Exponential attractors for random dynamical systems and applications

The paper is devoted to constructing a random exponential attractor for some classes of stochastic PDE’s. We first prove the existence of an exponential attractor for abstract random dynamical systems and study its dependence on a parameter and then apply these results to a nonlinear reaction–diffus...

Full description

Saved in:
Bibliographic Details
Published inStochastic partial differential equations : analysis and computations Vol. 1; no. 2; pp. 241 - 281
Main Authors Shirikyan, Armen, Zelik, Sergey
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.06.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The paper is devoted to constructing a random exponential attractor for some classes of stochastic PDE’s. We first prove the existence of an exponential attractor for abstract random dynamical systems and study its dependence on a parameter and then apply these results to a nonlinear reaction–diffusion system with a random perturbation. We show, in particular, that the attractors can be constructed in such a way that the symmetric distance between the attractors for stochastic and deterministic problems goes to zero with the amplitude of the random perturbation.
AbstractList The paper is devoted to constructing a random exponential attractor for some classes of stochastic PDE’s. We first prove the existence of an exponential attractor for abstract random dynamical systems and study its dependence on a parameter and then apply these results to a nonlinear reaction–diffusion system with a random perturbation. We show, in particular, that the attractors can be constructed in such a way that the symmetric distance between the attractors for stochastic and deterministic problems goes to zero with the amplitude of the random perturbation.
Author Shirikyan, Armen
Zelik, Sergey
Author_xml – sequence: 1
  givenname: Armen
  surname: Shirikyan
  fullname: Shirikyan, Armen
  email: Armen.Shirikyan@u-cergy.fr
  organization: Department of Mathematics, University of Cergy-Pontoise
– sequence: 2
  givenname: Sergey
  surname: Zelik
  fullname: Zelik, Sergey
  organization: Department of Mathematics, University of Surrey
BookMark eNp9UE1LxDAQDbKC67o_wFv_QHQmTb-Osq6usOBFwVtIk1S6tElJIth_b5aKRy8zw5v3HjPvmqyss4aQW4Q7BKjuA0-VUcCcQpooXpA1w4ZT4Pix-psBr8g2hFPiYF5WyIo1edx_T8nMxl4OmYzRSxWdD1nnfOal1W7M9Gzl2Ku0D3OIZgxZwjM5TUMCY-9suCGXnRyC2f72DXl_2r_tDvT4-vyyezhSxWpAyrRiBc9b3bUtMIaoOi6hgEJ3ppSaKWwaAyVrNZYGULYNtrzWVV3IsuYlyzcEF1_lXQjedGLy_Sj9LBDEOQmxJCHSf-KchMCkYYsmJK79NF6c3Je36cx_RD9GEmMR
CitedBy_id crossref_primary_10_3934_dcdsb_2021318
crossref_primary_10_4213_rm10095e
crossref_primary_10_3934_dcdsb_2021290
crossref_primary_10_4213_rm10095
crossref_primary_10_3934_era_2020072
crossref_primary_10_1016_j_jde_2017_03_044
crossref_primary_10_11948_2156_907X_20190021
crossref_primary_10_3934_dcds_2017277
crossref_primary_10_1080_10236198_2021_1945047
crossref_primary_10_3934_math_2023150
crossref_primary_10_4213_im9250
crossref_primary_10_4213_im9250e
Cites_doi 10.1017/CBO9780511666223
10.1023/A:1022665916629
10.1007/BF01193705
10.1007/978-1-4614-4581-4
10.1016/S0764-4442(00)00259-7
10.1017/CBO9781139137119
10.1016/S1874-5717(08)00003-0
10.1002/mana.200310004
10.1023/B:FAIA.0000024865.78811.11
10.1080/1468936042000207792
10.1007/978-3-662-12878-7
10.1007/BF01194988
10.1090/coll/049
10.1023/A:1016684108862
10.1007/BF02219225
10.1016/0022-0396(88)90110-6
10.1017/S030821050000408X
10.1016/S0893-9659(98)00004-4
