Quasi Solution of a Nonlinear Inverse Parabolic Problem

In this paper, we study the existence of a quasi solution to nonlinear inverse parabolic problem related to ℵ ( u ) : ≡ u t - ∇ · ( F ( x , ∇ u ) ) where the function F is unknown. We consider a methodology, involving minimization of a least squares cost functional, to identify the unknown function...

Full description

Saved in:
Bibliographic Details
Published inBulletin of the Iranian Mathematical Society Vol. 45; no. 1; pp. 1 - 12
Main Authors Shayegan, Amir Hossein Salehi, Zakeri, Ali, Nikazad, Touraj
Format Journal Article
LanguageEnglish
Published Singapore Springer Singapore 07.02.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we study the existence of a quasi solution to nonlinear inverse parabolic problem related to ℵ ( u ) : ≡ u t - ∇ · ( F ( x , ∇ u ) ) where the function F is unknown. We consider a methodology, involving minimization of a least squares cost functional, to identify the unknown function F . At the first step of the methodology, we give a stability result corresponding to connectivity of F and u which leads to the continuity of the cost functional. We next construct an appropriate class of admissible functions and show that a solution of the minimization problem exists for the continuous cost functional. At the last step, we conclude that the nonlinear inverse parabolic problem has at least one quasi solution in that class of functions.
AbstractList In this paper, we study the existence of a quasi solution to nonlinear inverse parabolic problem related to ℵ ( u ) : ≡ u t - ∇ · ( F ( x , ∇ u ) ) where the function F is unknown. We consider a methodology, involving minimization of a least squares cost functional, to identify the unknown function F . At the first step of the methodology, we give a stability result corresponding to connectivity of F and u which leads to the continuity of the cost functional. We next construct an appropriate class of admissible functions and show that a solution of the minimization problem exists for the continuous cost functional. At the last step, we conclude that the nonlinear inverse parabolic problem has at least one quasi solution in that class of functions.
Author Zakeri, Ali
Nikazad, Touraj
Shayegan, Amir Hossein Salehi
Author_xml – sequence: 1
  givenname: Amir Hossein Salehi
  surname: Shayegan
  fullname: Shayegan, Amir Hossein Salehi
  organization: Faculty of Mathematics, K. N. Toosi University of Technology
– sequence: 2
  givenname: Ali
  surname: Zakeri
  fullname: Zakeri, Ali
  organization: Faculty of Mathematics, K. N. Toosi University of Technology
– sequence: 3
  givenname: Touraj
  surname: Nikazad
  fullname: Nikazad, Touraj
  email: tnikazad@iust.ac.ir
  organization: School of Mathematics, Iran University of Science and Technology
BookMark eNp9j91KAzEQhYNUsNY-gHd5gehMdvOzl1L8KRStqOBdyKZZWdkmknQF396U9dqLYYbDnDnznZNZiMETcolwhQDqOtfYaGCAuhQK1pyQOapKMC1QzMoMqBhIeD8jy5z7FkSlOQou50Q9jzb39CUO46GPgcaOWvoYw9AHbxNdh2-fsqdbm2wbh97RbYrt4PcX5LSzQ_bLv74gb3e3r6sHtnm6X69uNsxx1RyYd3XXViVQg621K5EIUuxAKqVAaSWlB-s6V9U7y7HqpKpF1XqOyomdLvqC4HTXpZhz8p35Sv3eph-DYI7wZoI3Bd4c4U1TPHzy5LIbPnwyn3FMobz5j-kXYURdOQ
Cites_doi 10.1016/j.aml.2007.06.007
10.1088/0266-5611/13/5/011
10.1007/s10114-008-6384-0
10.1016/S0898-1221(01)00220-6
10.1016/j.apm.2013.06.018
ContentType Journal Article
Copyright Iranian Mathematical Society 2018
Copyright_xml – notice: Iranian Mathematical Society 2018
DBID AAYXX
CITATION
DOI 10.1007/s41980-018-0115-9
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1735-8515
EndPage 12
ExternalDocumentID 10_1007_s41980_018_0115_9
GroupedDBID -EM
0R~
23N
406
5GY
AACDK
AAHNG
AAIAL
AAJBT
AASML
AATNV
AATVU
AAUYE
ABAKF
ABDBF
ABDZT
ABECU
ABFTV
ABJNI
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADKNI
ADRFC
ADTPH
ADURQ
ADYFF
AEFQL
AEJRE
AEMSY
AENEX
AEOHA
AESKC
AFBBN
AFQWF
AGDGC
AGJBK
AGMZJ
AGQEE
AGRTI
AIAKS
AIGIU
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
AXYYD
BGNMA
CSCUP
DPUIP
E3Z
EBLON
EBS
EJD
EOJEC
ESX
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
IAO
IKXTQ
ITC
IWAJR
J-C
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
OBODZ
OK1
P2P
PT4
RLLFE
RNS
ROL
RSV
SISQX
SJYHP
SNE
SNPRN
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TR2
TSG
TUS
UOJIU
UTJUX
UZXMN
VFIZW
ZMTXR
AAAVM
AAYXX
ABBRH
ABDBE
ABFSG
ACIPV
ACSTC
ADKPE
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
C1A
CITATION
ID FETCH-LOGICAL-c279t-ec4fb3b0580a48c5261065d06777078766e0acfc34da213f67453be217c5d8fc3
ISSN 1017-060X
IngestDate Tue Jul 01 01:35:59 EDT 2025
Fri Feb 21 02:30:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Primary 35K55
