Inorg. Chem.
– volume: 65
  start-page: 2225
  year: 2022
  end-page: 2237
  publication-title: J. Med. Chem.
– volume: 53
  start-page: 1977
  year: 2017
  end-page: 1980
  publication-title: Chem. Commun.
– volume: 9
  start-page: 111
  year: 2008
  end-page: 116
  publication-title: ChemPhysChem
– volume: 13
  year: 2017
  publication-title: Small
– volume: 25
  start-page: 1035
  year: 2020
  end-page: 1050
  publication-title: J. Biol. Inorg. Chem.
– volume: 50
  start-page: 2727
  year: 2017
  end-page: 2736
  publication-title: Acc. Chem. Res.
– ident: e_1_2_8_32_2
  doi: 10.1002/anie.201507800
– ident: e_1_2_8_31_1
– ident: e_1_2_8_58_2
  doi: 10.1039/C7CS00522A
– ident: e_1_2_8_34_1
  doi: 10.1038/s41467-020-16993-0
– ident: e_1_2_8_25_3
  doi: 10.1002/ange.201309427
– ident: e_1_2_8_38_2
  doi: 10.1002/cphc.200700397
– ident: e_1_2_8_41_2
  doi: 10.1039/C7CC06133A
– ident: e_1_2_8_5_1
  doi: 10.7150/thno.16088
– ident: e_1_2_8_54_1
– ident: e_1_2_8_18_1
  doi: 10.1021/acs.jmedchem.1c01736
– ident: e_1_2_8_12_2
  doi: 10.1021/acs.accounts.7b00180
– ident: e_1_2_8_50_1
  doi: 10.1126/science.aaf5549
– ident: e_1_2_8_3_2
  doi: 10.1039/9781782626824
– ident: e_1_2_8_19_1
  doi: 10.1039/c2dt12264b
– ident: e_1_2_8_39_2
  doi: 10.1021/acs.inorgchem.8b01581
– ident: e_1_2_8_32_3
  doi: 10.1002/ange.201507800
– ident: e_1_2_8_10_2
  doi: 10.1007/s00775-020-01829-5
– ident: e_1_2_8_56_2
  doi: 10.1021/acs.inorgchem.0c01509
– ident: e_1_2_8_9_2
  doi: 10.1039/b926014p
– ident: e_1_2_8_30_1
  doi: 10.1039/b912178a
– ident: e_1_2_8_45_2
  doi: 10.1039/C6CC10330H
– ident: e_1_2_8_26_1
  doi: 10.1021/jacs.9b11313
– ident: e_1_2_8_23_1
– ident: e_1_2_8_2_2
  doi: 10.1201/9781003066897
– ident: e_1_2_8_16_1
  doi: 10.1021/acs.chemrev.8b00211
– ident: e_1_2_8_15_1
  doi: 10.1158/1535-7163.MCT-12-1130
– ident: e_1_2_8_47_2
  doi: 10.1002/adma.201907855
– ident: e_1_2_8_53_2
  doi: 10.1021/jm00398a028
– ident: e_1_2_8_48_3
  doi: 10.1002/ange.202008292
– ident: e_1_2_8_33_2
  doi: 10.1002/chem.201701392
– ident: e_1_2_8_6_1
– ident: e_1_2_8_11_1
– ident: e_1_2_8_17_1
  doi: 10.1021/acs.chemmater.8b03762
– ident: e_1_2_8_20_1
  doi: 10.1002/chem.201202827
– ident: e_1_2_8_36_2
  doi: 10.1111/j.1751-1097.2007.00185.x
– ident: e_1_2_8_51_1
– ident: e_1_2_8_52_2
  doi: 10.1016/B978-0-12-397176-0.00003-0
– ident: e_1_2_8_8_2
  doi: 10.1016/j.ccr.2018.01.010
– ident: e_1_2_8_13_2
  doi: 10.1016/j.ccr.2018.03.002
– ident: e_1_2_8_43_1
– ident: e_1_2_8_40_2
  doi: 10.1021/jacs.6b13399
– ident: e_1_2_8_14_2
  doi: 10.1039/C7CS00680B