10.1007/978-1-4684-0313-8
10.3934/dcds.2010.26.1329
10.1007/978-1-4612-5775-2
10.1070/SM1995v186n01ABEH000002
10.1080/17442509508833981
ContentType Journal Article
Copyright Springer Science+Business Media New York 2013
Copyright_xml – notice: Springer Science+Business Media New York 2013
DBID AAYXX
CITATION
DOI 10.1007/s40072-013-0007-1
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2194-041X
EndPage 281
ExternalDocumentID 10_1007_s40072_013_0007_1
GroupedDBID -EM
0R~
203
30V
4.4
406
96X
AAAVM
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
AAZMS
ABBXA
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABJNI
ABJOX
ABKAS
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACBMV
ACBRV
ACBYP
ACGFS
ACHSB
ACIGE
ACIPQ
ACIWK
ACKNC
ACMLO
ACOKC
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGNC
AEJHL
AEJRE
AEOHA
AEPYU
AESKC
AESTI
AETCA
AEVLU
AEVTX
AEXYK
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGMZJ
AGQMX
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKLTO
AKQUC
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ASPBG
AUKKA
AVWKF
AVXWI
AXYYD
AYJHY
AZFZN
BAPOH
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I0C
IKXTQ
IWAJR
IXD
J-C
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
PT4
RIG
RLLFE
RSV
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
ZMTXR
AACDK
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AGQEE
AGRTI
AIGIU
CITATION
ROL
SJYHP
ID FETCH-LOGICAL-c2801-2dc2543bdfbb02211cf4a0505dfe6ad2c199e062bd16e01ab91b48d785a684623
IEDL.DBID AGYKE
ISSN 2194-0401
IngestDate Thu Sep 12 19:12:15 EDT 2024
Sat Dec 16 12:00:06 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Keywords Reaction-diffusion equation
35R60
Random exponential attractors
35B41
35K57
60H15
Stochastic PDE’s
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2801-2dc2543bdfbb02211cf4a0505dfe6ad2c199e062bd16e01ab91b48d785a684623
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s40072-013-0007-1.pdf
PageCount 41
ParticipantIDs crossref_primary_10_1007_s40072_013_0007_1
springer_journals_10_1007_s40072_013_0007_1
PublicationCentury 2000
PublicationDate 2013-06-01
PublicationDateYYYYMMDD 2013-06-01
PublicationDate_xml – month: 06
  year: 2013
  text: 2013-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
PublicationTitle Stochastic partial differential equations : analysis and computations
PublicationTitleAbbrev Stoch PDE: Anal Comp
PublicationYear 2013
Publisher Springer US
Publisher_xml – name: Springer US
References TemamRInfinite-Dimensional Dynamical Systems in Mechanics and Physics1988New YorkSpringer0662.3500110.1007/978-1-4684-0313-8
CrauelHDebusscheAFlandoliFRandom attractorsJ. Dyn. Differ. Equ.19979230734114512940884.5806410.1007/BF02219225
Miranville, A., Zelik, S.: Attractors for Dissipative Partial Differential Equations in Bounded and Unbounded Domains. Handbook of Differential Equations: Evolutionary Equations, vol. IV, pp. 103–200. North-Holland, Amsterdam (2008)
EfendievMMiranvilleAZelikSExponential attractors for a nonlinear reaction–diffusion system in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}^3$$\end{document}C. R. Acad. Sci. Paris I2000330871371817639161151.3531510.1016/S0764-4442(00)00259-7
StroockDProbability. An Analytic Viewpoint1993CambridgeCambridge University Press
ChueshovIScheutzowMSchmalfussBContinuity properties of inertial manifolds for stochastic retarded semilinear parabolic equations. Interacting Stochastic Systems2005BerlinSpringer
BensoussanAFlandoliFStochastic inertial manifoldStoch. Stoch. Rep.1995531–2133913804880854.60059
EfendievMMiranvilleAZelikSInfinite dimensional exponential attractors for a non-autonomous reaction-diffusion systemMath. Nachr.2003248/2497296195071610.1002/mana.200310004
CrauelHFlandoliFAttractors for random dynamical systemsProbab. Theory Relat. Fields1994100336539313055870819.5802310.1007/BF01193705
HallPHeydeCCMartingale Limit Theory and Its Application1980New YorkAcademic Press0462.60045
Chepyzhov, V.V., Vishik, M.I.: Attractors for Equations of Mathematical Physics, vol. 49. AMS, Providence (2002)
Chepyzhov, V., Vishik, M., Zelik, S.: Regular attractors and their non-autonomous perturbations. Mat. Sb. (N.S.) (2012) (to appear)
FoiasCSellGTemamRInertial manifolds for nonlinear evolutionary equationsJ. Differ. Equ.19887323093539439450643.5800410.1016/0022-0396(88)90110-6
BabinAVVishikMIAttractors of Evolution Equations1992AmsterdamNorth-Holland Publishing0778.58002
ChepyzhovVGoritskyAGlobal integral manifolds with exponential tracking for nonautonomous equationsRuss. J. Math. Phys.19975192814867600908.34044
ChueshovIScheutzowMOn the structure of attractors and invariant measures for a class of monotone random systemsDyn. Syst.200419212714420604221061.3703210.1080/1468936042000207792
Kunita, H.: Stochastic Flows and Stochastic Differential Equations. Cambridge University Press, Cambridge (1997)
KaratzasIShreveSEBrownian Motion and Stochastic Calculus1991New YorkSpringer0734.60060
CarvalhoALangaJRobinsonJAttractors for Infinite-Dimensional Non-Autonomous Dynamical Systems2013New YorkSpringer1263.3700210.1007/978-1-4614-4581-4
FabriePGalusinskiCMiranvilleAZelikSUniform exponential attractors for a singularly perturbed damped wave equationDiscret. Contin. Dyn. Syst.2004101–221123820261921060.35011
ArnoldLRandom Dynamical Systems1998BerlinSpringer0906.3400110.1007/978-3-662-12878-7
Walters, P.: An Introduction to Ergodic Theory. Graduate Texts in Mathematics, vol. 79. Springer, New York (1982)
LangaJMiranvilleARealJPullback exponential attractorsDiscret. Contin. Dyn. Syst.20102641329135726007490568550610.3934/dcds.2010.26.1329
Da PratoGZabczykJStochastic Equations in Infinite Dimensions1992CambridgeCambridge University Press0761.6005210.1017/CBO9780511666223
ChueshovIGiryaTInertial manifolds and stationary measures for stochastically perturbed dissipative dynamical systemsMat. Sb.19951861294616416640851.6003610.1070/SM1995v186n01ABEH000002
EfendievMMiranvilleAZelikSExponential attractors and finite-dimensional reduction for non-autonomous dynamical systemsProc. R. Soc. Edinb. A200513570373021733361088.3700510.1017/S030821050000408X
KuksinSShirikyanAMathematics of Two-Dimensional Turbulence2012CambridgeCambridge University Press0606661110.1017/CBO9781139137119
ChueshovIScheutzowMInertial manifolds and forms for stochastically perturbed retarded semilinear parabolic equationsJ. Dyn. Differ. Equ.200113235538018296020990.3704110.1023/A:1016684108862
KuksinSShirikyanAOn random attractors for systems of mixing typeFunct. Anal. Appl.2004381283720617891086.3702710.1023/B:FAIA.0000024865.78811.11
CrauelHFlandoliFAdditive noise destroys a pitchfork bifurcationJ. Dyn. Differ. Equ.19981025927416230130907.3404210.1023/A:1022665916629
LorentzGGApproximation of Functions1986New YorkChelsea Publishing Co.0643.41001
MiranvilleAExponential attractors for nonautonomous evolution equationsAppl. Math. Lett.19981121922160966110.1016/S0893-9659(98)00004-4
