Exponential attractors for random dynamical systems and applications
The paper is devoted to constructing a random exponential attractor for some classes of stochastic PDE’s. We first prove the existence of an exponential attractor for abstract random dynamical systems and study its dependence on a parameter and then apply these results to a nonlinear reaction–diffus...
Saved in:
Published in | Stochastic partial differential equations : analysis and computations Vol. 1; no. 2; pp. 241 - 281 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Boston
Springer US
01.06.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The paper is devoted to constructing a random exponential attractor for some classes of stochastic PDE’s. We first prove the existence of an exponential attractor for abstract random dynamical systems and study its dependence on a parameter and then apply these results to a nonlinear reaction–diffusion system with a random perturbation. We show, in particular, that the attractors can be constructed in such a way that the symmetric distance between the attractors for stochastic and deterministic problems goes to zero with the amplitude of the random perturbation. |
---|---|
AbstractList | The paper is devoted to constructing a random exponential attractor for some classes of stochastic PDE’s. We first prove the existence of an exponential attractor for abstract random dynamical systems and study its dependence on a parameter and then apply these results to a nonlinear reaction–diffusion system with a random perturbation. We show, in particular, that the attractors can be constructed in such a way that the symmetric distance between the attractors for stochastic and deterministic problems goes to zero with the amplitude of the random perturbation. |
Author | Shirikyan, Armen Zelik, Sergey |
Author_xml | – sequence: 1 givenname: Armen surname: Shirikyan fullname: Shirikyan, Armen email: Armen.Shirikyan@u-cergy.fr organization: Department of Mathematics, University of Cergy-Pontoise – sequence: 2 givenname: Sergey surname: Zelik fullname: Zelik, Sergey organization: Department of Mathematics, University of Surrey |
BookMark | eNp9UE1LxDAQDbKC67o_wFv_QHQmTb-Osq6usOBFwVtIk1S6tElJIth_b5aKRy8zw5v3HjPvmqyss4aQW4Q7BKjuA0-VUcCcQpooXpA1w4ZT4Pix-psBr8g2hFPiYF5WyIo1edx_T8nMxl4OmYzRSxWdD1nnfOal1W7M9Gzl2Ku0D3OIZgxZwjM5TUMCY-9suCGXnRyC2f72DXl_2r_tDvT4-vyyezhSxWpAyrRiBc9b3bUtMIaoOi6hgEJ3ppSaKWwaAyVrNZYGULYNtrzWVV3IsuYlyzcEF1_lXQjedGLy_Sj9LBDEOQmxJCHSf-KchMCkYYsmJK79NF6c3Je36cx_RD9GEmMR |
CitedBy_id | crossref_primary_10_3934_dcdsb_2021318 crossref_primary_10_4213_rm10095e crossref_primary_10_3934_dcdsb_2021290 crossref_primary_10_4213_rm10095 crossref_primary_10_3934_era_2020072 crossref_primary_10_1016_j_jde_2017_03_044 crossref_primary_10_11948_2156_907X_20190021 crossref_primary_10_3934_dcds_2017277 crossref_primary_10_1080_10236198_2021_1945047 crossref_primary_10_3934_math_2023150 crossref_primary_10_4213_im9250 crossref_primary_10_4213_im9250e |