Quasi solution
Time-dependent problems
Nonlinear inverse parabolic problem
49J20
Secondary 35R30
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c279t-ec4fb3b0580a48c5261065d06777078766e0acfc34da213f67453be217c5d8fc3
PageCount 12
ParticipantIDs crossref_primary_10_1007_s41980_018_0115_9
springer_journals_10_1007_s41980_018_0115_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190207
PublicationDateYYYYMMDD 2019-02-07
PublicationDate_xml – month: 2
  year: 2019
  text: 20190207
  day: 7
PublicationDecade 2010
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Bulletin of the Iranian Mathematical Society
PublicationTitleAbbrev Bull. Iran. Math. Soc
PublicationYear 2019
Publisher Springer Singapore
Publisher_xml – name: Springer Singapore
References Ladyzhenskaia, O.A., Solonnikov, V.A., Ural’tseva, N.N.: Linear and quasi-linear equations of parabolic type, vol. 23. American Mathematical Society, Providence (1988)
FaragóIKarátsonJThe gradient-finite element method for elliptic problemsComput. Math. Appl.2001428–910431053185122410.1016/S0898-1221(01)00220-60987.65121
RektorysKThe method of discretization in time and partial differential equations1982DordrechtD. Reidel Publishing Company0522.65059
Faragó, I., Karátson, J.: Numerical solution of nonlinear elliptic problems via preconditioning operators: Theory and applications, vol. 11. Nova Science Publishers, Inc., New York (2002)
WilanskyATopology for analysis1970BostonGinn0229.54001
HasanovAInverse coefficient problems for monotone potential operatorsInverse Probl.199713512651278147436810.1088/0266-5611/13/5/0110883.35128
Di Nardo, R.: Nonlinear elliptic and parabolic equations with measure data. PhD thesis, Università degli Studi di Napoli Federico II (2009)
OuYHHasanovALiuZHInverse coefficient problems for nonlinear parabolic differential equationsActa Math. Sin. (Engl. Ser.)2008241016171624245304710.1007/s10114-008-6384-01157.35402
ZakeriASalehi ShayeganAHGradient WEB-spline finite element method for solving two-dimensional quasilinear elliptic problemsAppl. Math. Model2014382775783314165910.1016/j.apm.2013.06.01806968229
HasanovALiuZHAn inverse coefficient problem for a nonlinear parabolic variational inequalityAppl. Math. Lett.2008216563570241237910.1016/j.aml.2007.06.0071143.35385
A Wilansky (115_CR9) 1970
A Hasanov (115_CR4) 1997; 13
YH Ou (115_CR7) 2008; 24
K Rektorys (115_CR8) 1982
I Faragó (115_CR2) 2001; 42
115_CR6
A Hasanov (115_CR5) 2008; 21
115_CR1
115_CR3
A Zakeri (115_CR10) 2014; 38
References_xml – reference: WilanskyATopology for analysis1970BostonGinn0229.54001
– reference: Ladyzhenskaia, O.A., Solonnikov, V.A., Ural’tseva, N.N.: Linear and quasi-linear equations of parabolic type, vol. 23. American Mathematical Society, Providence (1988)
– reference: OuYHHasanovALiuZHInverse coefficient problems for nonlinear parabolic differential equationsActa Math. Sin. (Engl. Ser.)2008241016171624245304710.1007/s10114-008-6384-01157.35402
– reference: ZakeriASalehi ShayeganAHGradient WEB-spline finite element method for solving two-dimensional quasilinear elliptic problemsAppl. Math. Model2014382775783314165910.1016/j.apm.2013.06.01806968229
– reference: HasanovALiuZHAn inverse coefficient problem for a nonlinear parabolic variational inequalityAppl. Math. Lett.2008216563570241237910.1016/j.aml.2007.06.0071143.35385
– reference: Di Nardo, R.: Nonlinear elliptic and parabolic equations with measure data. PhD thesis, Università degli Studi di Napoli Federico II (2009)
– reference: HasanovAInverse coefficient problems for monotone potential operatorsInverse Probl.199713512651278147436810.1088/0266-5611/13/5/0110883.35128
– reference: FaragóIKarátsonJThe gradient-finite element method for elliptic problemsComput. Math. Appl.2001428–910431053185122410.1016/S0898-1221(01)00220-60987.65121
– reference: Faragó, I., Karátson, J.: Numerical solution of nonlinear elliptic problems via preconditioning operators: Theory and applications, vol. 11. Nova Science Publishers, Inc., New York (2002)
– reference: RektorysKThe method of discretization in time and partial differential equations1982DordrechtD. Reidel Publishing Company0522.65059
– ident: 115_CR3
– volume: 21
  start-page: 563
  issue: 6
  year: 2008
  ident: 115_CR5
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2007.06.007
– volume-title: Topology for analysis
  year: 1970
  ident: 115_CR9
– volume: 13
  start-page: 1265
  issue: 5
  year: 1997
  ident: 115_CR4
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/13/5/011
– ident: 115_CR6
– volume: 24
  start-page: 1617
  issue: 10
  year: 2008
  ident: 115_CR7
  publication-title: Acta Math. Sin. (Engl. Ser.)
  doi: 10.1007/s10114-008-6384-0
– volume: 42
  start-page: 1043
  issue: 8–9
  year: 2001
  ident: 115_CR2
  publication-title: Comput. Math. Appl.
  doi: 10.1016/S0898-1221(01)00220-6
– ident: 115_CR1
– volume: 38
  start-page: 775
  issue: 2
  year: 2014
  ident: 115_CR10
  publication-title: Appl. Math. Model
  doi: 10.1016/j.apm.2013.06.018
– volume-title: The method of discretization in time and partial differential equations
  year: 1982
  ident: 115_CR8
SSID ssib053821526
ssj0000395730
Score 2.085862
Snippet In this paper, we study the existence of a quasi solution to nonlinear inverse parabolic problem related to ℵ ( u ) : ≡ u t - ∇ · ( F ( x , ∇ u ) ) where the...
SourceID crossref
springer
SourceType Index Database
Publisher
StartPage 1
SubjectTerms Mathematics
Mathematics and Statistics
Original Paper
Title Quasi Solution of a Nonlinear Inverse Parabolic Problem
URI https://link.springer.com/article/10.1007/s41980-018-0115-9
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELZYuLAHxFPLUz5wogpK6sRJjy0PARIVCJB6ixzH3i2PFiXlQH89M7HjtjykhUtUWaOozoxnxvP4hpB95ksus4R5WYwjzFSgQQ8KuKzEWgidB76ssueXXX52F170ot4kplt1l4yyQzn-tK_kJ1yFNeArdsl-g7PupbAAv4G_8AQOw_O_eHz9Isp-o45smVbHrsG-EEUFoVGUCpzEAjiNYNZXZnrMTCLXwm_XtQLnYLvwzF86OFeECxk6vBAD5yhe1V8TOW0_9QscPlIqeMcNWJt_fReLFg-2j7396Ba7_QcxNmKFAIbifjrsgJ1OWKX6IezYuMHJ3XBVUFNKFC2fz_2esTFmLWaRB95dNK15DZDkjIQZNRpM2WNTZf1B05vijjIMWglW1mFFXhB5rYlZc8WGDpi5ok2BNkXatPWLLDThcgHacaHdOe6c1noIbABO--UuVudjMpMZYAu7tTpBjl2Y7__DrIszm1-v3JbbZbJk7xu0bYRnhcypwSr5PeFuuUbiSoxoLUZ0qKmgToyoFSPqxIhaMVond6cnt0dnnp2n4clm3Bp5SoY6Y7A_OI1hImGHATigOWIIIuZTzLnyhdSShbloBkzzOIxYpuDSKqM8gfUNMj8YDtQfQjGZy6TOwTtmIde-yMANlVxHcSh5wvQmOag_QfpsYFPSL_mwSRr1R0rt6Sq_pt76FvU2WZxI7w6ZHxUvahfcyFG2Z7n-BjY9a9M
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quasi+Solution+of+a+Nonlinear+Inverse+Parabolic+Problem&rft.jtitle=Bulletin+of+the+Iranian+Mathematical+Society&rft.au=Shayegan%2C+Amir+Hossein+Salehi&rft.au=Zakeri%2C+Ali&rft.au=Nikazad%2C+Touraj&rft.date=2019-02-07&rft.pub=Springer+Singapore&rft.issn=1017-060X&rft.eissn=1735-8515&rft.volume=45&rft.issue=1&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1007%2Fs41980-018-0115-9&rft.externalDocID=10_1007_s41980_018_0115_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-060X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-060X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-060X&client=summon