FlandoliFDissipativity and invariant measures for stochastic Navier–Stokes equationsNoDEA Nonlinear Differ. Equ. Appl.19941440342313001500820.3510810.1007/BF01194988
Eden, A., Foias, C., Nicolaenko, B., Temam, R.: Exponential attractors for dissipative evolution equations. RAM: Research in Applied Mathematics, vol. 37. Masson, Paris (1994)
M Efendiev (7_CR19) 2005; 135
P Hall (7_CR23) 1980
C Foias (7_CR22) 1988; 73
7_CR27
A Miranville (7_CR30) 1998; 11
I Chueshov (7_CR7) 1995; 186
S Kuksin (7_CR25) 2004; 38
M Efendiev (7_CR17) 2000; 330
D Stroock (7_CR32) 1993
G Prato Da (7_CR15) 1992
I Karatzas (7_CR24) 1991
V Chepyzhov (7_CR8) 1997; 5
P Fabrie (7_CR20) 2004; 10
H Crauel (7_CR6) 1998; 10
S Kuksin (7_CR26) 2012
GG Lorentz (7_CR29) 1986
A Bensoussan (7_CR2) 1995; 53
A Carvalho (7_CR9) 2013
7_CR31
I Chueshov (7_CR12) 2005
R Temam (7_CR33) 1988
7_CR16
L Arnold (7_CR1) 1998
7_CR34
7_CR13
I Chueshov (7_CR10) 2001; 13
7_CR14
H Crauel (7_CR4) 1997; 9
I Chueshov (7_CR11) 2004; 19
J Langa (7_CR28) 2010; 26
AV Babin (7_CR3) 1992
F Flandoli (7_CR21) 1994; 1
H Crauel (7_CR5) 1994; 100
M Efendiev (7_CR18) 2003; 248/249
References_xml – volume-title: Stochastic Equations in Infinite Dimensions
  year: 1992
  ident: 7_CR15
  doi: 10.1017/CBO9780511666223
  contributor:
    fullname: G Prato Da
– volume: 5
  start-page: 9
  issue: 1
  year: 1997
  ident: 7_CR8
  publication-title: Russ. J. Math. Phys.
  contributor:
    fullname: V Chepyzhov
– volume: 10
  start-page: 259
  year: 1998
  ident: 7_CR6
  publication-title: J. Dyn. Differ. Equ.
  doi: 10.1023/A:1022665916629
  contributor:
    fullname: H Crauel
– volume: 100
  start-page: 365
  issue: 3
  year: 1994
  ident: 7_CR5
  publication-title: Probab. Theory Relat. Fields
  doi: 10.1007/BF01193705
  contributor:
    fullname: H Crauel
– volume-title: Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems
  year: 2013
  ident: 7_CR9
  doi: 10.1007/978-1-4614-4581-4
  contributor:
    fullname: A Carvalho
– volume-title: Brownian Motion and Stochastic Calculus
  year: 1991
  ident: 7_CR24
  contributor:
    fullname: I Karatzas
– volume: 330
  start-page: 713
  issue: 8
  year: 2000
  ident: 7_CR17
  publication-title: C. R. Acad. Sci. Paris I
  doi: 10.1016/S0764-4442(00)00259-7
  contributor:
    fullname: M Efendiev
– volume-title: Mathematics of Two-Dimensional Turbulence
  year: 2012
  ident: 7_CR26
  doi: 10.1017/CBO9781139137119
  contributor:
    fullname: S Kuksin
– volume-title: Probability. An Analytic Viewpoint
  year: 1993
  ident: 7_CR32
  contributor:
    fullname: D Stroock
– volume-title: Martingale Limit Theory and Its Application
  year: 1980
  ident: 7_CR23
  contributor:
    fullname: P Hall
– volume-title: Continuity properties of inertial manifolds for stochastic retarded semilinear parabolic equations. Interacting Stochastic Systems
  year: 2005
  ident: 7_CR12
  contributor:
    fullname: I Chueshov
– volume: 10
  start-page: 211
  issue: 1–2
  year: 2004
  ident: 7_CR20
  publication-title: Discret. Contin. Dyn. Syst.
  contributor:
    fullname: P Fabrie
– ident: 7_CR31
  doi: 10.1016/S1874-5717(08)00003-0
– volume: 248/249
  start-page: 72
  year: 2003
  ident: 7_CR18
  publication-title: Math. Nachr.
  doi: 10.1002/mana.200310004
  contributor:
    fullname: M Efendiev
– volume: 38
  start-page: 28
  issue: 1
  year: 2004
  ident: 7_CR25
  publication-title: Funct. Anal. Appl.
  doi: 10.1023/B:FAIA.0000024865.78811.11
  contributor:
    fullname: S Kuksin
– volume: 19
  start-page: 127
  issue: 2
  year: 2004
  ident: 7_CR11
  publication-title: Dyn. Syst.