Cites_doi | 10.1017/CBO9780511666223 10.1023/A:1022665916629 10.1007/BF01193705 10.1007/978-1-4614-4581-4 10.1016/S0764-4442(00)00259-7 10.1017/CBO9781139137119 10.1016/S1874-5717(08)00003-0 10.1002/mana.200310004 10.1023/B:FAIA.0000024865.78811.11 10.1080/1468936042000207792 10.1007/978-3-662-12878-7 10.1007/BF01194988 10.1090/coll/049 10.1023/A:1016684108862 10.1007/BF02219225 10.1016/0022-0396(88)90110-6 10.1017/S030821050000408X 10.1016/S0893-9659(98)00004-4 10.1007/978-1-4684-0313-8 10.3934/dcds.2010.26.1329 10.1007/978-1-4612-5775-2 10.1070/SM1995v186n01ABEH000002 10.1080/17442509508833981 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media New York 2013 |
Copyright_xml | – notice: Springer Science+Business Media New York 2013 |
DBID | AAYXX CITATION |
DOI | 10.1007/s40072-013-0007-1 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2194-041X |
EndPage | 281 |
ExternalDocumentID | 10_1007_s40072_013_0007_1 |
GroupedDBID | -EM 0R~ 203 30V 4.4 406 96X AAAVM AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO AAZMS ABBXA ABDZT ABECU ABFGW ABFTV ABHLI ABJNI ABJOX ABKAS ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACBMV ACBRV ACBYP ACGFS ACHSB ACIGE ACIPQ ACIWK ACKNC ACMLO ACOKC ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFTE AEGNC AEJHL AEJRE AEOHA AEPYU AESKC AESTI AETCA AEVLU AEVTX AEXYK AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGMZJ AGQMX AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKLTO AKQUC ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ASPBG AUKKA AVWKF AVXWI AXYYD AYJHY AZFZN BAPOH BGNMA CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 HMJXF HQYDN HRMNR HVGLF HZ~ I0C IKXTQ IWAJR IXD J-C JBSCW JCJTX JZLTJ KOV LLZTM M4Y NB0 NPVJJ NQJWS NU0 O9- O93 O9G O9J PT4 RIG RLLFE RSV SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW W48 ZMTXR AACDK AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AGQEE AGRTI AIGIU CITATION ROL SJYHP |
ID | FETCH-LOGICAL-c2801-2dc2543bdfbb02211cf4a0505dfe6ad2c199e062bd16e01ab91b48d785a684623 |
IEDL.DBID | AGYKE |
ISSN | 2194-0401 |
IngestDate | Thu Sep 12 19:12:15 EDT 2024 Sat Dec 16 12:00:06 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Keywords | Reaction-diffusion equation 35R60 Random exponential attractors 35B41 35K57 60H15 Stochastic PDE’s |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2801-2dc2543bdfbb02211cf4a0505dfe6ad2c199e062bd16e01ab91b48d785a684623 |
OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s40072-013-0007-1.pdf |
PageCount | 41 |
ParticipantIDs | crossref_primary_10_1007_s40072_013_0007_1 springer_journals_10_1007_s40072_013_0007_1 |
PublicationCentury | 2000 |
PublicationDate | 2013-06-01 |
PublicationDateYYYYMMDD | 2013-06-01 |
PublicationDate_xml | – month: 06 year: 2013 text: 2013-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Boston |
PublicationPlace_xml | – name: Boston |
PublicationTitle | Stochastic partial differential equations : analysis and computations |
PublicationTitleAbbrev | Stoch PDE: Anal Comp |
PublicationYear | 2013 |
Publisher | Springer US |
Publisher_xml | – name: Springer US |