– ident: e_1_2_8_1_1
– ident: e_1_2_8_55_2
  doi: 10.1002/anie.201500286
– ident: e_1_2_8_27_1
– ident: e_1_2_8_7_2
  doi: 10.1039/C6CS00442C
– ident: e_1_2_8_28_2
  doi: 10.1021/ja01030a006
– ident: e_1_2_8_29_2
  doi: 10.1021/acs.chemrev.1c00357
– ident: e_1_2_8_48_2
  doi: 10.1002/anie.202008292
– ident: e_1_2_8_25_2
  doi: 10.1002/anie.201309427
– ident: e_1_2_8_42_1
  doi: 10.1016/j.biomaterials.2020.120459
– ident: e_1_2_8_35_1
– ident: e_1_2_8_37_2
  doi: 10.1039/c0cs00114g
– ident: e_1_2_8_21_1
  doi: 10.1021/jp509569s
– ident: e_1_2_8_46_1
– ident: e_1_2_8_22_1
  doi: 10.1039/C6SC04094B
– ident: e_1_2_8_57_1
– ident: e_1_2_8_44_2
  doi: 10.1021/acsami.6b13808
– ident: e_1_2_8_24_2
  doi: 10.1021/jacs.8b12280
– ident: e_1_2_8_49_1
  doi: 10.1021/ic900902f
– ident: e_1_2_8_4_1
  doi: 10.1002/smll.201702299
– ident: e_1_2_8_55_3
  doi: 10.1002/ange.201500286
– ident: e_1_2_8_59_2
  doi: 10.1002/adfm.202101625
SSID ssj0028806
Score 2.5761666
Snippet A series of dinuclear RuII complexes with extremely high TPA cross sections in the range of 800–900 nm have been designed. The amphiphilic complex Ru3...
A series of dinuclear Ru II complexes with extremely high TPA cross sections in the range of 800–900 nm have been designed. The amphiphilic complex Ru3...
A series of dinuclear RuII complexes with extremely high TPA cross sections in the range of 800-900 nm have been designed. The amphiphilic complex Ru3...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e202208721
SubjectTerms Antitumor
Biocompatibility
Cytotoxicity
Drug development
Infrared lasers
Irradiation
Melanoma
Mitochondria
Photodynamic
Photodynamic therapy
Photothermal
Photothermal conversion
Radiation dosage
Ruthenium
Ruthenium Complex
Ruthenium compounds
Singlet oxygen
Thrombolytic drugs
Toxicity
Tumors
Two-Photon
Title In vivo Realization of Dual Photodynamic and Photothermal Therapy for Melanoma by Mitochondria Targeting Dinuclear Ruthenium Complexes under Civil Infrared Low‐power Laser
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202208721
https://www.proquest.com/docview/2712771426
https://www.proquest.com/docview/2696859925
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYll_bSd-mmaZlAoScnsvw-hk1CNmRDCRvIzch60KW7cvCut49Tf0L_SP9Uf0ln_EpSKIX2ZlsSspnRzCdr5hvG3mqjleax9RR6My9UUeRJ7cdexnUaWO0Hsin3Nj2PTy7D06vo6lYWf8sPMfxwo5XR2Gta4LJY7d-QhlIGNu7vhOBp0mSSU8AWoaKLgT9KoHK26UVB4FEV-p61kYv9u8PveqUbqHkbsDYe5_gRk_27toEmH_fqdbGnvv5G4_g_H_OYPezgKBy0-vOE3TPuKbs_7qvAPWM_Jg42800JF4gou5xNKC0c1jjs_YdyXeq2pj1Ip9sHBCmX2DprCQsAYTFMzUK6cimh-AJTNCJodJ1G3YdZE4mO_hMO5464lWUFTdS9m9dLIGu1MJ_NCijXrYLxfDNfwMTZiuLm4az89PPb92sq9AZn6I6r5-zy-Gg2PvG6Eg-eEugbPRtrWxgZCcVlYkNrlTJZahWd_xCVnEJ8mBlbZDxVPAhCHUmbGp_SeyXnMghesC1XOvOSgQiNMamvQmtwi4e7_iRLCo62Pkt9rkQ8Yl4v4lx1_OdUhmORt8zNIich5IMQRuzd0P-6Zf74Y8-dXmPyzgKscpH4Ikn8kCbeHZpReHQgI50pa-xDzERRloloxESjHn-ZKT84nxwNd9v_MugVe0DXFPLiZztsa13V5jXiqnXxplk7vwBJ6h4p