  doi: 10.1080/1468936042000207792
  contributor:
    fullname: I Chueshov
– ident: 7_CR14
– volume-title: Random Dynamical Systems
  year: 1998
  ident: 7_CR1
  doi: 10.1007/978-3-662-12878-7
  contributor:
    fullname: L Arnold
– ident: 7_CR16
– volume: 1
  start-page: 403
  issue: 4
  year: 1994
  ident: 7_CR21
  publication-title: NoDEA Nonlinear Differ. Equ. Appl.
  doi: 10.1007/BF01194988
  contributor:
    fullname: F Flandoli
– volume-title: Approximation of Functions
  year: 1986
  ident: 7_CR29
  contributor:
    fullname: GG Lorentz
– ident: 7_CR13
  doi: 10.1090/coll/049
– volume: 13
  start-page: 355
  issue: 2
  year: 2001
  ident: 7_CR10
  publication-title: J. Dyn. Differ. Equ.
  doi: 10.1023/A:1016684108862
  contributor:
    fullname: I Chueshov
– volume: 9
  start-page: 307
  issue: 2
  year: 1997
  ident: 7_CR4
  publication-title: J. Dyn. Differ. Equ.
  doi: 10.1007/BF02219225
  contributor:
    fullname: H Crauel
– volume: 73
  start-page: 309
  issue: 2
  year: 1988
  ident: 7_CR22
  publication-title: J. Differ. Equ.
  doi: 10.1016/0022-0396(88)90110-6
  contributor:
    fullname: C Foias
– volume: 135
  start-page: 703
  year: 2005
  ident: 7_CR19
  publication-title: Proc. R. Soc. Edinb. A
  doi: 10.1017/S030821050000408X
  contributor:
    fullname: M Efendiev
– ident: 7_CR27
– volume: 11
  start-page: 19
  issue: 2
  year: 1998
  ident: 7_CR30
  publication-title: Appl. Math. Lett.
  doi: 10.1016/S0893-9659(98)00004-4
  contributor:
    fullname: A Miranville
– volume-title: Infinite-Dimensional Dynamical Systems in Mechanics and Physics
  year: 1988
  ident: 7_CR33
  doi: 10.1007/978-1-4684-0313-8
  contributor:
    fullname: R Temam
– volume: 26
  start-page: 1329
  issue: 4
  year: 2010
  ident: 7_CR28
  publication-title: Discret. Contin. Dyn. Syst.
  doi: 10.3934/dcds.2010.26.1329
  contributor:
    fullname: J Langa
– ident: 7_CR34
  doi: 10.1007/978-1-4612-5775-2
– volume: 186
  start-page: 29
  issue: 1
  year: 1995
  ident: 7_CR7
  publication-title: Mat. Sb.
  doi: 10.1070/SM1995v186n01ABEH000002
  contributor:
    fullname: I Chueshov
– volume-title: Attractors of Evolution Equations
  year: 1992
  ident: 7_CR3
  contributor:
    fullname: AV Babin
– volume: 53
  start-page: 13
  issue: 1–2
  year: 1995
  ident: 7_CR2
  publication-title: Stoch. Stoch. Rep.
  doi: 10.1080/17442509508833981
  contributor:
    fullname: A Bensoussan
SSID ssj0001367125
Score 2.0911086
Snippet The paper is devoted to constructing a random exponential attractor for some classes of stochastic PDE’s. We first prove the existence of an exponential...
SourceID crossref
springer
SourceType Aggregation Database
Publisher
StartPage 241
SubjectTerms Computational Mathematics and Numerical Analysis
Computational Science and Engineering
Mathematics
Mathematics and Statistics
Numerical Analysis
Partial Differential Equations
Probability Theory and Stochastic Processes
Statistical Theory and Methods
Title Exponential attractors for random dynamical systems and applications
URI https://link.springer.com/article/10.1007/s40072-013-0007-1
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1V7QID34jyJQ9MoFSxkzjpWEFLBYKJSmWK4theKtKqSaWKX885TqJWwNA1OUXW2c49--7eA7gLBI2k5KbgSZkDSqSdSOnI0QH1UteoVOqS7fOdjyf-yzSYtoA1VxfZrFdnJMsfddPrZgS8TRWBZxqhQwdPPB3Tdxq0oTN4_nzduFnxeEhLtVXcjabKwqV1OvOv72wHpO1saBlkRoe28S8vuQlNbcmstypEL_3-zdy4w_iP4KDCnGRgF8kxtFR2AvtvDWFrfgpPw_VinpnKITRMimJpZXgIQlqC0UzOv4i02vX43rI_5wSfk80E-BlMRsOPx7FTCSw4KcPI5DCZml54IbUQGMspTbWfGGk7qRVPJEtpv69czoSkXLk0EX0q_EiGUZBwxC3MO4d2hoO7AMJYwmTIpXYF9QXTAmfa8w1cQrzkh7IL97WX44Xl0YgbxuTSNTG6xqTCw5h24aH2YVxtqfx_68udrK9gj1lFC5yLa2gXy5W6QVxRiNtqIf0Ab3TB2g
link.rule.ids 315,783,787,27938,27939,41095,42164,52125
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6hdgAG3ojy9MAEShU7iZOMFbQU-phaqUxRHMcLoq2aVEL8es5xUrUIhq7JKXLOdu5z7u77AO49QQMpuS54SvUBJVBWkKrAUh51ElurVKqC7XPIu2P3beJNyj7urKp2r1KSxZd61eymFbx1GYGjO6F9C488dZch2q9BvfXy3lv7teJwnxZyq7gddZmFTat85l_P2YxIm-nQIsp0DmFUjc8Ul3w0l7loJt-_qBu3fIEjOChRJ2mZZXIMO-n0BPYHK8rW7BSe21_z2VTXDqFhnOcLI8RDENQSjGdy9kmkUa_H-4b_OSN4naynwM9g3GmPnrpWKbFgJQxjk8VkorvhhVRCYDSnNFFurMXtpEp5LFlCwzC1OROS8tSmsQipcAPpB17MEbkw5xxqUxzcBRDGYiZ9LpUtqCuYEjjXjqsBEyIm15cNeKjcHM0Nk0a04kwuXBOha3Qy3I9oAx4rH0blpsr-t77cyvoOdrujQT_qvw57V7DHjL4Fzss11PLFMr1BlJGL23JV_QD2EMWu
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT4NAEJ2YNjF68NtYPzl40tCyCyxwbGxrtdp4sEk9IcuyFyNtCk2Mv95ZFprW6MF4hQlZhtnMW2bmPYBLlxNfCKYanhJ1QPGl6SfSN6VL7NhSKpWyYPscsv7IuR-741LnNKu63auSpJ5pUCxNad6aCtlaDL4pNW_VUmCrqWjPxONP3SGIFmpQb9--DJZ-s9jMI4X0Km5N1XJhkaq2-dNzVrPTamm0yDi9bXit1qobTd6a85w3489vNI7_eJkd2CrRqNHW4bMLa0m6B5uPCyrXbB863Y_pJFU9RWgY5flMC_QYCHYNzHNi8m4IrWqP9zUvdGbgdWO5NH4Ao173-aZvltILZkwxZ5lUxGpKngvJOWZ5QmLpREr0TsiERYLGJAgSi1EuCEssEvGAcMcXnu9GDBENtQ-hluLijsCgNKLCY0JanDicSo4xYDsKSCGScjzRgKvK5eFUM2yECy7lwjUhukYVyb2QNOC68mdYbrbsd-vjP1lfwPpTpxc-3A0HJ7BBtewFfpZTqOWzeXKG4CPn52WAfQGHrM6S
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exponential+attractors+for+random+dynamical+systems+and+applications&rft.jtitle=Stochastic+partial+differential+equations+%3A+analysis+and+computations&rft.au=Shirikyan%2C+Armen&rft.au=Zelik%2C+Sergey&rft.date=2013-06-01&rft.pub=Springer+US&rft.issn=2194-0401&rft.eissn=2194-041X&rft.volume=1&rft.issue=2&rft.spage=241&rft.epage=281&rft_id=info:doi/10.1007%2Fs40072-013-0007-1&rft.externalDocID=10_1007_s40072_013_0007_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2194-0401&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2194-0401&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2194-0401&client=summon