References | TemamRInfinite-Dimensional Dynamical Systems in Mechanics and Physics1988New YorkSpringer0662.3500110.1007/978-1-4684-0313-8 CrauelHDebusscheAFlandoliFRandom attractorsJ. Dyn. Differ. Equ.19979230734114512940884.5806410.1007/BF02219225 Miranville, A., Zelik, S.: Attractors for Dissipative Partial Differential Equations in Bounded and Unbounded Domains. Handbook of Differential Equations: Evolutionary Equations, vol. IV, pp. 103–200. North-Holland, Amsterdam (2008) EfendievMMiranvilleAZelikSExponential attractors for a nonlinear reaction–diffusion system in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}^3$$\end{document}C. R. Acad. Sci. Paris I2000330871371817639161151.3531510.1016/S0764-4442(00)00259-7 StroockDProbability. An Analytic Viewpoint1993CambridgeCambridge University Press ChueshovIScheutzowMSchmalfussBContinuity properties of inertial manifolds for stochastic retarded semilinear parabolic equations. Interacting Stochastic Systems2005BerlinSpringer BensoussanAFlandoliFStochastic inertial manifoldStoch. Stoch. Rep.1995531–2133913804880854.60059 EfendievMMiranvilleAZelikSInfinite dimensional exponential attractors for a non-autonomous reaction-diffusion systemMath. Nachr.2003248/2497296195071610.1002/mana.200310004 CrauelHFlandoliFAttractors for random dynamical systemsProbab. Theory Relat. Fields1994100336539313055870819.5802310.1007/BF01193705 HallPHeydeCCMartingale Limit Theory and Its Application1980New YorkAcademic Press0462.60045 Chepyzhov, V.V., Vishik, M.I.: Attractors for Equations of Mathematical Physics, vol. 49. AMS, Providence (2002) Chepyzhov, V., Vishik, M., Zelik, S.: Regular attractors and their non-autonomous perturbations. Mat. Sb. (N.S.) (2012) (to appear) FoiasCSellGTemamRInertial manifolds for nonlinear evolutionary equationsJ. Differ. Equ.19887323093539439450643.5800410.1016/0022-0396(88)90110-6 BabinAVVishikMIAttractors of Evolution Equations1992AmsterdamNorth-Holland Publishing0778.58002 ChepyzhovVGoritskyAGlobal integral manifolds with exponential tracking for nonautonomous equationsRuss. J. Math. Phys.19975192814867600908.34044 ChueshovIScheutzowMOn the structure of attractors and invariant measures for a class of monotone random systemsDyn. Syst.200419212714420604221061.3703210.1080/1468936042000207792 Kunita, H.: Stochastic Flows and Stochastic Differential Equations. Cambridge University Press, Cambridge (1997) KaratzasIShreveSEBrownian Motion and Stochastic Calculus1991New YorkSpringer0734.60060 CarvalhoALangaJRobinsonJAttractors for Infinite-Dimensional Non-Autonomous Dynamical Systems2013New YorkSpringer1263.3700210.1007/978-1-4614-4581-4 FabriePGalusinskiCMiranvilleAZelikSUniform exponential attractors for a singularly perturbed damped wave equationDiscret. Contin. Dyn. Syst.2004101–221123820261921060.35011 ArnoldLRandom Dynamical Systems1998BerlinSpringer0906.3400110.1007/978-3-662-12878-7 Walters, P.: An Introduction to Ergodic Theory. Graduate Texts in Mathematics, vol. 79. Springer, New York (1982) LangaJMiranvilleARealJPullback exponential attractorsDiscret. Contin. Dyn. Syst.20102641329135726007490568550610.3934/dcds.2010.26.1329 Da PratoGZabczykJStochastic Equations in Infinite Dimensions1992CambridgeCambridge University Press0761.6005210.1017/CBO9780511666223 ChueshovIGiryaTInertial manifolds and stationary measures for stochastically perturbed dissipative dynamical systemsMat. Sb.19951861294616416640851.6003610.1070/SM1995v186n01ABEH000002 EfendievMMiranvilleAZelikSExponential attractors and finite-dimensional reduction for non-autonomous