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQOZQL_4iFAoOExCmt4ySb5FhtW-3C7gpVW4lb5PhHjdh1qnSz_Jx4BF6El-JJmEk2KUVCSHCMY8uJZjzz2Z75hrFX2mil-dB6Cr2ZF6oo8qT2h17KdRJY7QeyKfc2mw_HZ-Gb91EXTUi5MC0_RH_gRiujsde0wOlA-uCKNZRSsHGDJwRPYkolv0llvZtd1WnPICVQPdsEoyDwqA59x9vIxcH18df90hXY_BWyNj7n5A7Lu69tQ00-7NfrfF99-Y3I8b9-5y67vUWkcNiq0D12w7j7bHfUFYJ7wL5PHGyKTQmnCCq3aZtQWjiqcdi783Jd6rasPUin2wZClSt8u2g5CwCRMczMUrpyJSH_DDO0I2h3nUb1h0UTjI4uFI4KR_TKsoIm8N4V9QrIYC3NJ3MJlO5WwajYFEuYOFtR6DxMy48_vn67oFpvMEWPXD1kZyfHi9HY21Z58JRA9-jZoba5kZFQXMY2tFYpkyZW0RUQsckphIipsXnKE8WDINSRtInxKcNXci6D4BHbcaUzjxmI0BiT-Cq0Bnd5uPGP0zjnaO7TxOdKDAfM62ScqS0FOlXiWGYtebPISAhZL4QBe933v2jJP_7Yc69TmWxrBC4zEfsijv2QJn7Zv0bh0Z2MdKassQ-RE0VpKqIBE41-_GWm7HA-Oe6fnvzLoBdsd7yYTbPpZP72KbtF7RQB46d7bGdd1eYZwqx1_rxZSD8BFG0iRA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtNAEF2hIgEv3BGhBQYJiSe36_X9sUoaNZBEVZVKfbPWexEWyTpy41B44hP4EX6KL2HHt7ZICAkevRetrZmdOeudOUPIW6mkkDTUjrDezPFFEDhcuqGTUBl7Wroer8u9zebh8Zn__jw4v5bF3_BD9D_ccGfU9ho3-FrqgyvSUMzAtuc7xmgcYSb5bT-kMer16LQnkGJWO5v8Is9zsAx9R9tI2cHN-Tfd0hXWvI5Ya5czfkB497JNpMmn_WqT7Yuvv_E4_s_XPCT3WzwKh40CPSK3lHlM7g67MnBPyI-JgW2-LeDUQso2aRMKDaPKTjv5WGwK2RS1B25k04CYcmV7Fw1jAVhcDDO15KZYcci-wMxaEWt1jbTKD4s6FN06UBjlBsmVeQl12L3JqxWguVqqS3UBmOxWwjDf5kuYGF1i4DxMi88_v31fY6U3mFp_XD4lZ-OjxfDYaWs8OIJZ5-joUOpM8YAJyiPtay2ESmIt8AIIueSEBYiJ0llCY0E9z5cB17FyMb-XU8o97xnZMYVRzwkwXykVu8LXyp7x7LE_SqKMWmOfxC4VLBwQpxNxKloCdKzDsUwb6maWohDSXggD8q4fv26oP_44cq_TmLQ1ARcpi1wWRa6PC7_pu63w8EaGG1VUdgxSEwVJwoIBYbV6_GWl9HA-OeqfXvzLpNfkzslonE4n8w-75B42Y_iLm-yRnU1ZqZcWY22yV_U2-gWzSiD8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+vivo+Realization+of+Dual+Photodynamic+and+Photothermal+Therapy+for+Melanoma+by+Mitochondria+Targeting+Dinuclear+Ruthenium+Complexes+under+Civil+Infrared+Low%E2%80%90power+Laser&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wang%2C+Meng%E2%80%90Fan&rft.au=Yang%2C+Rong&rft.au=Tang%2C+Shi%E2%80%90Jie&rft.au=Deng%2C+Yu%E2%80%90Ang&rft.date=2022-09-19&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=38&rft_id=info:doi/10.1002%2Fanie.202208721&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202208721
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon