In vivo Realization of Dual Photodynamic and Photothermal Therapy for Melanoma by Mitochondria Targeting Dinuclear Ruthenium Complexes under Civil Infrared Low‐power Laser
A series of dinuclear RuII complexes with extremely high TPA cross sections in the range of 800–900 nm have been designed. The amphiphilic complex Ru3 containing tert‐butyl groups has balanced performance in singlet oxygen generation and photothermal conversion and becomes the ideal drug candidate o...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 61; no. 38; pp. e202208721 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
19.09.2022
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A series of dinuclear RuII complexes with extremely high TPA cross sections in the range of 800–900 nm have been designed. The amphiphilic complex Ru3 containing tert‐butyl groups has balanced performance in singlet oxygen generation and photothermal conversion and becomes the ideal drug candidate of the series. Ru3 targets mitochondria without penetrating the nucleus, which substantially increases its photodynamic therapy activity and reduces its dark cytotoxicity. Ru3 successfully suppresses melanoma tumor growth in vitro and in vivo with combined photodynamic and photothermal therapy under low light dose irradiation of an 808 nm low‐power laser, avoiding the known PDT resistance in melanoma. The excellent therapeutic effect of Ru3 facilitates its applications in further human trials for larger or deeper buried tumors, thereby becoming a prospective candidate for a new generation of low‐power IR‐driven dual PDT/PTT drugs.
Dinuclear ruthenium complexes with high two‐photon absorption in the IR region and photothermal conversion efficiency have been developed to target mitochondria without penetrating the nucleus for tumor therapy. They show suppressed melanoma tumor growth in vitro and in vivo with dual two‐photon photodynamic and photothermal therapy. |
---|---|
AbstractList | A series of dinuclear RuII complexes with extremely high TPA cross sections in the range of 800–900 nm have been designed. The amphiphilic complex Ru3 containing tert‐butyl groups has balanced performance in singlet oxygen generation and photothermal conversion and becomes the ideal drug candidate of the series. Ru3 targets mitochondria without penetrating the nucleus, which substantially increases its photodynamic therapy activity and reduces its dark cytotoxicity. Ru3 successfully suppresses melanoma tumor growth in vitro and in vivo with combined photodynamic and photothermal therapy under low light dose irradiation of an 808 nm low‐power laser, avoiding the known PDT resistance in melanoma. The excellent therapeutic effect of Ru3 facilitates its applications in further human trials for larger or deeper buried tumors, thereby becoming a prospective candidate for a new generation of low‐power IR‐driven dual PDT/PTT drugs. A series of dinuclear Ru II complexes with extremely high TPA cross sections in the range of 800–900 nm have been designed. The amphiphilic complex Ru3 containing tert‐butyl groups has balanced performance in singlet oxygen generation and photothermal