dynamical systemsProc. R. Soc. Edinb. A200513570373021733361088.3700510.1017/S030821050000408X KuksinSShirikyanAMathematics of Two-Dimensional Turbulence2012CambridgeCambridge University Press0606661110.1017/CBO9781139137119 ChueshovIScheutzowMInertial manifolds and forms for stochastically perturbed retarded semilinear parabolic equationsJ. Dyn. Differ. Equ.200113235538018296020990.3704110.1023/A:1016684108862 KuksinSShirikyanAOn random attractors for systems of mixing typeFunct. Anal. Appl.2004381283720617891086.3702710.1023/B:FAIA.0000024865.78811.11 CrauelHFlandoliFAdditive noise destroys a pitchfork bifurcationJ. Dyn. Differ. Equ.19981025927416230130907.3404210.1023/A:1022665916629 LorentzGGApproximation of Functions1986New YorkChelsea Publishing Co.0643.41001 MiranvilleAExponential attractors for nonautonomous evolution equationsAppl. Math. Lett.19981121922160966110.1016/S0893-9659(98)00004-4 FlandoliFDissipativity and invariant measures for stochastic Navier–Stokes equationsNoDEA Nonlinear Differ. Equ. Appl.19941440342313001500820.3510810.1007/BF01194988 Eden, A., Foias, C., Nicolaenko, B., Temam, R.: Exponential attractors for dissipative evolution equations. RAM: Research in Applied Mathematics, vol. 37. Masson, Paris (1994) M Efendiev (7_CR19) 2005; 135 P Hall (7_CR23) 1980 C Foias (7_CR22) 1988; 73 7_CR27 A Miranville (7_CR30) 1998; 11 I Chueshov (7_CR7) 1995; 186 S Kuksin (7_CR25) 2004; 38 M Efendiev (7_CR17) 2000; 330 D Stroock (7_CR32) 1993 G Prato Da (7_CR15) 1992 I Karatzas (7_CR24) 1991 V Chepyzhov (7_CR8) 1997; 5 P Fabrie (7_CR20) 2004; 10 H Crauel (7_CR6) 1998; 10 S Kuksin (7_CR26) 2012 GG Lorentz (7_CR29) 1986 A Bensoussan (7_CR2) 1995; 53 A Carvalho (7_CR9) 2013 7_CR31 I Chueshov (7_CR12) 2005 R Temam (7_CR33) 1988 7_CR16 L Arnold (7_CR1) 1998 7_CR34 7_CR13 I Chueshov (7_CR10) 2001; 13 7_CR14 H Crauel (7_CR4) 1997; 9 I Chueshov (7_CR11) 2004; 19 J Langa (7_CR28) 2010; 26 AV Babin (7_CR3) 1992 F Flandoli (7_CR21) 1994; 1 H Crauel (7_CR5) 1994; 100 M Efendiev (7_CR18) 2003; 248/249 |
References_xml | – volume-title: Stochastic Equations in Infinite Dimensions year: 1992 ident: 7_CR15 doi: 10.1017/CBO9780511666223 contributor: fullname: G Prato Da – volume: 5 start-page: 9 issue: 1 year: 1997 ident: 7_CR8 publication-title: Russ. J. Math. Phys. contributor: fullname: V Chepyzhov – volume: 10 start-page: 259 year: 1998 ident: 7_CR6 publication-title: J. Dyn. Differ. Equ. doi: 10.1023/A:1022665916629 contributor: fullname: H Crauel – volume: 100 start-page: 365 issue: 3 year: 1994 ident: 7_CR5 publication-title: Probab. Theory Relat. Fields doi: 10.1007/BF01193705 contributor: fullname: H Crauel – volume-title: Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems year: 2013 ident: 7_CR9 doi: 10.1007/978-1-4614-4581-4 contributor: fullname: A Carvalho – volume-title: Brownian Motion and Stochastic Calculus year: 1991 ident: 7_CR24 contributor: fullname: I Karatzas – volume: 330 start-page: 713 issue: 8 year: 2000 ident: 7_CR17 publication-title: C. R. Acad. Sci. Paris I doi: 10.1016/S0764-4442(00)00259-7 contributor: fullname: M Efendiev – volume-title: Mathematics of Two-Dimensional Turbulence year: 2012 ident: 7_CR26 doi: 10.1017/CBO9781139137119 contributor: fullname: S Kuksin – volume-title: Probability. An Analytic Viewpoint year: 1993 ident: 7_CR32 contributor: fullname: D Stroock – volume-title: Martingale Limit Theory and Its Application year: 1980 ident: 7_CR23 contributor: fullname: P Hall – volume-title: Continuity properties of inertial manifolds for stochastic retarded semilinear parabolic equations. Interacting Stochastic Systems year: 2005 ident: 7_CR12 contributor: fullname: I Chueshov – volume: 10 start-page: 211 issue: 1–2 year: 2004 ident: 7_CR20 publication-title: Discret. Contin. Dyn. Syst. contributor: fullname: P Fabrie – ident: 7_CR31 doi: 10.1016/S1874-5717(08)00003-0 – volume: 248/249 start-page: 72 year: 2003 ident: 7_CR18 publication-title: Math. Nachr. doi: 10.1002/mana.200310004 contributor: fullname: M Efendiev – volume: 38 start-page: 28 issue: 1 year: 2004 ident: 7_CR25 publication-title: Funct. Anal. Appl. doi: 10.1023/B:FAIA.0000024865.78811.11 contributor: fullname: S Kuksin – volume: 19 start-page: 127 issue: 2 year: 2004 ident: 7_CR11 publication-title: Dyn. Syst. doi: 10.1080/1468936042000207792 contributor: fullname: I Chueshov – ident: 7_CR14 – volume-title: Random Dynamical Systems year: 1998 ident: 7_CR1 doi: 10.1007/978-3-662-12878-7 contributor: fullname: L Arnold – ident: 7_CR16 – volume: 1 start-page: 403 issue: 4 year: 1994 ident: 7_CR21 publication-title: NoDEA Nonlinear Differ. Equ. Appl. doi: 10.1007/BF01194988 contributor: fullname: F Flandoli – volume-title: Approximation of Functions year: 1986 ident: 7_CR29 contributor: fullname: GG Lorentz – ident: 7_CR13 doi: 10.1090/coll/049 – volume: 13 start-page: 355 issue: 2 year: 2001 ident: 7_CR10 publication-title: J. Dyn. Differ. Equ. doi: 10.1023/A:1016684108862 contributor: fullname: I Chueshov – volume: 9 start-page: 307 issue: 2 year: 1997 ident: 7_CR4 publication-title: J. Dyn. Differ. Equ. doi: 10.1007/BF02219225 contributor: fullname: H Crauel – volume: 73 start-page: 309 issue: 2 year: 1988 ident: 7_CR22 publication-title: J. Differ. Equ. doi: 10.1016/0022-0396(88)90110-6 contributor: fullname: C Foias – volume: 135 start-page: 703 year: 2005 ident: 7_CR19 publication-title: Proc. R. Soc. Edinb. A doi: 10.1017/S030821050000408X contributor: fullname: M Efendiev – ident: 7_CR27 – volume: 11 start-page: 19 issue: 2 year: 1998 ident: 7_CR30 publication-title: Appl. Math. Lett. doi: 10.1016/S0893-9659(98)00004-4 contributor: fullname: A Miranville – volume-title: Infinite-Dimensional Dynamical Systems in Mechanics and Physics year: 1988 ident: 7_CR33 doi: 10.1007/978-1-4684-0313-8 contributor: fullname: R Temam – volume: 26 start-page: 1329 issue: 4 year: 2010 ident: 7_CR28 publication-title: Discret. Contin. Dyn. Syst. doi: 10.3934/dcds.2010.26.1329 contributor: fullname: J Langa – ident: 7_CR34 doi: 10.1007/978-1-4612-5775-2 – volume: 186 start-page: 29 issue: 1 year: 1995 ident: 7_CR7 publication-title: Mat. Sb. doi: 10.1070/SM1995v186n01ABEH000002 contributor: fullname: I Chueshov – volume-title: Attractors of Evolution Equations year: 1992 ident: 7_CR3 contributor: fullname: AV Babin – volume: 53 start-page: 13 issue: 1–2 year: 1995 ident: 7_CR2 publication-title: Stoch. Stoch. Rep. doi: 10.1080/17442509508833981 contributor: fullname: A Bensoussan |
SSID | ssj0001367125 |
Score | 2.0911086 |
Snippet | The paper is devoted to constructing a random exponential attractor for some classes of stochastic PDE’s. We first prove the existence of an exponential... |
SourceID | crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 241 |
SubjectTerms | Computational Mathematics and Numerical Analysis Computational Science and Engineering Mathematics Mathematics and Statistics Numerical Analysis Partial Differential Equations Probability Theory and Stochastic Processes Statistical Theory and Methods |
Title | Exponential attractors for random dynamical systems and applications |
URI | https://link.springer.com/article/10.1007/s40072-013-0007-1 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1V7QID34jyJQ9MoFSxkzjpWEFLBYKJSmWK4theKtKqSaWKX885TqJWwNA1OUXW2c49--7eA7gLBI2k5KbgSZkDSqSdSOnI0QH1UteoVOqS7fOdjyf-yzSYtoA1VxfZrFdnJMsfddPrZgS8TRWBZxqhQwdPPB3Tdxq0oTN4_nzduFnxeEhLtVXcjabKwqV1OvOv72wHpO1saBlkRoe28S8vuQlNbcmstypEL_3-zdy4w_iP4KDCnGRgF8kxtFR2AvtvDWFrfgpPw_VinpnKITRMimJpZXgIQlqC0UzOv4i02vX43rI_5wSfk80E-BlMRsOPx7FTCSw4KcPI5DCZml54IbUQGMspTbWfGGk7qRVPJEtpv69czoSkXLk0EX0q_EiGUZBwxC3MO4d2hoO7AMJYwmTIpXYF9QXTAmfa8w1cQrzkh7IL97WX44Xl0YgbxuTSNTG6xqTCw5h24aH2YVxtqfx_68udrK9gj1lFC5yLa2gXy5W6QVxRiNtqIf0Ab3TB2g |
link.rule.ids | 315,783,787,27938,27939,41095,42164,52125 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6hdgAG3ojy9MAEShU7iZOMFbQU-phaqUxRHMcLoq2aVEL8es5xUrUIhq7JKXLOdu5z7u77AO49QQMpuS54SvUBJVBWkKrAUh51ElurVKqC7XPIu2P3beJNyj7urKp2r1KSxZd61eymFbx1GYGjO6F9C488dZch2q9BvfXy3lv7teJwnxZyq7gddZmFTat85l_P2YxIm-nQIsp0DmFUjc8Ul3w0l7loJt-_qBu3fIEjOChRJ2mZZXIMO-n0BPYHK8rW7BSe21_z2VTXDqFhnOcLI8RDENQSjGdy9kmkUa_H-4b_OSN4naynwM9g3GmPnrpWKbFgJQxjk8VkorvhhVRCYDSnNFFurMXtpEp5LFlCwzC1OROS8tSmsQipcAPpB17MEbkw5xxqUxzcBRDGYiZ9LpUtqCuYEjjXjqsBEyIm15cNeKjcHM0Nk0a04kwuXBOha3Qy3I9oAx4rH0blpsr-t77cyvoOdrujQT_qvw57V7DHjL4Fzss11PLFMr1BlJGL23JV_QD2EMWu |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT4NAEJ2YNjF68NtYPzl40tCyCyxwbGxrtdp4sEk9IcuyFyNtCk2Mv95ZFprW6MF4hQlZhtnMW2bmPYBLlxNfCKYanhJ1QPGl6SfSN6VL7NhSKpWyYPscsv7IuR-741LnNKu63auSpJ5pUCxNad6aCtlaDL4pNW_VUmCrqWjPxONP3SGIFmpQb9--DJZ-s9jMI4X0Km5N1XJhkaq2-dNzVrPTamm0yDi9bXit1qobTd6a85w3489vNI7_eJkd2CrRqNHW4bMLa0m6B5uPCyrXbB863Y_pJFU9RWgY5flMC_QYCHYNzHNi8m4IrWqP9zUvdGbgdWO5NH4Ao173-aZvltILZkwxZ5lUxGpKngvJOWZ5QmLpREr0TsiERYLGJAgSi1EuCEssEvGAcMcXnu9GDBENtQ-hluLijsCgNKLCY0JanDicSo4xYDsKSCGScjzRgKvK5eFUM2yECy7lwjUhukYVyb2QNOC68mdYbrbsd-vjP1lfwPpTpxc-3A0HJ7BBtewFfpZTqOWzeXKG4CPn52WAfQGHrM6S |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exponential+attractors+for+random+dynamical+systems+and+applications&rft.jtitle=Stochastic+partial+differential+equations+%3A+analysis+and+computations&rft.au=Shirikyan%2C+Armen&rft.au=Zelik%2C+Sergey&rft.date=2013-06-01&rft.pub=Springer+US&rft.issn=2194-0401&rft.eissn=2194-041X&rft.volume=1&rft.issue=2&rft.spage=241&rft.epage=281&rft_id=info:doi/10.1007%2Fs40072-013-0007-1&rft.externalDocID=10_1007_s40072_013_0007_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2194-0401&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2194-0401&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2194-0401&client=summon |