conversion and becomes the ideal drug candidate of the series. Ru3 targets mitochondria without penetrating the nucleus, which substantially increases its photodynamic therapy activity and reduces its dark cytotoxicity. Ru3 successfully suppresses melanoma tumor growth in vitro and in vivo with combined photodynamic and photothermal therapy under low light dose irradiation of an 808 nm low‐power laser, avoiding the known PDT resistance in melanoma. The excellent therapeutic effect of Ru3 facilitates its applications in further human trials for larger or deeper buried tumors, thereby becoming a prospective candidate for a new generation of low‐power IR‐driven dual PDT/PTT drugs. A series of dinuclear RuII complexes with extremely high TPA cross sections in the range of 800–900 nm have been designed. The amphiphilic complex Ru3 containing tert‐butyl groups has balanced performance in singlet oxygen generation and photothermal conversion and becomes the ideal drug candidate of the series. Ru3 targets mitochondria without penetrating the nucleus, which substantially increases its photodynamic therapy activity and reduces its dark cytotoxicity. Ru3 successfully suppresses melanoma tumor growth in vitro and in vivo with combined photodynamic and photothermal therapy under low light dose irradiation of an 808 nm low‐power laser, avoiding the known PDT resistance in melanoma. The excellent therapeutic effect of Ru3 facilitates its applications in further human trials for larger or deeper buried tumors, thereby becoming a prospective candidate for a new generation of low‐power IR‐driven dual PDT/PTT drugs. Dinuclear ruthenium complexes with high two‐photon absorption in the IR region and photothermal conversion efficiency have been developed to target mitochondria without penetrating the nucleus for tumor therapy. They show suppressed melanoma tumor growth in vitro and in vivo with dual two‐photon photodynamic and photothermal therapy. A series of dinuclear RuII complexes with extremely high TPA cross sections in the range of 800-900 nm have been designed. The amphiphilic complex Ru3 containing tert-butyl groups has balanced performance in singlet oxygen generation and photothermal conversion and becomes the ideal drug candidate of the series. Ru3 targets mitochondria without penetrating the nucleus, which substantially increases its photodynamic therapy activity and reduces its dark cytotoxicity. Ru3 successfully suppresses melanoma tumor growth in vitro and in vivo with combined photodynamic and photothermal therapy under low light dose irradiation of an 808 nm low-power laser, avoiding the known PDT resistance in melanoma. The excellent therapeutic effect of Ru3 facilitates its applications in further human trials for larger or deeper buried tumors, thereby becoming a prospective candidate for a new generation of low-power IR-driven dual PDT/PTT drugs.A series of dinuclear RuII complexes with extremely high TPA cross sections in the range of 800-900 nm have been designed. The amphiphilic complex Ru3 containing tert-butyl groups has balanced performance in singlet oxygen generation and photothermal conversion and becomes the ideal drug candidate of the series. Ru3 targets mitochondria without penetrating the nucleus, which substantially increases its photodynamic therapy activity and reduces its dark cytotoxicity. Ru3 successfully suppresses melanoma tumor growth in vitro and in vivo with combined photodynamic and photothermal therapy under low light dose irradiation of an 808 nm low-power laser, avoiding the known PDT resistance in melanoma. The excellent therapeutic effect of Ru3 facilitates its applications in further human trials for larger or deeper buried tumors, thereby becoming a prospective candidate for a new generation of low-power IR-driven dual PDT/PTT drugs. |
Author | Tang, Shi‐Jie Li, Guo‐Kui Yang, Rong Wang, Meng‐Fan Deng, Yu‐Ang Chen, Daomei Ren, Xiaoxia Gao, Feng Zhang, Dan |
Author_xml | – sequence: 1 givenname: Meng‐Fan surname: Wang fullname: Wang, Meng‐Fan organization: Yunnan University – sequence: 2 givenname: Rong surname: Yang fullname: Yang, Rong organization: Yunnan University – sequence: 3 givenname: Shi‐Jie surname: Tang fullname: Tang, Shi‐Jie organization: Yunnan University – sequence: 4 givenname: Yu‐Ang surname: Deng fullname: Deng, Yu‐Ang organization: Yunnan University – sequence: 5 givenname: Guo‐Kui surname: Li fullname: Li, Guo‐Kui organization: Yunnan University – sequence: 6 givenname: Dan surname: Zhang fullname: Zhang, Dan organization: First Affiliated Hospital of Kunming Medical University – sequence: 7 givenname: Daomei surname: Chen fullname: Chen, Daomei organization: Yunnan University – sequence: 8 givenname: Xiaoxia surname: Ren fullname: Ren, Xiaoxia organization: Yunnan University – sequence: 9 givenname: Feng orcidid: 0000-0001-7490-4887 surname: Gao fullname: Gao, Feng email: gaofeng@ynu.edu.cn organization: Yunnan University |
BookMark | eNqFkc1u1DAQxyNUJNrClbMlLlyy-CMfzrHaFlhpC6haztGsM-66cuxgJ7uEE4_Ai_BSPAkui0CqhDiN5fn9RmP_z7IT5x1m2XNGF4xS_gqcwQWnnFNZc_YoO2UlZ7moa3GSzoUQeS1L9iQ7i_Eu8VLS6jT7vnJkb_ae3CBY8wVG4x3xmlxOYMmHnR99NzvojSLguuPFuMPQp-4mVRhmon0g12jB-R7IdibXZvRq510XDJANhFscjbsll8ZNyiIEcjOlEc5MPVn6frD4GSOZXIeBLM3eWLJyOkDAjqz94cfXb4M_pNYaIoan2WMNNuKz3_U8-_j6arN8m6_fv1ktL9a54pKyXFed3iKUXFGodaG1UthIrQTnvKqrWomSN6i3DZWKClF0JWiJTJSSA6UgxHn28jh3CP7ThHFsexMV2vRI9FNsedVUsmwaXib0xQP0zk_Bpe1aXjNe16zgVaKKI6WCjzGgbpUZf332GMDYltH2PsP2PsP2T4ZJWzzQhmB6CPO_heYoHIzF-T90e_FudfXX_QkQL7Xg |
CitedBy_id | crossref_primary_10_1002_smtd_202400563 crossref_primary_10_1016_j_cej_2024_148616 crossref_primary_10_1021_acsnano_4c11024 crossref_primary_10_3390_ijms241713306 crossref_primary_10_1002_cbic_202400801 crossref_primary_10_1002_ange_202402028 crossref_primary_10_1016_j_carbpol_2024_122945 crossref_primary_10_1002_adhm_202403868 crossref_primary_10_1039_D3OB01130E crossref_primary_10_1002_adfm_202408594 crossref_primary_10_1002_smll_202408437 crossref_primary_10_1002_cmdc_202300131 crossref_primary_10_1002_ange_202301344 crossref_primary_10_1007_s11696_023_03184_6 crossref_primary_10_1021_acsomega_4c01111 crossref_primary_10_1039_D3QI00903C crossref_primary_10_1002_adhm_202304067 crossref_primary_10_1039_D4CC00072B crossref_primary_10_1021_acs_inorgchem_3c02364 crossref_primary_10_1021_acs_inorgchem_3c00585 crossref_primary_10_1021_acsnano_4c07514 crossref_primary_10_1016_j_ijbiomac_2024_137544 crossref_primary_10_1039_D2CC05230J crossref_primary_10_1186_s12951_023_02010_1 crossref_primary_10_1002_adhm_202301227 crossref_primary_10_1007_s11426_024_2533_4 crossref_primary_10_1002_adhm_202403563 crossref_primary_10_1002_anie_202402028 crossref_primary_10_1002_anie_202301344 crossref_primary_10_1155_bca_8899727 crossref_primary_10_1134_S1070363223140372 crossref_primary_10_1002_chem_202402861 crossref_primary_10_1016_j_biomaterials_2022_121947 crossref_primary_10_1021_acs_inorgchem_4c01815 crossref_primary_10_1111_php_13899 |
Cites_doi | 10.1002/anie.201507800 10.1039/C7CS00522A 10.1038/s41467-020-16993-0 10.1002/ange.201309427 10.1002/cphc.200700397 10.1039/C7CC06133A 10.7150/thno.16088 10.1021/acs.jmedchem.1c01736 10.1021/acs.accounts.7b00180 10.1126/science.aaf5549 10.1039/9781782626824 10.1039/c2dt12264b 10.1021/acs.inorgchem.8b01581 10.1002/ange.201507800 10.1007/s00775-020-01829-5 10.1021/acs.inorgchem.0c01509 10.1039/b926014p 10.1039/b912178a 10.1039/C6CC10330H 10.1021/jacs.9b11313 10.1201/9781003066897 10.1021/acs.chemrev.8b00211 10.1158/1535-7163.MCT-12-1130 10.1002/adma.201907855 10.1021/jm00398a028 10.1002/ange.202008292 10.1002/chem.201701392 10.1021/acs.chemmater.8b03762 10.1002/chem.201202827 10.1111/j.1751-1097.2007.00185.x 10.1016/B978-0-12-397176-0.00003-0 10.1016/j.ccr.2018.01.010 10.1016/j.ccr.2018.03.002 10.1021/jacs.6b13399 10.1039/C7CS00680B 10.1002/anie.201500286 10.1039/C6CS00442C 10.1021/ja01030a006 10.1021/acs.chemrev.1c00357 10.1002/anie.202008292 10.1002/anie.201309427 10.1016/j.biomaterials.2020.120459 10.1039/c0cs00114g 10.1021/jp509569s 10.1039/C6SC04094B 10.1021/acsami.6b13808 10.1021/jacs.8b12280 10.1021/ic900902f 10.1002/smll.201702299 10.1002/ange.201500286 10.1002/adfm.202101625 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7TM K9. 7X8 |
DOI | 10.1002/anie.202208721 |
DatabaseName | CrossRef Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) CrossRef MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 10_1002_anie_202208721 ANIE202208721 |
Genre | article |
GrantInformation_xml | – fundername: Applied Basic Research Foundation of Yunnan Province funderid: 2018FB022 – fundername: National Natural Science Foundation of China funderid: 22167022 – fundername: Ten Thousand Talent Plans for Young Top-notch Talents of Yunnan Province funderid: 2018-057 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c2801-f6dfbea52c0a7f4ffcce98fc32226767c3529efb908c0334d5af8e13582a00a33 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 03:45:51 EDT 2025 Fri Jul 25 11:54:16 EDT 2025 Thu Apr 24 22:52:57 EDT 2025 Tue Jul 01 01:18:26 EDT 2025 Wed Jan 22 16:24:48 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 38 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2801-f6dfbea52c0a7f4ffcce98fc32226767c3529efb908c0334d5af8e13582a00a33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7490-4887 |
PQID | 2712771426 |
PQPubID | 946352 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2696859925 proquest_journals_2712771426 crossref_citationtrail_10_1002_anie_202208721 crossref_primary_10_1002_anie_202208721 wiley_primary_10_1002_anie_202208721_ANIE202208721 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 19, 2022 |
PublicationDateYYYYMMDD | 2022-09-19 |
PublicationDate_xml | – month: 09 year: 2022 text: September 19, 2022 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014 2014; 53 126 2018; 363 2017; 8 2018; 360 2019; 31 1969; 91 2020; 142 2021; 269 2010; 39 2017; 46 2011; 40 2017; 23 2008; 9 2020 2020; 59 132 2020; 59 2022; 65 2020; 11 2020; 32 1988; 31 2019; 141 2017; 9 2009; 48 2017; 139 2018; 47 2013; 19 2022; 122 2017; 50 2009; 11 2016; 6 2017; 53 2021; 31 2020 2013; 12 2017; 13 2015 2015; 54 127 2016; 353 2020; 25 2016 2019; 119 2015; 119 2007; 83 2013 2016; 45 2012; 41 2018; 57 e_1_2_8_28_2 e_1_2_8_24_2 e_1_2_8_45_2 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_47_2 e_1_2_8_9_2 e_1_2_8_5_1 e_1_2_8_3_2 e_1_2_8_7_2 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_41_2 e_1_2_8_22_1 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_38_2 e_1_2_8_19_1 e_1_2_8_13_2 e_1_2_8_59_2 e_1_2_8_15_1 e_1_2_8_55_3 e_1_2_8_57_1 e_1_2_8_36_2 e_1_2_8_55_2 e_1_2_8_11_1 e_1_2_8_32_3 e_1_2_8_34_1 e_1_2_8_32_2 e_1_2_8_53_2 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_48_3 e_1_2_8_29_2 e_1_2_8_46_1 e_1_2_8_25_2 e_1_2_8_48_2 e_1_2_8_25_3 e_1_2_8_27_1 e_1_2_8_2_2 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_2 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_44_2 e_1_2_8_23_1 e_1_2_8_40_2 e_1_2_8_39_2 e_1_2_8_18_1 e_1_2_8_12_2 e_1_2_8_58_2 e_1_2_8_35_1 e_1_2_8_14_2 e_1_2_8_37_2 e_1_2_8_56_2 e_1_2_8_16_1 e_1_2_8_31_1 e_1_2_8_10_2 e_1_2_8_33_2 e_1_2_8_52_2 e_1_2_8_54_1 e_1_2_8_50_1 |
References_xml | – volume: 54 127 start-page: 14049 14255 year: 2015 2015 end-page: 14052 14258 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 start-page: 3726 year: 2017 end-page: 3740 publication-title: Chem. Sci. – volume: 6 start-page: 2439 year: 2016 end-page: 2457 publication-title: Theranostics – volume: 11 start-page: 9850 year: 2009 end-page: 9860 publication-title: Phys. Chem. Chem. Phys. – volume: 41 start-page: 3123 year: 2012 end-page: 3125 publication-title: Dalton Trans. – volume: 119 start-page: 65 year: 2015 end-page: 71 publication-title: J. Phys. Chem. B – volume: 19 start-page: 621 year: 2013 end-page: 629 publication-title: Chem. Eur. J. – volume: 59 start-page: 14920 year: 2020 end-page: 14931 publication-title: Inorg. Chem. – volume: 57 start-page: 11537 year: 2018 end-page: 11542 publication-title: Inorg. Chem. – volume: 9 start-page: 6761 year: 2017 end-page: 6771 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 3262 year: 2020 publication-title: Nat. Commun. – volume: 122 start-page: 1752 year: 2022 end-page: 1829 publication-title: Chem. Rev. – volume: 53 126 start-page: 3367 3435 year: 2014 2014 end-page: 3371 3439 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 39 start-page: 3181 year: 2010 end-page: 3209 publication-title: Chem. Soc. Rev. – volume: 119 start-page: 797 year: 2019 end-page: 828 publication-title: Chem. Rev. – year: 2016 – volume: 31 start-page: 774 year: 2019 end-page: 784 publication-title: Chem. Mater. – start-page: 81 year: 2013 end-page: 126 – volume: 141 start-page: 4644 year: 2019 end-page: 4652 publication-title: J. Am. Chem. Soc. – volume: 23 start-page: 9888 year: 2017 end-page: 9896 publication-title: Chem. Eur. J. – volume: 363 start-page: 17 year: 2018 end-page: 28 publication-title: Coord. Chem. Rev. – volume: 53 start-page: 12857 year: 2017 end-page: 12877 publication-title: Chem. Commun. – volume: 91 start-page: 253 year: 1969 end-page: 257 publication-title: J. Am. Chem. Soc. – volume: 83 start-page: 1441 year: 2007 end-page: 1448 publication-title: Photochem. Photobiol. – volume: 139 start-page: 2512 year: 2017 end-page: 2519 publication-title: J. Am. Chem. Soc. – volume: 31 start-page: 656 year: 1988 end-page: 671 publication-title: J. Med. Chem. – volume: 360 start-page: 34 year: 2018 end-page: 76 publication-title: Coord. Chem. Rev. – volume: 46 start-page: 7706 year: 2017 end-page: 7756 publication-title: Chem. Soc. Rev. – volume: 45 start-page: 6725 year: 2016 end-page: 6741 publication-title: Chem. Soc. Rev. – volume: 142 start-page: 4639 year: 2020 end-page: 4647 publication-title: J. Am. Chem. Soc. – volume: 54 127 start-page: 5952 6050 year: 2015 2015 end-page: 5956 6054 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 40 start-page: 2508 year: 2011 end-page: 2524 publication-title: Chem. Soc. Rev. – year: 2020 – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 269 year: 2021 publication-title: Biomaterials – volume: 353 year: 2016 publication-title: Science – volume: 47 start-page: 2280 year: 2018 end-page: 2297 publication-title: Chem. Soc. Rev. – volume: 12 start-page: 643 year: 2013 end-page: 653 publication-title: Mol. Cancer Ther. – volume: 59 132 start-page: 20371 20551 year: 2020 2020 end-page: 20375 20555 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 48 start-page: 5599 year: 2009 end-page: 5601 publication-title: Inorg. Chem. – volume: 65 start-page: 2225 year: 2022 end-page: 2237 publication-title: J. Med. Chem. – volume: 53 start-page: 1977 year: 2017 end-page: 1980 publication-title: Chem. Commun. – volume: 9 start-page: 111 year: 2008 end-page: 116 publication-title: ChemPhysChem – volume: 13 year: 2017 publication-title: Small – volume: 25 start-page: 1035 year: 2020 end-page: 1050 publication-title: J. Biol. Inorg. Chem. – volume: 50 start-page: 2727 year: 2017 end-page: 2736 publication-title: Acc. Chem. Res. – ident: e_1_2_8_32_2 doi: 10.1002/anie.201507800 – ident: e_1_2_8_31_1 – ident: e_1_2_8_58_2 doi: 10.1039/C7CS00522A – ident: e_1_2_8_34_1 doi: 10.1038/s41467-020-16993-0 – ident: e_1_2_8_25_3 doi: 10.1002/ange.201309427 – ident: e_1_2_8_38_2 doi: 10.1002/cphc.200700397 – ident: e_1_2_8_41_2 doi: 10.1039/C7CC06133A – ident: e_1_2_8_5_1 doi: 10.7150/thno.16088 – ident: e_1_2_8_54_1 – ident: e_1_2_8_18_1 doi: 10.1021/acs.jmedchem.1c01736 – ident: e_1_2_8_12_2 doi: 10.1021/acs.accounts.7b00180 – ident: e_1_2_8_50_1 doi: 10.1126/science.aaf5549 – ident: e_1_2_8_3_2 doi: 10.1039/9781782626824 – ident: e_1_2_8_19_1 doi: 10.1039/c2dt12264b – ident: e_1_2_8_39_2 doi: 10.1021/acs.inorgchem.8b01581 – ident: e_1_2_8_32_3 doi: 10.1002/ange.201507800 – ident: e_1_2_8_10_2 doi: 10.1007/s00775-020-01829-5 – ident: e_1_2_8_56_2 doi: 10.1021/acs.inorgchem.0c01509 – ident: e_1_2_8_9_2 doi: 10.1039/b926014p – ident: e_1_2_8_30_1 doi: 10.1039/b912178a – ident: e_1_2_8_45_2 doi: 10.1039/C6CC10330H – ident: e_1_2_8_26_1 doi: 10.1021/jacs.9b11313 – ident: e_1_2_8_23_1 – ident: e_1_2_8_2_2 doi: 10.1201/9781003066897 – ident: e_1_2_8_16_1 doi: 10.1021/acs.chemrev.8b00211 – ident: e_1_2_8_15_1 doi: 10.1158/1535-7163.MCT-12-1130 – ident: e_1_2_8_47_2 doi: 10.1002/adma.201907855 – ident: e_1_2_8_53_2 doi: 10.1021/jm00398a028 – ident: e_1_2_8_48_3 doi: 10.1002/ange.202008292 – ident: e_1_2_8_33_2 doi: 10.1002/chem.201701392 – ident: e_1_2_8_6_1 – ident: e_1_2_8_11_1 – ident: e_1_2_8_17_1 doi: 10.1021/acs.chemmater.8b03762 – ident: e_1_2_8_20_1 doi: 10.1002/chem.201202827 – ident: e_1_2_8_36_2 doi: 10.1111/j.1751-1097.2007.00185.x – ident: e_1_2_8_51_1 – ident: e_1_2_8_52_2 doi: 10.1016/B978-0-12-397176-0.00003-0 – ident: e_1_2_8_8_2 doi: 10.1016/j.ccr.2018.01.010 – ident: e_1_2_8_13_2 doi: 10.1016/j.ccr.2018.03.002 – ident: e_1_2_8_43_1 – ident: e_1_2_8_40_2 doi: 10.1021/jacs.6b13399 – ident: e_1_2_8_14_2 doi: 10.1039/C7CS00680B – ident: e_1_2_8_1_1 – ident: e_1_2_8_55_2 doi: 10.1002/anie.201500286 – ident: e_1_2_8_27_1 – ident: e_1_2_8_7_2 doi: 10.1039/C6CS00442C – ident: e_1_2_8_28_2 doi: 10.1021/ja01030a006 – ident: e_1_2_8_29_2 doi: 10.1021/acs.chemrev.1c00357 – ident: e_1_2_8_48_2 doi: 10.1002/anie.202008292 – ident: e_1_2_8_25_2 doi: 10.1002/anie.201309427 – ident: e_1_2_8_42_1 doi: 10.1016/j.biomaterials.2020.120459 – ident: e_1_2_8_35_1 – ident: e_1_2_8_37_2 doi: 10.1039/c0cs00114g – ident: e_1_2_8_21_1 doi: 10.1021/jp509569s – ident: e_1_2_8_46_1 – ident: e_1_2_8_22_1 doi: 10.1039/C6SC04094B – ident: e_1_2_8_57_1 – ident: e_1_2_8_44_2 doi: 10.1021/acsami.6b13808 – ident: e_1_2_8_24_2 doi: 10.1021/jacs.8b12280 – ident: e_1_2_8_49_1 doi: 10.1021/ic900902f – ident: e_1_2_8_4_1 doi: 10.1002/smll.201702299 – ident: e_1_2_8_55_3 doi: 10.1002/ange.201500286 – ident: e_1_2_8_59_2 doi: 10.1002/adfm.202101625 |
SSID | ssj0028806 |
Score | 2.5761666 |
Snippet | A series of dinuclear RuII complexes with extremely high TPA cross sections in the range of 800–900 nm have been designed. The amphiphilic complex Ru3... A series of dinuclear Ru II complexes with extremely high TPA cross sections in the range of 800–900 nm have been designed. The amphiphilic complex Ru3... A series of dinuclear RuII complexes with extremely high TPA cross sections in the range of 800-900 nm have been designed. The amphiphilic complex Ru3... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e202208721 |
SubjectTerms | Antitumor Biocompatibility Cytotoxicity Drug development Infrared lasers Irradiation Melanoma Mitochondria Photodynamic Photodynamic therapy Photothermal Photothermal conversion Radiation dosage Ruthenium Ruthenium Complex Ruthenium compounds Singlet oxygen Thrombolytic drugs Toxicity Tumors Two-Photon |
Title | In vivo Realization of Dual Photodynamic and Photothermal Therapy for Melanoma by Mitochondria Targeting Dinuclear Ruthenium Complexes under Civil Infrared Low‐power Laser |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202208721 https://www.proquest.com/docview/2712771426 https://www.proquest.com/docview/2696859925 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYll_bSd-mmaZlAoScnsvw-hk1CNmRDCRvIzch60KW7cvCut49Tf0L_SP9Uf0ln_EpSKIX2ZlsSspnRzCdr5hvG3mqjleax9RR6My9UUeRJ7cdexnUaWO0Hsin3Nj2PTy7D06vo6lYWf8sPMfxwo5XR2Gta4LJY7d-QhlIGNu7vhOBp0mSSU8AWoaKLgT9KoHK26UVB4FEV-p61kYv9u8PveqUbqHkbsDYe5_gRk_27toEmH_fqdbGnvv5G4_g_H_OYPezgKBy0-vOE3TPuKbs_7qvAPWM_Jg42800JF4gou5xNKC0c1jjs_YdyXeq2pj1Ip9sHBCmX2DprCQsAYTFMzUK6cimh-AJTNCJodJ1G3YdZE4mO_hMO5464lWUFTdS9m9dLIGu1MJ_NCijXrYLxfDNfwMTZiuLm4az89PPb92sq9AZn6I6r5-zy-Gg2PvG6Eg-eEugbPRtrWxgZCcVlYkNrlTJZahWd_xCVnEJ8mBlbZDxVPAhCHUmbGp_SeyXnMghesC1XOvOSgQiNMamvQmtwi4e7_iRLCo62Pkt9rkQ8Yl4v4lx1_OdUhmORt8zNIich5IMQRuzd0P-6Zf74Y8-dXmPyzgKscpH4Ikn8kCbeHZpReHQgI50pa-xDzERRloloxESjHn-ZKT84nxwNd9v_MugVe0DXFPLiZztsa13V5jXiqnXxplk7vwBJ6h4p |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQOZQL_4iFAoOExCmt4ySb5FhtW-3C7gpVW4lb5PhHjdh1qnSz_Jx4BF6El-JJmEk2KUVCSHCMY8uJZjzz2Z75hrFX2mil-dB6Cr2ZF6oo8qT2h17KdRJY7QeyKfc2mw_HZ-Gb91EXTUi5MC0_RH_gRiujsde0wOlA-uCKNZRSsHGDJwRPYkolv0llvZtd1WnPICVQPdsEoyDwqA59x9vIxcH18df90hXY_BWyNj7n5A7Lu69tQ00-7NfrfF99-Y3I8b9-5y67vUWkcNiq0D12w7j7bHfUFYJ7wL5PHGyKTQmnCCq3aZtQWjiqcdi783Jd6rasPUin2wZClSt8u2g5CwCRMczMUrpyJSH_DDO0I2h3nUb1h0UTjI4uFI4KR_TKsoIm8N4V9QrIYC3NJ3MJlO5WwajYFEuYOFtR6DxMy48_vn67oFpvMEWPXD1kZyfHi9HY21Z58JRA9-jZoba5kZFQXMY2tFYpkyZW0RUQsckphIipsXnKE8WDINSRtInxKcNXci6D4BHbcaUzjxmI0BiT-Cq0Bnd5uPGP0zjnaO7TxOdKDAfM62ScqS0FOlXiWGYtebPISAhZL4QBe933v2jJP_7Yc69TmWxrBC4zEfsijv2QJn7Zv0bh0Z2MdKassQ-RE0VpKqIBE41-_GWm7HA-Oe6fnvzLoBdsd7yYTbPpZP72KbtF7RQB46d7bGdd1eYZwqx1_rxZSD8BFG0iRA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtNAEF2hIgEv3BGhBQYJiSe36_X9sUoaNZBEVZVKfbPWexEWyTpy41B44hP4EX6KL2HHt7ZICAkevRetrZmdOeudOUPIW6mkkDTUjrDezPFFEDhcuqGTUBl7Wroer8u9zebh8Zn__jw4v5bF3_BD9D_ccGfU9ho3-FrqgyvSUMzAtuc7xmgcYSb5bT-kMer16LQnkGJWO5v8Is9zsAx9R9tI2cHN-Tfd0hXWvI5Ya5czfkB497JNpMmn_WqT7Yuvv_E4_s_XPCT3WzwKh40CPSK3lHlM7g67MnBPyI-JgW2-LeDUQso2aRMKDaPKTjv5WGwK2RS1B25k04CYcmV7Fw1jAVhcDDO15KZYcci-wMxaEWt1jbTKD4s6FN06UBjlBsmVeQl12L3JqxWguVqqS3UBmOxWwjDf5kuYGF1i4DxMi88_v31fY6U3mFp_XD4lZ-OjxfDYaWs8OIJZ5-joUOpM8YAJyiPtay2ESmIt8AIIueSEBYiJ0llCY0E9z5cB17FyMb-XU8o97xnZMYVRzwkwXykVu8LXyp7x7LE_SqKMWmOfxC4VLBwQpxNxKloCdKzDsUwb6maWohDSXggD8q4fv26oP_44cq_TmLQ1ARcpi1wWRa6PC7_pu63w8EaGG1VUdgxSEwVJwoIBYbV6_GWl9HA-OeqfXvzLpNfkzslonE4n8w-75B42Y_iLm-yRnU1ZqZcWY22yV_U2-gWzSiD8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+vivo+Realization+of+Dual+Photodynamic+and+Photothermal+Therapy+for+Melanoma+by+Mitochondria+Targeting+Dinuclear+Ruthenium+Complexes+under+Civil+Infrared+Low%E2%80%90power+Laser&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wang%2C+Meng%E2%80%90Fan&rft.au=Yang%2C+Rong&rft.au=Tang%2C+Shi%E2%80%90Jie&rft.au=Deng%2C+Yu%E2%80%90Ang&rft.date=2022-09-19&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=38&rft_id=info:doi/10.1002%2Fanie.202208721&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202208721 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |